

1 Chemical Sensitivity of Valence-to-core X-ray Emission Spectroscopy due to the Ligand and the
2 Oxidation State: A Computational Study on Cu-SSZ-13 with Multiple H₂O and NH₃ Adsorption
3 Renqin Zhang^{a,†}, Hui Li^{a,b,†}, Jean-Sabin McEwen^{a,c,d,e*}

4 ^a*The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington
5 State University, Pullman, WA 99164*

6 ^b*College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan,
7 China 030024*

8 ^c*Department of Physics and Astronomy, Washington State University, Pullman, WA 99164*

9 ^d*Department of Chemistry, Washington State University, Pullman, WA 99164*

10 ^e*Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352*

11 **Abstract**

12 Valence-to-core X-ray emission spectroscopy (vtc-XES) is a powerful experimental tool that
13 can overcome the sensitivity limitations of X-ray absorption near edge structure (XANES)
14 measurements with regard to the ligand identification. To further elucidate the sensitivity of this
15 experimental technique, the corresponding emission spectra of a Cu cation when exchanged
16 within a chabazite structure (Cu-SSZ-13) was calculated from first principles. By comparing vtc-
17 XES spectra of H₂O and NH₃ adsorbed on Cu⁺ (or Cu²⁺) cations, we find a blue shift for the kβ^{''}
18 lines from a Cu-O to a Cu-N ligation. In addition, the adsorption of NH₃ results in a stronger kβ_{2,5}
19 line intensity than the corresponding one for H₂O. Therefore, one can discriminate the adsorption
20 of H₂O or NH₃ by the different vtc-XES emission lines of Cu-O and Cu-N. By scanning the vtc-
21 XES of multiple H₂O and NH₃ adsorbed Cu-SSZ-13 structures, we find a shift in the energy of
22 the kβ^{''} line between H₂O and NH₃ adsorbed conformations, which increases by increasing the
23 population of Cu-ligand bonds for both the Cu⁺ and Cu²⁺ cations. By analyzing the partial density
24 of states (PDOS) for these structures, the kβ^{''} emission line results from a N 2s to Cu 1s transition
25 while the kβ_{2,5} emission line is generated from the transition going from a mixed N 2p, Cu 3d and
26 4p states to a Cu 1s core hole, where the Cu 4p state plays a key role in this transition. Further
27 PDOS analysis shows the chemical sensitivity of vtc-XES since ligand environment is
28 intrinsically determined by the different potential binding energies of ligand 2s states. Finally, we
29 compare our computed XES results to the measured XES of several reference compounds, which
30 seem to suggest a different assignment than what was suggested in the literature. As such, the vtc-
31 XES spectrum is a complementary tool to the XANES and is well-suited for uncovering the state
32 of the active site and the nearest neighbor environment of Cu ions in Cu-SSZ-13 during the
33 selective catalytic reduction of NO or, more generally, of metal ions in a working catalysts.

34

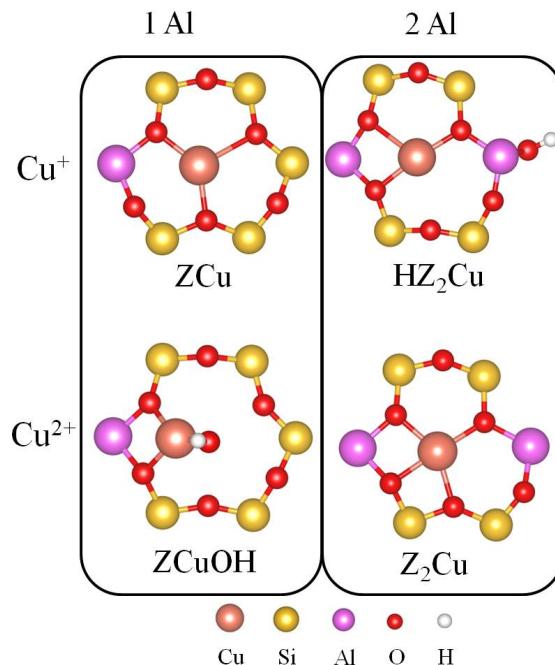
†Contribute equally; *Corresponding author: js.mcewen@wsu.edu

35 **1. Introduction**

36 A number of reports on copper-exchanged SSZ-13 (Cu-SSZ-13), claim that it is more active
37 and selective toward the formation of N₂ in the selective catalytic reduction (SCR) of NO with
38 NH₃ as compared to Cu-ZSM-5 and Cu-beta.¹ Also, it was found that Cu-SSZ-13 is more
39 hydrothermally stable than the Cu-Y, Cu-ZSM-5, and Cu-beta zeolites and that this is likely due
40 to the smaller cavity dimensions that make up the CHA structure.² The spectroscopic properties³⁻⁵
41 of Cu-SSZ-13 have attracted significant attention due to their potential for uncovering chemical
42 bonding and electronic structure relationships as well as the mechanism of SCR on Cu ions,^{6, 7}
43 which could further support the design of new catalysts.

44 X-ray absorption spectroscopy (XAS) is a versatile tool that is sensitive to the oxidation state
45 and the local structure of the probed atoms.⁸ Cu K-edge X-ray absorption near edge structure
46 (XANES) spectra have been widely used to determine the oxidation state and local structure of
47 Cu cations in different species.^{6, 7, 9, 10} However, as pointed out by Matthias Bauer,¹¹ an XAS
48 analysis suffers from a lack of sensitivity of the ligands that coordinate to the metal ions. This
49 difficulty of ligand identification gives rise to a serious hindrance in our ability to uncover the
50 underlying mechanism in the SCR of NO_x with NH₃ with regard the role of each gaseous
51 component in the reaction and the structure of principal intermediates species. This limitation
52 could be overcome by using valence-to-core X-ray emission spectroscopy (vtc-XES), which is
53 used for the characterization of the valence electronic levels.¹²⁻¹⁴ Under standard SCR conditions,
54 the XANES spectra of the Cu cations are found to be independent of the Si/Al ratio, although the
55 Cu-complexes are Cu²⁺(NH₃)₄ and [Cu²⁺(OH)]⁺(NH₃)₃ for low and high Si/Al ratios,
56 respectively.⁶ XANES cannot distinguish the species of Cu²⁺(NH₃)₄ and [Cu²⁺(OH)]⁺(NH₃)₃.
57 Using vtc-XES, it is possible to distinguish oxygen or nitrogen ligation of the Cu active sites.^{13, 14}
58 This technique provides more information concerning the valence electron orbitals near the Fermi
59 level, which are formed by the interaction between the metal and ligand orbitals. Consequently,
60 vtc-XES is highly sensitive to the ligands and provides complementary information to an XAS
61 analysis. For example, it was found that the temperature strongly influences the local structures of
62 Cu ions during SCR by combining XANES and XES techniques.¹³ The aforementioned analysis
63 concluded that low-temperature SCR is characterized by balanced populations of Cu⁺/Cu²⁺ sites
64 and dominated by mobile NH₃-solvated Cu-species while the largely dominant Cu-species are
65 framework-coordinated Cu²⁺ sites under high-temperature SCR.^{13, 15}

66 Thanks to the development of density functional theory and more powerful computational
67 resources, vtc-XES spectra can be modeled, providing further insights into spectroscopic
68 properties at the atomic and electronic level.¹⁶⁻¹⁹ Grunwaldt and coworkers studied the vtc-XES of


69 Cu-SSZ-13 under different conditions and found different feature peaks in vtc-XES spectra for
70 Cu-SSZ-13 samples with and without NH₃ in the feed.²⁰ The difference is attributed to a N atom
71 in the coordination sphere of Cu ions. Computational vtc-XES based on DFT calculations of
72 cluster models with and without NH₃ confirmed this experimental finding.²⁰ However, further
73 analysis at an electronic level is missing. Lamberti and coworkers also employed several
74 techniques combined with a computational analysis of vtc-XES to find that the dominant
75 structural components of Cu-SSZ-13 upon O₂-activation and He-activation are [CuOH]⁺ and bare
76 Cu⁺ cations, respectively.²¹ Computational spectroscopic studies are advantageous due to their
77 ability to aid theoretical interpretations on experimental results and, to some extent, propose new
78 hypotheses that can be verified by additional experiments.^{3, 21} As part of our continuing efforts
79 toward understanding the spectroscopic properties of Cu-SSZ-13, we studied vtc-XES of the Cu
80 cations in Cu-SSZ-13 under different conditions. We employed Cu-SSZ-13 models with periodic
81 boundary conditions and excited a 1s core electron to generate vtc-XES spectra. In this
82 contribution, we will investigate the sensitivity of vtc-XES on ligation, population of adsorbed
83 molecules, and oxidation state for Cu cations in Cu-SSZ-13. We will present our insight into our
84 ability to identify ligand environments of Cu cations using vtc-XES by performing a density of
85 state (DOS) analysis when the 1s core electron is excited. The use of DFT surely represents a
86 significant step forward toward a more robust spectroscopic interpretation.

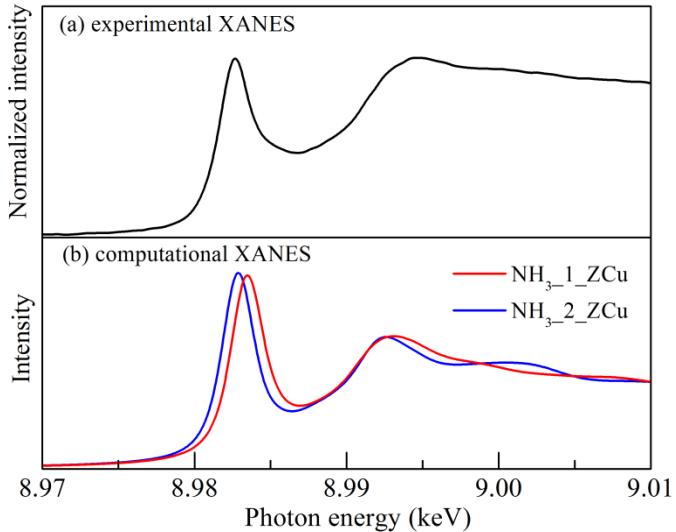
87 **2. Computational details**

88 DFT calculations for the energetics were performed with the Vienna *Ab initio* Simulation
89 Package (VASP).^{22, 23} The projector augmented-wave (PAW)^{24, 25} method and the generalized-
90 gradient approximation (GGA), using the PW91 functional,²⁶ were employed for the treatment of
91 the electron-ion interactions and the exchange-correlation effects, respectively. With PAW
92 potentials, VASP combines the accuracy of all-electron methods with the computational
93 efficiency of plane-wave approaches. The total energy convergence threshold was set to 10⁻⁸ eV
94 and the geometries were considered to be fully relaxed when the forces were less than 0.01 eV/Å.
95 A 400 eV plane-wave cutoff and a single Γ -point sampling of the Brillouin zone were used for the
96 optimization calculations. A rhombohedral unit cell of SSZ-13 was used in this study. More
97 detailed information about the structure of the rhombohedral unit cell can be found in our
98 previous work.⁴

99 The Cu⁺/Cu²⁺ redox reaction plays an important role in the mechanism of the SCR reaction
100 on Cu-SSZ-13.^{6, 7, 27-30} In the rhombohedral unit cell, charge deficiencies are generated upon
101 replacement of Si atoms by Al atoms. Up to 2 Si atoms can be substituted by Al atoms within our
102 system, which can result in sites containing 1 or 2 charge deficiencies. Cu cations are then used to

103 compensate such insufficiencies, which determine their formal oxidation states, which can be +1
 104 or +2. The corresponding Cu-SSZ-13 zeolites are denoted as ZCu (1Al) and Z₂Cu (2Al), which
 105 represent Cu-SSZ-13 with high and low Si/Al ratios, respectively. Cu²⁺ cations in Z₂Cu could be
 106 reduced and the new charge deficiency compensated by an H⁺ cation. The corresponding
 107 conformation is labeled as HZ₂Cu. For a ZCu sample, a Cu⁺ cation could be oxidized to Cu²⁺ by
 108 forming [Cu²⁺(OH)]⁺, denoted as ZCuOH. The [Cu²⁺(OH)]⁺ conformation has been reported via
 109 from a number of different techniques.^{4, 30-32} The Cu⁺/Cu²⁺ redox reaction happens in 1Al and 2Al
 110 samples via ZCu ⇌ ZCuOH and HZ₂Cu ⇌ Z₂Cu, respectively. Paolucci et al. demonstrated that
 111 1Al and 2Al samples exhibit similar turnover rates, apparent activation energies, and apparent
 112 reaction orders under standard SCR conditions.⁶ The local structures of the Cu cation for ZCu,
 113 HZ₂Cu, Z₂Cu and ZCuOH configurations are shown in Figure 1. In this contribution, the vtc-XES
 114 of Cu cations in ZCu, HZ₂Cu, Z₂Cu and ZCuOH when bonded to multiple NH₃ and H₂O, with the
 115 molecular number ranging from 1 to 6, are generated through DFT calculations. Optimized
 116 structures of multiple NH₃ and H₂O (n=1 to 6) adsorbed on Cu-SSZ-13 are shown in Figure S1 of
 117 the Supporting Information. Each conformation is denoted as molecule_n_Cu-SSZ-13. For
 118 example, NH₃_1_ZCu is for 1 NH₃ adsorbed within the ZCu conformation.

