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Abstract— We derive optimal control policies for a Connected
Automated Vehicle (CAV) cooperating with neighboring CAVs
in order to implement a lane change maneuver consisting of
a longitudinal phase where the CAV properly positions itself
relative to the cooperating neighbors and a lateral phase where
it safely changes lanes. For the first phase, we optimize the
maneuver time subject to safety constraints and subsequently
minimize the associated surrogate energy consumption of all
cooperating vehicles in this maneuver. For the second phase,
we jointly optimize time and energy approximation and provide
three different solution methods including a real-time approach
based on Control Barrier Functions (CBFs). We prove structural
properties of the optimal policies which simplify the solution
derivations and, in the case of the longitudinal maneuver, lead
to analytical optimal control expressions. The solutions, when
they exist, are guaranteed to satisfy safety constraints for all
vehicles involved in the maneuver. Simulation results where the
controllers are implemented show their effectiveness in terms of
significant performance improvements compared to maneuvers
performed by human-driven vehicles.

Index Terms— Autonomous vehicles, intelligent vehicles, coop-
erative systems, optimal control.

I. INTRODUCTION

ADVANCES in transportation system technologies and
the emergence of Connected and Automated Vehicles

(CAVs), also known as “autonomous vehicles”, have the
potential to drastically improve a transportation network’s
performance in terms of safety, comfort, congestion reduc-
tion and energy efficiency. The motivation for minimizing
energy in transportation systems is well-documented in the
literature and comes from the need to lower fuel costs and
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pollution levels for the sake of improving public health and
the environment [1], [2]. In highway driving, an overview of
automated intelligent vehicle-highway systems was provided
in [3] with more recent developments mostly focusing on
autonomous car-following control [4]–[6]. In urban driving,
efforts have concentrated on controlling traffic lights [7]
or the cooperative control of CAVs through non-signalized
intersections [8], [9].

Automating a lane change maneuver remains a challenging
problem which has attracted increasing attention in recent
years [10]–[13]. Designing such an automated maneuver is
often viewed as consisting of two levels [14]: at the strategy
level, a feasible (possibly optimal in some sense) trajectory is
generated for lane changing; then, the control level is respon-
sible for determining how vehicles track the aforementioned
trajectory. For example, [12] adopts such a design architecture
for an automated lane-change maneuver, but does not provide
an analytical solution and assumes that there are no other
vehicles in the left lane (the lane in which the controllable
vehicle ends up after completing the maneuver). In [15],
background vehicles are included in the left lane and the
goal is to check whether there exists a feasible lane-change
trajectory or not; if one exists, the controllable vehicle will
then track this trajectory. A similar approach is taken in [16]
with the trajectory being updated during the maneuver based
on the latest surrounding information. In these papers, only
one vehicle can be controlled during the maneuver and no
analytical solutions are provided.

The emergence of CAVs creates the opportunity for coop-
eration among vehicles traveling in both left and right lanes in
carrying out an automated lane-change maneuver [14], [17],
[18], [19]–[21]. Such cooperation presents several advantages
relative to the two-level architecture mentioned above. In par-
ticular, when controlling a single vehicle and checking on the
feasibility of a maneuver depending on the state of nearby
traffic, as in [22], [23], the maneuver is often infeasible without
the cooperation of other vehicles, especially under heavier
traffic conditions. In contrast, a cooperative approach can allow
multiple interacting vehicles to implement controllers enabling
a larger set of maneuvers. Aside from enhancing safety,
this cooperative behavior can also improve the throughput,
hence reducing the chance of congestion. Feasible, but not
necessarily optimal, vehicle trajectories for cooperative multi-
agent lane-changing maneuvers are derived in [1]. The case of
multiple cooperating vehicles simultaneously changing lanes
is considered in [2] with the requirement that all vehicles
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Fig. 1. The basic lane changing maneuver process.

are controllable and their velocities prior to the lane change
are all the same. First, vehicles with a lower priority must
adjust their positions in their current lane and give way to
those with a higher priority so as to avoid collisions. Then,
a lane changing optimal control problem is solved for each
vehicle without considering the usual safe distance constraints
between vehicles. This “progressively constrained dynamic
optimization” method facilitates a numerical solution to the
underlying optimal control problem at the expense of some
loss in performance.

Our goal in this paper is to provide an optimal solution for
the maneuver in Fig. 1, in which the controlled vehicle C
attempts to overtake an uncontrollable vehicle U by using
the left lane to pass. In this case, the initial velocities of
all vehicles can be different and arbitrary. The overall lane
changing and passing maneuver consists of three steps: (i) The
target vehicle C moves to the left lane, (i i) C moves faster
than U (and possibly other vehicles ahead of it) while on the
left lane, (i i i) C performs a second lane-changing maneuver
so as to move back to the right lane. We will limit ourselves
to the first step which, in turn, consists of two parts. First,
vehicle C adjusts its position in the current lane to prepare for
a lane shift, while vehicles 1 and 2 in Fig. 1 cooperate to create
space for C in the left lane. Next, the lateral lane shift of C
takes place. Our objective is to minimize both the maneuver
time and the energy consumption of vehicles C , 1 and 2
which are all assumed to share their state information. We also
impose a hard safe distance constraint between all adjacent
vehicles located in the same lane, as well as constraints due
to speed and acceleration limits imposed on all vehicles.
In the longitudinal phase of the maneuver (introduced in [24]),
we first determine a minimum feasible time subject to all
constraints for vehicles C , 1 and 2. We then solve a fixed ter-
minal time decentralized optimal control problem for each of
the three vehicles seeking to minimize the energy consumed.
In the lateral phase, we solve a decentralized optimal control
problem seeking to jointly minimize the time and energy
consumed. In both cases, we derive several properties of the
optimal control which facilitate obtaining explicit solutions,
hence leading to real-time implementability. Our approach
applies to a wider range of scenarios relative to those in [15],
[16], [22], [23] and incorporates the safety distance constraint
not included in [1] and [2]. Compared with [24], this paper
contains all proofs of the main results, the lateral component of
the lane change maneuvers studied, and several new simulation
results, including the lateral part of the maneuvers.

The rest of this paper is organized as follows. Section II
formulates the lane-change maneuver problem along the

longitudinal direction. In Section III, a complete optimal con-
trol solution for the longitudinal phase is obtained. Section IV
addresses the lateral maneuver followed with the combina-
tion of both maneuvers in Section V. Section VI provides
simulation results for several representative examples and we
conclude with Section VII.

II. PROBLEM FORMULATION FOR

THE LONGITUDINAL MANEUVER

We define xi (t) to be the longitudinal position of vehicle i
along its current lane measured with respect to a given
origin, where we use i = 1, 2,C,U . Similarly, vi (t) and
ui (t) are vehicle i ’s velocity and (controllable) acceleration.
The dynamics of vehicle i are

ẋi (t) = vi (t), v̇i (t) = ui (t) (1)

The maneuvers carried out by vehicles 1, 2,C are initiated
at time t0 and end at time t f . We define di (vi (t)) to be the
minimal safe distance between vehicle i and the one that
precedes it in its lane; this, in general, depends on the vehicle’s
current speed. The control input and speed are constrained as
follows for all t ∈ [t0, t f ]:

uimin ≤ ui (t) ≤ uimax, vimin ≤ vi (t) ≤ vimax (2)

where uimax, uimin, vimax, vimin are the maximal and minimal
acceleration (respectively speed) limits. In Fig. 1, we control
vehicles 1, 2 and C to complete a lane change maneuver
while minimizing the maneuver time and the corresponding
surrogate energy consumption. For each vehicle i = 1, 2,
C we formulate the following optimization problem assuming
that xi (0) and vi (0) are given:
J (t f ; ui(t))
= min

ui (t)

∫ t f

0
[wt + [w1,uu

2
1(t) + w2,uu

2
2(t) + wC,uu

2
C(t)]]dt

s.t. (1), (2) and

x1(t) − x2(t) ≥ d2(v2(t)), t ∈ [0, t f ]
xU (t) − xC(t) ≥ dC(vC (t)), t ∈ [0, t f ]
x1(t f ) − xC(t f ) ≥ dC(vC(t f )),

xC(t f ) − x2(t f ) ≥ d2(v2(t f )) (3)

where wt , wu are weights associated with the maneuver
time t f and with a measure of the total surrogate energy
expended. The two terms in (3) need to be properly normal-
ized, therefore, we set wt = ρ

Tmax
and wi,u = 1−ρ

max{u2
imax,u

2
imin}

,

where ρ ∈ [0, 1] and Tmax is a prespecified upper bound on
the maneuver time (e.g., Tmax = l/ min{vimin}, i = 1, 2,C,U ,
where l is the distance to the next highway exit). Clearly,
if ρ = 0 this problem reduces to an energy minimization
problem and if ρ = 1 it reduces to minimizing the maneuver
time. The safe distance is defined as di (vi (t)) = φvi (t) + δ
where φ is the headway time (the general rule φ = 1.8 is
usually adopted as in [25]). It is shown in [26] that u2

i (t) may
be used as an approximation of energy (a surrogate function)
as it captures the monotonic dependence on acceleration while
allowing us to derive an analytical solution. This approach is
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also supported in [27] by experiments based on very detailed
energy models showing results consistent with this simple
model. Another way of justifying the u2

i (t) metric is that its
minimization results in the smoothest possible lane-changing
maneuver. As stated, the problem allows for a free terminal
time t f and terminal state constraints xi (t f ), vi (t f ). In the next
section, we will specify the terminal time t f as the solution of
a minimization problem which allows each vehicle to specify a
desired “aggressiveness level” relative to the shortest possible
maneuver time subject to (2). Based on that, we will also
specify xi (t f ), i = 1, 2,C . Finally, with the derived terminal
time and position, we will derive the optimal control solution
for every controllable CAV.

