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We present the performance of a semantic segmentation network, SparseSSNet, that provides pixel-level
classification of MicroBooNE data. The MicroBooNE experiment employs a liquid argon time projection
chamber for the study of neutrino properties and interactions. SparseSSNet is a submanifold sparse
convolutional neural network, which provides the initial machine learning based algorithm utilized in one
of MicroBooNEs νe-appearance oscillation analyses. The network is trained to categorize pixels into five
classes, which are reclassified into two classes more relevant to the current analysis. The output of
SparseSSNet is a key input in further analysis steps. This technique, used for the first time in liquid argon time
projection chambers data and is an improvement compared to a previously used convolutional neural
network, both in accuracy and computing resource utilization. The accuracy achieved on the test sample is
≥99%. For full neutrino interaction simulations, the time for processing one image is ≈0.5 sec, the
memory usage is at 1 GB level, which allows utilization of most typical CPU worker machine.

DOI: 10.1103/PhysRevD.103.052012

I. INTRODUCTION

The primary goal of the MicroBooNE experiment is to
search for electronlike events, specifically in the kinematic
region where an anomaly was reported by the MiniBooNE
experiment [1]. The MiniBooNE experiment observed an
excess with respect to their background predictions in
electron neutrino events below 500 MeV. This excess is
often referred to as the MiniBooNE low energy excess
(LEE). Four independent analyses from MicroBooNE are
targeted at explaining this excess. The analyses differ in
reconstruction techniques and in their approach of targeting
different signal topologies. Specifically, the deep learning
(DL) LEE analysis uses a combination of machine learning
algorithms [2] and traditional tracking tools [3]. As charged
current quasielastic (CCQE) is the dominant cross section
in the LEE energy range, the approach adopted by the DL-
LEE analysis is to study high-purity data samples of CCQE
νe and νμ interactions. The topologies of these interactions
are much simpler than other interaction types since they
manifest in most cases as one lepton and one proton (1l1p),
where the lepton is either an electron (1e1p) or a muon
(1μ1p) for νe or νμ interactions, respectively. Focusing on

these topologies allows an easier and more precise event
selection than trying to select topologies with neutral
particles in final states or hadronic interactions.
The MicroBooNE experiment has been collecting data

since 2015 and is part of the Short-Baseline Neutrino
(SBN) program [4] operating at Fermi National Accelerator
Laboratory (FNAL) along the Booster Neutrino Beamline
(BNB) [5]. The detector [6] is a 10.4 m long, 2.6 m wide,
and 2.3 m high liquid argon time projection chamber
(LArTPC), consisting of 170 tons (85 tons in the active
volume). The readout time window is 4.8 ms and is
digitized into 9600 readout time ticks. Upon neutrino-
argon interaction, various particles are produced depending
on the interaction channel. The final state charged particles
produce prompt scintillation light as well as ionization
electrons along their paths in the liquid argon. The light is
detected by an array of 32 Hamamatsu 5912-02MOD
photomultiplier tubes (PMTs), while the ionization elec-
trons drift in an electric field of 273 V=cm toward the
readout wire planes leading to a drift time of 2.3 ms for the
maximal distance. There are three wire planes: two induc-
tion planes (referred to as U and V) consisting of 2400
wires each and one collection plane (referred to as Y)
consisting of 3456 wires. The induction plane wires are
aligned at �60° with respect to those of the collection*microboone_info@fnal.gov
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plane, while the collection plane wires are vertical. The
distance between two adjacent wires (on the same plane) is
3 mm for all planes.
In LArTPCs the ionization pattern generated by a proton

or a muon is a straight line referred to as a track [7]. It
originates at the interaction point and extends to the point
where the particle does one or several of the following:
loses all its energy and comes to a stop; interacts again;
decays; or exits the detector active volume. The most
significant difference between a proton track and a muon
track is in the energy deposition per unit length (dE=dx).
The electromagnetic shower pattern generated by an
electron (E ≥ 39 MeV [8]) has a richer topology that is
similar to a tree with many random branches. This is due to
the electron losing energy to ionization as well as stochas-
tically emitting photons. The emitted photons produce an
electron-positron pair or Compton scatter to produce
electrons. At this stage, the same processes occur again
until all energy is deposited in the detector or the shower
exceeds the detector boundaries. This cascade generates a
pattern referred to as a shower [8]. The lower the electro-
magnetic shower energy is, the less branches are created
and its topology becomes less distinct from a track.
Correctly classifying the signature generated by charged
particles in the detector as a shower or a track is a key
ingredient of the DL-LEE analysis.
In the MicroBooNE detector, the data from the wires are