119
 120 Figure 1. Local structures of a Cu cation in ZCu, HZ₂Cu, Z₂Cu and ZCuOH conformations. The
 121 1Al and 2Al notation denotes 1 or 2 Al atoms are within the rhombohedral unit cell of Cu-SSZ-
 122 13, respectively. The legend for the atoms is shown in the bottom.
 123

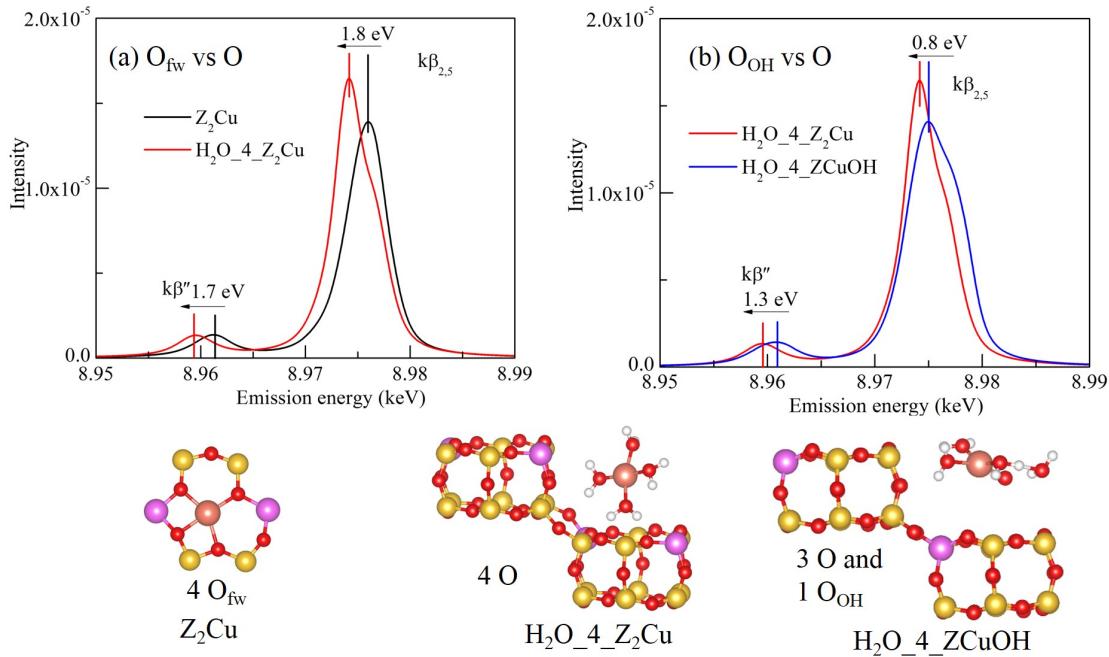

124 The calculations of the vtc-XES spectra, the corresponding projected density of states

(PDOS) analyses, and the orbital calculations for Cu cations in Cu-SSZ-13 were performed using the CASTEP code.³³ Ultrasoft pseudopotentials were generated on the fly³⁴ where one electron was excited from the 1s core level when performing core-hole calculations. Energy cutoffs of 550 eV and k-point grids of (5×5×5) were used. Spectral broadening due to instrumental smearing was employed using the Gaussian method, using a value of 0.6 eV and lifetime broadening was applied with a value of 1.55 eV.³⁴ In order to obtain accurate PDOS for Cu, N and O, k-point grids of (5×5×5) were still used. The PDOS from the ground state calculation is quite different for the PDOS from the final state where the Cu 1s electron is excited.⁴ Further, several works demonstrate that the XANES features correlate well with the DOS of the excited state.^{4, 5, 35} As a result, we will be comparing the PDOS in the final (excited) state to analyze our computed vtc-XES spectra.

3. Results and discussions

3.1 Limitation of the XANES

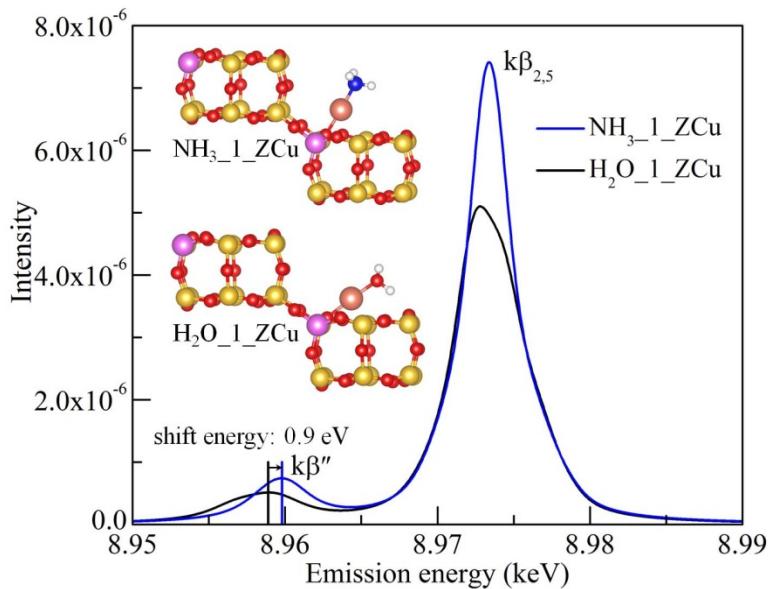
Under reducing conditions, the Cu K-edge XANES of Cu-SSZ-13 samples have a feature peak around 8983 eV.^{6, 7, 13, 14, 20, 36-39} This strong peak is recognized as a fingerprint of a Cu⁺ cation with a linear configuration (unpublished results). Recent experimental results assigned this linear configuration to either O_{fw}-Cu⁺-NH₃ or H₃N-Cu⁺-NH₃ configurations in the NH₃_1_ZCu and NH₃_2_ZCu conformations respectively,^{6, 7, 13, 14} where O_{fw} is a framework O atom of the zeolite. Our calculations also show that 1 or 2 NH₃ adsorbed on Cu⁺ cations in ZCu or HZ₂Cu have linear configurations with either a O_{fw}-Cu⁺-NH₃ or H₃N-Cu⁺-NH₃ configuration, both of which are shown in Figure S1 of the Supporting Information. However, upon examination of the Cu K-edge XANES for these NH₃_1_ZCu and NH₃_2_ZCu conformations as shown in Figure 2b, the O_{fw}-Cu⁺-NH₃ and H₃N-Cu⁺-NH₃ sites are completely indistinguishable. Both could contribute to the peak around 8983 eV in the experimental XANES of a Cu-SSZ-13 sample under reducing conditions (1000 ppm NO, 1000 ppm NH₃ at 200 °C). Lamberti and coworkers also pointed out that the discrimination between the O_{fw}-Cu⁺-NH₃ and the H₃N-Cu⁺-NH₃ conformations remains an ongoing challenge because of their similar bond distances and angles.¹⁴ Matthias Bauer commented that it is not possible to distinguish light atom ligands, such as carbon, nitrogen and oxygen atoms, in the proximity of the metal center.¹¹ As such, it is not possible to identify the ligand through a XANES analysis. We remark here that a well-defined second-shell peak characteristic of framework-coordinated species (such as O_{fw}-Cu⁺-NH₃) was reported in an analysis of the EXAFS while it is absent in solution-like species such as H₃N-Cu⁺-NH₃.^{6, 13, 37} As discussed in the introduction, this may alternatively be overcome by employing vtc-XES.



159

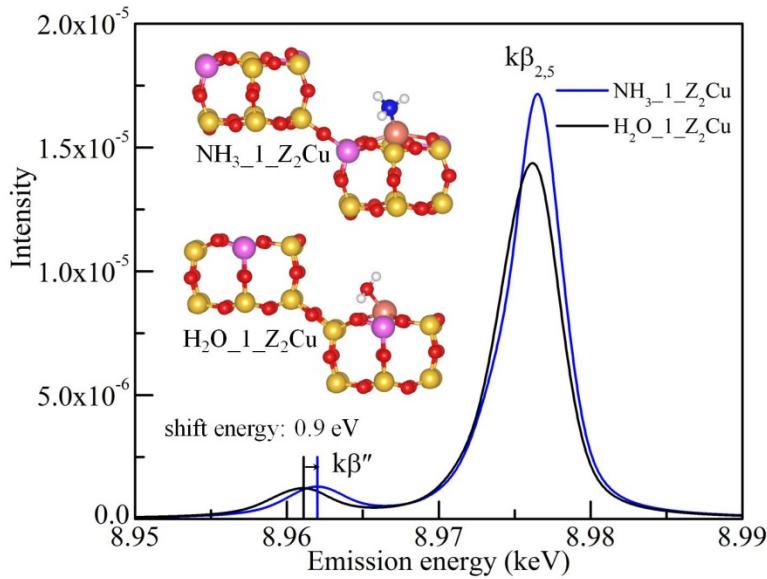
160 Figure 2. (a) Experimental Cu K-edge XANES for Cu-SSZ-13 sample (Cu/Al=0.02, Si/Al=4.5)
 161 under reducing conditions of 1000 ppm NO, 1000 ppm NH₃ at 200 °C. (b) Computational Cu K-
 162 edge XANES for the NH₃_1_ZCu and the NH₃_2_ZCu conformations.
 163

164 3.2 Ligand identification of vtc-XES for O in H₂O and N in NH₃


165 Three types of O species will be examined in this work, namely, framework O (O_{fw}), O in
 166 OH species(O_{OH}) and O in H₂O (for simplicity, O represents an oxygen atom in H₂O). Figure 3
 167 displays the XES comparison for O_{fw} with O and O_{OH} with O ligands in Cu-SSZ-13
 168 conformations. The structures of Z₂Cu and H₂O_4_Z₂Cu are chosen to compare the sensitivity of
 169 Cu when bonded to either O_{fw} or O within a Z₂Cu or a H₂O_4_Z₂Cu conformation, which have 4
 170 O_{fw} and 4 O ligands, respectively. As shown in Figure 3a, we find that the O ligand results in
 171 significant kβ'' and kβ_{2,5} shifts in the XES as compared to the O_{fw} ligands. The shifts are 1.7 and
 172 1.8 eV for of kβ'' and kβ_{2,5} peaks, respectively. When comparing the O_{OH} and O ligands, as
 173 shown in Figure 3b, the difference between the Cu cations in the H₂O_4_Z₂Cu and
 174 H₂O_4_ZCuOH conformations consists of 1 O and 1 O_{OH} ligand (4 O vs 3 O and 1 O_{OH}). It turns
 175 out that the additional O ligand also has shifts of 1.3 and 0.8 eV for the kβ'' and the kβ_{2,5} XES
 176 peaks respectively as compared to the results of the structure with the O_{OH} ligand. As such, the
 177 three types of O(O_{fw}, O_{OH} and O) affect the location of the kβ'' and kβ_{2,5} emission lines. However,
 178 here we focus on the identification of O in H₂O and N in NH₃ in this work. Therefore, in the
 179 following results, we will not further examine the effect of O_{fw} and O_{OH} on the XES when
 180 comparing our XES results with either O or N bound Cu ligands.