III. OPTIMAL CONTROL SOLUTION FOR

THE LONGITUDINAL MANEUVER

Terminal Time Specification: We begin by formulating the
following minimization problem based on which the maneuver
terminal time t f is specified:
min
t f >0

t f (4)

s.t. x1(0) + v1(0)t f + 0.5α1u1maxt
2
f

− xC(0) − vC(0)t f −0.5αCuCmaxt
2
f ≥ dC(vC (t f )) (4a)

xU (t f ) − xC(0) − vC (0)t f

− 0.5αCuCmint
2
f ≥ dC(vC (t f )) (4b)

xC(0) + vC (0)t f + 0.5αCuCmint
2
f

− x2(0) − v2(0)t f − 0.5α2u2mint
2
f ≥ d2(v2(t f )) (4c)

where αi ∈ [0, 1), i = 1, 2,C is an “aggressiveness coeffi-
cient” for vehicle i which can be preset by the driver. Observe
that [xi(t0) + vi (t0)t f + 0.5αi uimaxt2f ] is the terminal position
of i under control αi uimax. To minimize t f , vehicle 1 should
accelerate and vehicle 2 decelerate so as to increase the gap
between them in Fig. 1. If C accelerates, then (4a) ensures
the safety constraint is still satisfied. If C has to decelerate
because it is constrained by U , then (4b) ensures that the safety
constraint between U and C is satisfied and (4c) ensures that
the safety constraint between 2 and C is also satisfied. As we
will subsequently show, the optimal control of C is either
always non-positive or always non-negative throughout [0, t f ]
so that either the first or the last two constraints are relevant to
it. Naturally, a solution to (4) may not exist, in which case we
must iterate on the values of αi until one is possibly identified.
If that is not possible, then the maneuver is clearly aborted. If a
solution t f to (4) exists, we will specify a terminal position
xi (t f ) next and check the feasibility of (xi (t f ), t f ) later in this
section.
Terminal Position Specifications: Assuming a solution t f

is determined through (4), we next seek to specify terminal
vehicle positions xi (t f ), i = 1, 2,C , to be associated with
problem (3). To do so, we define

�xi(t f ) = xi (t f ) − xi (t0) − vi (t0)t f

which is the difference between the actual terminal position
of i and its “ideal” terminal position under constant speed
vi (t0); this is ideal from the energy point of view in (5), since

(once t f is specified) the approximation of energy component
is minimized when ui (t) = 0. Thus, the energy-optimal value
is �xi(t f ) = 0. We then seek terminal positions that minimize
a measure of deviating form these energy-optimal values over
all three vehicles:

min
xi (t f )>xi (0),i=1,2,C

�x2
C(t f ) + �x2

1(t f ) + �x2
2 (t f )

s.t. �xi (t f ) = xi (t f ) − xi (0) − vi (t0)t f
x1(t f ) − xC(t f ) ≥ max{dC(vC (t))}
xC(t f ) − x2(t f ) ≥ max{d2(v2(t))}
xU (t f ) − xC(t f ) ≥ max{dC(vC(t))} (5)

The max{·} values in (5) are assumed to be given by a
prespecified maximum inter-vehicle safe distance. However,
as subsequently shown in Theorem 1, they actually turn out
to be the known initial or terminal values of d2(v2(t)) and
dC(vC (t)). For example, max{d2(v2(t))} = d2(v2(t0)) and
max{dC(vC (t))} = dC(vC (t0) + uC maxt f ).
Lemma 1: The solution x∗

i (t f ), i = 1, 2,C , to (5) satisfies
�x∗

1 (t f ) ≥ 0 and �x∗
2 (t f ) ≤ 0.

Proof: See Appendix. �
In the next two subsections, we formulate and solve the

optimal control problems for vehicles 1, 2 and then C .

A. Optimal Control of Vehicles 1 and 2

With the terminal time t f and longitudinal position xi(t f ),
i = 1, 2, set through (4) and (5) respectively, the optimal
control problems of vehicles i = 1, 2 in (3) become:

min
u1(t)

∫ t f

0

1

2
u2

1(t)dt s.t. (1), (2), x1(t f ) = x1, f (6)

min
u2(t)

∫ t f

0

1

2
u2

2(t)dt s.t. (1), (2), x2(t f ) ≤ x2, f ,

x1(t) − x2(t) ≥ d2(v2(t)), t ∈ [0, t f ] (7)

where x1, f and x2, f are given above. In (7), we use an
inequality x2(t f ) ≤ x2, f to describe the terminal position
constraint instead of the equality since it suffices for the
distance between the two vehicles to accommodate vehicle C
while at the same time allowing for the cost under a control
with x2(t f ) < x2, f to be smaller than under a control with
x2(t f ) = x2, f . In (6), there is no need to consider the case
that x1(t f ) > x1, f since it is clear that the optimal cost when
x1(t f ) = x1, f is always smaller compared to x1(t f ) > x1, f .

The next result establishes the fact that the solution of
these two problems involves vehicle 1 never decelerating and
vehicle 2 never accelerating.
Theorem 1: The optimal control in (6) is u∗

1(t) ≥ 0 and the
optimal control in (7) is u∗

2(t) ≤ 0.
Proof :See Appendix. �
Based on Theorem 1, in addition to showing that vehicle 1

never decelerates and vehicle 2 never accelerates, we also
eliminate the safe distance constraint in (7) since the distance
between the vehicles will increase in the course of the maneu-
ver and the last two safety constraints in (3) ensure that this
distance is eventually large enough to accommodate the length
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Fig. 2. The feasible state set of controllable vehicles in the left lane.

of vehicle C . Thus, (7) becomes

min
u2(t)

∫ t f

0

1

2
u2

2(t)dt s.t. (1), (2), x2(t f ) = x2, f (8)

1) Feasible Terminal State Set: The constraints in (2) limit
the sets of feasible terminal conditions (xi, f , t f ), i = 1, 2,
C as shown in Fig. 2 where the feasible set is the unshaded
area defined as follows for each i = 1, 2,C:

(i) Vehicle i cannot reach xi, f under its maximal acceler-
ation if ui maxt f + vi,0 ≤ vi max and vi,0t f + 0.5ui maxt2f <
xi, f − xi,0.

(i i) Vehicle i cannot reach xi, f under its maximal acceler-
ation after attaining its maximal velocity if uimaxt f + vi,0 >

vimax and vimax(t f − vimax−vi,0
uimax

) < xi, f − xi,0 − v2
imax−v2

i,0
2uimax

.

(i i i) Vehicle i exceeds xi, f under the minimal acceleration
if uimint f + vi,0 ≥ vimin and vi,0t f + 0.5uimint2f > xi, f − xi,0.

(iv) Vehicle i exceeds xi, f under the minimal acceleration
after attaining its minimal velocity if uimint f + vi,0 < vimin

and vimin(t f − vimin−vi,0
uimin

) > xi, f − xi,0 − v2
imin−v2

i,0
2uimin

.
In addition, vehicle C must also satisfy a safety distance

constraint with respect to vehicle U , hence if xC, f > xU (0)+
vU t f − dC(v2(t f )), there is no feasible solution.

Note that if an optimal t f is determined in (4) and the
solution of (5) guarantees that xi(t f ), i = 1, 2,C , do not
violate the safety constraints, (xi, f , t f ) is expected to be
feasible. However, if (xi, f , t f ) is infeasible for vehicle i , then
the following Algorithm 1 is used to find a feasible such pair:

Algorithm 1 Determine the Feasible Pair (xi, f , t f )

Judge=1;
while Judge=1 do

t f = βt f , β > 1 ;
Solve (5) to obtain new xi, f with updated t f ;
if (xi, f , t f ) is feasible then

Judge=0;
end

end

In the above, the adjustable coefficient β is used to relax
the maneuver time t f so as to accommodate one or more of
the constraints in Fig. 2 until a feasible (xi, f , t f ) is identified.
2) Solution of Problem (6): We can now proceed to

derive an explicit solution for (6) taking advantage of
Theorem 1. We begin by writing the Hamiltionian and asso-
ciated Lagrangian functions for (6):

H (v1, u1, λ) = 1

2
u2

1(t) + λx (t)v1(t) + λv(t)u1(t) (9)

L(v1, u1, λ, η) = H (v, u, λ) + η1(t)(u1min − u1(t))

+ η2(t)(u1(t) − u1max)

+ η3(t)(v1min − v1(t))

+ η4(t)(v1(t) − v1max) (10)

where λ(t) = [λv(t), λx (t)]T is the costate vector and η =
[η1(t), ..., η4(t)]T . In view of Theorem 1, i.e., u∗

1(t) ≥ 0, (10)
reduces to

L(v1, u1, λ, η) = 1

2
u2

1(t) + λx (t)v1(t) + λv(t)u1(t)

+ η2(t)(u1(t)−u1max)+η3(t)(v1min−v1(t))

+ η4(t)(v1(t) − v1max) (11)

The explicit solution of (6) is given next.
Theorem 2: Let x∗

1 (t), v∗
1 (t), u∗

1(t) be a solution of (6).
Then,

u∗
1(t) = arg min

0≤u1≤u1max

1

2
[u2

1 + u∗
1(t0)