retrieved as waveforms. As a first step, the waveforms are
be subjected to signal processing that reconstructs the
original ionization charge and zero-suppresses nonsignal
regions (see [6]).
In the DL-LEE analysis, the data is represented as a set of

three two-dimensional images (one for each wire plane),
with wire number plotted along the x-axis and drift time
plotted along the y-axis. The intensity of each “pixel,”
measured in pixel intensity units (PIUs), gives a measure of
the number of ionization electrons arriving at the corre-
sponding location and time. Along the time axis, the
waveform is integrated over six TPC time-ticks (3 μs).
Thus the effective size of each pixel is 3.3 mm along the
y-axis and 3 mm along the x-axis. After signal-processing,
the resulting image will contain sparse regions of interest
(ROIs) that are the charge-signals from the interaction.
Pixels outside of these ROIs, are set to zero. To assure
images from all wire planes are the same size, the images
from the induction planes are padded with zero value
pixels for wires 2401–3456 yielding a final images size
of 3456 × 1008.
Convolutional neural networks (CNNs) are the state of

the art algorithms for solving many problems in image
processing [9]. In recent years machine learning techniques
in general, and specifically CNNs, have seen many appli-
cations in physics [10]. Particularly in the field of neutrino
physics, many data analyses exploit the power of CNNs for
various tasks such as event classification, background

rejection, energy reconstruction, and more [11–15].
As the MicroBooNE data can be represented by sets of
images, it is natural to exploit the excellent performances of
CNNs. Recently, an implementation of CNNs oriented at
sparse data sets, named Submanifold Sparse Convolutional
Networks (SSCNs), was proposed by the Facebook AI
team [16,17] and has drawn much attention from several
experiments in many experimental physics application.
SSCNs were demonstrated to perform better than a dense
CNN for the task of semantic segmentation on an open
data set sample [18], as well as on background rejection
using calibration data in a gas xenon TPC [14]. As the
images produced by the MicroBooNE detector are very
sparse macroscopically (after applying low frequency
noise-filtering and signal-processing), but hold rich dense
data in the vicinity of an interaction, the use of the SSCN
adaptation, is appropriate. Moreover, as explained in
Sec. II, an SSCN’s resource consumption scales linearly
with the amount of data and thus is of much interest in
future LArTPC detectors with a much larger data volume
such as ICARUS [19] and DUNE [20] (for more examples
of SSCN use in LArTPCs see [21–23])
In this paper, we describe SparseSSNet (Sparse Semantic

Segmentation Network), a deep-learning-based algorithm
designed to distinguish showers from tracks in
MicroBooNE. After applying a set of initial data selection
criteria for reducing low energy backgrounds and tracks
originating from cosmic muons, SparseSSNet is applied,
replacing the previously used CNN [13]. The network is
used for the task of semantic segmentation at the pixel level
[24], before any physical entities are identified (e.g.,
interaction vertex, grouping energy depositions originating
from the same particle, etc.). It is worth mentioning that
although SparseSSNet is currently used only within the DL-
LEE analysis, It is not tuned to that specific analysis and
can be used in the search of any type of search in a
LArTPC. This study was done in a Singularity [25]
software container, [26] and the implementation of
SparseSSNet is available on GitHub [27].

II. THE NETWORK

SparseSSNet treats each wire-plane separately, therefore
three networks are trained one for each wire-plane. The
architecture of the networks is similar however, the mask-
ing and the derived set of network weights are unique to
each network. No data are shared between the different
planes.
The main idea behind SparseSSNet is that, prior to

training, masking is performed on the image to distinguish
between important and nonimportant pixels, the masking
is done on the feature vector (the pixel intensity this work).
The input data therefore are reduced from N ×  f to
Nth × d ×  f. N is the total number of pixels in the image
and scales exponentially with the image dimension
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(N ¼ 3456 × 1008 for images produced by MicroBooNE).
 f is the feature vector (the intensity of the pixel for the input
layer in this analysis), d is the dimension of the image
(d ¼ 2 in this analysis), and Nth is the number of pixels
passing selection criteria (masked). Using the sparse
representation, the data stored, as well as the number of
computations done for a convolutional layer, scales linearly
with the number of pixels passing selection criteria instead
of as a function of the total number of pixels.

