2020 IEEE Intelligent Transportation Systems Conference (ITSC)
Rhodes, Greece. September 20-23, 2020 (Virtual)

Explainability of Intelligent Transportation Systems using Knowledge
Compilation: a Traffic Light Controller Case

Salomén Wollenstein-Betech!, Christian Muise?, Christos G. Cassandras’,

Toannis Ch. Paschalidis’, and Yasaman Khazaeni

Abstract— Usage of automated controllers which make deci-
sions on an environment are widespread and are often based
on black-box models. We use Knowledge Compilation theory
to bring explainability to the controller’s decision given the
state of the system. For this, we use simulated historical state-
action data as input and build a compact and structured
representation which relates states with actions. We implement
this method in a Traffic Light Control scenario where the
controller selects the light cycle by observing the presence (or
absence) of vehicles in different regions of the incoming roads.

I. INTRODUCTION

Recent developments in computing power, algorithms and
data handling have allowed for both accurate and complex
automated decision-makers. These smart agents have been
adopted widely in academia and industry to perform different
tasks. With the same vigor as in other areas, these methods
have been embraced to perform many tasks in the context
of Smart Cities [1] and Intelligent Transportation Systems.
Some examples include multi-agent traffic light controllers
[2] and re-balancing of Mobility-on-Demand systems [3].

A typical model (e.g., deep reinforcement learning) uses
high-dimensional inputs to provide powerful predictions or
decisions to achieve the desired goals. Unfortunately, the
trade-off between the complexity and the interpretation of the
model often limits its adoption to many applications where
stakeholders must trust and explain the decisions taken.

The importance of explainability does not rely purely on
justifying an agent’s decisions. Understanding more about its
controller logic provides clarity over unknown vulnerabilities
of the controller. Also, it helps in identifying and correcting
errors (debugging), thus enhancing the controller [4].

With the success of non-interpretable methods (neural
networks and boosting) the area of explainable Al (XAI) is
now an exciting research topic, see Figure 1. The relevance of
interpretability goes beyond the tech industry. For example,
lawyers also benefit from understanding these models well
when faced with claims about fairness of an agent’s deci-
sion. As a response to this issue, the European Union has
taken the lead by including a “right to an explanation” [5]

Supported in part by NSF under grants ECCS-1509084, DMS-1664644,
CNS-1645681, and IIS-1914792, by AFOSR under grant FA9550-19-1-
0158, by ARPA-E’s NEXTCAR program under grant DE-AR0000796, by
the MathWorks, by the ONR under grant N0O0014-19-1-2571, and by the
NIH under grant 1RO1GM135930.

Research performed during an internship at the MIT-IBM Watson Al Lab.

IDept. of Electrical and Computer Engineering, Division of Systems En-
gineering, Boston University, Boston, MA, USA. {salomonw, cgc,
vannisp} @bu.edu

2 School of Computing, Queen’s University, Kingston, ON, Canada.
christian.muise@queensu.ca

3 IBM Research Al, Cambridge,
yasaman.khazaeni@us.ibm.com

MA, USA.

978-1-7281-4148-0/20/$31.00 ©2020 IEEE

492

3

200 \ \ \ \

—— Explainability
2 150 Interpretability 11,000 g
E= —e— Deep neural network R=
S 100 |- o
8 17500 &
Q Q
ERE g

éz"\# L L L 0
2004 2006 2008 2010 2012 2014 2016 2018 2020

Year

Fig. 1: Google Trend, read Explainability and Interpretability with left axis
and Deep Neural Network with right axis

stated in articles 12-15 of the recently passed General Data
Protection Regulation (GDPR) law which pushes decision-
maker architects to provide clear and concise statements of
the logic involved.

Within the transportation community, a tragic example is
the Death of Elaine Herzberg in Tempe, Arizona [6]. This
was the first recorded death provoked by a self-driving car.
Many attribute the death to a mistake on the image classi-
fication method used by the vehicle. Nevertheless, we can’t
be sure of what exactly went wrong. This further encourages
the interpretability of our intelligent transportation systems.

In addition to these examples, we observe a growing trend
in the relevance of explainability (or interpretability') in
google searches and in academia. To give one example, there
was a 300% growth in the number of papers presented at
the Intelligent Transportation Systems Conference in 2019
relative to the previous year, that contained these words.

In this paper we present an interactive tool that helps bring
interpretability to black-box controllers. We reason over the
behavior of an agent by looking at historical data traces of
state-action pairs without making assumptions on the system
dynamics. Moreover, we assume the actions taken by the
controller are fixed (i.e., a deterministic policy) but unknown.

