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Eco-Driving of Autonomous Vehicles for Nonstop
Crossing of Signalized Intersections

Xiangyu Meng and Christos G. Cassandras , Life Fellow, IEEE

Abstract— This article is devoted to the development of an
optimal speed profile for autonomous vehicles in order to cross a
signalized intersection without stopping. The design objective is
to achieve both a short travel time and low energy consumption
by taking full advantage of the traffic light information based on
vehicle-to-infrastructure communication. The eco-driving prob-
lem is formulated as an optimal control problem. For the case
where the vehicles are in free-flow mode, we derive a real-
time on-line analytical solution, distinguishing our method from
most existing approaches based on numerical calculations. Under
mild assumptions, the optimal eco-driving algorithm is readily
extended to cases where the free-flow mode does not apply due
to the presence of interfering traffic. Extensive simulations are
provided to compare the performance of autonomous vehicles
under the proposed speed profile and human-driven vehicles.
The results show quantitatively the advantages of the proposed
algorithm in terms of energy consumption and travel time.

Note to Practitioners—This article is motivated by the require-
ments for increased safety, increased efficiency in energy con-
sumption, and lower congestion in signalized intersections.
We take advantage of the traffic signal phase and timing
information based on vehicle to infrastructure communication,
and use the information to plan the vehicle’s trajectory to avoid
the red traffic signal. An optimal speed profile is developed to
achieve a trade-off between minimizing trip time and avoiding
unnecessary braking and acceleration which corresponds to
minimizing energy consumption. We then show how such a speed
profile can be efficiently computed and control the motion of an
autonomous vehicle (or serve as an intelligent speed advisory
system for human-driven vehicles) leading to a safe, time-
efficient, and energy-efficient trip. A video of a real autonomous
vehicle test implementing our control algorithm can be found at
https://www.youtube.com/watch?v=x-ao4szeLYo.
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I. INTRODUCTION

THE alarming state of existing transportation systems has
been well documented. For instance, in 2014, congestion

caused vehicles in urban areas to spend 6.9 billion additional
hours on the road at a cost of an extra 3.1 billion gallons of
fuel, resulting in a total cost estimated at $160 billion [1]. From
a control and optimization standpoint, the challenges stem
from requirements for increased safety, increased efficiency in
energy consumption, and lower congestion both in highway
and urban traffic. Connected and automated vehicles (CAVs)
provide an intriguing opportunity for enabling users to better
monitor transportation network conditions and to improve
traffic flow [2]. Their proliferation has rapidly grown, largely
as a result of vehicle-to-X (or V2X) technology [3] which
refers to an intelligent transportation system where all vehicles
and infrastructure components are interconnected with each
other. Such connectivity provides precise knowledge of the
traffic situation across the entire road network, which in turn
helps optimize traffic flows, enhance safety, reduce congestion,
and minimize emissions. Controlling a vehicle to improve
energy consumption has been studied extensively [4], [5]. In
general, there are two types of intersections including signal-
ized and unsignalized intersections. In signalized intersections,
green and red cycle lengths can be dynamically controlled
[6]. For unsignalized intersections, work in this area focuses
on coordinating vehicles [7]–[9]. More recently, an optimal
control framework is proposed in [10] for CAVs to cross one
or two adjacent intersections in an urban area. The state-of-
the-art and current trends in the coordination of CAVs are
provided in [11].

Our focus in this article is on an optimal control approach
for a single autonomous vehicle approaching a signalized
intersection in an energy-efficient way by exploiting traffic
signal information available through vehicle-to-infrastructure
(V2I) communication. An optimal control problem (OCP)
solution provides a lower performance bound so we know
what the “best” we can achieve is. This solution provides:
1) a “reference” to track during real-time execution using
on-line methods like model predictive control (MPC) [12]
or the control barrier function (CBF) approach as in [13]
and 2) a way to quantify how any such method (or any
other “practical” method) performs relative to the OCP lower
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bound. Compared with the preliminary version of the free-flow
model studied in [14], in this article we provide a complete
technical treatment that includes both the free-flow mode with
proofs of all theorems and its extension to interfering traffic,
as well as extensive simulations to illustrate the analysis,
a quantification of the eco-driving benefits through a detailed
energy consumption model, and a comparison with a human-
driving behavior model in VISSIM. The term “ECO-AND”
(short for “Economical Arrival and Departure”) is often used
in the literature to refer to this problem [15]. Its solution is
made possible by V2I communication, which enables a vehicle
to automatically receive signals from upcoming traffic lights
before they appear in its visual range. For example, such a V2I
communication system has been launched in Audi cars at more
than 4700 intersections across the United States by offering a
traffic light timer on their dashboards: as the car approaches
an intersection, a red traffic signal symbol and a “time-to-go”
countdown appear in the digital display and reads how long
it will be before the traffic signal ahead turns green. Clearly,
an autonomous vehicle can take advantage of such information
in order to go beyond current “stop-and-go” to achieve “stop-
free” driving. Along these lines, the problem of avoiding red
traffic signals at a single intersection is investigated in [16]–
[20]. The purpose in [16] is to track a target speed profile,
which is generated based on the feasibility of avoiding a
sequence of red lights. The MPC approach was used based
on a receding horizon. The work in [18] devises the optimal
speed profile given the feasible target time, which is within
some green light interval. GlidePath system proposed in [19]
is equipped with a scenario identifier component, and target
velocity is provided for each scenario. Dynamic programming
is employed in [20] to solve the eco-driving control prob-
lem with unknown traffic light signal timing. The case of
multiple signalized intersections is considered in [21]–[24].
Avoiding red lights with probabilistic information at multiple
intersections was considered in [21], where the time horizon is
discretized and deterministic dynamic programming is utilized
to numerically compute the optimal control input. A velocity
pruning algorithm is proposed in [22] to identify feasible green
windows, and a velocity profile is calculated numerically in
terms of energy consumption. Minimizing the fuel consump-
tion between two red-signalized intersections is considered
in [23], where the Legendre pseudospectral algorithm is used
to numerically solve the problem. The optimality analysis in
[24] was first used to identify the structure of the optimal
acceleration profile, which is then characterized by several
parameters. The parameters are optimized to seek the best
performance. The results in [24] show that the performance
is significantly improved by using the information of multiple
signalized intersections together.

In this article, an optimal control approach is used to design
an optimal speed profile for autonomous vehicles approaching
a signalized intersection. The optimality of the speed profile
is in the sense that it minimizes an objective function of
a weighted sum of both trip time and energy cost. Several
factors, such as the nonconvexity of the feasible green signal
interval, and the state constraints related to speed limits and a
safe following distance, make the problem difficult to solve.