SparseSSNet processes images using a sparse algebra as
opposed to a dense one. Using SparseSSNet provides several
benefits over using the dense CNN. The key benefit is the
reduction in the time and memory consumption. The nature
of the sparse representation drastically improves the time
for processing a 512 × 512 image (this is the size of an
image from the training sample see Sec. III) from ≈5 s to
≈0.5 s (The performance tests were done on an Intel core
i7-8750H CPU 2.2 GHz). This improvement in the com-
putation time reduces it below the time required of I/O
which becomes the current bottleneck. In addition, as pixels
of no interest (e.g., 0 intensity) are not saved, the memory
consumption for inference is reduced from ≈6 GB to
≈1 GB. As a consequence, a full image can be inferred
in a timely manner on a single CPU, unlike in the dense
case where the images were cropped into ≈64 smaller
images. Looking at the total CPU wall-time needed to
analyze the current MicroBooNE open data set of ≈ 5 ×
1019 protons on target, a total of 195875 events (three
planes each) requires ≈2267 days for the dense case and
only≈1.13 days in the sparse case (assuming a batch size of
1 as required by the dense case, due to CPU memory
limitation). Due to these advantages, the image inference
can be performed utilizing commonly available computing
resources provided by numerous high throughput comput-
ing facilities.
Given the design of the MicroBooNE detector electron-

ics, the pixel value (integrated counts over six TPC time
ticks) distribution of minimum ionizing muons peaks at
≈40 PIU and the maximal pixel value of a muon would
produce a pixel value of ≈220 PIU. In this analysis, all
pixels with intensity smaller than 10 PIU or larger than
300 PIU are not included in the sparse representation. The
lower value is set by the ability to distinguish signal from
noise, while the higher removes unphysical noise originat-
ing in the data-processing and is set well above any
expected value. This threshold reduces the number of
relevant pixels to ≈0.5% of the total pixels in an image.
Once a pixel is not included in the sparse representation,

it is disregarded and not stored in the input data. In any
convolution operation, an output pixel will be nonzero if
and only if the central pixel of the receptive field is nonzero
in the input feature map. Thus, the sparseness of the data is
retained through a convolution, constraining only pixels
which were nonzero in the input layer to be activated in
hidden layers. While a dense convolution will spread

information to pixels which originally contained no infor-
mation (this process is referred to as “image dilation”) the
sparse convolution restricts changes to only those pixels
which satisfy the selection criteria. This prevents image
dilation (see Fig. 1) and improves the accuracy of the
network.
The architecture of SparseSSNet is U-Res-Net (see Fig. 2)

which is a hybrid of U-Net [28] and Res-Net [29]. This
network consists of two parts: an encoder and a decoder. At
the encoder, the image is downsampled using a stride ¼ 2,
and the network extracts features at various scales and
hierarchical correlations. The number of downsampling
steps is referred to as the depth of the network. The decoder
upsamples the output of the encoder using transpose
convolutions, and learns how to interpolate back to higher
spatial resolution images, until reaching the original size.
The feature map from the encoder is concatenated to the
decoder feature map of the same size to help the decoder to
restore the original image. Each block of convolutions (up
or down sampling) is made of two convolutional layers
followed by a batch normalization operation and a rectified
linear unit (ReLU) function. Additional skip connections
are added according to the Res-Net architecture.

SparseSSNet is constructed with 32 filters in the initial
block and has a depth of five. The number of filters for a
specific block is i × 32, where i is the block’s depth (the
input layer has a depth of 1). The filter size is 3 × 3 and a
stride of two is used at each down-sample process,
decreasing the image size by a factor of two. A softmax1

FIG. 1. (a) an example of an image being dilated after two
dense convolution operations using a filter with size 3 ×3,
weights 1=9, and stride 1. (b) a nondilated image using sparse
convolutional layers, the green label represents pixels that are
kept for consecutive layers and the red label represents pixels that
would have acquired values in dense CNNs, but do not in
SparseSSNet (image taken from [17]).