2(t − τ )u1

v1,0 − v∗
1 (t f )+(τ − t0)u∗

1(t0)
]

(12)

where τ ∈ [t0, t f ) is the first time that v∗
1 (τ ) = v1max and

τ = t f if v1max is never reached.
Proof: See Appendix. �

The expression in (12) provides sufficient information to
allow the explicit evaluation of u∗

1(t) over all t ∈ [t0, t f ].
In particular, either u∗

1(t) = u1max or it is the solution of the
simple quadratic minimization problem in (12). Furthermore,
following a derivation similar to that in [28] we can obtain the
optimal cost J ∗

1 (t f ) in (6) based on several cases depending on
the initial acceleration u∗

1,0 ≡ u∗
1(t0) and the terminal velocity

v∗
1 (t f ) which can be explicitly evaluated as in [28]. The final

optimal cost is the minimal among all possible values obtained.
Case I: u∗

1,0 = u1max and u̇∗
1(t) = 0. If t f <

v1max−v1,0
u1max

, then
u∗

1(t) = u1max for all t ∈ [0, t f ]. Otherwise, when v1(t) =
v1max, the control switches to u∗

1(t) = 0. Therefore,

J ∗
1 (t f ) =

⎧⎪⎨
⎪⎩

1

2
u1max(v1max − v1,0) if t f ≥ v1max − v1,0

u1max
1

2
u2

1max(t f − t0) otherwise

(13)

Case II: u∗
1,0 = u1max and v∗

1 (t f ) = v1max. We define t1 as
the time that u∗

1(t) begins to decrease and τ as the first time
that u∗

1(τ ) = 0. Thus, u∗
1(t) is a piecewise linear function of

time t and (following calculations similar to those in [28]):

J ∗
1 (t f )= 1

2
(t1−t0)u

2
1max+ 1

24

u4
1max(τ − t1)3

[v1,0 − v1max + (τ − t0)u1max]2

(14)
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Using similar calculations, we summarize below the remaining
three cases:

Case III: u∗
1,0 = u1max

v∗
1(t f ) < v1max

J ∗
1 (t f ) = 1

2

u2
1max(t f +2t1−3t0)

3

Case IV: u∗
1,0 < u1max

v∗
1(t f ) = v1max

J ∗
1 (t f ) = 2

3

(v1max − v1,0)
2

τ − t0

Case V: u∗
1,0 < u1max

v∗
1(t f ) < v1max

J ∗
1 (t f ) = 3

2

[x1, f −v1,0(tf −t0)]2

(t f − t0)3

3) Solution of Problem (7): Similar to the solution of (6),
we can derive an explicit solution for (8) taking advantage of
Theorem 1 and obtain the following result.
Theorem 3: Let x∗

2 (t), v∗
2 (t), u∗

2(t) be a solution of (8).
Then,

u∗
2(t) = arg min

u2min≤u2≤0

1

2
[u2

2 + u∗
2(t0)

2(τ − t)u2

v∗
2(t f ) − v2,0 − (τ − t0)u∗

2(t0)
]

(15)

where τ ∈ [t0, t f ) is the first time that v∗
2(τ ) = v2min and

τ = t f if v2min is never reached.
Proof: See Appendix. �

We can also obtain the optimal cost J ∗
2 (t f ) in (7) based on

several cases depending on the initial acceleration u∗
2,0 and the

terminal velocity v∗
2(t f ) which can be explicitly evaluated as

in [28]. In what follows, we define t1 as the time that u∗
2(t)

begins to increase and τ as the first time that u∗
2(τ ) = 0.

Case I: u∗
2,0 = u2min

v∗
2(t f ) = v2min

J ∗
2 (t f ) = 1

2
(t1 −t0)u

2
2min

+ 1

24

u4
2min(τ − t1)3

[v2,0−v2min+(τ −t0)u2min]2

Case II: u∗
2,0 = u2min

v∗
2(t f ) > v2min

J ∗
2 (t f ) = u2

2min(t f + 2t1 − 3t0)

6

Case III: u∗
2,0 > u2min

v∗
2(t f ) = v2min

J ∗
2 (t f ) = 2

3

(v2min − v2,0)
2

τ − t0

Case IV: u∗
2,0 > u2min

v∗
2(t f ) = v2min

J ∗
2 (t f ) = 3

2

[x2, f −v2,0(t f −t0)]2

(t f − t0)3

B. Optimal Control of Vehicle C

Unlike (6) and (8), deriving the optimal control of vehicle C
as in Fig. 1 is more challenging. First, since we need to keep a
safe distance between vehicles C and U , a constraint xU (0)+
vU t − xC(t) ≥ dC(vC (t)) must hold for all t ∈ [0, t f ]. The
resulting problem formulation is:

min
uC (t)

∫ t f

0

1

2
u2
C(t)dt

s.t. (1), (2), xC(t f ) = xC, f , t ∈ [0, t f ]
xU (0) + vU t − xC(t) ≥ dC(vC (t)) (16)

in which dC(vC (t)) is time-varying. To simplify (16), we use
dC as a constant value instead of dC(vC (t)). Especially, users
can set dC ≡ max{dC} to derive a more conservative constraint
still ensuring that the original one is not violated (the problem
with dC(vC (t)) = φvC (t)+δ can still be solved at the expense
of added complexity and is the subject of ongoing research).

The Hamiltonian for (16) with the constraints adjoined
yields the Lagrangian

L(xC , vC , uC , λ, η)

= 1

2
u2
C (t) + λx (t)vC (t) + λv(t)uC (t)

+ η1(t)(uC (t) − uC max) + η2(t)(uC min − uC(t))

+ η3(t)(vC (t) − vC max) + η4(t)(vC min − vC (t))

+ η5(t)(xC(t) − xU (0) − vU (0)t + dC) (17)

with λ(t) = [λv(t), λx (t)]T and η = [η1(t), ..., η5(t)]T , t ∈
[0, t f ]. Based on Pontryagin’s principle, we have

u∗
C(t) =

⎧⎨
⎩

−λv(t)
uCmin
uCmax

if uCmin ≤ −λv(t) ≤ uCmax
if − λv(t) < uCmin
if − λv(t) > uCmax

(18)

when none of the constraints is active along an optimal
trajectory. In order to account for the constraints becoming
active, we identify several cases depending on the terminal
states of vehicles U and C . Let us define x̄C(t f ) to be the
terminal position of C if uC (t) = 0 for all t ∈ [0, t f ]. The rela-
tionship between x̄C(t f ) and xC(t f ) is critical. In particular,
if x̄C(t f ) < xC(t f ), vehicle C must accelerate in order satisfy
the terminal position constraint. Otherwise, C must decelerate.
Also critical is the value of xU (t f )−dC , i.e., the upper bound
of the safe terminal position of C . In addition, during the entire
maneuver process, we require that xC(t) ≤ xU (t) − dC .

We begin with the 3! cases for ordering xC(t f ), x̄C(t f )
and xU (t f ) − dC as follows: x̄C(t f ) ≤ xC(t f ) ≤ xU (t f ) −
dC ; x̄C(t f ) ≤ xU (t f ) − dC ≤ xC(t f ); xC(t f ) ≤ x̄C(t f ) ≤
xU (t f ) − dC ; xC(t f ) ≤ xU (t f ) − dC ≤ x̄C(t f ); xU (t f ) −
dC ≤ x̄C(t f ) ≤ xC(t f ); xU (t f ) − dC ≤ xC(t f ) ≤ x̄C(t f ).
Fortunately, we can exclude several cases as infeasible because
xC(t f ) ≤ xU (t f )−dC is a necessary condition to have feasible
solutions. This leaves three remaining cases as follows. Case 1:
x̄C(t f ) ≤ xC(t f ) ≤ xU (t f ) − dC . Case 2: xC(t f ) ≤ x̄C(t f ) ≤
xU (t f ) − dC . Case 3: xC(t f ) ≤ xU (t f ) − dC ≤ x̄C(t f ).

These are visualized in Fig. 3. The following results provide
structural properties of the optimal solution (18) depending on
which case applies.
Lemma 2: If xU (0) + vU (0)t − xC(t) = dC , then vC (t) =

vU (0), t ∈ [0, t f ].
Proof: See Appendix. �

Theorem 4 (Case 1 in Fig. 3): If x̄C(t f ) ≤ xC(t f ) ≤
xU (t f )− dC , then u∗

C(t) ≥ 0 and η∗
5(t) = 0 for all t ∈ [0, t f ).

Proof: See Appendix. �
Theorem 5 (Case 2 in Fig. 3): If xC(t f ) ≤ x̄C(t f ) ≤

xU (t f )− dC , then u∗
C(t) ≤ 0 and η∗

5(t) = 0 for all t ∈ [0, t f ).
Proof: The proof is similar to that of Theorem 4 and is

omitted. �
Theorem 6 (Case 3 in Fig. 3): If xC(t f ) ≤ xU (t f ) − dC ≤

x̄C(t f ), then u∗
C (t) ≤ 0.