To overcome these difficulties, we first devise a free flow
solution and then extend it to the non-free flow case. For the
free flow mode, we first derive a solution without taking into
account the traffic signal constraint, that is, the discontinuous
interval constraints are removed. If the terminal time obtained
from the above solution falls within some green signal interval,
then the traffic signal constraint is satisfied automatically.
When, instead, the terminal time falls within some red signal
interval, then the feasible terminal time could be either the end
of the previous green signal interval or the beginning of the
next green signal interval. Then, we transform the original
problem into a fixed terminal time OCP, which is solved
with two feasible terminal times. Comparing the corresponding
performances leads to the optimal solution of the free flow
case. We also show that the optimal eco-driving algorithm
derived under free flow conditions can be adjusted to handle
the case with interfering traffic under the assumption that some
traffic information is available. Kamal et al. [25] studied an
energy-efficient driving strategy on roads with varying traffic
signals at intersections with the goal of following the host
vehicle driven by a human instead of avoiding red traffic
signals.

The main contributions of this article are as follows.

1) Instead of solving this problem numerically as in some
of the existing work, an explicit analytical solution is
obtained.

2) We jointly optimize the energy consumption and the
throughput, unlike existing work which optimizes one
of them or optimizes both separately. We also explore
the tradeoff between the energy consumption and the
throughput.

3) Due to the on-line and real-time nature of the algorithm,
the speed profile can be recalculated as needed or can be
adjusted to consider interfering traffic from other road
users.

The remainder of this article is organized as follows. The
problem is formulated in Section II. In Section III, we present
the methodology to solve the formulated problem, where
the solution to the free terminal time OCP is described in
Section III-A, and the solution to the fixed terminal time
OCP is presented in Section III-B. Section IV shows how the
optimal solution can be extended to include the case when
execution of the optimal trajectory is obstructed by other road
users. Simulation results illustrating the use of the proposed
algorithm are presented in Section V. Section VI summarizes
our findings, concludes this article, and provides directions for
future work.

II. PROBLEM FORMULATION

In order to produce reliable results for eco-driving problems,
it is crucial to include powertrain dynamics of a vehicle
in design optimization. However, due to the complexity of
powertrain dynamics, it is impractical to do so in scenarios
which require real-time calculations. Therefore, we adopt a
two-level approach, where the high level is to provide a
real-time reference speed profile for the powertrain dynamics
based on a purely kinematic model (1), and we assume
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that in the low level proportional-integral-derivative (PID)
controllers or model predictive controllers are available to
the vehicle powertrain dynamics for reference speed track-
ing. The dynamics of the vehicle are modeled by a double
integrator

ẋ(t) = v(t), v̇(t) = u(t) (1)

where x(t), v(t), and u(t) are the position, velocity, and
acceleration of the vehicle, respectively. At time t0, the initial
position and velocity are given as x(t0) = 0 and v(t0) =
v0, respectively. The acceleration term u(t) includes an air
resistance term −v2(t), which is not explicitly shown in (1).
The inclusion of −v2(t) explicitly in u(t) will complicate
the analysis and hinder us from obtaining real-time solutions.
On the road, there are other users which may affect the
movement of the autonomous vehicle. Therefore, we consider
the interference of the preceding human-driven vehicles whose
trajectory is given by x p(t). The distance between the pre-
ceding human-driven vehicle and the autonomous vehicle is
defined as d(t) = x p(t) − x(t). Let us use l to denote the
distance to the traffic light, and tp the intersection crossing
time of the vehicle. The traffic signals switch between green
and red at an intersection, where the set of green intervals is
TG , and the set of red intervals is TR .

Our objective is to make the vehicle cross an intersection
without stopping with the aid of traffic signal information as
well as to minimize both travel time and energy consumption.
Thus, we formulate the following problem:
Problem 1: ECO-AND Problem

min
u(t),tp

ρt (tp − t0) + ρu

∫ tp

t0

u2(t)dt (2)

s. t. (1), x(tp) = l (3)

vmin ≤ v(t) ≤ vmax (4)

umin ≤ u(t) ≤ umax (5)

d(t) ≥ αv(t) + β (6)

and

tp ∈ TG (7)

where β > 0 relates to a static safety distance, that is, the dis-
tance when both vehicles stop and α > 0 relates to a dynamic
braking distance [26]. In (2), the term J t = tp− t0 is the travel
time while J u = ∫ tp

t0
u2(t)dt penalizes acceleration which

indirectly helps energy saving and passenger riding comfort
[27]. There are also results in the literature showing that pulse
and glide operation of a combustion engine may reduce fuel
consumption at low speeds [28]. The parameters vmin > 0 and
vmax > 0 are the minimum and maximum allowable speeds
for road vehicles, respectively, while the parameters umin and
umax are the maximum allowable deceleration and acceleration,
respectively.

In order to normalize these two terms for the purpose
of a well-defined optimization problem, first note that the
maximum possible value of J t is l/vmin. Depending on the
relationship between vmin, vmax, umax and l, there are two
different cases for the maximum possible value of J u . The
first case is when the road length is long enough so that the

vehicle can accelerate from vmin to vmax by using the maximum
acceleration umax, i.e., when l ≥ vmin(vmax − vmin)/umax +
(vmax − vmin)

2/(2umax). In this case,

J u = vmax − vmin

umax
u2

max = (vmax − vmin)umax.

The second case is when the road length is not long enough for
the vehicle to accelerate to the maximum speed. According to
the dynamics (1), we have vmin(tp − t0)+umax(tp − t0)2/2 = l.
By solving the above quadratic equation, we are able to
get

tp − t0 =
√

v2
min + 2umaxl − vmin

umax
.

Therefore, in this case,

J u =
∫ tp

t0

u2
maxdt = (√

v2
min + 2umaxl − vmin

)
umax.

We can now specify the two weighting parameters ρt and ρu

as follows: ρt = ρvmin/ l and

ρu =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − ρ

(vmax − vmin)umax
, if l≥vmin

vmax−vmin

umax

+ 1

2

(vmax − vmin)
2

umax
1 − ρ

(
√

v2
min + 2umaxl − vmin)umax

, otherwise

capturing the normalized tradeoff between the travel time and
energy consumption by setting 0 ≤ ρ ≤ 1. When ρ = 0,
the problem reduces to minimizing the energy consumption
only; when ρ = 1, we seek to minimize the travel time only.

Note that when u < 0, the vehicle decelerates due to
braking and when u > 0 the vehicle accelerates. Finally,
the constraint (7) reflects the requirement that tp belongs to
an interval when the traffic signal is green.

III. MAIN RESULTS

The challenges of the ECO-AND problem stem from the
constraints (6) and (7). To ensure the satisfaction of (6),
an accurate prediction of the road traffic conditions and the
driving behavior of the preceding vehicle is needed. We first
relax (6), i.e., we consider cases where the vehicle is in
free-flow mode, and show how the result without consid-
ering (6) can be extended to include (6) based on mild
assumptions in Section IV.