1Softmax is a mathematical function that takes as input a
vector of real numbers, and maps it into a probabilities summed to
one, with larger input values corresponding to higher probabil-
ities.
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classifier, an ADAM optimizer [30] and a cross-entropy
loss function summed over all nonzero pixels are used. In
addition, a pixel-weighting scheme is applied for prevent-
ing class imbalance (see Sec. IV).
The output of the network is a pixel-wise normalized

five-dimensional probability vector  p (also referred to as
scores); the predicted pixel label is then defined to be the
class with the highest probability.

III. SIMULATED DATA SAMPLES

The data samples consist of images that contain neutrino
interactions, as well as many particles from cosmic rays,
since the MicroBooNE detector runs on the surface and
uses a long integration time to collect ionization over the
long drift length. The neutrino interactions consist of
electrons (e), photons (γ), muons (μ), charged pions (π�)
and protons (p). Most of the cosmic ray particles are
muons. These muons are higher in energy than the muons
that are produced in neutrino interactions. Training is
performed on simulated images consisting of the above
mentioned particles in addition to higher energy muons I.
An example of a simulated image with cosmic muons is
shown in Fig. 3.
The training and test data samples consist of ≈120; 000

and ≈23; 000 simulated images respectively. For each
image, pixel intensity and class labels (see III B) are

produced on which supervised learning is performed.
For validation tests, several samples of ≈15; 000 neutrino
interactions assuming different variations on the detector
response model are used.
Pixels are associated with the simulated particles that

contributed to their intensity. All pixels associated with a
given particle are grouped and considered a cluster for that
particle (for a shower all pixels are considered part of the
original particle (electron or gamma) initiating the shower).
For each event, particle propagation as well as detector
effects are applied to derive the final input image. The data
samples are produced using the LArSoft [31] v08_05_00_06 and
UBOONECODE [32] v08_00_00_13a packages. The simulation
of the wire response is performed by the Wire-Cell
simulation code, common to several current LArTPC
experiments [33,34].

A. Particle sample

SparseSSNet is trained to be sensitive only to outgoing
charged particles traveling in the LAr and producing
ionization electrons (translated into PIUs); thus, the sim-
ulation sample contains only randomly produced charged
particles and gammas with no assumption on the inter-
action that produced them. For each image in the training
and test samples, a random location in the detector is drawn
from a uniform distribution. A random number Nð¼ ΣniÞ

FIG. 2. SparseSSNet’s architecture. Light blue boxes represent convolutional layers with stride two (decreasing the spatial size) and an
increased number of filters. Orange boxes represent convolutional operations. Dark blue boxes represent transpose convolution with
stride two (increasing the spatial size) and a decreased number of filters. Yellow boxes are convolutional layers with stride one and
decreased number of filters. The depth of the network is defined as five since there are five down-sampling operations. The spatial size is
constant along the horizontal axis.
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of particles are generated at this location where N is the
total number of particles and ni is the number of particles
from type i. N is drawn from a uniform distribution in the
range of 1–6, whereas ni is drawn from a uniform
distribution in the ranges specified in Table I. The momen-
tum vector direction of each particle is chosen from an
isotropic distribution. Approximately 85% of the sample
contains particles with kinetic energies (Ek) consistent with
neutrino interactions within MicroBooNE. The energy
range (E) for this sample for each particle is shown in
Table I. A smaller sample (≈15%) is generated with a
different configuration targeted at low energy interactions
where particle identification becomes more difficult. The
momentum (P) range for each particle from the low energy
(low E) sample is shown in Table I. The number of particles
generated (N) and their multiplicity (ni) remains the same.
Finally, a random number of muons in the multiplicity

range of 5–10 and kinetic energy range of (5,000–
20,000) MeV are generated in both samples to mimic
cosmic rays.

B. Training labels

In the preparation of the samples, training labels are
assigned to each pixel according to the particle contributing
to their intensity. A total of five different labels are used.
For the training and test sets, a pixel can be a sum of
ionization electrons produced by two different charged
particles reaching the same wire at the same time.
Therefore, we follow a one-hot label scheme, i.e., a pixel
can have only one label. In the case a pixel can be assigned
to more than one label, the label assigned to it will be the
highest according to the following order. This improves the
performance of downstream analysis tasks such as identi-
fying vertices [3].

1. Heavily ionizing particles (HIP), produced by pro-
tons, typically manifest in a short, highly ion-
ized track.

2. Minimum ionizing particles (MIP), produced by
muons and charged pions, typically manifest in a
longer, fainter (lower dE/dx) track.