Related work has tried to solve similar problems on
imitation or apprenticeship learning [7], [8]. The idea is to
learn a policy from state-action samples, so that when the
automated controller takes an action, it closely resembles
the behavior of the original decision-maker. To achieve this
goal, these methodologies require learning the dynamics of
the system typically modeled as a Markov Decision Process
(MDP). Our methodology differs, since it does not aim to
learn the system dynamics (transition probabilities) nor how
to control the agent. Rather, our goal is to provide useful
and fast knowledge about the behavior of the agent on
the environment. Our tool allows answering questions that

'In this paper we use these terms interchangeably

other approaches lack. For example, we can ask: what is
the probability of performing an action when a specific state
variable is True?.

We use the approach presented in [9]. The main idea is
to use state-of-the-art knowledge compilation methods and
to use disjunctive decomposable negation normal form (d-
DNNF) as the key representation [10] of the controller’s
logical theory. This representation provides an interesting
mix of compact representation, computationally efficient
compilation, and expressive inference capabilities.

We bring this technology to the Transportation Community
by analyzing a case study of the Traffic Light Control
(TLC) problem. We chose to analyze this problem given
the recent success of using Deep Reinforcement Learning
(RL) to tackle the single-intersection TLC [11] and multi-
intersection TLC [2], [12], [13]. However, despite Deep RL’s
great success on solving TLC, there is a limited amount
of work attempting to explain the logic behind its trained
controllers or predictors within the transportation domain.
To the best of our knowledge, most attempts [14], [15]
addressing the interpretability problem use Shapley Additive
exPlanation (SHAP) methodology [16]. Our approach differs
from SHAP in that we are, in a sense, constructing a
hierarchical representation of interpretable insights rather
than identifying the individual factors that contribute most
to the output of the blackbox.

The rest of the paper is organized as follows. In Section II
we present background information on Knowledge Compila-
tion and the d-DNNF language which serves as the basis for
the interpretability model stated in Section III. In Section IV
we present the TLC model, the RL approach used to train
the smart controller, as well as the experiments performed.
In Section VI we present some examples of explanations
provided by the interpretability tool. We conclude in Section
VII with a summary and with future directions.

II. KNOWLEDGE COMPILATION

Background: The objective of Knowledge Compilation is
to perform tractable operations of a complex logical theory.
To achieve this, the technique builds structured representa-
tions of the logical theory in the form of a directed acyclic
graph (DAG). The main idea is to compile off-line a complex
and unorganized logical theory into a structured one, which
is then used on-line to perform fast operations and reasoning.

In the framework developed by [9], the authors propose
deterministic decomposable negation normal form (d-DNNF)
as the target language to perform interpretation over a logical
theory. The main characteristic of this language is that it
allows to condition and to count the number of models in
a propositional theory in polynomial time. These two oper-
ations are central in answering questions about an agent’s
behavior. Note that the off-line compilation to the d-DNNF
language may be computationally expensive [10], however,
this is just performed once. Let us now define properly
the d-DNNF by introducing some of the languages used in
Knowledge Compilation.

Languages:

1) Negation Normal Form (NNF): Most languages in
Knowledge Compilation are subsets of the NNF language
[10]. In this language, the only allowed Boolean operators
are conjunctions (A , and) and disjunctions (V, or). The

493

negation operator (—, not) is directly applied to the Boolean
variables. In practice, these languages by are represented
with a Directed Acyclic Graph (DAG). The graph describing
a NNF theory is composed by leaves taking positive or
negative boolean variables and inner nodes that are either
conjunction or disjunction, see Figure 2b as an example.

Formally, let ¥ be a propositional theory (a DAG). Let
C' be any node in ¥ and Vars(C) be the set of variables
appearing in the subgraph rooted at C.

2) Disjunctive Normal Form (DNF): This language is a
subset of NNF and is formed by a disjunction of conjunctions
(or of and’s), see Figure 2c as an example. Its DAG is flat,
meaning that the distance from the root node to any leaf is
2. We represent the received data D using this language. For
each state-action pair (s;,a;) we build a clause C;. Then,
we take the disjunction over all of the C;’s.

3) Conjunctive Normal Form (CNF): Similar to DNF, the
CNF language is a conjunction of disjunctions (and of or’s)
whose DAG is also flat. The intent of using this intermediate
language between our data (DNF) and target (d-DNNF) is
twofold. (1) Ease the compilation CNF—d-DNNF by using
ready-to-use compilers such as DSHARP [17], c2d [18] or D4
[19], and (2) allow for encoding with different properties (see
details on the different encoding flavors in [9]).

4) Deterministic Decomposable Negation Normal Form
(d-DNNF): This language is a subset of the NNF in which
the properties of decomposability and determinism hold.
The objective of having these two properties is to perform
fast (polynomial time) operations of model counting and
conditioning over the logical theory. The definition of these
properties (as in [10]) are:

Definition 1 (Decomposability). A NNF satisfies the decom-
posability property if for any conjunction C, the conjuncts of
C do not share any variable. In other words, if C1, ..., C, are
children of an and node C, then Vars(C;)NVars(C;) =0
for i # j.