The constraint (7) is a disconnected set constraint, which
makes the problem nonconvex. Existing approaches to such
problems turn out to be very demanding for off-line compu-
tation, not to mention obtaining analytical solutions in a real-
time on-line context. We proceed by relaxing the constraint (7)
as well, which allows us to efficiently obtain an analytical
solution on-line. If the optimal arrival time t∗p is within
some green interval, then the free-flow problem is solved.
However, if t∗p ∈ TR , then we solve Problem 1 twice but with
constraint (7) replaced by tp = t p = sup{t < t∗p|t ∈ TG}, and
tp = t̄ p = inf{t > t∗p|t ∈ TG}, respectively. In simple terms,
if the optimal terminal time of the problem without (7) does
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not allow the vehicle to make the green light, then we compare
the performance obtained with different terminal times, and the
solution produced by the one with better performance is the
most likely optimal solution. To confirm this, we can plot the
optimal performance J ∗(tp) as a function of the terminal time
tp to explicitly determine the optimal terminal time t∗p.

Let us first introduce a lemma, which will be used frequently
throughout the following analysis.
Lemma 1: Consider the vehicle dynamics (1) with the ini-

tial conditions x0 and v0. If the control input u(t) = a is
constant during the time interval [t0, t1], then

v(t1) = v0 + a(t1 − t0)

x(t1) = x0 + v0(t1 − t0) + 1

2
a(t1 − t0)

2

J u = a2(t1 − t0).

If the control input u(t) = a(t1 − t) with a constant a, then

v(t1) = v0 + 1

2
a(t1 − t0)

2

x(t1) = x0 + v0(t1 − t0) + 1

3
a(t1 − t0)

3

J u = 1

3
a2(t1 − t0)

3.

Proof: The proof is given in [29].
In the following, we first seek the optimal solution to Prob-
lem 1 without the constraint (7), which is termed “free terminal
time OCP.”

A. Free Terminal Time Optimal Control Problem

The free terminal time OCP is given in the following.
Problem 2: Free terminal time OCP

min
u(t),tp

ρt (tp − t0) + ρu

∫ tp

t0

u2(t)dt (8)

s. t. (1), x(tp) = l (9)

vmin ≤ v(t) ≤ vmax (10)

umin ≤ u(t) ≤ umax (11)

where ρt and ρu are given in Section II.
For the objective function (8), we prove that the optimal

solution is to never decelerate, that is, u(t) ≥ 0 for t ∈ [t0, tp],
which is shown in Lemma 2.
Lemma 2: The optimal solution u∗(t) to Problem 2 satisfies

u∗(t) ≥ 0 for all t ∈ [t0, t∗p].
Proof: The proof is given in [29].

In addition, we have the following result for the optimal
acceleration profile.
Lemma 3: In the optimal acceleration profile, acceleration

always precedes cruising at constant speed.
Proof: The proof is given in [29].

Whenever v(τ ) = vmax for some τ ∈ [t0, tp] (which may
not be possible in some cases), we must have u(t) = 0
for all t ∈ [τ, tp]. Based on these properties of the optimal
solution, we can derive necessary conditions for the solution
to Problem 2, which are summarized in Theorem 1.
Theorem 1: Consider the vehicle’s dynamics (1) with initial

conditions x(t0) = 0 and v(t0) = v0. Let x∗(t), v∗(t), u∗(t), t∗p

be an optimal solution to Problem 2 and assume that ρt �= 0
and ρu �= 0. Then, the optimal control u∗(t) satisfies

u∗(t) = arg min
0≤u(t)≤umax

ρuu
2(t) + ρt

v∗(t∗p)
(t − τ )u(t) (12)

where τ is the first time on the optimal path when v(τ ) = vmax

if τ < tp; τ = t∗p otherwise.
Proof: Here, we use the direct adjoining approach in [30]

to obtain necessary conditions for the optimal solution u∗(t)
and t∗p, where ∗ denotes optimal quantities. The Hamiltonian
H (v, u, λ) and Lagrangian L(v, u, λ, μ, η) are defined as

H (v, u, λ) = ρuu
2 + ρt + λ1v + λ2u (13)

and

L(v, u, λ, μ, η) = H (v, u, λ) + μ(u − umax)

+ η1(vmin − v) + η2(v − vmax) (14)

respectively, where λ(t) = [λ1(t) λ2(t)]T and η(t) =
[η1(t) η2(t)]T

μ(t) ≥ 0, μ(t)[u∗(t) − umax] = 0 (15)

η1(t) ≥ 0, η2(t) ≥ 0

η1(t)[vmin − v∗(t)] + η2(t)[v∗(t) − vmax] = 0. (16)

Note that we did not include the constraint u(t) ≥ umin

since we have already established that the optimal control
satisfies u∗(t) ≥ 0 in the free terminal time OCP in Lemma 2.
According to Pontryagin’s minimum principle, the optimal
control u∗(t) must satisfy

u∗(t) = arg min
0≤u(t)≤umax

H (v∗(t), u(t), λ(t)) (17)

which allows us to express u∗(t) in terms of the costate λ(t),
resulting in

u∗(t) = min

{
umax,−λ2(t)

2ρu

}
(18)

with λ2(t) ≤ 0 due to Lemma 2. The Lagrange multiplier μ(t)
is such that

∂L∗

∂u
|u=u∗(t) = 2ρuu

∗(t) + λ2(t) + μ(t) = 0. (19)

Since we can always find μ(t) ≥ 0 to make (15) and (19)
hold under the minimum principle (15), (18), and (19) can
be considered as redundant conditions. For the costate λ1(t),
we have λ̇1(t) = −∂L∗(t)/∂x = 0, which means λ1(t) = λ1

is a constant. The costate λ2(t) satisfies

λ̇2(t) = −∂L∗(t)
∂v

= −λ1 + η1(t) − η2(t). (20)

First, let us use a proof by contradiction to show that if v∗(t) =
vmin, then t = t0. Assume that there exists a t such that v∗(t) =
vmin. Then, we must have v∗(t) = vmin for all t ∈ [t0, t∗p] due to
Lemma 3. According to the system dynamics in (1), u(t) = 0
for all t ∈ [t0, t∗p]. Based on the minimum principle (18),
λ2(t) = 0 for all t ∈ [t0, t∗p]. From (16), we know that
η2(t) = 0 for all t ∈ [t0, t∗p]. Since the terminal time tp is
unspecified, there is a necessary transversality condition for
t∗p to be optimal, namely, H (v∗(t∗p), u∗(t∗p), λ(t∗p)) = 0, that is