Proof: See Appendix. �
Based on Theorems 4,5, Cases 1,2 in Fig. 3 can be solved

without the safety constraint in (16) since we have shown that
η∗

5(t) = 0. Therefore, the optimal control is the same as that
derived for vehicles 1 and 2 in Theorems 2,3. This leaves
only Case 3 to analyze. We proceed by first solving (16)
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Fig. 3. The three feasible cases for the optimal maneuver of vehicle C .

without the safety constraint, so it reduces to the solution
in Theorem 3, since we know that u∗

C(t) ≤ 0. If a feasible
optimal solution exists, then the problem is solved. Otherwise,
we need to re-solve the problem in order to determine an
optimal trajectory that includes at least one arc in which
xU (0) + vU (0)t − x∗

C(t) − dC = 0.
Based on Lemma 2, there exists a time τ1 ∈ (0, t f ) that

satisfies vC (τ1) = vU (0) and xC(τ1) = xU (0) + vU (0)τ1 −
dC ≡ a (it is easy to see that there is at most one such
constrained arc, since vC (t) = vU (0) as soon as this arc is
entered.) We then split problem (16) into two subproblems as
follows:

min
uC (t)

∫ τ1

0

1

2
u2
C (t)dt

s.t. (1), (2), xC(τ1) = a, vC(τ1) = vU (0), t ∈ [0, τ1)

(19)

min
u(t)

∫ t f

τ1

1

2
u2
C (t)dt

s.t. (1), (2), xC(τ1) = a, vC (τ1) = vU (0),

xC(t f ) = xcf , t ∈ [τ1, t f ] (20)

where (19) has a fixed terminal time τ1 (to be determined),
position a, and speed vU (0), while (20) has a fixed terminal
time t f and position xC, f with given xC(τ1) = a.

Let us first solve (19). Since u∗
C(t) ≤ 0 and the terminal

speed is vU (0), only the acceleration constraint uC min −uC ≤
0 can be active in [0, τ1]. Suppose that this constraint becomes
active at time τ2 < τ1. Since uC min − uC is independent of t ,
xC(t), and vC (t), it follows (see [29]) that there are no dis-
continuities in the Hamiltonian or the costates, i.e., λx (τ

−
2 ) =

λx (τ
+
2 ), λv(τ

−
2 ) = λv(τ

+
2 ), H (τ−

2 ) = H (τ+
2 ). It follows from

H (τ−
2 ) − H (τ+

2 ) = 0 and (17) that

[u∗
C(τ−

2 ) − u∗
C (τ+

2 )][1

2
(u∗

C(τ−
2 )) + 1

2
(u∗

C (τ+
2 )) + λv(τ

−
2 )] = 0

Therefore, either u∗
C (τ−

2 ) = u∗
C (τ+

2 ) or u∗
C (τ−

2 ) = −λv(τ
−
2 )

based on (18). Either condition used in the above equation
leads to the conclusion that u∗

C(τ−
2 ) = u∗

C (τ+
2 ), i.e., u∗

C(t) is
continuous at τ2.

Let us now evaluate the objective function in (19) as a
function of τ1 and a, denoting it by J1(τ1, a), under optimal
control. In view of (18), there are two cases.

(a) u∗
C(t) = uCmin for t ∈ [0, τ2), u∗

C (t) = −λv(t) for t ∈
[τ2, τ1]. As in the proof of Theorem 2, the costate equations
are λ̇v (t) = −λx (t) and λ̇x (t) = 0. Therefore, λv(t) = ct − b
where b, c are to be determined. It follows that

u∗
C (t) = c(t − τ2) + uCmin, t ∈ [τ2, τ1) (21)

and the following boundary conditions hold:
vC (τ2) = vC (0) + uCminτ2

vC (τ1) = vU (0) = vC (τ2) +
∫ τ1

τ2

[c(t − τ2) + uCmin]dt

xC(τ2) = xC(0) + vC (0)τ2 + 1

2
uCminτ

2
2

xC(τ1) = a = xC(τ2) +
∫ τ1

τ2

[ c
2
t2 + (uCmin − cτ2)(t − τ2)

− c

2
τ 2

2 + vC (0) + uCminτ2]dt (22)

Using (21) and (22) to eliminate c and τ2 and then evaluate
J1(τ1, a) in (19) after some algebra yields:

J1(τ1, a) = 1

2
uCmin(2vU (0) − 2vC (0) − uCminτ1)

+ 2(vU (0) − vC (0) − uCminτ1)
3

9(a − xC(0) − vC (0)τ1 − 0.5uCminτ
2
1 )

(23)

(b) u∗
C(t) = −λv(t) for t ∈ [0, τ2), u∗

C(t) = uCmin for
t ∈ [τ2, τ1]. Proceeding as above, we derive

vC (τ2) = vC (0) +
∫ τ2

0
[c(τ2 − t) + uCmin]dt

vC (τ1) = vU (0) = vC (τ2) + (τ1 − τ2)uCmin

xC(τ2) = xC(0) +
∫ τ2

0
[vC (0) + c

2
t2 + uCmint]dt

xC(τ1) = a = xC(τ2) +
∫ τ1

τ2

[vC(τ2) + uCmin(t − τ2)]dt

(24)

and, after some calculations, we obtain J1(τ1, a) in (19 ):

J1(τ1, a) = 1

2
uCmin(2vU (0) − 2vC (0) − uCminτ1)

− 2(vU (0) − vC (0) − uCminτ1)
3

9(a − xC(0) − vU τ1 + 0.5uCminτ
2
1 )

(25)
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Fig. 4. Vehicle model over the lateral maneuver.

Proceeding to the second subproblem (20), note that the
control at the entry point of the constrained arc at time τ1 is
no longer guaranteed to be continuous. This problem is of the
same form as the optimal control problem for vehicle 2 in (8)
whose solution is given in Theorem 3, except that initial
conditions now apply at time τ1 as given in (20). Proceeding
exactly as before, we can obtain the cost J2(τ1, a) under
optimal control. Adding the two costs, we obtain JC(τ1, a) =
J1(τ1, a)+ J2(τ1, a) in (16). This results in a simple nonlinear
programming problem whose solution (τ ∗

1 , a∗) results from
setting ∂ JC(τ1,a)

∂τ1
= 0 and ∂ JC (τ1,a)

∂a = 0. Finally, the optimal
control is the one corresponding to (τ ∗

1 , a∗).
Based on our analysis, we find that Case 3 is the only

one where the safety constraint may become active. This
provides an option to the vehicle C controller: if Case 3
applies, the maneuver may either be implemented or it may
be delayed until the conditions change to either one of
Cases 1,2 so as avoid the more complex situation that arises
through (19),(20). As already stated, a lane change maneuver
contains two components: a longitudinal part and a lateral part.
We will next address the lateral maneuver component.

IV. LATERAL MANEUVER

Let t L0 be the start time of the lateral phase of the lane-
change maneuver. The most conservative approach is to set
t L0 = t f , the optimal terminal time of the longitudinal
phase as determined through (4). However, depending on the
“aggressiveness” of a driver we may select t L0 ≤ t f as further
discussed in Section V.

The vehicle dynamics used during the lateral maneuver are
expressed as

ẋ(t) = v(t)cosθ(t), ẏ(t) = v(t)sinθ(t)

θ̇ (t) = v(t)tanφ(t)/Lw, φ̇(t) = ω(t) (26)

where the physical interpretation of all variables above is
shown in Fig. 4. In addition, we impose physical constraints
as follows:

|φ(t)| ≤ φmax , |θ(t)| ≤ θmax (27)

The associated initial conditions are φ(t L0 ) = 0, θ(t L0 ) = 0,
y(t L0 ) = 0. The terminal time is defined as t Lf and the
associated terminal conditions are

φ(t Lf ) = 0, θ(t Lf ) = 0, y(t Lf ) = l (28)

Fig. 5. The trajectory of φ(t) over the lateral maneuver.

where l is the lane width. Thus, the optimal control problem
for the lateral maneuver is formulated as

min
φ(t),t Lf

∫ t Lf

t L0

1

2
wφφ2(t)dt + wt Lf

t Lf

s.t. (26), (27), (28) (29)

where the objective function combines both the lateral maneu-
ver time and the associated energy approximation of the
controllable vehicle. The two terms in (29) need to be properly
normalized, therefore, we set wφ = ρL

φ2
max

and wt Lf
= 1−ρL

T L
f max

,

where ρL ∈ [0, 1] and T L
f max is set based on an empirical value

as shown later in simulation results. We assume that v(t) = v
is constant over the lateral maneuver, which is reasonable since
we will show that the lateral phase time is small compared to
the longitudinal phase we have already studied.

In solving (29), there are two main challenges: (i) the
problem is overconstrained due to the given initial and terminal
conditions, and (i i) the high nonlinearity of the vehicle
dynamics in (26) [2]. We provide next three approaches to
solving the problem.

A. Numerical Solution

Problem (29) may be solved using a standard numerical
solver for optimal control problems. We have used the TomLab
Toolbox, a commercial solver for optimal control problems,
to obtain an optimal solution. An example optimal trajectory
of φ(t) is shown in Fig. 13 where it is clear that this trajectory
is piecewise linear and symmetric as one might expect for such
a maneuver. Thus, a generic optimal trajectory is as shown
in Fig. 5. We will exploit this structure to seek an optimal
solution which can be obtained in a much simpler way, hence
it is also computationally much more efficient.