181

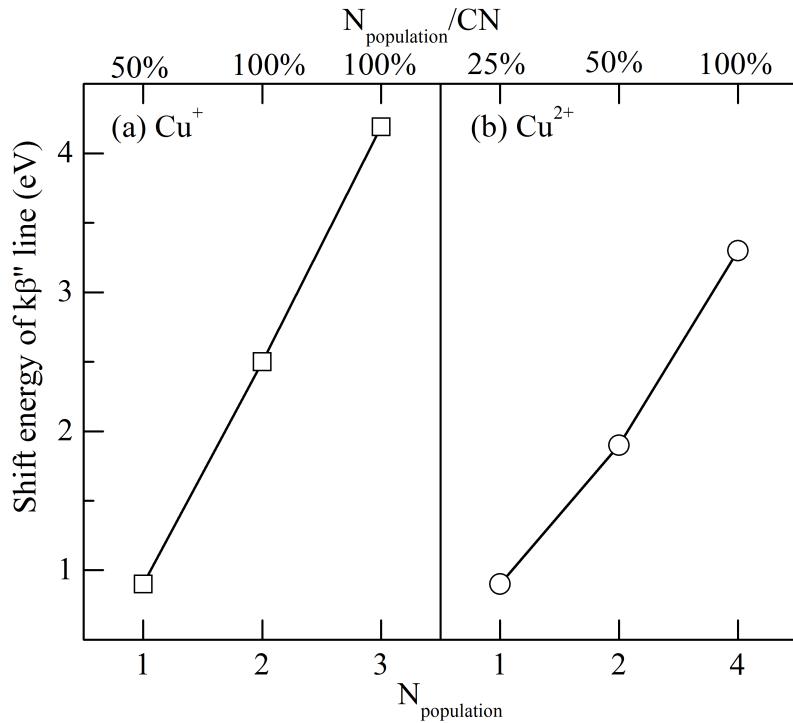
182 Figure 3. XES comparison for different types of O ligands, (a) O_{fw} vs O and (b) O_{OH} vs O. The
183 structures of Z_2Cu , $H_2O_4_Z_2Cu$ and $H_2O_4_ZCuOH$ are shown in the bottom.


184 In order to further identify the ligand environments through vtc-XES, two structural models,
185 $H_2O_1_ZCu$ and $NH_3_1_ZCu$, were chosen for further analysis. They both have a Cu^+ cation with
186 a linear configuration, as shown in the insert of Figure 4. The only difference between these two
187 structures is the Cu-O and Cu-N bond, where the O and N atoms are from an adsorbed H_2O and
188 NH_3 molecule, respectively. Their corresponding vtc-XES results are shown in Figure 4. The two
189 emission lines in the vtc-XES, noted as $k\beta''$ and $k\beta_{2,5}$, are related to the nature of the ligands
190 coordinated to the metal centers.^{11, 12, 18} This is clearly shown in the differences of the vtc-XES
191 plots for the $H_2O_1_ZCu$ and $NH_3_1_ZCu$ conformations. Firstly, one can see a blue shift of
192 about 0.9 eV for the $k\beta''$ lines, where the $k\beta''$ emission energy of the Cu ion in $NH_3_1_ZCu$ is
193 higher than that in $H_2O_1_ZCu$. Secondly, $NH_3_1_ZCu$ has a stronger $k\beta_{2,5}$ intensity line than
194 $H_2O_1_ZCu$. As a result, one can distinguish between the adsorption of H_2O or NH_3 by the
195 different vtc-XES emission lines of Cu-O and Cu-N. It also supports previous reports regarding
196 the ability of vtc-XES to identify different ligands that are bonded to the Cu cations.^{13, 14} The
197 same conclusion can be reached for another type of Cu^+ cation environment in the $H_2O_1_HZ_2Cu$
198 and $NH_3_1_HZ_2Cu$ 2Al site conformations as shown in Figure S2 of the Supporting Information.
199 The energy shift of the $k\beta''$ line between $H_2O_1_HZ_2Cu$ and $NH_3_1_HZ_2Cu$ is 1.5 eV, which is
200 larger than that between $H_2O_1_ZCu$ and $NH_3_1_ZCu$. This implies that the presence of a
201 Bronsted acid site could enhance the $k\beta''$ line shift energy between Cu-O and Cu-N ligation.

202

203 Figure 4. Computational vtc-XES of Cu ions in the H₂O_1_ZCu and NH₃_1_ZCu conformations.
 204 Two emission lines, kβ'' and kβ_{2,5}, are presented. The insert displays structures of the H₂O_1_ZCu
 205 and NH₃_1_ZCu conformations.
 206

207 Moving forward to the Cu²⁺ cations in Cu-SSZ-13, the H₂O_1_Z₂Cu and NH₃_1_Z₂Cu
 208 conformations with of 2 Al sites were taken into consideration. Their structures are displayed as
 209 an insert to Figure 5. Cu²⁺ cations in H₂O_1_Z₂Cu and NH₃_1_Z₂Cu conformations have a
 210 coordination number of 4, which includes three framework O atoms and one O or N atom from
 211 adsorbed molecules. The only structural difference between H₂O_1_Z₂Cu and NH₃_1_Z₂Cu is the
 212 Cu-O or Cu-N bond. Similar with the difference of vtc-XES plots among H₂O_1_ZCu and
 213 NH₃_1_ZCu (shown in Figure 4), Cu²⁺ cations in H₂O_1_Z₂Cu and NH₃_1_Z₂Cu have a blue
 214 shift of about 0.9 eV for the kβ'' lines and a stronger kβ_{2,5} intensity for the NH₃_1_Z₂Cu as
 215 presented in Figure 5. This result again confirms the ability of ligand identification for Cu cations
 216 through use of vtc-XES. However, for Cu²⁺ cations in the H₂O_1_ZCuOH and NH₃_1_ZCuOH
 217 conformations with one Al in the chabazite framework, the energy difference of the kβ'' lines is
 218 very small (0.1 eV), which is shown in Figure S3 of the Supporting Information. This suggests
 219 that the formation of [Cu²⁺(OH)]⁺ species weakens the difference between the Cu-O and Cu-N
 220 ligation.

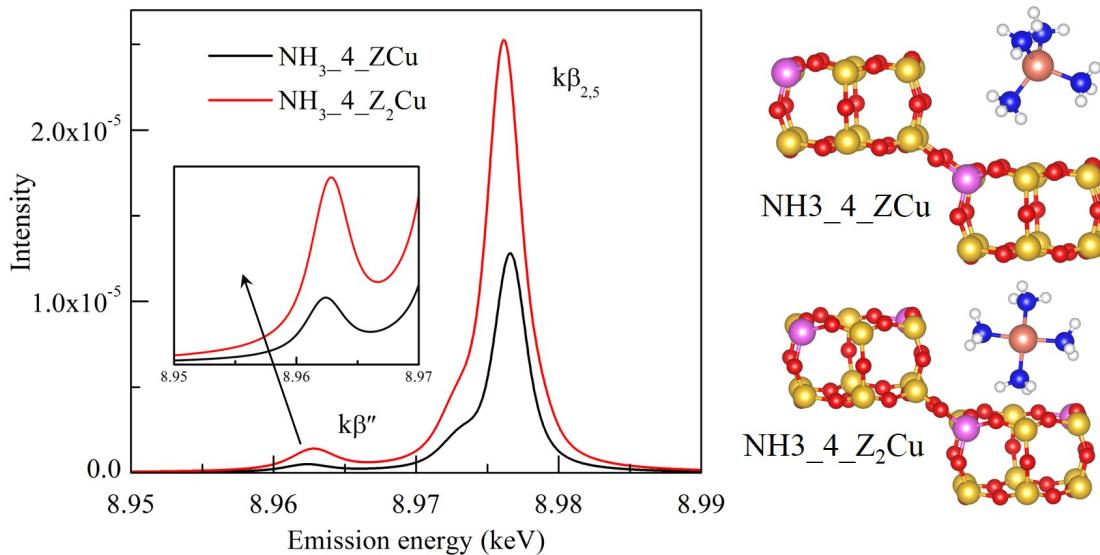


221

222 Figure 5. Computational vtc-XES of Cu cations in $\text{H}_2\text{O}_1\text{Z}_2\text{Cu}$ and $\text{NH}_3_1\text{Z}_2\text{Cu}$. Two emission
 223 lines, $k\beta''$ and $k\beta_{2,5}$, are presented. The insert displays the $\text{H}_2\text{O}_1\text{Z}_2\text{Cu}$ and $\text{NH}_3_1\text{Z}_2\text{Cu}$
 224 structures.

225 Overall, for both Cu^+ and Cu^{2+} cations in the Cu-SSZ-13 structure, the discrimination of the
 226 ligands containing O and N atoms can be revealed from the $k\beta''$ and $k\beta_{2,5}$ lines in vtc-XES
 227 spectra. Note that in the above structures, the $k\beta''$ shift energy between H_2O and NH_3 adsorbed
 228 Cu-SSZ-13 is only considered when a single Cu-O or Cu-N bond is varied. As such, a natural
 229 question that arises is whether the number of Cu-O or Cu-N bonds affects the energy shift of the
 230 $k\beta''$ line in the corresponding emission spectra. To address this concern, we constructed structures
 231 with the same population of Cu-O and Cu-N bonds to model multiple H_2O and NH_3 adsorption on
 232 Cu-SSZ-13. Note that the population of Cu-O or Cu-N bonds doesn't include the contribution
 233 from framework oxygen atoms (population number \neq coordination number). The population
 234 numbers for all structures studied in this work are shown in Figure S1 of the Supporting
 235 Information. For a Cu^+ cation, using ZCu for an example, $\text{H}_2\text{O}_1\text{ZCu}$ and NH_3_1ZCu have a
 236 single Cu-O or Cu-N bond ($N_{\text{population}} = 1$), respectively, while the $\text{H}_2\text{O}_6\text{ZCu}$ and NH_3_2ZCu
 237 conformations have $N_{\text{population}} = 2$ and the $\text{H}_2\text{O}_4\text{ZCu}$ and NH_3_3ZCu conformations have
 238 $N_{\text{population}} = 3$ (note that not all molecules absorb to the Cu ion). For Cu^{2+} cations, now using Z_2Cu
 239 as an example, the $\text{H}_2\text{O}_1\text{Z}_2\text{Cu}$ and $\text{NH}_3_1\text{Z}_2\text{Cu}$ conformations have $N_{\text{population}} = 1$, while the
 240 $\text{H}_2\text{O}_2\text{Z}_2\text{Cu}$ and $\text{NH}_3_2\text{Z}_2\text{Cu}$ conformations have $N_{\text{population}} = 2$ and the $\text{H}_2\text{O}_4\text{Z}_2\text{Cu}$ and
 241 $\text{NH}_3_4\text{Z}_2\text{Cu}$ conformations have $N_{\text{population}} = 4$. These structures can be found in Figure S1 of the
 242 Supporting Information. The $k\beta''$ line energy shift between the H_2O and NH_3 adsorbed species as
 243 a function of $N_{\text{population}}$ is shown in Figure 6. We find that the energy shift of the $k\beta''$ line between
 244 H_2O and NH_3 adsorbed Cu-SSZ-13 increases with increasing $N_{\text{population}}$ for both the Cu^+ and Cu^{2+}