3. Showers, produced by electrons, positrons, and
photons above a minimal energy,≈39 MeV in liquid
argon [8].

4. Delta rays, produced from ejected atomic electrons
from a hard scattering of other charged particles,
mainly muons.

5. Michel electrons, produced from a decay at rest
of muons.

Within the current DL-LEE analysis, only two classes
are used for particle ID, track and shower; thus, the
previously mentioned five-classes are mapped into two
new classes.

1. Track, either HIP or MIP labels.
2. Shower, either shower or delta ray or Michel electron

labels.
Notice that the reclassification does not require new

inferring; rather it is just a mapping of these original five
labels to the newly defined two labels (i.e., if a pixel is
classified by the network as a MIP in the DL-LEE analysis
it will be considered as a track). We intend to exploit the full
class feature set in future analyses.

TABLE I. The data sample particle content. For each particle type the multiplicity per event, the kinetic energy range for the full
sample, and the momentum for the low energy (E) sample are given. Notice that unlike the particles originating at the simulated
“interaction point” the cosmic muons for the low E sample are still defined by their kinetic energy as they are the same for both samples.

Particle e γ μ πþ p Cosmic μ

Multiplicity 0–2 0–2 0–2 0–2 0–3 5–10
Ek [MeV] 50–1,000 50–1,000 50–3,000 50–2,000 50–4,000 5,000–20,000
P (low E) [MeV=c] 30–100 30–100 85–175 95–195 300–450 5,000–20,000 (Ek)

FIG. 3. An example of a simulated event projected on the
collection plane, taken from the training sample. Multiple
particles are generated at a specific location and propagated
throughout the detector to mimic a neutrino interaction.
In addition a higher energy muon is simulated to mimic
cosmic muons.
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C. Full neutrino interaction sample

The neutrino simulation is performed in two stages in
order to model the cosmic background in a more realistic
manner. The first stage is simulating the neutrino inter-
action itself using the GENIE [35] v3_00_04 and GEANT4 [36]
v4_10_3_03c software packages in addition to the LArSoft and
UBOONECODE packages. The second is using a sample of
beam-off data, taken from beam-off periods triggered on
cosmic rays, and overlaying it on the neutrino interaction.
As particles from the beam-off data sample are not from
simulation, no labels can be assigned to them.
There are two Monte Carlo (MC) simulation samples

used for the study. The full-BNB sample includes all types
of neutrino interactions that are expected to occur in
MicroBooNE. The intrinsic νe sample comprises events
due to the electron-flavor neutrinos predicted to be in the
flux, with all neutrino interaction types included. Both
samples are overlayed with beam-off data.

SparseSSNet’s predictions may vary depending on several
factors, but the primary variation is from modeling different
aspects of the detector response such as electric field,
space-charge effects [37], wire response, etc. Therefore to
assess systematic uncertainties (see Sec. V B) samples with
variation in the detector response model are generated with
O(15,000) events per each of the eight variations explored.
The sample with the nominal detector response is referred
to as the central value simulation sample. These samples
are used to verify the performance of SparseSSNet within the
context of the DL-LEE analysis; therefore, only the two-
class semantic segmentation is studied.

IV. PIXEL WEIGHTING

To prevent class imbalance [38], a case where one class
dominates the loss function and the penalty for incorrect
prediction of other classes is negligible, we apply a pixel
weighting scheme, defining the loss function

Loss ¼ Σiwi · ð li · logð  PiÞÞ ð1Þ

where wi is the weight defined for each pixel,  li is the label
vector of pixel i (e.g., (1,0,0,0,0) for a HIP) and  Pi is the
scores vector for pixel i (e.g., (0.8,0.2,0,0,0) for 80% HIP
and 20% MIP).
The sum of two types of weighting is assigned to each

pixel: cluster weighting and vertex weighting (see Fig. 4).
(i) Cluster weighting: large clusters contain many

pixels. This makes it easier to correctly label them,
as they contain more information. Moreover, label-
ing a large cluster correctly reduces the loss function
by a significant amount (proportional to the number
of pixels in the cluster). Therefore, small clusters
should be treated with more care to prevent the loss
function from being governed by one correctly
labeled big cluster. We apply a cluster weight that

is inversely proportional to the size of the cluster in
the range of ð0.02–2Þ × 10−2.