B. Parametric Optimization Method

Since numerical solutions reveal the structure of an optimal
trajectory to be as shown in Fig. 5, we can formulate a
parametric optimization problem where we seek to optimize
the values of the parameters c, b (the slopes of the three linear
segments of the trajectory) and τ1 (the end time of the first
linear segment). Therefore, the dynamics of φ(t) on an optimal
trajectory are

φ̇(t) =
{
c
−b

if t ≤ τ1

if τ1 < t ≤ (t L0 + t Lf )/2 (30)
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where τ1 = b(t L0 + t Lf )/2(c+ b) so as to ensure that φ(t) = 0
when t = (t L0 + t Lf )/2. It follows that

φ(t) =
{
ct
(c + b)τ1 − bt

if t ≤ τ1

if τ1 < t ≤ (t L0 + t Lf )/2

Combining this with the dynamics of θ(t) in (26), we have

θ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− v

cLw
ln(cosφ(t)) if t ≤ τ1

− v

cLw
ln(cosφ(τ1))

− v

bLw
ln(cosφ(τ1))

+ v

bLw
ln(cosφ(t)) if τ1 < t ≤ (t L0 + t Lf )/2

(31)

Using the expression above for θ(t) from (26), we can also
derive an expression for y(t) on an optimal trajectory. Unfor-
tunately, the complexity of (31) makes it difficult to obtain
an exact numerical value for y(t); instead, we approximate
y(t) using a 10th order polynomial expression where the
coefficients can be expressed as functions of c, b and τ1. Then
we reformulate (29) as a parametric optimization problem in
terms of c, b and τ1 so as to obtain their optimal values c∗, b∗
and τ ∗

1 . To compensate for the approximation error in y(t),
we need to adjust the parameters so as to ensure that
the controllable vehicle can arrive at the terminal position
when t = t fL . Based on the optimal parameters we obtain,
we adjust τ ∗

1 to ensure that the actual terminal position is l/2
when t = t fL .

C. Control Barrier Function Method

Barrier functions (BFs) are Lyapunov-like functions which
have recently been used in verification and control problems.
Control BFs (CBFs) are extensions of BFs which, combined
with control Lyapunov functions (CLFs), have been shown
to allow constrained optimal control problems to be mapped
onto a sequence of quadratic programs (QPs) for nonlinear
systems that are affine in controls and can be solved in real
time [30], [31]. We briefly review next the fundamental
definitions and results which will allow us to use this approach
in order to solve (29).
Definition 1 (Class K Function [32]): A continuous

function κ : [0, k) → [0,∞), k > 0 is said to belong to
class K if it is strictly increasing and κ(0) = 0.

Consider an affine control system of the form

ṡ = f (s) + g(s)u (32)

where s ∈ R
n , f : Rn → R

n and g : Rn → R
n×q are locally

Lipschitz, and u ∈ U ⊂ R
q (U denotes the control constraint

set). Solutions s(t) of (32), starting at s(t0), t ≥ t0, are forward
complete.
Definition 2 [33]: A set C ⊂ R

n is forward invariant for
system (32) if its solutions starting at all s(t0) ∈ C satisfy
s(t) ∈ C for ∀t ≥ t0.
Definition 3 [33]: Control barrier function (CBF): Let

C := {s ∈ R
n : h(s) ≥ 0}, where h : R

n → R is

continuously differentiable. A function B : C → R is a control
barrier function (CBF) for system (32) if there exist class K
functions β1, β2 and γ > 0 such that

1

β1(h(s))
≤ 1

β2(h(s))

in f
u∈U

[L f B(s) + LgB(s)u − γ

B(s)
] ≤ 0

for all s ∈ Int (C ), where L f , Lg denote the Lie derivatives
along f and g, respectively, and Int (C ) is the interior of C .
Theorem 7 [33]: Given a CBF B , any Lipschitz continuous

controller u ∈ Kcbf (s), with

Kcbf (s) := {u ∈ U : L f B(s) + Lg B(s)u − γ

B(s)
≤ 0},

renders set C forward invariant for affine control system (32).
Definition 4 (Control Lyapunov Function (CLF) [31]): A

continuously differentiable function V : Rn → R is a globally
and exponentially stabilizing control Lyapunov function (CLF)
for system (32) if there exist constants c1 > 0, c2 > 0, c3 > 0
such that c1||s||2 ≤ V (s) ≤ c2||s||2 and for ∀s ∈ R

n :

in f
u∈U

[L f V (s) + LgV (s)u + c3V (s)] ≤ 0.

Theorem 8 [31]: Given an exponentially stabilizing CLF V
as in Def. 4, any Lipschitz continuous controller u ∈ Kcl f (s),
with

Kcl f (s) := {u ∈ U : L f V (s) + LgV (s)u + c3V (s) ≤ 0},
exponentially stabilizes system (32) to its zero dynamics
(defined by the dynamics of the internal part if we transform
the system to standard form and set the output to zero [32]).
1) Problem Formulation: We partition problem (29) into

two phases. The first phase is over [y(t L0 ),
y(t L0 )+y(t Lf )

2 ] and the

second is over (
y(t L0 )+y(t Lf )

2 , y(t Lf )]. Exploiting the symmetry
of the solution (see Fig. 5), we solve the problem for the
first phase without the terminal condition regarding θ(t), and
then mirror the optimal trajectory for the second phase as
in Fig. 5. The whole symmetric trajectory of θ(t) around
t = (t L0 + t fL )/2 can guarantee that all terminal conditions
in (28) can be satisfied since θ(t L0 ) = θ(t Lf ) = 0. Therefore,
for the first phase, we use CBFs to map terminal constraints
and limitations from states θ(t), y(t) onto the controllable
parameter φ(t).

Referring to Definition 3, let γ = 1 and Bq(s(t)) = 1
hq (s(t))

where h1(s(t)) = φmax − φ(t), h2(s(t)) = θmax − θ(t),
h3(s(t)) = θ(t) and h4(s(t)) = [y f /2 − y(t)]2 − φ(t).
Note that h4(s(t)) is an artificial constraint which ensures
that when y(t) = y f /2, we have φ(t) = 0. We define
V (s(t)) = (θ(t) − θmax)

2 as the CLF so as to minimize the
maneuver time since the lower bound of the maneuver time is
achieved when θmax is attained.

Next, we partition the time interval [t L0 , (t L0 + t fL )/2] into
a series of time steps {[t L0 + k�t, t L0 + (k + 1)�t]}, k =
0, 1, 2, . . . . Over each time step, we assume that the control
φ(t) is constant. Applying the CBF method, over each time
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Fig. 6. Maneuver aggressiveness.

interval [t L0 , t L0 + �t] we solve the QP:

min
φ(t)

∫ t L0 +(k+1)�t

t L0 +k�t

1

2
φ2(t)dt + pδ2(t)

s.t. φ(t) ≥ 0, φ(t) ≤ φmax , φ(t) ≤ [y f /2 − y(t)]2

v(t)

Lw(θmax − θ(t))2 tanφ(t)︸ ︷︷ ︸
Lg B2(s(t))

≤ (θmax − θ(t))︸ ︷︷ ︸
1

B2(s(t))

− 1

θ2(t)

v(t)

Lw
tanφ(t)︸ ︷︷ ︸

Lg B3(s(t))

≤ θ(t)︸︷︷︸
1

B3(s(t))

2(θ(t) − θmax)
v(t)

Lw
tanφ(t)︸ ︷︷ ︸

LgV (s(t))

+ ε(θ(t) − θmax)
2︸ ︷︷ ︸

εV (s(t))

≤ δ(t)

(33)

where p denotes a weight coefficient and δ(t) is a relaxation
variable which we seek to minimize in a quadratic sense.

After solving a QP over each time step, we will obtain
an optimal φ(t) for (33). Based on this optimal solution,
we update all states and repeat the process of solving (33)
over the next time step until y(t) = y f /2.

V. COMBINATION OF LONGITUDINAL

AND LATERAL MANEUVERS

After addressing the longitudinal and lateral maneuver com-
ponents separately, we next consider how to integrate them
into a complete lane change maneuver. The initial time t L0
for the lateral maneuver phase is associated with a preset
driver “aggressiveness” level, similar to the way we addressed
the problem of minimizing the longitudinal maneuver time
in (4). As illustrated in Fig. 6, the mildest (most conservative)
approach is to not execute the lateral maneuver until the
longitudinal phase is complete, i.e., set t L0 = t f . At the
other extreme, the most aggressive approach is determined
by the earliest time that any adjacent vehicle along the
longitudinal direction can be guaranteed to not collide with the
controllable CAV C .

Let us define the earliest times when CAV C has reached a
safe distance form each of the other three CAVs involved in

the longitudinal maneuver in Fig. 1:

ta1 = min{t ∈ [t0, t f ] : x1(t) − xC(t) ≥ Lv }
ta2 = min{t ∈ [t0, t f ] : xC(t) − x2(t) ≥ Lv }
taU = min{t ∈ [t0, t f ] : xU (t) − xC(t) ≥ Lv }

where Lv is a safe distance constant, typically determined by
the length of the controllable CAV. Depending on which of
Cases 1,2,3 in Fig. 3 applies, we then set t L0 = ta as follows:

ta = max{ta1 , ta2 } if Case 1 applies

ta = max{ta1 , ta2 , taU } if Case 2 or 3 applies

where in Case 1 we know that the safe distance constraint
between CAVs U and C which will never be violated and,
therefore, it need not be included.