ρuu
∗(t∗p)2 + ρt + λ1v

∗(t∗p) + λ2
(
t∗p

)
u
(
t∗p

) = 0. (21)
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Since u∗(t∗p) = 0, we must have λ1 < 0 according to (21).
Then, we obtain λ̇2(t) > 0 from (20), which contradicts
λ2(t) = 0 for t ∈ [t0, t∗p]. We have thus established that if
v∗(t) = vmin, then t = t0. Next, we will show that λ2(t)
has no discontinuities. Since it is impossible that v(t) = vmin

for t �= t0, the costate trajectory λ2(t) may jump only at
some time τ when v(τ ) = vmax. When the state constraint
does not depend on t explicitly, we have the condition [31]
H ∗(τ−) = H ∗(τ+), which can be written as

ρuu
∗(τ−)2 + λ2(τ

−)u∗(τ−) = ρuu
∗(τ+)2 + λ2(τ

+)u∗(τ+)

(22)

where τ+ and τ− denote the left-hand side and the right-
hand side limits, respectively. We know from Lemma 2 that
u∗(t) = 0, for t ∈ [τ, t∗p]. Therefore, from (22), we obtain

ρuu
∗(τ−)2 + λ2(τ

−)u∗(τ−) = 0. (23)

According to (18), we either have u∗(τ−) = −λ2(τ
−)/(2ρu)

or u∗(τ−) = umax. When u∗(τ−) = −λ2(τ
−)/(2ρu),

(23) becomes −ρuu∗(τ−)2 = 0, which implies u∗(τ−) =
λ2(τ

−) = 0. When u∗(τ−) = umax, (23) becomes umax =
−λ2(τ

−)/ρu, which contradicts condition (18) where umax ≤
−λ2(τ

−)/(2ρu). Therefore, only the case u∗(τ−) = λ2(τ
−) =

0 is possible. In other words, the costate trajectory λ2(t) has
no discontinuities, and the following jump conditions:

λ2(τ
−) = λ2(τ

+) − ζ1(τ ) + ζ2(τ ) (24)

ζ1(τ ) ≥ 0, ζ2(τ ) ≥ 0, and

ζ1(τ )[vmin − v∗(τ )] + ζ2(τ )[v∗(τ ) − vmax] = 0 (25)

are always satisfied with ζ1(τ ) = ζ2(τ ) = 0. Next, we will
show that λ2(t∗p) = 0. At the terminal time t∗p, the following
transversality conditions hold [30]:

λ2
(
t∗−
p

) = γ1
∂

∂v
[vmin − v]|v=v∗(t∗p) + γ2

∂

∂v
[v − vmax]|v=v∗

(
t∗p
)

that is, λ2(t∗−
p ) = −γ1 + γ2 where γ1 ≥ 0, γ2 ≥ 0, and

γ1
[
vmin − v∗(t∗p)] + γ2

[
v∗(t∗p) − vmax

] = 0. (26)

If vmin < v∗(t∗p) < vmax, then γ1 = γ2 = 0, which leads to
λ2(t∗p) = 0 by the continuity of λ2(t). When v∗(t∗p) = vmax,
then u∗(t∗p) = 0, which results in λ2(t∗p) = 0 according to (18).
Last, we will show that η1(t) = 0, and

η2(t) =
{

0, for t ∈ [t0, τ )

−λ1, for t ∈ [τ, t∗p].
Since H (v, u, λ) is not an explicit function of time t , it follows
that dH ∗(t)/dt = 0, that is

[2ρuu
∗(t) + λ2(t)]u̇∗(t) + [η1(t) − η2(t)]u∗(t) = 0. (27)

The first term [2ρuu∗(t) + λ2(t)]u̇∗(t) is always zero since
when u∗(t) �= umax, 2ρuu∗(t) + λ∗

2(t) = 0 according to (18),
and when u∗(t) = umax, u̇∗(t) = 0. Condition (27) can thus
be reduced to

[η1(t) − η2(t)]u∗(t) = 0. (28)

When v0 = vmin, we have η2(t0) = 0 from the fact that
if v∗(t) = vmin, then t = t0 shown earlier and from (16).
Condition (28) then implies η1(t0)u∗(t0) = 0. Since u∗(t0) > 0
according to Lemma 3, we can get η1(t0) = 0. Then η1(t) = 0
since v(t) > vmin for t > t0. Therefore, for any v0, we have
η1(t) = 0. It is easy to get from (16) that η2(t) = 0 for
t ∈ [t0, τ ). For t ∈ [τ, t∗p], η2(t) = −λ1 satisfies condition (16)
and λ̇2(t) = 0 in (20). Based on the above observations,
the differential equation (20) becomes

λ̇2(t) = −λ1 (29)

for t ∈ [t0, τ ). Because of (18) and λ2(t∗p) = 0 (shown earlier),
we have u∗(t∗p) = 0, and then −λ1 = ρt/v

∗(t∗p) from (21).
Solving the differential equation (29), we have

λ2(t) = ρt

v∗(t∗p) (t − τ ) (30)

for t ∈ [t0 τ ]. In the case that v∗(t∗p) < vmax, we simply let
τ = t∗p in (30). The proof is completed by substituting (30)
for λ2(t) in (17).

Recall that the theorem was proved under the assumption
that ρt �= 0 and ρu �= 0. The special cases when either ρt = 0
or ρu = 0 are considered in Corollaries 2 and 3.
Corollary 2: Consider the vehicle dynamics (1) with initial

conditions x(t0) = 0 and v(t0) = v0. Let x∗(t), v∗(t), u∗(t),
t∗p be an optimal solution to Problem 2 when ρt = 0. Then,
the optimal control u∗(t) satisfies u∗(t) = 0 for all t ∈ [t0, t∗p].

Corollary 3: Consider the vehicle dynamics (1) with initial
conditions x(t0) = 0 and v(t0) = v0. Let x∗(t), v∗(t), u∗(t),
t∗p be an optimal solution to Problem 2 when ρu = 0. Then,
the optimal control u∗(t) satisfies

u∗(t) =
{
umax, for t ∈ [t0, τ )

0, for t ∈ [
τ, t∗p

] (31)

where τ is the first time on the optimal path when v∗(τ ) =
vmax.

The proofs of the above two corollaries are straightforward
by setting ρt = 0 and ρu = 0, respectively, in (12) in
Theorem 1.

Based on the vehicle dynamics (1), the initial conditions
x(t0) = 0 and v(t0) = v0, and the terminal condition x∗(t∗p) =
l, the optimal control law (12) and the optimal time t∗p can
be uniquely determined. In the following, we will classify
the results into different cases depending on the values of the
model parameters. In order to do so, we define two functions

f (v0) = l − v2
max − v2

0

2umax
− umaxv

2
max

ρu

ρt
+ 1

6
u3

maxv
2
max

ρ2
u

ρ2
t

g(v0) = l − 2v0

√
(vmax − v0)vmax

ρu

ρt

− 4

3
(vmax − v0)

√
(vmax − v0)vmax

ρu

ρt
.