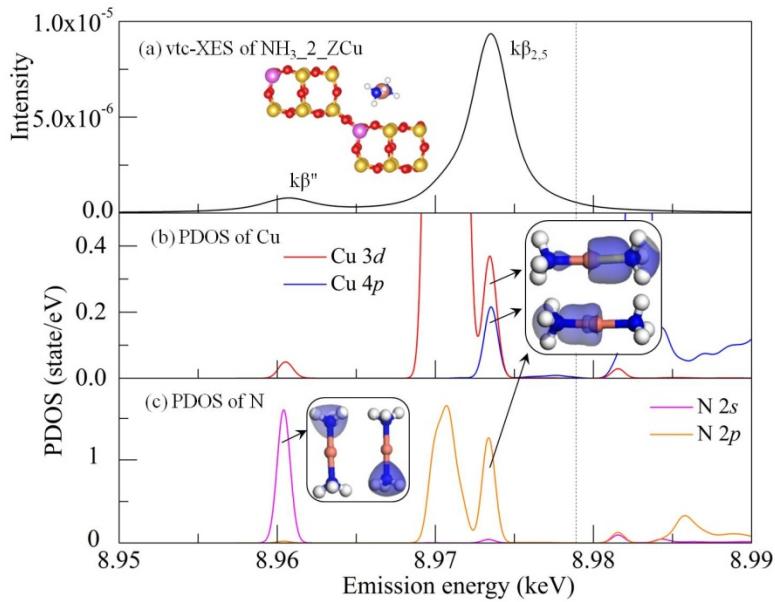
245 cations. Similar trends are also found for HZ_2Cu and ZCuOH conformations, which are shown in
 246 Figure S4 of the Supporting Information. As for the the energy shift trend of the $\text{k}\beta''$ line, we also
 247 consider the relative fraction of $N_{\text{population}}$ of N and O with respect to the total number of bonds in
 248 the first coordination sphere of the Cu cation (i.e., the Cu cation coordination number), as shown
 249 in Figure 6.



250
 251 Figure 6. The energy shift of the $\text{k}\beta''$ line between H_2O and NH_3 adsorbed Cu-SSZ-13 as a
 252 function of $N_{\text{population}}$ of H_2O and NH_3 for (a) a Cu^+ cation in ZCu and (b) a Cu^{2+} cation in Z_2Cu .
 253 The corresponding relative fractions of $N_{\text{population}}$ with respect to the total coordination number
 254 (CN) of Cu cations are shown in the top of the figure as $N_{\text{population}}/\text{CN}$.
 255

256 3.3 Characterization of vtc-XES by varying the Cu oxidation state

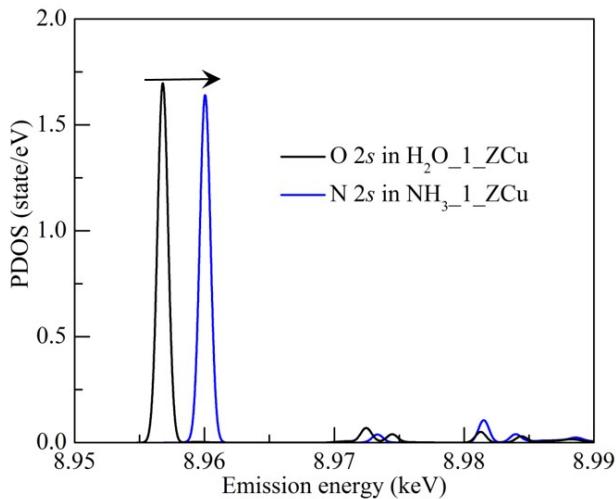
257 Based on the results from the previous section, it is clear that vtc-XES has the ability to
 258 identify different ligand environments. In the discussion up to now, we fixed the oxidation state of
 259 Cu as either Cu^+ or Cu^{2+} and computed the XES while varying the ligand environment. As is well
 260 known from the XANES literature, one expects a higher edge position due to the higher binding
 261 energy of electrons when the exchanged cation is in a higher oxidation state. However, we
 262 recently have shown that this relationship is more complex (unpublished results). On the other
 263 hand, it is also important to understand the relationship between the emission lines energies in
 264 vtc-XES and the oxidation state of the metal exchanged ion. Figure 7 shows the simulated $\text{k}\beta''$


265 and $k\beta_{2,5}$ peaks of vtc-XES spectra of Cu cations that have the same ligand environment when its
 266 oxidation state is varied. We find that both the location of $k\beta''$ and $k\beta_{2,5}$ lines shift slightly as the
 267 oxidation state of Cu shifts from Cu^+ to Cu^{2+} , although the intensity of the $k\beta''$ and the $k\beta_{2,5}$ lines
 268 changes significantly. This result is consistent with the experimental results reported by
 269 Borfecchia *et al.*,²¹ where He-activated and O_2 -activated samples (represent Cu^+ and Cu^{2+} ,
 270 respectively) have same location of the $k\beta''$ line.

271
 272 Figure 7. Comparison of vtc-XES of Cu^+ and Cu^{2+} cations in same ligand environment (4 NH_3)
 273 with a $\text{NH}_3\text{--}_4\text{--}_Z\text{Cu}$ and a $\text{NH}_3\text{--}_4\text{--}_Z_2\text{Cu}$ conformation, respectively.
 274

275 3.4 PDOS analysis and chemical sensitivity of the ligand for vtc-XES

276 To investigate in detail the origins of the valence-to-core $k\beta''$ and $k\beta_{2,5}$ lines, PDOS and
 277 orbital calculations are employed using the final state wavefunction where a core hole is created
 278 in the exchanged Cu cation. For simplicity, the $\text{NH}_3\text{--}_2\text{--}_Z\text{Cu}$ structure was analyzed due to its
 279 linear, symmetric N-Cu-N configuration as shown in Figure S1 of the Supporting Information.
 280 The calculated Cu vtc-XES and corresponding PDOS for the Cu and N atoms are presented in
 281 Figure 8. We find that the emission energy of the $k\beta''$ line correlates very well with the N 2s peak
 282 position around 8960 eV. The orbital distribution also clearly shows that the N 2s orbitals mainly
 283 contribute to the $k\beta''$ emission line at 8960 eV. This shows that the $k\beta''$ emission line arises from a
 284 transition from the N 2s electron to the Cu 1s core hole. This statement not only applies to Cu^{14}
 285 but also to other metal centers.¹⁶ In other words, the emission energy of the $k\beta''$ line is determined
 286 by the binding energy of ligand 2s orbital.


287

288 Figure 8. The calculated (a) vtc-XES of $\text{NH}_3\text{-2-ZCu}$, PDOS of (b) Cu and (c) N. The vertical
 289 dashed line at 8978.9 eV shows the Fermi level. The $\text{NH}_3\text{-2-ZCu}$ structure, orbital distribution in
 290 the 8960 and 8973 eV energy range are displayed as inserts in (a), (b) and (c), respectively. The
 291 iso-surface value of the orbital distribution is 0.04 electrons/ \AA^3 .
 292

293 For the $k\beta_{2,5}$ emission line, we find that the emission energy correlates well to a mixture of N
 294 2p, Cu 3d and 4p states in the 8973 eV energy range. Compared to the 8971 eV energy range
 295 where vtc-XES doesn't have an emission line but has a large Cu 3d character, the 8973 eV energy
 296 range is mainly due to contributions from the Cu 4p state. This means that the Cu 4p state plays a
 297 key role in generating the $k\beta_{2,5}$ emission line. However, for Cu cations, the Cu 4p state is
 298 supposed to be distributed above the Fermi level. We can rationalize that the appearance of Cu 4p
 299 state below the Fermi level originates from an orbital mixing with the Cu 3d state.¹⁶ As displayed
 300 in Figure 8b, the orbital distribution also clearly shows that the Cu and N atoms both contribute to
 301 the states around 8973 eV. Therefore, we conclude that the $k\beta_{2,5}$ emission line is generated from
 302 the transition that mixes the N 2p, Cu 3d and 4p states to the Cu 1s core hole, where the Cu 4p
 303 state plays a key role in this transition.

304 Based on the above analysis, it is clear that the $k\beta''$ emission line is generated by a ligand 2s
 305 to Cu 1s transition. To understand the chemical sensitivity of vtc-XES on the bonding of the Cu
 306 ligand, we plot the PDOS of the N 2s and O 2s for the $\text{H}_2\text{O-1-ZCu}$ and $\text{NH}_3\text{-1-ZCu}$ in Figure 9.
 307 In order to interpret the ability of vtc-XES to identify the ligand environment (shown in Figure 3),
 308 we compare the PDOS of O 2s state of $\text{H}_2\text{O-1-ZCu}$ and that of N 2s state of $\text{NH}_3\text{-1-ZCu}$, as
 309 shown in Figure 9. We find that the N 2s state has a higher binding energy than the O 2s state.
 310 This result lies at the origin of the ligand identification using vtc-XES in which different ligands

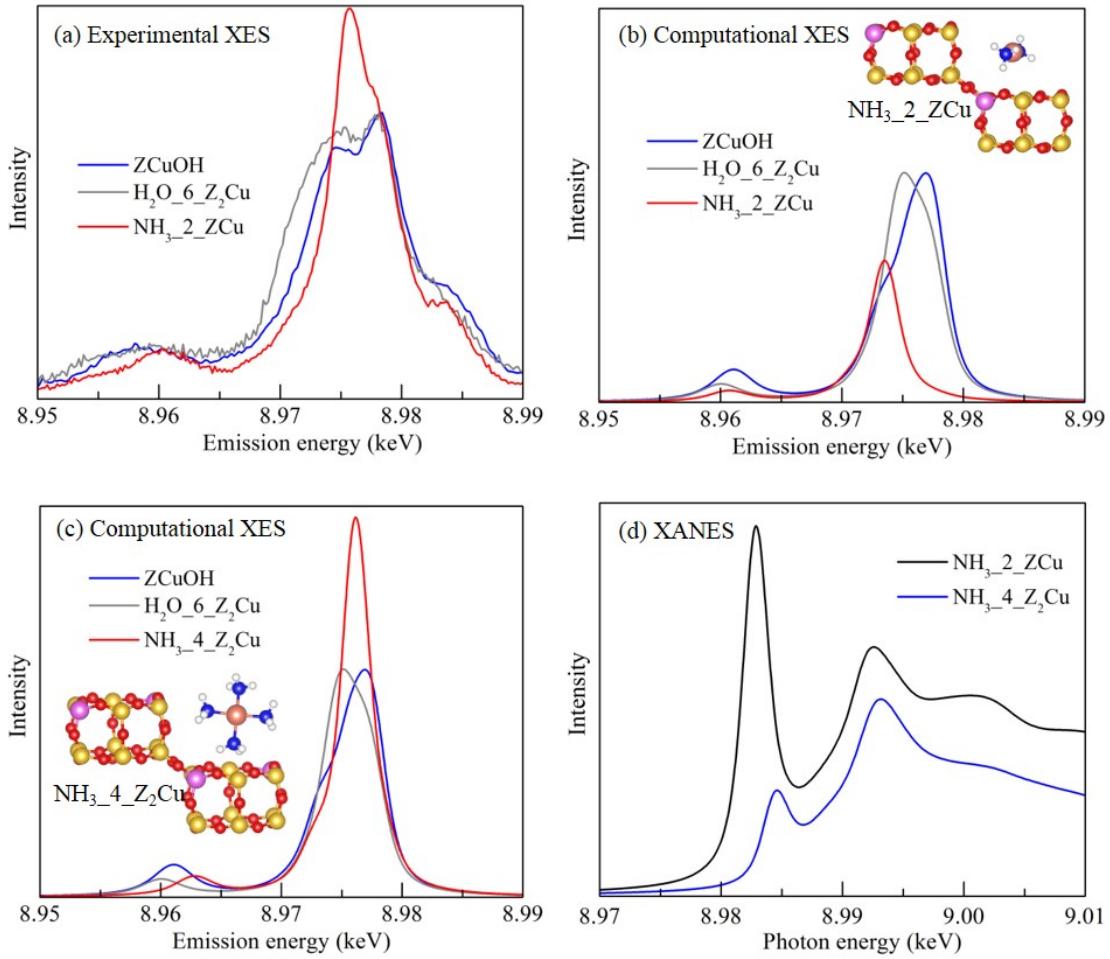
311 have different 2s state binding energies. It is clear that the chemical sensitivity of the vtc-XES is
312 due to the ligand environment and is intrinsically determined by the different binding energies of
313 the ligand 2s state. Note that the interpretation of $k\beta_{2,5}$ emission line is more complex than that of
314 the $k\beta''$ emission line. Further studies are needed to understand the $k\beta_{2,5}$ emission line at an
315 electronic level.