The above time t L0 = ta may not always be feasible. Since
we assume v(t) to be constant over the lateral maneuver, there
is still a risk that vehicles may collide under an aggressive
setting. In order to guarantee no collision between any vehi-
cle, we use Algorithm 2 which makes use of the following
definitions. First, let x̂C(xC(t L0 ), vC (t L0 ), t) be the position
trajectory of CAV C along the longitudinal direction over the
lateral maneuver. Note that x̂C(xC(t L0 ), vC (t L0 ), t) depends on
xC(t L0 ), vC (t L0 ) and on the optimal control solution method
used in Section IV. Next, we define the following collision
avoidance (CA) condition:

(CA) ∀t ∈ [t L0 , t Lf ] : x1(t) − x̂C(xC(t L0 ), vC (t L0 ), t) ≥ Lv

x̂C(xC(t L0 ), vC (t L0 ), t) − x2(t) ≥ Lv

xU (t) − x̂C(xC(t L0 ), vC (t L0 ), t) ≥ Lv

We use Algorithm 2 to check whether condition (CA) is satis-
fied in order to apply the lateral maneuver. As we increase t L0 ,
the chance that (CA) is satisfied will also increase. Note that
when t L0 = t f , the distance between any adjacent vehicle is no
less than the safety distance which is large enough to ensure
that no collision occurs.

Algorithm 2 Determine the Initial Time of the Lateral
Maneuver

if t ≥ ta then
judge=1;
while judge=1 do

Calculate x̂C at the current time;
if (CA) is satisfied then

judge=0; t L0 =current time;
else

delay �t
end

end
end

VI. SIMULATION RESULTS

In this section, we provide simulation results illustrating the
time and energy-optimal maneuver controller we have derived
and compare its performance to a baseline of human-driven
vehicles. In what follows, we set the minimal and maximal
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Fig. 7. Optimal Position trajectories of vehicle 1 and 2 in Case 1 of Fig. 3.

vehicle speeds to 1m/s and 33m/s respectively and the max-
imal acceleration and deceleration to 3.3m/s2 and −7m/s2

respectively. The aggressiveness coefficients αi , i = 1, 2,
C in (4) are set as α1 = 0.3, α2 = 0.3 and αC = 0.2.

A. Longitudinal Maneuver

Case 1 in Fig. 3. We set x1(t0) = 90m, v1(t0) = 13m/s,
xU (t0) = 100m, vU (t0) = 9m/s, x2(t0) = 50m, v2(t0) =
18m/s and xC(t0) = 13m, vC (t0) = 10m/s. Solving (4),
we derive t f = 28.14s and after solving (5), we obtain
x1(t f ) = 455.8m, xC(t f ) = 303.24m and x2(t f ) = 273.24m.
Figures 7–8 show the optimal trajectories of all controllable
vehicles. In Fig. 7, CAV 1 maintains a constant velocity which
contributes a zero value to the cost in (6), while the velocity of
CAV 2 decreases to create space for CAV C to change lanes.
The optimal trajectory of CAV C in Fig. 8 is obtained with-
out considering the safety constraint because of Theorem 4.
CAV C keeps on accelerating and the safety distance constraint
is never violated.

B. Longitudinal Maneuver

Case 2 in Fig. 3. We set x1(0) = 70m, v1(0) = 13m/s,
x2(0) = 30m, v2(0) = 18m/s, xC(0) = 13m, vC (0) = 12m/s,
xU (0) = 80m, vU (0) = 10m/s. Solving (4) and (5), we derive
t f = 21.4s and x1(t f ) = 348.37m, x2(t f ) = 214.13m,
xC(t f ) = 244.13m. The optimal trajectories of CAVs 1,2 are
similar to those of Case 1 as shown in Fig. 9 in which 1
is cruising with a constant speed and the associated surrogate
energy cost defined in (3) is zero, while the velocity of CAV 2
decreases. Figure 10 shows the optimal trajectory of CAV C
which, once again, is obtained without considering the safety
constraint based on Theorem 5. CAV C decelerates to ensure
it satisfies its terminal position while the safety constraint
is never violated. We also provide a comparison between
the optimal control (OC) method and the control barrier
function (CBF) method [31] for all controllable vehicles in this
case. As we force the terminal time under the CBF method
to be the same with that of the optimal control method,
the corresponding surrogate energy metric

∫ t f
0 u2(t)dt used

in (3) is 59.4 m2/s3, larger than that under the optimal control
method, 12.6 m2/s3. As stated in [33], compared with the
optimal control method, CBF is able to deal with nonlinear
dynamic models and more complex objective functions at the
expense of suboptimality.

Fig. 8. Optimal trajectories of vehicle C in Case 1 of Fig. 3.

Fig. 9. Optimal Position trajectories of vehicle 1 and 2 in Case 2 of Fig. 3.

C. Longitudinal Maneuver

Case 3 in Fig. 3. We set x1(0) = 40m, v1(0) = 11m/s,
xU (0) = 40m, vU (0) = 8m/s x2(0) = 10m, v2(0) =
23m/s, xC(0) = 13m, vC (0) = 19m/s. Solving (4) and (5),
we derive t f = 14.49s and x1(t f ) = 199.37m, x2(t f ) = 75m,
xC(t f ) = 105.9m. In this case, CAV 1 accelerates and CAV 2
decelerates in order to create space for CAV C as shown
in Fig. 11. For CAV C , we first solve the optimal control
problem (16) without considering the safety constraint and find
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Fig. 10. Optimal trajectories of vehicle C in Case 2 of Fig. 3.

Fig. 11. Optimal Position trajectories of vehicle 1 and 2 in Case 3 of Fig. 3.

that it actually becomes active. Therefore, we proceed with
the two subproblems (19) and (20) to derive the true optimal
trajectories. We obtained a∗ = 43m and τ ∗

1 = 3.2s, and Fig. 12
shows the optimal trajectory of CAV C . Observe that C decel-
erates over the maneuver and the safety distance constraint is
active at τ ∗

1 = 3.2s when there is a jump in the acceleration
trajectory. Following that, CAV C continues decelerating until
it reaches its terminal position. The computational time is
around 2.3s using MATLAB R2016b on a computer with
a 4-core CPU, Intel(R) Core(TM) i7-6700HQ@2.6GHz and
a 16.0GB RAM.

Fig. 12. Optimal trajectories of vehicle C in Case 3 of Fig. 3.

TABLE I

COMPARISONS OF DIFFERENT VALUES OF THE
AGGRESSIVENESS PARAMETERS

D. Longitudinal Maneuver

We include some simulation results in Table I over differ-
ent values of the aggressiveness parameters under the initial
conditions: x1(t0) = 40m, v1(t0) = 7m/s, xU (t0) = 100m,
vU (t0) = 9m/s, x2(t0) = 10m, v2(t0) = 18m/s and xC(t0) =
13m, vC (t0) = 10m/s. Note that aggressiveness only impacts
the terminal time and terminal position of every controllable
CAV without affecting the solution approach.

E. Lateral Maneuver

We set T L
f max = 4s, l = 3.8m, Lw = 4m, v = 11m/s,

θmax = 0.576, φmax = 0.2, and ρL = 0.5 in (33). Solutions
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TABLE II

COMPARISONS OF DIFFERENT METHODS IN LATERAL MANEUVER

Fig. 13. Optimal Trajectories of vehicle C over the lateral maneuver.

provided by Tomlab, the parametric optimization method
(POM) and CBF are compared in the following. Fig. 13 shows
the trajectory of y∗(t), θ∗(t) and φ∗(t) under the Tomlab.
The maneuver time is 3.1s and associated surrogate energy
consumption defined in (29) is 3.8 × 10−3. Figures 13 also
shows the trajectories of the solutions under the POM and
CBF methods respectively. The associated maneuver time and
surrogate energy consumption are shown in Table II. We find
that the CBF achieves the least surrogate energy consumption
while the POM achieves the least maneuver time. Finally,
note that the lateral maneuver time is around 3s under all
three methods. This value is relatively small compared with
the longitudinal maneuver time, which makes the assumption
that v(t) is constant over the lateral maneuver reasonable.
The computational time for POM is around 0.08s and that
of the CBF method around 0.70s making them both suitable
for real-time implementation. The computational time of the
numerical solution using TomLab is 5s which is significantly
larger.

TABLE III

INITIAL STATES OF VEHICLES

TABLE IV

ENERGY COMPARISON: CAVS VS HUMAN-DRIVEN VEHICLES

F. Comparison of Optimal Maneuver Control and
Human-Driven Vehicles

We use standard car-following models in the commer-
cial SUMO simulator to simulate a lane change maneuver
implemented by human-driven vehicles with the requirement
that vehicle C changes lanes between vehicles 1 and 2.
We considered all cases in Fig. 3 with both CAVs and
human-driven vehicles sharing the same initial states as shown
in Table III. The associated surrogate energy consumption is
shown in Table IV and provides evidence of savings in the
range 43 − 59% over all three cases.

VII. CONCLUSION AND FUTURE WORK

We use an optimal control framework for a Connected
Automated Vehicle (CAV) cooperating with neighboring CAVs
in order to implement a highway lane change maneuver
consisting of a longitudinal phase and a lateral phase where
it safely changes lanes. For the first phase, we optimize
the maneuver time and subsequently minimize the associated
surrogate energy consumption of all cooperating vehicles in
this maneuver. For the second phase, we jointly optimize
time and energy approximation and provide three different
solution methods including a real-time approach based on
Control Barrier Functions (CBFs). Our ongoing work aims to
incorporate a “comfort” factor in the problem by minimizing
any resulting jerk (as in Fig. 12) and adopt a more general
velocity-varying safety distance constraint.