(ii) Vertex weighting: pixels at the center of a cluster are
easier to identify, as they cannot be confused by
other pixels in their close vicinity. On the other hand,
pixels near a cluster labeled as a “different class” are
the most difficult to recognize and impact the vertex

FIG. 4. An example of a simulated event projected on the
collection plane, taken from the training sample. (a) The labels
assigned for each pixel according to generated particles. (b) Pixel
weighting: for each cluster a weight proportional to the inverse of
its size is assigned in the range of ð0.02–2Þ × 10−2. Notice that
even though the shower has gaps in it (due to gammas) all pixels
of the shower are associated with the original electron cluster for
the purpose of cluster weighting. For crossing type pixels a
weight of 2 × 10−2 is assigned.
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reconstruction algorithm [3] (the next stage of the
DL-LEE analysis) dramatically (e.g., near a vertex
of a proton and a muon it is harder to distinguish
exactly which pixel is associated with the proton and
which with the muon). We apply a vertex weight of
0.02 to pixels within a three-pixel distance from a
pixel from a different class, and vertex weight of
zero to all other pixels.

V. RESULTS

A. Test sample

For each plane, SparseSSNet is trained for ≈15 epochs,2 the
chosen weights are obtained from ≈8.5 epochs of training
to achieve the best performance without over fitting the
network. Although the performance of the signal process-
ing is plane dependent [34], the SparseSSNet results from all
planes are similar (averaged over the entire phase-space
mentioned in table I) and therefore we discuss only results
obtained from the collection plane. We define the accuracy

as the number of correctly classified pixels with respect to
nonzero pixels only.
The total accuracy obtained from the collection plane test

sample is 96% for the final configuration of the network.
The accuracy and the loss function obtained from the
training sample both with and without weighting are shown
in Fig. 5, along with the accuracy and loss obtained from
the test sample. Applying the pixel weighting improves the
total accuracy from 92% to 96%.
A better quantification of the performance with respect to

each class is achieved by the confusion matrices. The five-
class semantic segmentation confusion matrix obtained
from the test sample for the collection plane is shown
in Fig. 6.
The number of pixels obtained for each class is Oð105Þ

for Michel electrons, and varies between 106 and 107 for
other classes; thus statistical uncertainties are small. The
matrices for the induction planes are fairly similar and are
presented in the Appendix A.

FIG. 5. Top: the accuracy and loss of the network on the
training and inference data sets obtained from the collection
plane. The accuracy before (orange) and after (light brown)
applying weighting, the loss function normalized by the loss after
the first iteration, before (blue) and after (light blue) applying
weighting. The accuracy of the inference data sample is indicated
in solid black and the loss on the test sample is indicated in
dashed black. The selected network weights are indicated by the
red dot (8.5 epochs). Bottom: plots are zoomed in.

FIG. 6. Five-class confusion matrix obtained from the collec-
tion plane test sample. Each box represents the fraction of pixels
that are from the class stated in the x-axis and predicted as class
stated in y-axis from the test sample. The smallest number of
pixels is Oð105Þ for Michel electrons. All other classes vary
between 106–107 pixels.

TABLE II. SparseSSNet’s track and shower accuracy, for the test
sample and the neutrino interaction central value simulation
sample (both full-BNB and intrinsic νe). Results are obtained
from the collection plane. The number of pixels associated with
each class is Oð107Þ pixels except for the full-BNB shower which
is Oð105Þ. The drop in the shower accuracy for the neutrino
interaction sample is explained in Sec. V B.

Test Intrinsic νe Full-BNB

Track 0.992 0.992 0.998
Shower 0.996 0.859 0.823

2An epoch refers to one cycle through the entire data set. In this
analysis, as images are selected randomly for each batch, an
epoch refers to a cycle through a number of images equal to the
sample size (≈120; 000 images).
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FIG. 7. An example of a simulated event from the test sample projected on the collection plane. (a) pixel intensity. (b) Truth label.
(c) SparseSSNet predictions. All images are 512 × 512 pixels crops from a full detector simulation.

FIG. 8. An example of a simulated νe interaction projected on the first induction plane. This is a ð300 × 300Þ pixels crop from the full
detector image shown in Fig. 13. (a) Pixel intensity of interaction overlayed with cosmic rays. (b) The produced particles upon
interaction, before overlaying cosmic rays. (c) SparseSSNet predictions. Notice that although some shower pixels are misclassified, the
fraction of showerlike pixels is larger than 0.2 and therefore this interaction will be correctly classified as νe interaction (see Sec. V D).