316

317 Figure 9. PDOS analysis of the O 2s in $H_2O_1_ZCu$, as well as the N 2s and in $NH_3_1_ZCu$, so
318 as to interpret the bonding ligand effect on the emission spectra.

319

320 3.5 Feedback to experimental results


321 We compared our computational vtc-XES results with the experimental data that is available
322 in the literature¹³. As shown in Figure 10a, the red, gray and red vtc-XES spectra are assigned to
323 the $ZCuOH$, $H_2O_6_Z_2Cu$ and $NH_3_2_ZCu$ structures¹³. The corresponding computational vtc-
324 XES spectra are shown in Figure 10b. We find that the computational vtc-XES spectra for
325 $ZCuOH$ and $H_2O_6_Z_2Cu$ are in good agreement with the experimental ones. However, the
326 computational vtc-XES results of $NH_3_2_ZCu$ shows totally different emission lines, including
327 the intensity and locations with respect to that of $ZCuOH$ and $H_2O_6_Z_2Cu$ conformations. The
328 assignment of $NH_3_2_ZCu$ was made by concluding that a Cu^{2+} cation in a Cu-SSZ-13 sample
329 could be reduced to Cu^+ in presence of NO and NH_3 .^{7,13,37} We reconsider this assignment and
330 propose that Cu^{2+} ion probably was not completely reduced to Cu^+ ion when exposed to NO and
331 NH_3 , where the $[Cu(NH_3)_4]^{2+}$ could be formed. In Figure 10c, the computational vtc-XES spectra
332 of $ZCuOH$, $H_2O_6_Z_2Cu$ and $NH_3_4_Z_2Cu$ conformations are plotted, which are consistent with
333 the experimental results in Figure 10a. This suggests that the reduction of Cu^{2+} when exposed to
334 NO and NH_3 is perhaps more complex than originally suggested in literature.

335 The assignment of a Cu^+ cation was originally made in the literature because of the large
336 peak around 8984 eV that was observed experimentally in the XANES when Cu-SSZ-13 is

337 exposed to NO and NH₃.^{7,13} Additionally, it was also reported that the exposure of oxidized Cu-
338 SSZ-13 to NO+NH₃ at 200 °C results in a Cu⁺ species since a drastic abatement of the EPR signal
339 was observed.³⁸ Further evidence of a Cu⁺ species arises from the absence of a pre-edge peak
340 deriving from a 1s to 3d transition,^{6,13,38} and by comparing the similar XANES and EXAFS
341 features when Cu-SSZ-13 is exposed to NO+NH₃ to those of a reference [Cu(NH₃)₂]⁺ compound
342 in the solution phase.^{13,38,39} However, the comparison between the computational and
343 experimental XES suggests a different assignment on Cu-SSZ-13 when exposed to NO and NH₃,
344 as shown in Figure 10a-c. As such, a natural question that arises is whether the XANES spectrum
345 of a Cu⁺ cation bonded to two NH₃ and a Cu²⁺ cation bonded to four NH₃ have peaks that are
346 located in the same photon energy range. In Figure 10d, we compare the XANES spectra of these
347 two conformations. Figure 10d shows that [Cu(NH₃)₂]⁺ has a peak with a strong intensity around
348 8984 eV, while [Cu(NH₃)₄]²⁺ has a peak with a weak intensity in the same photon energy range.
349 As such, both species could contribute to the peak around 8984 eV in the experimental XANES
350 when Cu-SSZ-13 is exposed to NO+NH₃.

351 Finally, it is also interesting to note that the intensity of the 8984 eV peak is much greater
352 than of the 8994 eV peak in the NH₃_2_ZCu conformation, which is not in agreement with the
353 experimental observations where, depending on the reaction conditions, the intensity of the 8984
354 eV peak is found to be similar or smaller to that of the 8994 eV peak.^{7,13} We also note, as
355 discussed in our previous work,⁴ that the computed XANES in Figure 10d also differs to that of
356 the experimental [Cu(NH₃)₄]²⁺ reference compound when put in an aqueous solution, since the
357 presence of water significantly affects the computed XANES spectrum by shifting the photon
358 energy of the white to higher computed values as well as affecting its peak shape. As such, we do
359 not expect the XANES spectra as shown in Figure 10d to be identical to what was found in the
360 literature for the experimental [Cu(NH₃)₂]⁺ and [Cu(NH₃)₄]²⁺ reference compounds,³⁸ which will
361 both surely interact with water when put in an aqueous solution. In sum, these results suggest an
362 open question that would need to be revisited with regard to the interpretation of the XANES
363 features, for which the appearance of a [Cu(NH₃)₂]⁺ species in the corresponding SCR reaction
364 mechanism has been proposed in the literature for Cu-SSZ-13.^{15,37}

365

366
367 Figure 10. (a) Plot of experimental vtc-XES data for ZCuOH (blue solid line), H₂O_6_Z₂Cu gray
368 solid line and NH₃_2_ZCu (red solid line) from reference¹³. Computational XES for (b) the
369 ZCuOH, H₂O_6_Z₂Cu and NH₃_2_ZCu conformations, (c) the ZCuOH, H₂O_6_Z₂Cu and
370 NH₃_4_Z₂Cu conformations. The structures of NH₃_2_ZCu and NH₃_4_Z₂Cu are displayed in (b)
371 and (c) respectively. (d) Computational XANES for NH₃_2_ZCu and NH₃_4_Z₂Cu
372 conformations.
373
374

4. Conclusions

375 In this study, the chemical sensitivity of vtc-XES due to the ligand environment and the
376 oxidation state of the metal exchanged ion was investigated using DFT calculations. It is found
377 that the vtc-XES can overcome the ligand identification limitation of XANES. By comparing vtc-
378 XES of H₂O_1_ZCu and NH₃_1_ZCu conformations, we found the $k\beta''$ lines shifted by about 0.9
379 eV, meaning that the $k\beta''$ emission energy of a Cu cation in NH₃_1_ZCu is higher than that in
380 H₂O_1_ZCu. In addition, NH₃_1_ZCu has a $k\beta_{2,5}$ line of stronger intensity than that of
381 H₂O_1_ZCu conformation. Therefore, one can discriminate the adsorption of H₂O or NH₃ due to
382 the different vtc-XES emission lines resulting from Cu-O and Cu-N bonds. In addition, the
383 presence of a Bronsted acid site could enhance the $k\beta''$ line shift energy between Cu-O and Cu-N

384 ligation for a Cu⁺ cation. Similar conclusions are also obtained for Cu²⁺ cations and the formation
385 of [Cu²⁺(OH)⁻]⁺ species, which weakens the difference between Cu-O and Cu-N ligation. When
386 examining the vtc-XES of multiple H₂O and NH₃ adsorbed Cu-SSZ-13 structures, it is found that
387 the shifts of the k β'' energy line between H₂O and NH₃ adsorbed Cu-SSZ-13 increases when
388 increasing the population of Cu-ligand bonds for both Cu⁺ and Cu²⁺ cations. The effect of
389 oxidation state on vtc-XES was also studied. We concluded that the variation of oxidation state
390 slightly changes the emission lines peak positions while the corresponding intensity changes
391 significantly. By performing a PDOS analysis, the k β'' emission line is generated by N 2s to Cu
392 1s transition while the k $\beta_{2,5}$ emission line is generated from a transition mixing the N 2p, Cu 3d
393 and 4p states to the Cu 1s core hole, where the Cu 4p state plays key role in this transition.

394 **Supporting Information**

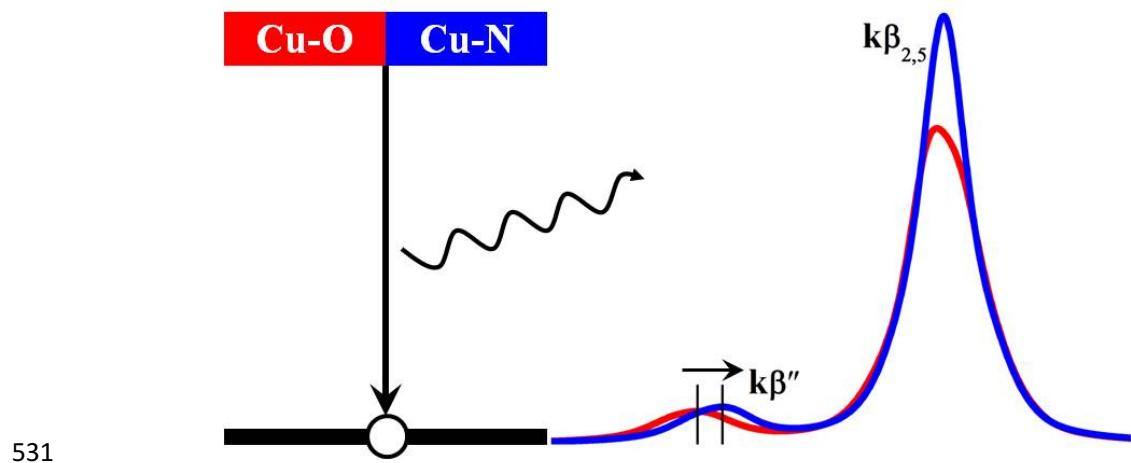
395 Optimized structures of multiple NH₃ and H₂O (n=1 to 6) adsorbed on Cu-SSZ-13 (ZCu, HZ₂Cu,
396 Z₂Cu and ZCuOH). Computational vtc-XES of Cu ions in HZ₂Cu and ZCuOH. The shift energy
397 of the k β'' line as a function of N_{population} for a Cu⁺ cation in HZ₂Cu and a Cu²⁺ cation in ZCuOH.

398 **Acknowledgements**

399 This work was supported by the National Science Foundation GOALI program under contract
400 No. CBET-1258717. A portion of the computer time for the computational work was performed
401 using EMSL, a national scientific user facility sponsored by the Department of Energy's office of
402 Biological and Environmental Research and located at PNNL. PNNL is a multi-program national
403 laboratory operated for the US DOE by Battelle. HL acknowledges the financial supports of the
404 National Natural Science Foundation of China (grant No. 11404235), and also supported by
405 Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi. We
406 thank Mr. Kyle Groden, Dr. Janos Szanyi and Dr. Feng Gao for their useful suggestions and
407 comments. We also thank Prof. Fabio Ribeiro for the experimental XANES data and Prof.
408 Borfecchia for the experimental XES results.