Depending on the signs of these two functions, the optimal
solution consisting of u∗(t) and t∗p can be classified as shown
in Table I with all detailed calculations provided in [29].
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TABLE I

OPTIMAL SOLUTION CLASSIFICATION FOR PROBLEM 2

Referring to this table, the optimal control is parameterized
by the following function:

�(t|a, b, c) =

⎧⎪⎨
⎪⎩
umax, when t ≤ a

c(t − b), when a < t < b

0, when t ≥ b

(32)

where the dash (−) in � in Table I means that the variable t
is not defined on the corresponding domain, and therefore that
case is inapplicable here. The parameters shown in Table I are
defined as follows:

t1 = t0 + (1 − u2
max

ρu

ρt
)vmax − v0

umax
, t3 = t0 + v1 − v0

umax

t2 = t1 + 2umaxvmax
ρu

ρt
, t4 = t0 + 2

√
(vmax − v0)vmax

ρu

ρt

where

v1 =
√√√√ 2umaxl + v2

0

1 + 4u2
max

1− ρu
ρt
u2

max

ρu

ρt
+ 8

3
u4

max
(1− ρu

ρt
u2

max)
2

ρ2
u

ρ2
t

and v2 is the solution of the following equation:

l = 2

3
(v0 + 2v2)

√
(v2 − v0)v2

ρu

ρt
.

The parameters δ1, δ2, δ3, δ4 in Table I specifying the optimal
time t∗p when the vehicle arrives at the intersection in each of
the four possible cases are given in the following:

δ1 = t2 + f (v0)

vmax
, δ2 = t3 + 2umax

v1

1 − ρu

ρt
u2

max

ρu

ρt

δ3 = t4 + g(v0)

vmax
, δ4 = t0 + 2

√
(v2 − v0)v2

ρu

ρt
.

Remark 1: This remark pertains to the underlying criteria
for the optimal solution classification in Table I. The first row
determines whether or not the maximum acceleration umax will
be used for a given initial speed v0. The optimality conditions
tell us that the vehicle starts with the maximum acceleration
when the initial speed is relatively low, which corresponds to
a positive value of a in � in (32). The second row determines
if the road length l is large enough for a vehicle to reach
its maximum speed for a given initial speed v0. In general,
the optimal control contains three phases: full acceleration,
linearly decreasing acceleration, and no acceleration, which
is defined by � in (32). The first column specifies the case
where all three phases are included with switches defined by
t1, t2. The second column corresponds to the case of low

initial speeds and short-length roads. Under optimal control
in this case, the vehicle starts with full acceleration, but the
road length is so short that the maximum speed cannot be
reached. Therefore, the optimal control contains only the first
two phases. The third column corresponds to the case of large
initial speeds and long-length roads. The vehicle starts with
linearly decreasing acceleration, and then proceeds with no
acceleration when the speed reaches the limit vmax. Here,
the optimal control contains only the last two phases. The
last column corresponds to the case of large initial speeds and
short-length roads. Therefore, the vehicle uses only linearly
decreasing acceleration.

B. Fixed Terminal Time Optimal Control Problem

In this section, we consider the case where the optimal time
t∗p obtained in the free terminal time OCP (Problem 2) is within
some red interval, that is, t∗p ∈ TR . In this case, the candidate
optimal arrival time t∗p in Problem 1 without (6) is either t p
or t̄ p. Therefore, we can compare the performance obtained
under either one of these two terminal times, and select the
one with better performance to determine the optimal arrival
time for Problem 1 without (6). In both cases, the travel time
is now fixed, hence the only objective is to minimize the
energy consumption. Thus, we have the following problem
formulation.
Problem 3: Fixed terminal time OCP

min
u(t)

∫ tp

t0

u2(t)dt (33)

s. t. (1), x(tp) = l (34)

tp = t p or t̄ p (35)

vmin ≤ v(t) ≤ vmax (36)

umin ≤ u(t) ≤ umax. (37)

Note that tp is a fixed value here.
1) Arrival Time tp = t p: In this case, it is clear that the

vehicle must use less time than the one specified by t∗p in
Problem 2 and higher acceleration. Define a function

h(v0) =

⎧⎪⎨
⎪⎩

v0tp + 1

2
umaxt2

p − l, for tp ≤ vmax − v0

umax

vmaxtp − 1

2

(vmax − v0)
2

umax
− l, for tp >

vmax − v0

umax
.

Observe that the terminal time tp = t p is possible if and only
if h(v0) ≥ 0. The main result for this case is given in the
following theorem.
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Theorem 4: Consider the vehicle dynamics (1) with initial
conditions x(t0) = 0 and v(t0) = v0. Let x∗(t), v∗(t), u∗(t)
be an optimal solution to Problem 3 with tp = t p. Then,
the optimal control u∗(t) satisfies

u∗(t) = arg min
0≤u(t)≤umax

u2(t) + u∗(t0)2(t − τ )u(t)

v0 − v∗(tp) + (τ − t0)u∗(t0)

where τ is the first time on the optimal path when v(τ ) = vmax

if τ < tp; τ = tp otherwise.
Proof: Similar to the proof of Theorem 1, we will use

the direct adjoining approach [30] to solve the fixed termi-
nal time OCP. The Hamiltonian H (v, u, λ) and Lagrangian
L(v, u, λ, μ, η) are defined as H (u, v, λ) = u2 + λ1v + λ2u,
and L(u, v, λ, μ, η) = H + μ(u − umax) + η1(vmin − v) +
η2(v − vmax), respectively, where λ(t) = [λ1(t) λ2(t)]T and
η(t) = [η1(t) η2(t)]T , and

μ(t) ≥ 0, μ(t)[u∗(t) − umax] = 0

η1(t) ≥ 0, η2(t) ≥ 0

η1(t)[vmin − v∗(t)] + η2(t)[v∗(t) − vmax] = 0.

Since t p ≤ t∗p, the optimal solution from the free terminal
time optimal problem implies u∗(t) ≥ 0 for all t . Therefore,
the constraint u(t) ≥ umin is relaxed, and

u∗(t) = arg min
0≤u(t)≤umax

u2 + λ2u (38)

which implies that u∗(t) = min{umax,−λ2(t)/2} and
λ2(t) ≤ 0. From the proof of Theorem 1, we know that μ(t) is
a redundant variable, and λ1 is a constant. Let us first assume
that l > vmintp. Note that the case of l = vmintp cannot occur
when tp = t p (however, it may occur when tp = t̄ p and this
case will be discussed later). Again, we can prove the fact
that v(t) = vmin happens only at t = t0 but without using the
transversality condition as we did in the free terminal time
OCP. The property that λ2(t) has no discontinuities still holds.
The costate λ2(t) satisfies

λ̇2(t) = −λ1 + η1(t) − η2(t). (39)

Similarly, we can show that η1(t) = 0, and (39) reduces to
λ̇2(t) = −λ1 for t ∈ [t0, τ ) and λ2(τ ) = 0. By solving the
above differential equation, we get

λ2(t) = −λ1(t − τ ). (40)

Again since the Hamiltonian is not an explicit function of time,
by the condition H (t0) = H (tp), we have

u∗(t0)2 + λ1v
∗(t0) − λ1(t0 − τ )u∗(t0) = λ1v

∗(tp) (41)

where the fact that λ2(tp) = u∗(tp) = 0 has been used.
From (41), we can obtain

λ1 = u∗(t0)2

v∗(tp) + (t0 − τ )u∗(tp) − v∗(t0)
. (42)

For t ∈ [τ, tp], we can just let η2(t) = −λ1. If v∗(tp) < vmax,
then τ = tp in (41). The proof is completed by substituting
λ1 in (42) into (40), and then λ2 into (38).