FIG. 9. An example of a simulated νμ interaction projected on the collection plane. This is a ð300 × 300Þ pixels crop from the full
detector image shown in Fig. 14. (a) Pixel intensity of interaction overlayed with cosmic rays. (b) The produced particles upon
interaction, before overlaying cosmic rays. (c) SparseSSNet predictions.
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FIG. 10. Selected example from BNB data, image cropped to ð300 × 300Þ pixels roughly around the interaction point. The left
column is the pixel intensity (a,c,e) and the right column is SparseSSNet predictions. The top (a,b) event is an example of a 1e1p final state
topology, the middle (c,d) is an example of a 1μ1p final state topology, and the bottom (e,f) is an example of a 1μ1p1π0 final state
topology. These events show good performance of SparseSSNet on data
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In the DL-LEE analysis, only two classes are defined
(see Sec. III B). The accuracy for each class for the two-
class semantic segmentation obtained for the collection
plane (Y) is shown in Table II. The results from the two
induction planes are similar and are presented in
Appendix A. The number of pixels obtained for each class
is >107; as with the case of the five-class scheme, the
statistical uncertainties are negligible. Comparing these
results to the previous network used [13], yields an
improvement in the shower accuracy from 95.9% to
99.6% and in the track accuracy from 97.4% to 99.2%.
The accuracy improvement is due to the no-image-dilation
effect, the lack of background class, and to fewer bounda-
ries in the image (all zero and nonzero pixels)
An example of an event from the test sample is presented

in Fig. 7. This display encapsulates the performance of the
network and contains the pixel intensity, the truth level
label, and the SparseSSNet’s predictions.

B. Neutrino interaction sample

The neutrino interaction sample contains beam-off data
which are not assigned with labels (see Sec. III C). Due
to labeling priorities (see Sec. III B), when a cosmic
muon crosses a shower, SparseSSNet is trained to predict
the joint pixels as MIPs and not as showers. These pixels
are considered as wrongly predicted which biases the
network’s shower accuracy. The accuracy calculated for
the two-class semantic segmentation task for both the
full-BNB and intrinsic νe samples are shown in Table II.
The central value simulation samples are used to calcu-
late these results.
The track accuracy is comparable to the one calculated

from the test sample. The lower shower accuracy is
attributed to the bias explained above. The track accuracy
compared to previous analysis yields an improvement from
95.7% to 99.8% and 86.2% to 99.2% for the full-BNB
(compared with the νμ sample) and intrinsic νe (compared
with the νe sample), respectively. Notice that the previous
analysis did not use beam-off data and did not see the bias
in the shower accuracy. Examples of simulated νe and νμ
from the neutrino interaction sample are shown in Fig. 8
and Fig. 9 respectively. These images are 300 × 300 pixels
crops, roughly centered at the interaction point. For the full
detector images see Appendix B. Each figure consists of the
pixel intensity of the generated interaction with beam-off
data, the generated interaction particles labels, and the
SparseSSNet’s predictions.

C. Beam data

As MicroBooNE has revealed part of the collected data,
a final check of the performance of the network can be done
on real BNB data. To quantitatively asses the performance
of the network on BNB data, a more through analysis,

including reconstruction and selection needs to be per-
formed which is beyond the scope of this paper. However,
we have hand scanned many events (>1000 selected 1l1p
events) and saw no strange bias. We present example event-
displays showing SparseSSNet predictions. The three selected
events are presented in Fig. 10, the left column is the PIU
which is the input to the network and right column is
SparseSSNet prediction. The events themselves present a
1e1p (a and b), 1μ1p (c and d), and 1μ1p1π0 (e and f)
final states.

D. Robustness of results

The output of SparseSSNet is used within the DL-LEE
analysis in two tasks: pixel classification and cluster
classification. The samples with variation in the detector
model (see III C) are used to verify that any mismodeling of
the detector does not strongly affect these classifica-
tion tasks.
The pixel classification is used for vertex finding, shower

reconstruction and energy estimation, cluster classification,
and more (ongoing work). It is performed by setting a
threshold on the shower score pshower ≥ 0.5. The amount of
misclassified shower/track pixels have a ≈0.5% variation
between all different simulation models.
The cluster classification is used to distinguish between a

νe CCQE interaction (1e1p) and a νμ CCQE interaction
(1μ1p) by applying a selection criterion of fs ≥ 0.2 for at
least one cluster, where fs is the fraction of shower-like
pixels in a cluster. The variations on shower clusters
are ≈1%.
As discussed previously, the systematic errors are

evaluated by running SparseSSNet on samples with detector
variations. We find that, for the DL-LEE analysis, the
uncertainty coming from SparseSSNet is negligible compared
to uncertainties from the traditional algorithms used for
track/shower reconstruction (ongoing work).