409

410 **References**


- 411 1. Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C. H. F., Excellent Activity
412 and Selectivity of Cu-SSZ-13 in the Selective Catalytic Reduction of NO_x with NH₃. *J. Catal.*
413 **2010**, *275*, 187-190.
- 414 2. Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. F., Effects of
415 Hydrothermal Aging on NH₃-SCR Reaction over Cu/zeolites. *J. Catal.* **2012**, *287*, 203-209.
- 416 3. Zhang, R.; McEwen, J.-S.; Kollár, M.; Gao, F.; Wang, Y.; Szanyi, J.; Peden, C. H. F., NO
417 Chemisorption on Cu/SSZ-13: A Comparative Study from Infrared Spectroscopy and DFT
418 Calculations. *ACS Catal.* **2014**, *4*, 4093-4105.
- 419 4. Zhang, R.; Szanyi, J.; Gao, F.; McEwen, J.-S., The Interaction of Reactants, Intermediates

- 420 and Products with Cu Ions in Cu-SSZ-13 NH₃ SCR Catalysts: An Energetic and Ab initio X-ray
421 Absorption Modeling Study. *Catal. Sci. Tech.* **2016**, *6*, 5812-5829.
- 422 5. Zhang, R.; Helling, K.; McEwen, J.-S., Ab initio X-ray Absorption Modeling of Cu-
423 SAPO-34: Characterization of Cu Exchange Sites under Different Conditions. *Catal. Today* **2016**,
424 *267*, 28-40.
- 425 6. Paolucci, C.; Parekh, A. A.; Khurana, I.; Di Iorio, J. R.; Li, H.; Albarracin Caballero, J.
426 D.; Shih, A. J.; Anggara, T.; Delgass, W. N.; Miller, J. T. et al, Catalysis in a Cage: Condition-
427 Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. *J. Am. Chem.
428 Soc.* **2016**, *138*, 6028-6048.
- 429 7. Paolucci, C.; Verma, A. A.; Bates, S. A.; Kispersky, V. F.; Miller, J. T.; Gounder, R.;
430 Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F., Isolation of the Copper Redox Steps in the
431 Standard Selective Catalytic Reduction on Cu-SSZ-13. *Angew. Chem. Int. Ed.* **2014**, *53*, 11828-
432 11833.
- 433 8. Timoshenko, J.; Shivhare, A.; Scott, R. W. J.; Lu, D.; Frenkel, A. I., Solving Local
434 Structure around Dopants in Metal Nanoparticles with Ab initio Modeling of X-ray Absorption
435 Near Edge Structure. *Phys. Chem. Chem. Phys.* **2016**, *18*, 19621-19630.
- 436 9. McEwen, J. S.; Anggara, T.; Schneider, W. F.; Kispersky, V. F.; Miller, J. T.; Delgass, W.
437 N.; Ribeiro, F. H., Integrated Operando X-ray Absorption and DFT Characterization of Cu-SSZ-
438 13 Exchange Sites during the Selective Catalytic Reduction of NO_x with NH₃. *Catal. Today*
439 **2012**, *184*, 129-144.
- 440 10. Lezcano-Gonzalez, I.; Wragg, D. S.; Slawinski, W. A.; Hemelsoet, K.; Van Yperen-De
441 Deyne, A.; Waroquier, M.; Van Speybroeck, V.; Beale, A. M., Determination of the Nature of the
442 Cu Coordination Complexes Formed in the Presence of NO and NH₃ within SSZ-13. *J. Phys.
443 Chem. C* **2015**, *119*, 24393-24403.
- 444 11. Bauer, M., HERFD-XAS and Valence-to-core-XES: New Tools to Push the Limits in
445 Research with Hard X-rays? *Phys. Chem. Chem. Phys.* **2014**, *16*, 13827-13837.
- 446 12. Gallo, E.; Glatzel, P., Valence to Core X-ray Emission Spectroscopy. *Adv. Mater.* **2014**,
447 *26*, 7730-7746.
- 448 13. Lomachenko, K. A.; Borfecchia, E.; Negri, C.; Berlier, G.; Lamberti, C.; Beato, P.; Falsig,
449 H.; Bordiga, S., The Cu-CHA deNO_x Catalyst in Action: Temperature-Dependent NH₃-Assisted
450 Selective Catalytic Reduction Monitored by Operando XAS and XES. *J. Am. Chem. Soc.* **2016**,
451 *138*, 12025-12028.
- 452 14. Giordanino, F.; Borfecchia, E.; Lomachenko, K. A.; Lazzarini, A.; Agostini, G.; Gallo, E.;
453 Soldatov, A. V.; Beato, P.; Bordiga, S.; Lamberti, C., Interaction of NH₃ with Cu-SSZ-13 Catalyst:

- 454 A Complementary FTIR, XANES, and XES Study. *J. Phys. Chem. Lett.* **2014**, *5*, 1552-1559.
- 455 15. Gao, F.; Mei, D.; Wang, Y.; Szanyi, J.; Peden, C. H. F., Selective Catalytic Reduction
- 456 over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis. *J. Am. Chem. Soc.* **2017**, *139*,
- 457 4935-4942.
- 458 16. Pollock, C. J.; DeBeer, S., Valence-to-Core X-ray Emission Spectroscopy: A Sensitive
- 459 Probe of the Nature of a Bound Ligand. *J. Am. Chem. Soc.* **2011**, *133*, 5594-5601.
- 460 17. Vegelius, J. R.; Kvashnina, K. O.; Klintenberg, M.; Soroka, I. L.; Butorin, S. M., Cu K β _{2,5}
- 461 X-ray Emission Spectroscopy as a Tool for Characterization of Monovalent Copper Compounds.
- 462 *J. Anal. At. Spectrom.* **2012**, *27*, 1882-1888.
- 463 18. Boubnov, A.; Carvalho, H. W. P.; Doronkin, D. E.; Günter, T.; Gallo, E.; Atkins, A. J.;
- 464 Jacob, C. R.; Grunwaldt, J.-D., Selective Catalytic Reduction of NO Over Fe-ZSM-5:
- 465 Mechanistic Insights by Operando HERFD-XANES and Valence-to-Core X-ray Emission
- 466 Spectroscopy. *J. Am. Chem. Soc.* **2014**, *136*, 13006-13015.
- 467 19. Glatzel, P.; Bergmann, U., High Resolution 1s Core Hole X-ray Spectroscopy in 3d
- 468 Transition Metal Complexes—Electronic and Structural Information. *Coord. Chem. Rev.* **2005**,
- 469 *249*, 65-95
- 470 20. Gunter, T.; Carvalho, H. W. P.; Doronkin, D. E.; Sheppard, T.; Glatzel, P.; Atkins, A. J.;
- 471 Rudolph, J.; Jacob, C. R.; Casapu, M.; Grunwaldt, J.-D., Structural Snapshots of the SCR
- 472 Reaction Mechanism on Cu-SSZ-13. *Chem. Comm.* **2015**, *51*, 9227-9230.
- 473 21. Borfecchia, E.; Lomachenko, K. A.; Giordanino, F.; Falsig, H.; Beato, P.; Soldatov, A. V.;
- 474 Bordiga, S.; Lamberti, C., Revisiting the Nature of Cu Sites in the Activated Cu-SSZ-13 Catalyst
- 475 for SCR Reaction. *Chem. Sci.* **2015**, *6*, 548-563.
- 476 22. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab initio Total-energy
- 477 Calculations Using a Plane-wave Basis set. *Phys. Rev. B* **1996**, *54*, 11169.
- 478 23. Kresse, G.; Hafner, J., Ab initio Molecular Dynamics for Liquid Metals. *Phys. Rev. B*
- 479 **1993**, *47*, 558.
- 480 24. Blöchl, P. E., Projector Augmented-wave Method. *Phys. Rev. B* **1994**, *50*, 17953.
- 481 25. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-
- 482 wave Method. *Phys. Rev. B* **1999**, *59*, 1758-1775.
- 483 26. Perdew, J. P.; Wang, Y., Accurate and Simple Analytic Representation of the Electron-gas
- 484 Correlation Energy. *Phys. Rev. B* **1992**, *45*, 13244.
- 485 27. Itho, Y.; Nishiyama, S.; Tsuruya, S.; Masai, M., Redox Behavior and Mobility of Copper
- 486 Ions in NaZSM-5 Zeolite during Oxidation. *J. Phys. Chem.* **1994**, *98*, 960-967.
- 487 28. Kispersky, V. F.; Kropf, A. J.; Ribeiro, F. H.; Miller, J. T., Low Absorption Vitreous

- 488 Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic
489 Reduction of NOx by NH₃. *Phys. Chem. Chem. Phys.* **2012**, *14*, 2229-2238.
- 490 29. Gao, F.; Kwak, J.; Szanyi, J.; Peden, C. F., Current Understanding of Cu-Exchanged
491 Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. *Top. Catal.*
492 **2013**, *56*, 1441-1459.
- 493 30. Gao, F.; Walter, E. D.; Kollar, M.; Wang, Y.; Szanyi, J.; Peden, C. H. F., Understanding
494 Ammonia Selective Catalytic Reduction Kinetics over Cu/SSZ-13 from Motion of the Cu Ions. *J.*
495 *Catal.* **2014**, *319*, 1-14.
- 496 31. Giordanino, F.; Vennestrom, P. N. R.; Lundgaard, L. F.; Stappen, F. N.; Mossin, S.;
497 Beato, P.; Bordiga, S.; Lamberti, C., Characterization of Cu-exchanged SSZ-13: A Comparative
498 FTIR, UV-Vis, and EPR Study with Cu-ZSM-5 and Cu- β with Similar Si/Al and Cu/Al Ratios.
499 *Dalton Trans.* **2013**, *42*, 12741-12761.
- 500 32. Lezcano-Gonzalez, I.; Deka, U.; Arstad, B.; Van Yperen-De Deyne, A.; Hemelsoet, K.;
501 Waroquier, M.; Van Speybroeck, V.; Weckhuysen, B. M.; Beale, A. M., Determining the Storage,
502 Availability and Reactivity of NH₃ within Cu-Chabazite-based Ammonia Selective Catalytic
503 Reduction Systems. *Phys. Chem. Chem. Phys.* **2014**, *16*, 1639-1650.
- 504 33. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne,
505 M. C., First Principles Methods using CASTEP. *Z. Kristallogr.* **2005**, *220*, 567-570.
- 506 34. Gao, S.-P.; Pickard, C. J.; Perlov, A.; Milman, V., Core-level Spectroscopy Calculation
507 and the Plane Wave Pseudopotential Method. *J. Phys. Condens. Matter* **2009**, *21*, 104203.
- 508 35. Mo, S.-D.; Ching, W. Y., X-ray Absorption Near-edge Structure in Alpha-quartz and
509 Stishovite: Ab initio Calculation with Core-hole Interaction. *Appl. Phys. Lett.* **2001**, *78*, 3809-
510 3811.
- 511 36. Bates, S. A.; Verma, A. A.; Paolucci, C.; Parekh, A. A.; Anggara, T.; Yezerets, A.;
512 Schneider, W. F.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H., Identification of the Active Cu Site
513 in Standard Selective Catalytic Reduction with Ammonia on Cu-SSZ-13. *J. Catal.* **2014**, *312*, 87-
514 97.
- 515 37. Janssens, T. V. W.; Falsig, H.; Lundgaard, L. F.; Vennestrøm, P. N. R.; Rasmussen, S. B.;
516 Moses, P. G.; Giordanino, F.; Borfecchia, E.; Lomachenko, K. A.; Lamberti, C. et al, A Consistent
517 Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. *ACS*
518 *Catal.* **2015**, *5*, 2832-2845.
- 519 37. C. Paolucci, I. Khurana, A. A. Parekh, S. Li, A. J. Shih, H. Li, J. R. Di Iorio, J. D.
520 Albarracin-Caballero, A. Yezerets, J. T. Miller, W. N. Delgass, F. H. Ribeiro, W. F. Schneider, R.

- 521 Gounder, Dynamic Multinuclear Sites Formed by Mobilized Copper Ions in NO_x Selective
522 Catalytic Reduction, *Science* **2017**, 357, 898-903.
- 523 38. Lamble, G.; Moen, A.; Nicholson, D. G., Structure of the Diamminecopper(I) Ion in
524 Solution. An X-ray Absorption Spectroscopic Study. *J. Chem. Soc. Faraday Trans.* **1994**, 90,
525 2211-2213.
- 526 39. Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I., X-
527 ray Absorption Edge Determination of the Oxidation State and Coordination Number of Copper:
528 Application to the Type 3 Site in *Rhus vernicifera* Laccase and Its Reaction with Oxygen. *J. Am.*
529 *Chem. Soc.* **1987**, 109, 6433-6442.