Given the terminal time t p and the road length l, the value
of v0 can be classified into one of the five cases as shown
in Table II. Note that if Case i is infeasible for v0 and the

TABLE II

OPTIMAL SOLUTION CLASSIFICATION FOR PROBLEM 3 WITH tp = t p

given parameters, we can treat J u
i as infinity. The performance

associated with each case in Table II as well as the detailed
calculations are given in [29]. After obtaining the performance
for each case with tp = t p, we select the one with the smallest

energy consumption, that is, J
t p
u = min{J u

1 , . . . , J u
5 } with the

corresponding optimal acceleration profile.
2) Arrival Time tp = t̄ p: In this case, the vehicle must

use less acceleration than in the free terminal time case.
Depending on the initial speed v0, there are three cases to
consider. First, if l = v0(t̄ p − t0), then the vehicle can cruise
through the intersection with the constant speed v0 without any
acceleration (Case VI in Table III). The speed change value in
this case is J u

6 = 0. If, on the other hand, l > v0(t̄ p − t0), then
the problem can be solved using the result of the case tp = t p
analyzed above. Finally, if l < v0(t̄ p − t0), then the vehicle
must decelerate to reach the intersection while the traffic signal
is in its green state. Therefore, the control input is only subject
to the constraint umin ≤ u(t) ≤ 0. The main result in this case
is given in Theorem 5.
Theorem 5: Consider the vehicle dynamics (1) with initial

conditions x(t0) = 0 and v(t0) = v0. Let x∗(t), v∗(t), u∗(t)
be an optimal solution to Problem 3 with tp = t̄ p. Then,
the optimal solution u∗(t) satisfies

u∗(t) = arg min
umin≤u(t)≤0

u2(t) + u∗(t0)2(τ − t)u(t)

v∗(tp) − v0 − (τ − t0)u∗(t0)
where τ is the first time on the optimal path when v(τ ) = vmin

if τ < tp; τ = t∗p otherwise.
Proof: The Hamiltonian H (u, v, λ) and the Lagrangian

L(u, v, λ, μ, η) are defined as H (u, v, λ) = u2 + λ1v + λ2u
and L(u, v, λ, μ, η) = H (u, v, λ)+μ(umin−u)+η1(vmin−v)+
η2(v−vmax), respectively, where λ(t) = [λ1(t), λ2(t)]T , η(t) =
[η1(t), η2(t)]T , μ(t) ≥ 0, μ(t)[umin − u∗(t)] = 0, η1(t) ≥ 0,
η2(t) ≥ 0 and η1(t)[vmin −v∗(t)]+η2(t)[v∗(t)−vmax] = 0. As
before, we do not include the constraint u(t) ≤ umax since we
can establish that u∗(t) ≤ 0 similar to Lemma 2. According
to Pontryagin’s minimum principle, the optimal control u∗(t)
must satisfy u∗(t) = arg minumin≤u(t)≤0 H (v∗(t), u∗(t), λ(t))
which allows us to express u∗(t) in terms of the costate λ(t),
that is

u∗(t) = max

{
umin,−λ2(t)

2

}
(43)

with λ2(t) ≥ 0. The Lagrange multiplier μ(t) is redundant as
before. The costate λ1 is a constant. The costate λ2(t) satisfies
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TABLE III

OPTIMAL SOLUTION CLASSIFICATION FOR PROBLEM 3 WITH tp = t̄ p

λ̇2(t) = −∂L∗/∂v = −λ1+η1(t)−η2(t). First, it is easy to see
that v0 �= vmin. Let τ be the first time that v(τ ) = vmin, then
u∗(t) = 0 for t ≥ τ . Again, since the Hamiltonian is not an
explicit function of time, by the condition H ∗(τ−) = H ∗(τ+),
we have

u∗(τ−)2 + λ2(τ
−)u∗(τ−) = 0. (44)

According to (43), we either have u∗(τ−) = umin or u∗(τ−) =
−λ2(τ

−)/2. When u∗(τ−) = umin, the above equality becomes
u2

min + λ2(τ
−)umin = 0, which contradicts the minimum

principle (43); when u∗(τ−) = −λ2(τ
−)/2, (44) becomes

u2(τ−)− 2u2(τ−) = 0. Therefore, only λ2(τ
−) = u∗(τ−) = 0

is possible, that is to say, λ2 and u∗ have no discontinuities
at τ . At the terminal time tp, the following costate boundary
condition holds:

λ2(t
−
p ) = γ1

∂
∂v

[vmin − v]|v=v∗(tp) + γ2
∂
∂v

[v − vmax]|v=v∗(tp)

that is, λ2(t−p ) = −γ1 + γ2, γ1 ≥ 0, γ2 ≥ 0, and γ1[vmin −
v∗(tp)]+ γ2[v∗(tp)− vmax] = 0. At tp, we know that v∗(tp) �=
vmax. Thus, γ2 = 0. Likewise, it is easy to obtain γ1 = 0.
Therefore, we have λ2(tp) = 0. Since the Hamiltonian is not
an explicit function of time, the condition dH ∗(t)/dt = 0
implies that

[2u∗(t) + λ2(t)]u̇∗(t) + [η1(t) − η2(t)]u∗(t) = 0.