VI. SUMMARY

We have presented the performance of SparseSSNet in
the task of semantic segmentation on simulated data
from the MicroBooNE detector. The output of
SparseSSNet plays an important role in many tasks such
as vertex finding, shower reconstruction and energy
reconstruction, and neutrino selection in the DL-LEE
search in MicroBooNE, and is the first usage of SSCN
in LArTPC data (beam-off) and realistic MC (neutrino
interactions). The adaptation to sparse representation
dramatically improves the inference time from ≈5 s to
≈0.5 s as well as the memory usage from ≈5 GB to
≈1 GB. In addition, there is an improvement in the
accuracy of the test sample due to no-image-dilation
preserving the sparsity and locality of the information.
The current analysis uses only two classes (track and
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shower), however the network produces five-class seg-
mentation which we plan to exploit in future analyses.
The method that we have described here is transferable to

other LArTPC detectors. This includes ICARUS, SBND,
that are about to begin running on the same neutrino
beamline as MicroBooNE, as well as for the DUNE
experiment.
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APPENDIX A: RESULTS FROM INDUCTION
PLANES

The five-class semantic segmentation confusion matrices
produced from the data samples from the U plane (Fig. 11)

and V plane (Fig. 12) are similar to the one presented in
Fig. 6, and are presented here for completeness. Notice that
these matrices are obtained from different planes which
yields different images (though coming from same inter-
actions) and different networks; this can explain the small
accuracy differences between the planes. The number of
pixels obtained for each class is similar to the collection
plane and is Oð105Þ for Michel electrons, and varies
between 106 and 107 for other classes; thus statistical
uncertainties are small.
The accuracy for each class for the two-class semantic

segmentation task obtained from the two induction planes
on all simulation samples are similar to the those presented
in Sec. II and presented in Table III for completeness. The
drop in the shower accuracy for the full-BNB and intrinsic
νe samples is explained in Sec. V B.

FIG. 11. Five-class confusion matrices for the first induction
plane test sample. Each box represents the fraction of pixels
which are from the class stated on x-axis and predicted as class
stated in y-axis. The smallest number of pixels is Oð105Þ for
Michel electrons. All other classes vary between 106–107 pixels.

FIG. 12. Five-class confusion matrices for the second induction
plane test sample. Each box represents the fraction of pixels
which are from the class stated on x-axis and predicted as class
stated in y-axis. The smallest number of pixels is O(105) for
Michel electrons. All other classes vary between 106–107 pixels.

TABLE III. SparseSSNet track and shower accuracy for the test
sample and the neutrino interaction central value simulation
samples (both full-BNB and intrinsic νe). The results are obtained
from the two induction planes. The number of pixels associated
with each class is Oð107Þ pixels except for the full-BNB shower
which is Oð105Þ. The drop in the shower accuracy for the
neutrino interaction sample is explained in V B.

Test Intrinsic νe Full-BNB

U V U V U V

Track 0.988 0.990 0.990 0.989 0.997 0.998
Shower 0.996 0.994 0.823 0.858 0.809 0.821
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APPENDIX B: NEUTRINO INTERACTION EVENT DISPLAYS

Event displays of νe (Fig. 13) and νμ (Fig. 14) interactions from the full detector (3456 × 1008 pixels) of the events
shown in Sec. V B. Notice that induction planes (U & V) contains only 2400 wires; hence, to keep the size of the images
identical, an additional 1056 (2400–3456) are added but are empty. One can also see the sparsity of events from these
figures.

FIG. 13. An example of a simulated νe interaction projected on the first induction plane. This is the full detector image of the νe
interaction shown in Fig. 8. (a) Pixel intensity of interaction overlayed with cosmic rays. (b) The label assigned to the simulated neutrino
interaction. As cosmic rays are taken from beam-off data they are not assigned with labels. (c) SparseSSNet’s predictions.
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