Supporting Information

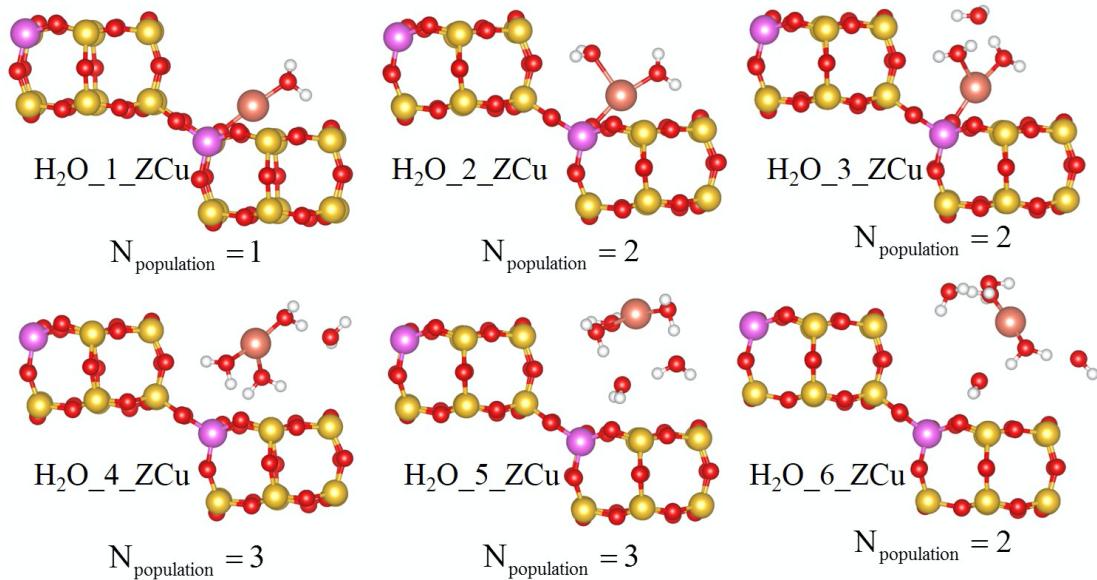
Chemical sensitivity of Valence-to-core X-ray Emission Spectroscopy due to Ligand and Oxidation State: A Computational Study on Cu-SSZ-13 with Multiple H₂O and NH₃ Adsorption

Renqin Zhang^{a†}, Hui Li^{a,b†}, Jean-Sabin McEwen^{a,c,d,e*}

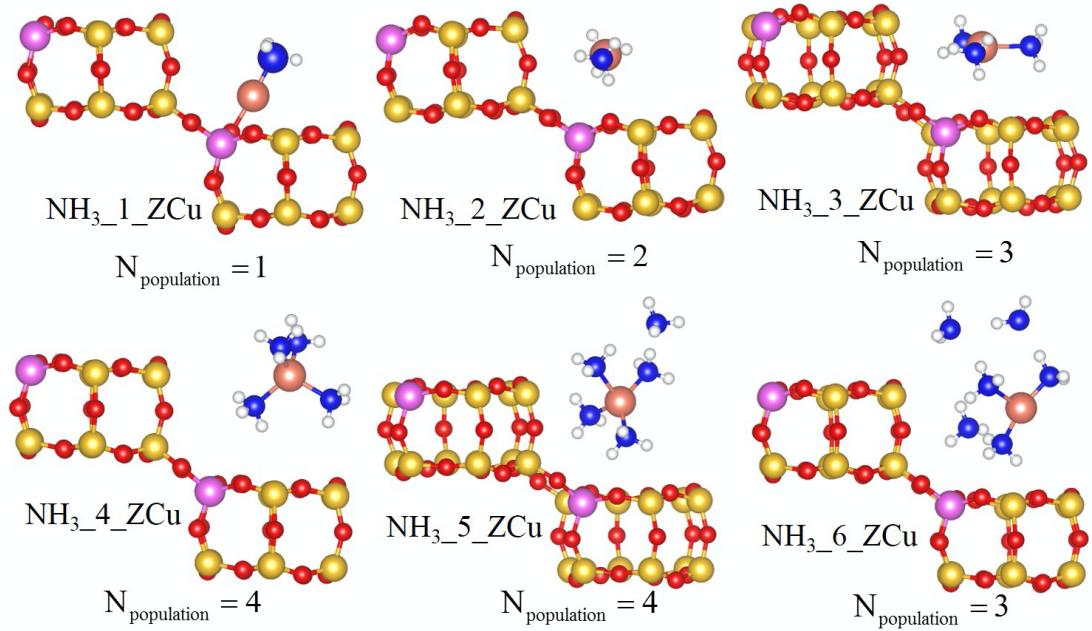
^a*The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164*

^b*College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China 030024*

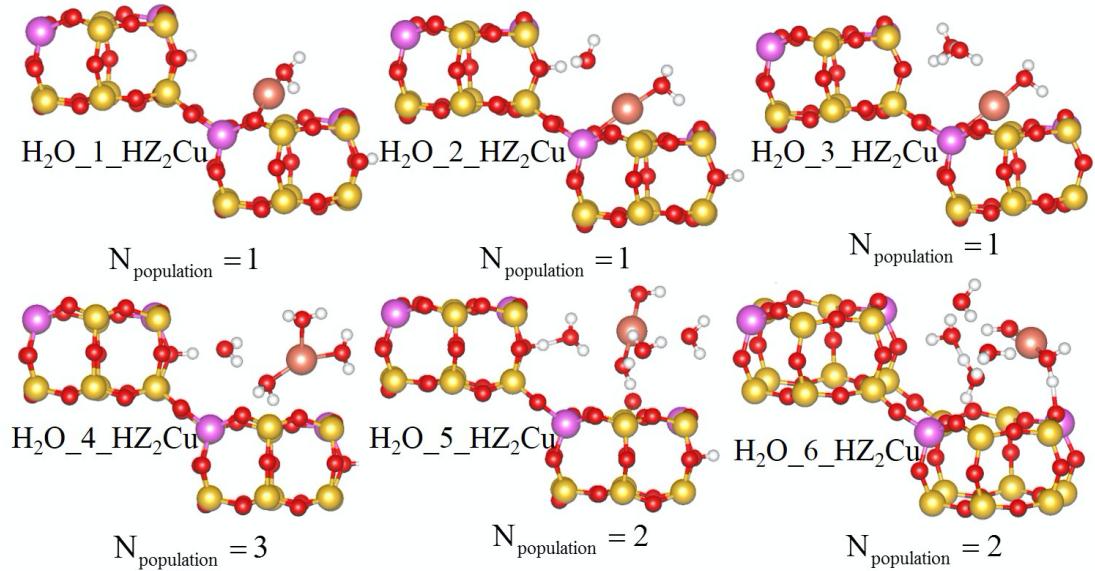
^c*Department of Physics and Astronomy, Washington State University, Pullman, WA 99164*

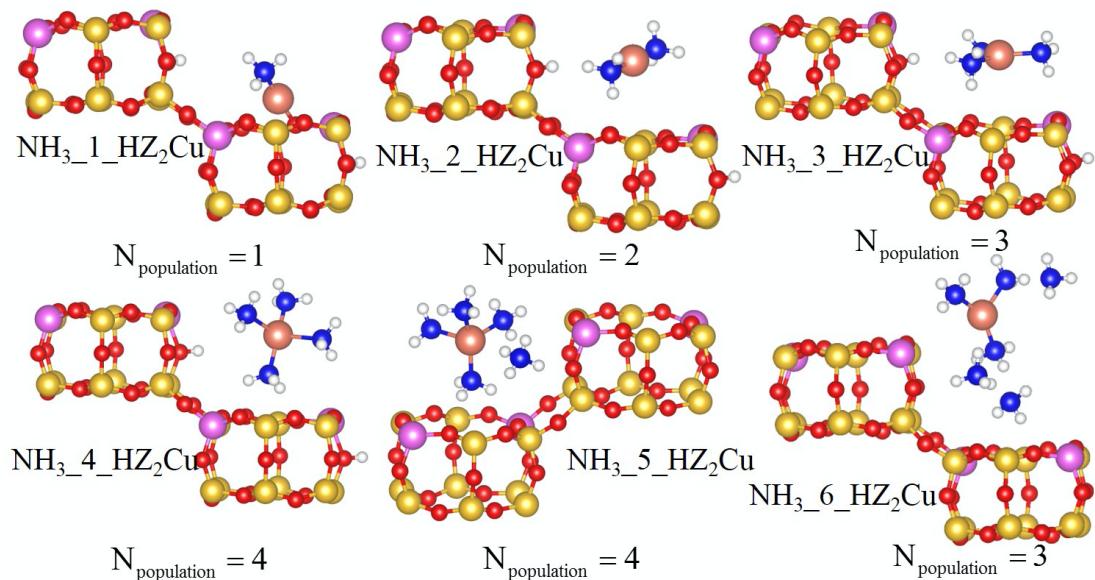

^d*Department of Chemistry, Washington State University, Pullman, WA 99164*

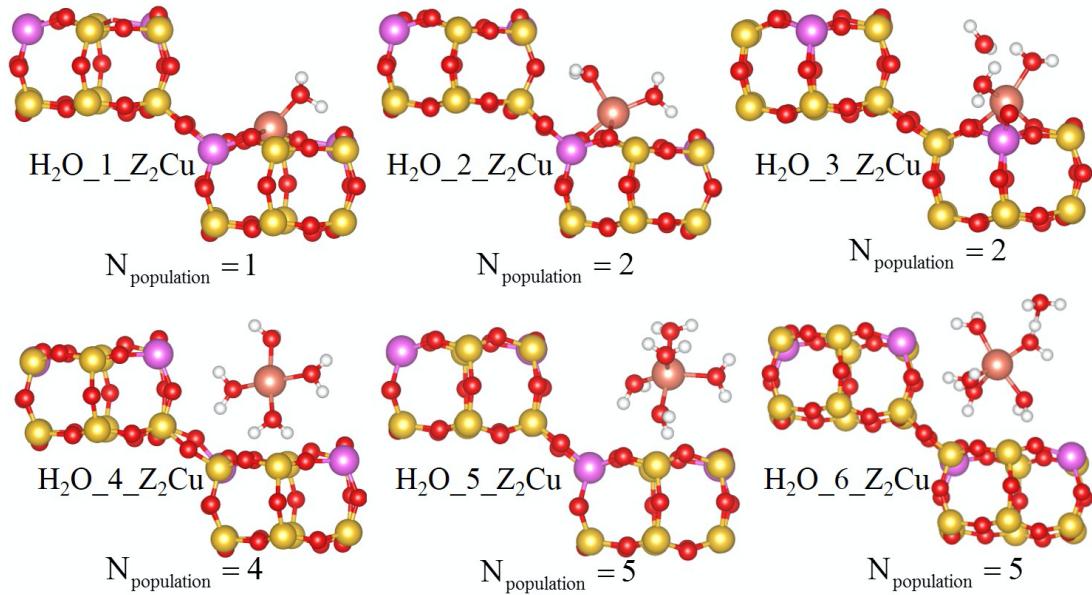
^e*Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352*