Since the first term is always zero as before, the above
condition becomes [η1(t) − η2(t)]u∗(t) = 0. When v0 = vmax,
we have η1(t0) = 0, that is, η2(t0)u∗(t0) = 0. Recall that
λ̇2(t) = −∂L∗/∂v = −λ1 + η1(t) − η2(t). Since λ1 > 0, then
λ2(t) must decrease. Therefore, u∗(t0) < 0, and η2(t) = 0 for
all t . For t ∈ [t0, τ ), η∗

1(t) = 0. Therefore, λ̇2(t) = −λ1 for
t ∈ [t0, τ ). For t ∈ [τ, tp), λ̇2(t) = −λ1 + η∗

1(t) = 0. Solving
the above differential equation, we obtain

λ2(t) = λ1(τ − t) (45)

for t ∈ [t0, τ ). By the condition H (t0) = H (tp), we have

u∗(t0)2 + λ1v0 + λ1(τ − t0)u
∗(t0) = λ1v

∗(tp)

that is, λ1 = u∗(t0)2/[v∗(tp) − v0 − (τ − t0)u∗(t0)]. The
proof is completed by substituting λ1 into (45) and then λ2

into (43).
The classification of all possible solutions with tp = t̄ p

is shown in Table III. The performance associated with each
case in this table as well as the detailed calculations are given

Algorithm 1: ECO-AND Algorithm
Input: ρt , ρu , l, v0, vmin, vmax, umin, umax, TG , t0
Output: t∗p, v∗(t), u∗(t)

1 Initialization: Solve Problem 2 using Theorem 1 to
obtain tp, v(t), u(t)

2 if tp ∈ TG then
3 t∗p ← tp, v∗(t) ← v(t), u∗(t) ← u(t)
4 stop

5 else
6 Obtain t p and t̄ p
7 Solve Problem 3 with tp = t p using Theorem 4 to

obtain J t p , v1(t), u1(t)
8 switch s = l − v0(t̄ p − t0) do
9 case s = 0 do

10 J t̄p = t̄ p, v2(t) = v0, u2(t) = 0

11 case s > 0 do
12 Solve Problem 3 with tp = t̄ p using Theorem 4

to obtain J t̄p , v2(t), u2(t)

13 case s < 0 do
14 Solve Problem 3 with tp = t̄ p using Theorem 5

to obtain J t̄p , v2(t), u2(t)

15 if J t̄p ≥ J t p then
16 t∗p = t p, v∗(t) ← v1(t), u∗(t) ← u1(t)

17 else
18 t∗p = t̄ p, v∗(t) ← v2(t), u∗(t) ← u2(t)

19 stop

in [29]. After obtaining the performance Ju from J u
6 through

J u
10, we can select J

t̄p
u = min{J u

6 , . . . , J u
10}, where J u

i can
be treated as infinity if Case i is infeasible. Finally, we can
compare the two performances obtained, that is

J t p = ρt (t p − t0) + ρu J
t p
u , J t̄p = ρt (t̄ p − t0) + ρu J

t̄p
u

and determine the optimal performance to be the one with
a smaller value. Therefore, Algorithm 1 solves Problem 1
without the constraint (6) optimally.

In the following, we will show how the algorithm can be
extended to provide a suboptimal solution to Problem 1 when
constraint (6) is included.

IV. EXTENSION TO CASES WITH INTERFERING TRAFFIC

Recall that in all results given in Section III the safe
distance constraint (6) was relaxed. Now, we will show how to
adjust the optimal control solution without the consideration
of (6) to include the safety constraint based on the assumption
that vehicles can exchange information via vehicle-to-vehicle
(V2V) communication. Additional assumptions include the
following.

1) On the road, the future speed and acceleration profiles
of the preceding vehicle can be transmitted to the
autonomous vehicles.
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2) At the intersection, the queue information and the
stopped vehicle lengths are available to the following
vehicles.

The movement of the autonomous vehicle under the optimal
controller without considering (6) may be affected by other
road users. There are three such cases in what follows.

1) The first case is that the preceding vehicle will cross the
intersection at some time t ∈ TG while the autonomous
vehicle will not cross the intersection at the same green
interval as the preceding vehicle because it is slowed
down while enforcing (6). The optimal arrival time for
the autonomous vehicle is the beginning of the next
green interval, and the autonomous vehicle becomes the
leading vehicle on the road. Then, the optimal accelera-
tion profile can be obtained by using the fixed terminal
optimal control algorithm in Section III-B. If the safety
constraint is violated, the autonomous vehicle switches
to a car-following mode.

2) The second case is that both the preceding vehicle and
the autonomous vehicle will cross the intersection at the
same green light interval. In this case, we can create
a time gap, for example, the two-second rule, between
the autonomous vehicle and the preceding vehicle at
the intersection. The optimal acceleration profile will
be obtained by solving the fixed terminal time OCP in
Section III-B. If the safety constraint (6) is violated,
the autonomous vehicle switches to a car-following
mode.

3) The third case is that the preceding vehicle is forced
to stop before the intersection due to the presence of
queued vehicles waiting for the traffic signal turning
green. In this case, the autonomous vehicle will cross the
intersection when the traffic signal turns green after the
preceding vehicle with a certain time gap σ , for example,
the two-second rule. The optimal acceleration profile
will be obtained by solving the fixed terminal time OCP
in Section III-B. If the safety constraint is violated,
the autonomous vehicle switches to a car-following
mode.

V. NUMERICAL EXAMPLES

We have simulated the system defined by the vehicle
dynamics (1). Associated parameters in the OCP are given
as follows. The minimum and maximum speeds are 2.78 and
22.22 m/s. The maximum acceleration and deceleration are set
to 2.5 and −2.9 m/s2, respectively. Fig. 1 shows the travel
time and the energy consumption when we vary the parameter
ρ from 0 to 1. The initial speed is chosen as v0 = 18.6182 and
the length of the road 200 m. By exploring the tradeoff curve,
one may select an appropriate weight parameter ρ depending
on a particular application of interest. For instance, if energy
efficiency is a major concern, Fig. 1 suggests not to select a
large value for ρ since the energy consumption grows rapidly
as ρ approaches 1. On the other hand, a small ρ is unlikely a
good option, since we can see that energy consumption does
not significantly increase with ρ increasing as long as ρ < 0.7
(approximately). In fact, when ρ increases from 0 to 0.7,

Fig. 1. Trade-off between travel time and energy consumption.

Fig. 2. Case X in Table III with v0 = 21.5791.

the travel time is significantly reduced by 42.84% whereas the
energy consumption increases by only 4.85%. It is noteworthy
that both curves show different trends around the circled area
shown in Fig. 1: this is mainly because the vehicle has reached
the speed limit when the parameter ρ is large. When the
parameter ρ is further increased close to 1, the maximum
acceleration is included in the optimal acceleration profile, and
the energy cost surges.

In the following, the weights in (2) are set using ρ =
0.9549, that is, ρt = 0.0133, and ρu = 9.2798 × 10−4.
In this case, the values 1 − u2

maxρu/ρt = 0.5630 and
(vm + vM )/(2vM ) = 0.5626 are almost the same. Thus, if we
randomly generate the initial speed v0 from a uniform distri-
bution on the interval [vmin, vmax], different initial speeds fall
roughly equally into the two different cases in the first row
in Table I. The total cycle time for the traffic light is 60 s
with different patterns. We first test the optimal controller on
a road of length 200 m. Fig. 2 exhibits a traffic light pattern,
where the phase of the traffic signal in the first 20 s is red. Due
to a relatively large initial speed, the vehicle has to decelerate
to cross the intersection when the traffic light is green.
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Fig. 3. Case II in Table II with v0 = 13.4875.