APPENDIX

Proof of Lemma 1: If �x∗
1 (t f ) < 0, then �x1(t f ) = 0 is a

better solution since it is feasible (the distance between vehi-
cles 1, 2 under �x1(t f ) = 0 is larger than under �x∗

1 (t f ) < 0)
and it is obvious that it yields a lower cost in (5) than the
one with �x∗

1 (t f ) < 0 (the control is ui (t) = 0.) Therefore,
we must have �x∗

1 (t f ) ≥ 0. The proof for �x∗
2 (t f ) ≤ 0 is

similar. �
Proof of Theorem 1: First, by Lemma 1, it is obvious that

u1(t) ≥ 0 is a feasible solution of (6) since �x∗
1 (t f ) ≥ 0

implies that u1(t) < 0 for all t ∈ [t0, t f ] is not feasible. The
same applies to u2(t) ≤ 0 being a feasible solution of (7).
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Starting with vehicle 1, suppose that there exists some
[t1, t2) ⊂ [0, t f ] in which the optimal solution satisfies
u∗

1(t) < 0. We will show that there exists another control
which would lead to a smaller cost than u∗

1(t). Consider a
control u1

1(t) defined so that u1
1(t) = u∗

1(t) ≥ 0 for t ∈
[0, t1)∪[t2, t f ], u1

1(t) = 0 for t ∈ [t1, t2). It is obvious that the
cost of the control u1

1(t) is lower than that of u∗
1(t). u

1
1(t) will

not violate the safety constraint. Based on the construction of
u1

1(t), it is obvious to show that x1
1(t) ≥ x∗

1 (t). Since we
have x∗

1 (t) − x∗
2 (t) ≥ d2, we must have x1

1(t) − x∗
2 (t) ≥

d2. However, we have x1
1(t f ) > x∗

1 (t f ) because u1
1(t) >

u∗
1(t), t ∈ [t1, t2), thus violating the terminal condition

in (6). Therefore, we construct another control u2
1(t), a variant

of u1
1(t) which is feasible, as follows. Define

g1(t) = x1
1(t) + v1

1(t)(t f − t) (34)

and observe that g1(t) is a continuous function of t since x1
1 (t)

and v1
1(t) are continuous. Because g1(0) = x1

1(0)+ v1
1(0)t f <

x∗
1 (t f ) (by Lemma 1) and g1(t f ) = x1

1(t f ) ≥ x∗
1 (t f ), there

exists some tm ∈ [0, t f ] such that g1(tm) = x∗
1 (t f ). We now

define a control u2
1(t) such that u2

1(t) = u1
1(t) ≥ 0 for

t ∈ [0, tm), u2
1(t) = 0 for t ∈ [tm, t f ]. It follows that

x2
1 (tm) = x1

1(tm), v2
1(tm) = v1

1(tm) and x2
1 (t f ) = x1

1(tm) +
v1

1(tm)(t f − tm) which implies that x2
1 (t f ) = g1(tm) from (34).

Thus, the terminal position constraint is not violated under
u2

1(t). Based on the definitions of u2
1(t) and u1

1(t), it is obvious
that u2

1(t) does not violate the acceleration constraints in (2).
Next, we show that the velocity constraints in (2) are also not
violated. Assume that for some tn , v1

1(tn) = v1max initiating an
arc where the velocity is v1

1(t) = v1max. There are two cases:
(a) If tn ≥ tm , we have v1

1(tm) ≤ v1
1(tn) because u1

1(t) ≥ 0
for all t ∈ [0, t f ]. Based on the definition of u2

1(t), the max-
imal speed under the control u2

1(t) is v1
1(tm) and the velocity

constraint is, therefore, inactive.
(b) If tn < tm , we have v1

1(tm) > v1
1(tn). Taking the time

derivative of g1(t), we derive ġ1(t) = u1
1(t)(t f − t) ≥ 0.

It follows that
g1(tn) < g1(tm) = x∗

1 (t f ) (35)

where the equality follows from the definition of tm above.
Note that we do not need to consider the case that g1(tn) =
g1(tm) in (35) as this would lead to ġ1(t) = 0 ∀t ∈ [tn, tm ],
hence u1

1(t) = 0 ∀t ∈ [tn, tm ] which guarantees the velocity
constraint is not violated. Then, let us construct a new control
u3

1(t) such that u3
1(t) = u∗

1(t) ≥ 0 for t ∈ [0, t1) ∪ [t2, tn),
u3

1(t) = 0 for t ∈ [t1, t2) ∪ [tn, t f ], where tn ≥ t1 because
v3

1(t) < v1max for t < t1 based on the feasibility of u∗
1(t).

Moreover, if t1 < tn < t2, we define u3
1(t) = 0 for t > t1,

i.e., u3
1(t) = u∗

1(t) ≥ 0 for t ∈ [0, t1), u3
1(t) = 0 for t ∈

[t1, t f ]. Based on the definition of u3
1(t), we have u3

1(t) =
u1

1(t) for t ∈ [0, tn). Therefore, x3
1(tn) = x1

1 (tn) and v3
1(tn) =

v1
1(tn) so that (35) holds under u3

1(t). When t ≥ tn , we have
u3

1(t) = 0, therefore, x3
1(t f ) = x1

1(tn) + v1
1(tn)(t f − tn) =

g1(tn) from (34). Since v3
1(t) = v1max for t ∈ [tn, t f ] and

x3
1(t) ≥ x∗

1 (t) for t ∈ [0, tn), it is clear that x3
1(t f ) ≥ x∗

1 (t f ).
However, since g1(tn) = x3

1(t f ) ≥ x∗
1 (t f ), this contradicts

(35). We conclude that tn < tm is not possible. Furthermore,

it is also simple to show that x2
1 (t) ≥ x∗

1 (t) based on the
definition of u2

1(t), so the safety constraint will not be violated
under this auxiliary control policy.

In summary, we have shown that the velocity constraint
is inactive for control u2

1(t). Therefore, u2
1(t) is feasible and

results in a lower cost in (6) than u∗
1(t) since it includes

a trajectory arc over which u2
1(t) = 0. This contradicts the

optimality of u∗
1(t) and we conclude that the optimal control

cannot contain any interval over which u∗
1(t) < 0.

Next, consider vehicle 2 and suppose that there exists some
[t1, t2) ⊂ [0, t f ] in which the optimal solution satisfies u∗

2(t) >
0. Consider a control u1

2(t) defined so that u1
2(t) = u∗

2(t) ≤ 0
for t ∈ [0, t1)∪[t2, t f ], u1

1(t) = 0 for t ∈ [t1, t2). It is clear that
the cost under u1

2(t) is lower than that of u∗
2(t) and that the

acceleration constraint in (2) is inactive for u1
2(t). Furthermore,

it is obvious that x∗
2 (t) ≥ x1

2(t) and v∗
2(t) ≥ v1

2(t) for t ∈
[0, t f ]. Therefore, the terminal position inequality in (7) is
not violated. Based on the definition of the safety distance
constraint, d2(v2(t))= φv2(t) + δ is monotonically increasing
in v2(t). Therefore, we conclude that the safety constraint
under u1

2(t) will not be violated, since u∗
2(t) is feasible and

x∗
2 (t) ≥ x1

2(t), v∗
2 (t) ≥ v1

2(t). Finally, we consider the speed
constraint in (2) which may be active under u1

2(t). There are
two cases:

(a) If v1
2(t f ) > v2min, the speed constraint is inactive under

u1
2(t) over all t ∈ [0, t f ] and u1

2(t) is a feasible solution which
results in a lower cost in (7) than u∗

2(t) since it includes a
trajectory arc over which u2

2(t) = 0.
(b) If v1

2(t f ) ≤ v2min, there must exist some tn ∈ [t1, t f ]
such that v1

2(tm) = v2min. Let us construct a new control u2
2(t)

as follows: u2
2(t) = u1

2(t) ≤ 0 for t ∈ [0, tm), u2
2(t) = 0

for t ∈ [tm, t f ]. For t ∈ [0, tm), it is obvious that x∗
2 (t) ≥

x2
2(t) and v∗

2(t) ≥ v2
2(t) based on the definition of u1

2(t). For
t ∈ [tm, t f ], vehicle 2 moves at the minimal speed v2min under
u2

2(t), therefore, x∗
2 (t f ) ≥ x2

2 (t f ), that is, the terminal position
inequality is satisfied. Also, it is obvious that the acceleration
and the speed constraints are not violated over [0, t f ]. Finally,
we have shown that u1

2(t) does not violate the safety constraint.
Based on the same argument, it is straightforward to show
that u2

2(t) will not violate this constraint, since x2
2(t) ≤ x∗

2 (t)
and v2

2(t) ≤ v∗
2 (t). Therefore, u2

2(t) is feasible in (7) and the
corresponding cost is lower than that of u∗

2(t) because the
trajectory segment with u2

2(t) = 0 contributes to zero cost.
We conclude that the optimal control u∗

2(t) cannot contain
any time interval with u∗

2(t) > 0. �
Proof of Theorem 2: Problem (6) is of the same form

as the fixed terminal time optimal control Problem 3 in [28]
whose solution when u∗

1(t) ≥ 0 is given in Theorem 2 of [28]
and is therefore omitted. By Pontryagin’s principle applied
to (9), u∗

1(t) =min{u1 max,−λv(t)} and the key parts of the
proof in [28] are showing that η3(t) = 0 and that λv(t) is
continuous for all t ∈ [0, t f ]. �

Proof of Theorem 3: Problem (7) is also of the same form
as the fixed terminal time optimal control Problem 3 in [28]
whose solution when u∗