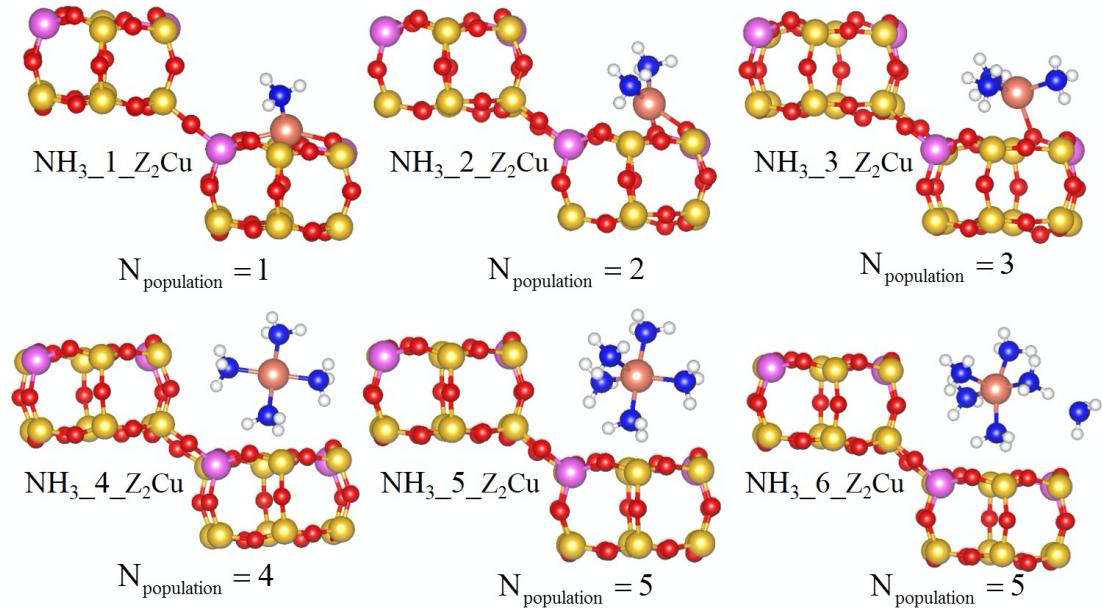


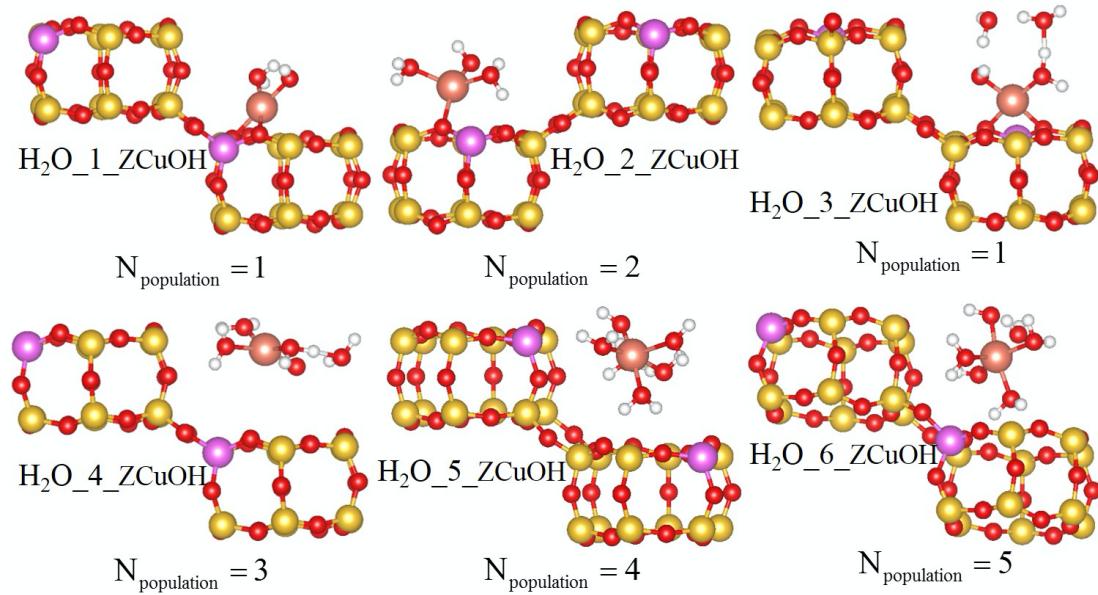
†Contribute equally; *Corresponding author: js.mcewen@wsu.edu


H₂O on ZCu


NH₃ on ZCu


H₂O on HZ₂Cu


NH₃ on HZ₂Cu


H₂O on Z₂Cu

NH₃ on Z₂Cu

H₂O on ZCuOH

NH₃ on ZCuOH

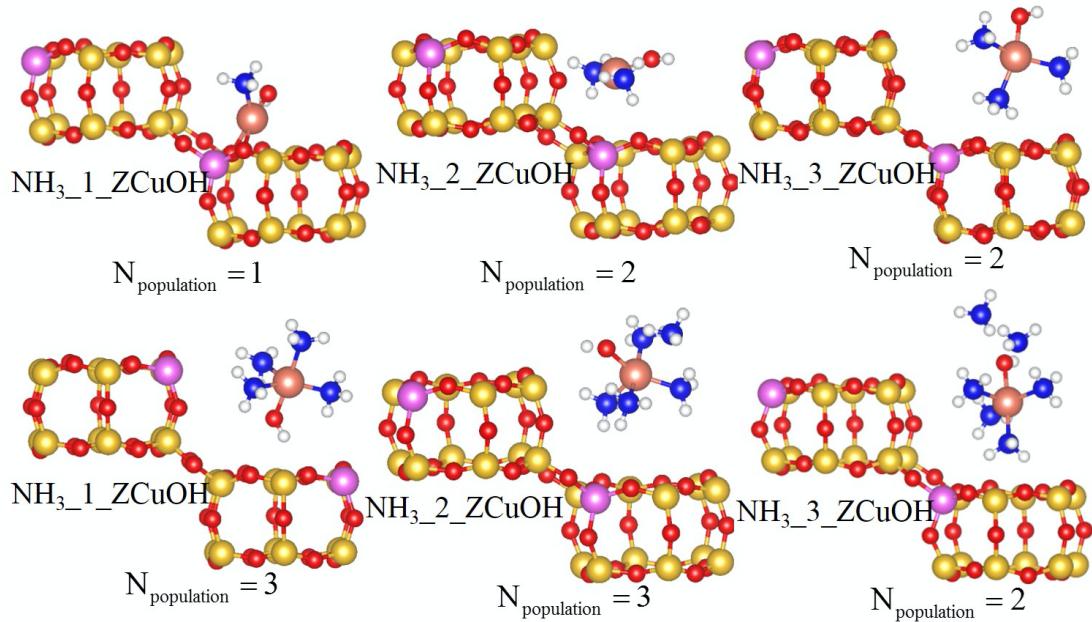


Figure S1. Optimized structures of multiple NH₃ and H₂O (n=1 to 6) adsorbed on Cu-SSZ-13 (ZCu, HZ₂Cu, Z₂Cu and ZCuOH). Each conformation is denoted as molecule_n_Cu-SSZ-13, such that NH₃₁_ZCu is for 1 NH₃ adsorbed adspecies on a ZCu structure. The population of Cu-O or Cu-N bonds (N_{population}) contributed from H₂O or NH₃, respectively, is listed in the bottom of the corresponding structure.

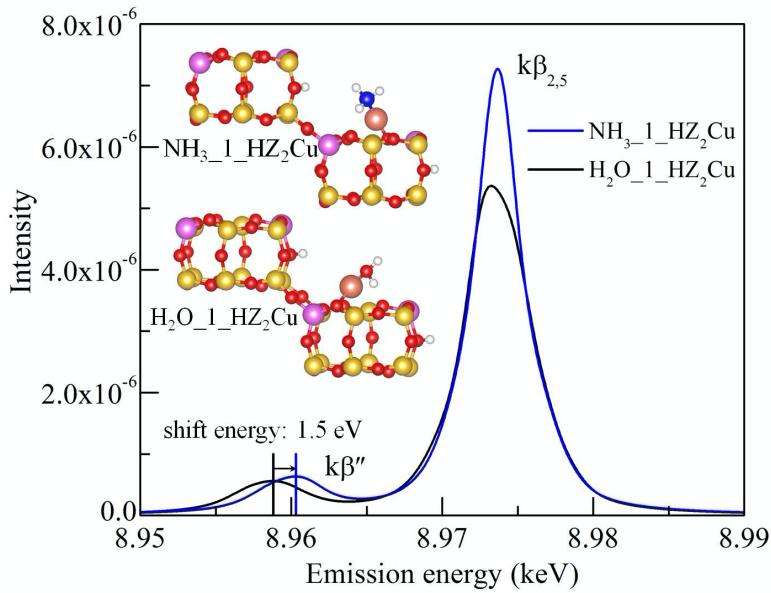


Figure S2. Computational vtc-XES of Cu ions in $\text{H}_2\text{O}_1\text{-HZ}_2\text{Cu}$ and $\text{NH}_3\text{-1-HZ}_2\text{Cu}$. Two emission lines, $\text{k}\beta''$ and $\text{k}\beta_{2,5}$, are presented. The insert displays structures of $\text{H}_2\text{O}_1\text{-HZ}_2\text{Cu}$ and $\text{NH}_3\text{-1-HZ}_2\text{Cu}$.

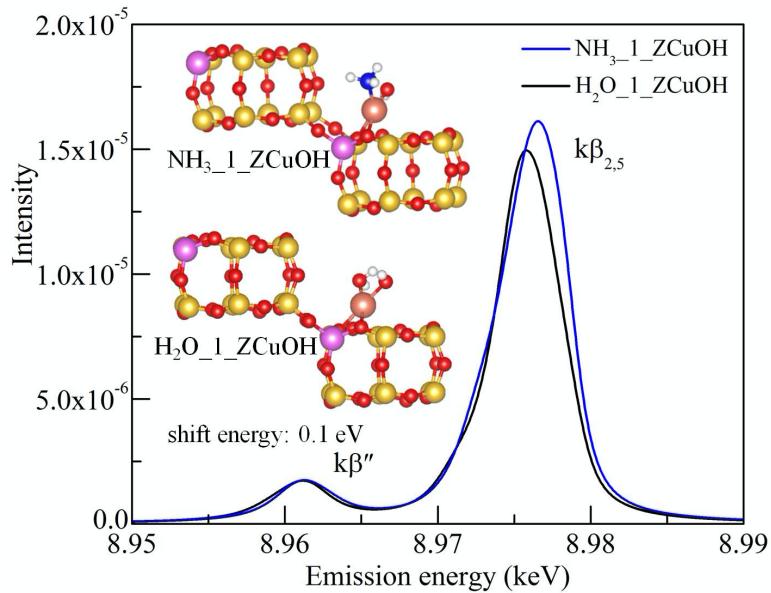


Figure S3. Computational vtc-XES of Cu ions in $\text{H}_2\text{O}_1\text{-ZCuOH}$ and $\text{NH}_3\text{-1-ZCuOH}$. Two emission lines, $\text{k}\beta''$ and $\text{k}\beta_{2,5}$, are presented. The insert displays structures of $\text{H}_2\text{O}_1\text{-ZCuOH}$ and $\text{NH}_3\text{-1-ZCuOH}$.

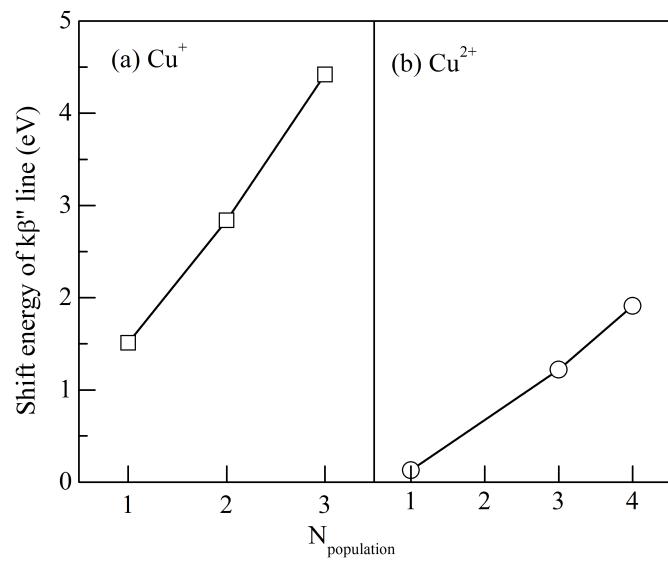


Figure S4. The shift energy of $k\beta''$ line as function of $N_{\text{population}}$ for (a) Cu^+ ion in HZ_2Cu and (b) Cu^{2+} ion in ZCuOH .