Fig. 4. Case IV in Table II with v0 = 17.7745.

In the following, we test the optimal controller on a road
of length 2203 m. Due to this length, the optimal arrival time
usually does not fall within the first green light cycle, and
sometimes it is impossible for the vehicle to arrive at the
intersection within the current cycle. For the case in Fig. 3,
the optimal arrival time calculated from the free terminal time
OCP is 102.3476 s. Unfortunately, this arrival time belongs to
a red interval. Therefore, full acceleration is used to reach the
speed limit and cross the intersection at 100 s when the phase
of the traffic signal is green. Fig. 4 shows the case when the
vehicle has a relatively fast initial speed compared to Fig. 3.
Therefore, the vehicle does not start with full acceleration to
reach the speed limit and catch the green phase at 100 s. For
the last case in Fig. 5, the initial speed is very large. However,
it is impossible for the vehicle to cross the intersection by the
end of the second green cycle at 90 s due to the speed limit
constraint. The best option is to decelerate the vehicle to cross
the intersection at 120 s when the traffic light just turns green.

A. Effect of Interfering Traffic

Here, we consider traffic conditions where a vehicle enters
a road at time 3.1982 s and there is a preceding vehicle in

Fig. 5. Case X in Table III with v0 = 21.5791.

front of it. The driving behavior of both the preceding vehicle
and the following vehicle are generated by the data recorded
from the traffic system simulator VISSIM. The initial speed
of the following vehicle is 15.0086 m/s and the distance of
the following vehicle to the traffic signal head is 245.1286 m
at time 3.1982 s. The current phase of the traffic signal is
red, and the time to green is 14.8916 s. We replace the
human-driven following vehicle by an autonomous vehicle
and apply the ECO-AND algorithm to the autonomous vehicle
without considering the preceding vehicle. The trajectory of
the autonomous vehicle will be obstructed by the preceding
vehicle. In this case, we assume that the autonomous vehicle
is able to obtain the speed profile of the preceding vehicle
based on V2V communication. We set the intersection crossing
time of the autonomous vehicle the same as the human-driven
following vehicle at tp = 22.7753 s. A certain safety gap
between the autonomous vehicle and the preceding vehicle is
guaranteed as shown in Fig. 6, and the safety gap is larger
than that between the preceding vehicle and the human-driven
following vehicle. Fig. 6 also shows the acceleration profile
and speed profile of the preceding vehicle, the following vehi-
cle, and the autonomous vehicle when it replaces the following
vehicle, respectively. As seen from the figures, the autonomous
vehicle chooses to decelerate from the beginning which is
determined by comparing the optimal performance between
acceleration (Theorem 4) and deceleration (Theorem 5). From
a driving comfort point of view, there is less variation of the
speed of the autonomous vehicle even though the interfering
traffic is considered. By using the fuel consumption model
proposed in [18]

ṁ f =

⎧⎪⎨
⎪⎩

α0 + α1v + α2v
2 + α3v

3

+(β0 + β1v + β2v
2)u, u ≥ 0

α0, u < 0

(46)

where ṁ f is the fuel consumption rate, and the numerical
values of model parameters αi and βi are given in [18],
the human-driven following vehicle consumes 6.8807-mL
fuel. However, the autonomous vehicle uses only 3.0717-mL
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Fig. 6. Optimal control of the autonomous vehicle with interfering traffic.

fuel, which is less than half of the fuel consumed by the
human-driven following vehicle.

B. Intersection Performance Evaluation

In the objective function (2), we use J u as a measure of
speed variations and the speed profile is designed based on
the vehicle dynamic model (1). Such a simplification enables
us to apply the proposed algorithm in real-time. In order to
show the effectiveness of the proposed method, we evaluate
the intersection performance in VISSIM for different vehicle
compositions. In addition, to strengthen the applicability of the
proposed ECO-AND algorithm, in contrast to the simulation
results in Section V-A there is no V2V communication in the
simulation setup and autonomous vehicles simply switch to
the car-following mode when safety constraints are violated.
An identical setup is used to evaluate three different cases:
1) 100% autonomous vehicles; 2) 100% conventional vehi-
cles; and 3) 50% autonomous vehicles and 50% conventional
vehicles (non-free flow case). A road about 330 m with two
lanes (left-turn lane and straight ahead lane) is considered. The
traffic volume is set to be 600 vehicles per hour for each case.
The data about 600 vehicles of each case are collected during
an hour simulation time. All vehicles use the Wiedemann
74 car-following model and the free lane selection rule is
used for modeling the lane changing behavior in VISSIM.
The autonomous vehicles receive the signal phase and time
information within a distance of 250 m to the traffic signal
head. The signal cycle time is 60 s (9-s green, 4-s amber, 47-s
red). The calculated optimal speed profiles are used as desired
speed profiles for autonomous vehicles. The actual speed of
an autonomous vehicle may not be the same as the desired
speed when the safety constraint is violated. In this case,
the autonomous vehicles’ driving behavior switches to the
Wiedemann 74 car-following model. Two performance indices
are evaluated: fuel consumption and vehicle delay, which is
obtained by subtracting the theoretical travel time from the
actual travel time. The theoretical travel time is the travel
time which could be achieved if there were no other vehicles
and/or signal controls. For case 1), the total fuel consumption

for about 600 vehicles in an hour is 10.583 gallons and the
delay for all autonomous vehicles is 57.98 min. For case 2),
the fuel consumption is about 21.957 gallons and the delay for
all conventional vehicles is 225.26 min. For case 3), the total
fuel consumption is 10.876 gallons, the delay for all vehicles
63.78 min. Compared with conventional vehicles, the improve-
ments are 51.80%, and 74.26% for the fuel consumption, and
vehicle delay, respectively. For the case of 50% penetration
rate, the improvements are 50.46% and 71.68% for the fuel
consumption and vehicle delay, respectively, thus showing
the positive impact of autonomous vehicles on conventional
vehicles.

VI. CONCLUSION

This article derives an optimal acceleration/deceleration pro-
file for autonomous vehicles approaching an intersection based
on the traffic signal information obtained from an intelligent
infrastructure via V2I communication. The solution for the
above problem has the key feature of avoiding idling at an
intersection when the phase of the traffic signal is red. Compar-
ing with similar problems solved by numerical calculations, we
provide a real-time analytical solution. The proposed algorithm
offers better efficiency in terms of travel time and energy
consumption, which has been verified through extensive sim-
ulations. The simulation results show that the eco-driving
algorithm achieves substantial performance improvement com-
pared with vehicles with human driver behavior. In extending
this work, there is a need to consider a practical scenario where
multiple autonomous vehicles cooperate to cross a signalized
intersection.
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