2(t) ≤ 0 is given in Theorem 3 of [28]
and is therefore omitted. �

Proof of Lemma 2: Assume that at time tk , we have
xU (0) + vU (0)tk − xC(tk) = dC and define f (t) = xU (0) +
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vU (0)t − xC(t). Using a contradiction argument, if vC (t) �=
vU (0) there are two cases: (i) If vC(tk) > vU (0), since
f ′(tk) = vU (0) − vC (tk) < 0, we have f (t−k ) > f (tk), which
implies xU (0)+ vU (0)t−k − xC(t−k ) > dC , therefore, the safety
constraint is violated at t−k . (i i) If vC (tk) < vU (0), since
f ′(tk) = vU (0) − vC (tk) > 0, we have f (t+k ) > f (tk), which
implies xU (0)+ vU (0)t+k − xC(t+k ) > dC , therefore, the safety
constraint is violated at t+k . We conclude that vC (tk) = vU
which completes the proof. �

Proof of Theorem 4: Case 1 involves a non-strict inequal-
ity regarding the order of x̄C(t f ) and xC(t f ). We first consider
the strict inequality, that is, x̄C(t f ) < xC(t f ) ≤ xU (t f ) − dC .
The condition xC(t f ) > x̄C(t f ) implies that uC(t) ≥ 0
is a feasible solution of (16) since uC (t) < 0 for all
t ∈ [t0, t f ] cannot satisfy this condition. Suppose that there
exists some [t1, t2) ⊂ [0, t f ] in which the optimal solution
satisfies u∗

C(t) < 0. We will show that there exists another
control which would lead to a lower cost than u∗

C (t). First,
we construct a control u1

C (t) such that u1
C (t) = u∗

C(t) ≥ 0 for
t ∈ [0, t1) ∪ [t2, t f ], u1

C (t) = 0 for t ∈ [t1, t2). It is clear that
u1
C(t) will not violate the acceleration constraint (2). However,

the terminal position constraint is violated. Therefore, we will
construct u2

C(t), a variant of u1
C (t) as follows, and will show

that u2
C(t) is feasible.

First, define

gC(t) = x1
C(t) + v1

C (t)(t f − t) (36)

and note that gC(t) is continuous in t since x1
C(t) and v1

C (t) are
continuous. Because gC(0) = x̄C(t f ) < x∗

C(t f ) by assumption
and gC(t f ) = x1

C(t f ) ≥ x∗
C(t f ), there exists some tm ∈ [0, t f ]

such that gC(tm) = x∗
C(t f ). We can now construct u2

C (t) such
that u2

C(t) = u1
C(t) ≥ 0 for t ∈ [0, tm), u2

C (t) = 0 for t ∈
[tm, t f ]. Observe that x2

C(t f ) = gC(tm) = x∗
C(t f ). Moreover,

based on its definition, it is obvious that it will not violate
the acceleration constraint. Next, we show that the velocity
constraint is also not violated. Suppose there exists some time
tn such that v1

C (tn) = vCmax so that the trajectory may include
an arc over which v1

C (t) =vCmax. There are two cases:
(a) If tn ≥ tm , we have v1

C (tm) ≤ v1
C (tn) because u1

C(t) ≥ 0.
Based on the definition of u1

C(t), the maximal speed is v1
C (tm)

and the velocity constraint is not violated.
(b) If tn < tm , we have v1

C(tm) > v1
C (tn). Taking the time

derivative of gC(t), we derive ġC(t) = u1
C (t)(t f − t) ≥ 0.

Therefore,
gC(tn) < gC(tm) = x∗

C(t f ) (37)

Note that we do need to consider the case that gC(tn) = gC(tm)
in (37) as this would lead to ġC(t) = 0 ∀t ∈ [tn, tm ],
hence u1

C(t) = 0 ∀t ∈ [tn, tm ] which guarantees the velocity
constraint is not violated. We then construct a control u3

C (t)
such that u3

C(t) = u∗
C(t) ≥ 0 for t ∈ [0, t1) ∪ [t2, tn],

u3
C(t) = 0 for t ∈ [t1, t2) ∪ [tn, t f ]. Note that tn ≥ t1 because

v∗
C (t) �= vCmax when t < t1 based on the definition of u∗

C(t).
If t1 < tn < t2, we define u3

C (t) = 0 when t > t1 as
follows: u3

C(t) = u∗
C (t) ≥ 0, for t ∈ [0, t1), u3

C(t) = 0,
for t ∈ [t1, t f ]. From the construction of u3

C(t), we have
x3
C(tn) = x1

C(tn), v3
C (tn) = v1

C (tn) so that (37) holds under

u3
1(t), and x3

C(t f ) = gC(tn). Because v3
C (t) = vCmax for

t ∈ [tn, t f ] and u3
C(t) ≥ u∗

C (t) for t ∈ [0, tn), it is clear that
x3
C(t) ≥ x∗

C(t) for all t ∈ [0, t f ]. However, this contradicts (37)
since x3

C(t f ) = gC(tn) < x∗
C(t f ). We conclude that tn < tm is

not possible.
In summary, we have proved that the speed constraint will

not be violated under the control u2
C(t). Next, we show that

u2
C(t) will also not violate the safety constraint. Suppose that

at time tσ ∈ [0, t f ), the safety constraint is active under
control u2

C(t), i.e., x2
C(tσ ) = xU (tσ ) − dC . Because the

safety constraint is inactive at t = t−σ , that is, x2
C(t−σ ) <

xU (t−σ ) − dC , we must have v2
C (t−σ ) > vU (t−σ ) to activate

the constraint. Because u2
C (t) ≥ 0, we have v2

C (tσ ) > vU (tσ )
which contradicts Lemma 2 leading to x2

C(t+σ ) > xU (t+σ )−dC .
Since u2

C(t) ≥ 0, we eventually have x2
C(t f ) > xU (t f ) − dC

which contradicts x2
C(t f ) = x∗

C(t f ) ≤ xU (t f )−dC . Therefore,
the safety constraint will not be activated over (0, t f ).

We conclude that u2
C (t) is a feasible solution. Moreover,

under u2
C (t) the cost is lower than that of u∗

C(t) because u2
C(t)

contains a segment with u2
C(t) = 0 that contributes zero cost

in (16) relative to u∗
C(t). Therefore, the optimal control u∗

C(t)
cannot contain any time interval with u∗

C (t) < 0.
Next, we use a similar argument as above to show that the

safety constraint will be inactive under the optimal control
u∗
C(t), that is, η∗

5(t) = 0. Assume that at time tη ∈ (0, t f ),
η∗

5(tη) > 0. Because the safety constraint is active at tη and is
not violated at t f , vehicle C must have decelerated to relax the
safety constraint. However, this violates the fact that u∗

C (t) ≥ 0
as shown above. Therefore, we conclude that η∗

5(t) = 0 for
all t ∈ [0, t f ). This completes the proof for the inequalities
situation.

Finally, if the equality case x̄C(t f ) = xC(t f ) applies, it is
easy to see that we have u∗

C (t) = 0 ∀t ∈ (t0, t f ). This
completes the proof. �

Proof of Theorem 6: The proof is similar to Theorem 4.
The only difference is in the way we prove that the constructed
control u2

C(t) will not violate the safety constraint. Suppose
that there exists some [t1, t2) ⊂ [0, t f ] in which the optimal
solution satisfies u∗

C(t) > 0. First, we construct a control u1
C(t)

such that u1
C(t) = u∗

C(t) ≤ 0 for t ∈ [0, t1)∪[t2, t f ], u1
C (t) = 0

for t ∈ [t1, t2). It is clear that x∗
C(t) ≥ x1

C(t), v∗
C (t) ≥ v1

C (t),
t ∈ [0, t f ]. Considering the safety constraint in (16), note that
if u∗

C(t) does not violate the safety constraint, then neither
does u1

C(t).
Using gC(t) defined in (36), note that gC(0) = x1

C(0) +
v1
C (0)t f = x̄C(t f ) and gC(t f ) = x1

C(t f ). Since x1
C(t f ) ≤

x∗
C(t f ) ≤ x̄C(t f ) and gC(t) is continuous, there exists tm ∈

(0, t f ) such that gC(tm) = x∗
C(t f ). Then, we construct u2

C (t) =
u1(t) ≤ 0 for t ∈ [0, tm) and u2

C (t) = 0 for [tm, t f ]. Similar
to the proof of Theorem 4, x2

C(t f ) = gC(tm) = x∗
C(t f ). Since

u2
C(t) = u1

C(t) for t ∈ [0, tm), control u2
C(t) will not violate

the safety constraint when t ≤ tm . For t > tm , we have
u2
C(t) = 0 and x2

C(t) is linear in t with v1
C (tm) > 0. Moreover,

x1
C(tm) ≤ xU (tm) − dC and x2

C(t f ) = x∗
C(t f ) ≤ xU (t f ) − dC .

We conclude that u2
C(t), t ∈ [tm, t f ], will not violate the

safety constraint because the upper bound of vehicle C’s safe
position, xU (t)−dC , is also linear in t . Based on the definition
of u2

C(t), it is obvious that it will not violate the acceleration
constraint. We can then use the same argument as in the proof
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of Theorem 4 to show that vC (tm) ≥ vC min. Therefore, u2
C (t)

is a feasible solution. It is also obvious that the cost of u2
C (t)

is lower than that of u∗
C(t) because u2

C(t) contains a segment
with u2

C (t) = 0. Therefore, the optimal control u∗
C (t) cannot

contain any time interval with u∗
C (t) > 0. This completes the

proof. �
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