Definition 2 (Determinism). A NNF satisfies the determin-
ism property if for any disjunction C, every pair of disjuncts
of C are logically contradictory. That is, if C1,...,C,, are
children of an or node C, then Vi, j € [1, ..., n] where i # j,
Ci NCj =False.

A. Logical operations in d-DNNF form

1) Model Counting: Without loss of generality, it is
possible to count the number of models of a d-DNNF in
polynomial time. Consider a logical theory X and replace its
or nodes by additions and its and nodes by products. Then,
assign to each leaf the value of 1. Note that an additional
easy-to-comply property of smoothness is needed to obtain
a normalized count.

Definition 3 (Smoothness). A NNF satisfies the smoothness
property if for each disjunction C, each disjunct of C
mentions the same variable. That is, C', ..., C), are children
of an or node C, then Vars(C;) = Vars(Cj) Vi,j €
[1,...,n] where i # j.

2) Conditioning: Let X be a d-DNNF and consider the
problem of conditioning on variable z, i.e., we would like
Y|z = True. Then, we can replace by True and —x by
False and propagate this information throughout the DAG

Drive Key

- Action
mode on inside car
True True drive
False True switch_to_drive_mode
False False insert_key
(a) Data

(¢) Conditioned d-DNNF on K

(b) Compiled d-DNNF

Fig. 2: Example compilation of agent behaviour. Let D, K, dr, sw, in be Drive_mode_on, Key_inside_car, drive, switch_to_drive_mode,
and insert_key respectively. Figure 2a denotes the input D to the model, which we read every row as a conjunction. Figure 2b is the generated d-DNNF
representation of the logical theory, which is compiled following the interpretability model depicted in Figure 3. To read the d-DNNF DAG, we suggest
starting from top to bottom, and look at the left-most element on after a disjunction. This depicts the determinism property since the children of the or
node are logically inconsistent. Lastly, Figure 2c is the conditioned version of the d-DNNF when we set K to be active. One can observe that to get the
conditioned tree we can prune the left branch of the lower or node in Figure 2b.

using standard logical rules. For example, if ¥ = (x V y) A
(mx V z), then, X|z = (True V y) A (False V z) which
simplifies to z. Through the combination of conditioning
and counting, the likelihood of a particular variable can be

computed using P(z = True) = %%?

III. INTERPRETABILITY MODEL

Recall that our goal is to reason over an agent’s (traffic
light) decisions and to answer questions about its underlying
logic by analyzing samples of data. Given that we are using
a model based on logical theories, the domain is restricted to
discrete representations of states and actions. Nevertheless,
one might consider using discretization to parse continuous
to discrete domains.

Let the set describing the state variables to be F, the
state-space (environment) be S € 27 and a particular state
to be s € S. We use A to represent the action space
and a € A to specify an action. Furthermore, let a state-
action observation be a tuple (s,a) and our data be D =
{(s1,a1), ..., (Sm,am)}. The problem we face is then to
succinctly represent the mapping P : S — A. One intuitive
way of solving the mapping problem would be to use a large
table of state-actions. Unfortunately, this approach becomes
quickly intractable due to the curse of dimensionality. To
overcome this computational burden, we use the model
proposed by [9] based on Knowledge Compilation.

The processing framework in [9] uses the sampled data
of state-action tuples as clauses in disjunctive normal form
(DNF). Then, it compiles this theory to various flavors
of conjunctive normal form (CNF), see [9] for different
encodings and properties. Once the theory is in CNF form,
it compiles it using any off-the-shelf compilers [17], [19]
to produce a d-DNNF, which has the properties of decom-
posability and determinism. Then, easy operations of model
counting and conditioning generate probabilistic inference
responses on the behavior of the system. See Figure 3
as a summary of the approach. As an example, consider
the data received on Figure 2a, its corresponding d-DNNF
representation on Figure 2b, and its conditioned response on
Figure 2c.

IV. TRAFFIC LIGHT CONTROL

The Traffic Light Control (TLC) problem consists of
dynamically adjusting a road’s green and red light cycle
to maximize the traffic flow trough an intersection. In the
past, the problem has been tackled using estimates of traffic

494

condition
(50) ’{ DNF } d-DNNF
Model
Action Counting and
Theory g CNE Probabilistic
Inference
Q: when A: when
would the -~~~ d-DNNF Convert to NL |- -~ the state
agent do X? looks like Y

Fig. 3: Flowchart of the logical model. Dotted arrows indicate inputs to the
model whereas solid arrows indicate processing steps. Bold arrows indicate
off-line (pre-processing) tasks.

flows on each road for a specific time of the day [20],
[21]. Today, with the ability to gather and communicate
information in real time, traffic-responsive techniques are
taking the lead on controlling these systems. See examples
using Infinitesimal Perturbation Analysis [22], SCOOT [23]
and many Reinforcement Learning variations for single [11]—
[13], and multi-intersection [2], [24] control. The use of
RL agents for traffic light control is motivated by the fact
that agents can self-train. If these are trained correctly and
for long enough samples, we can expect them to adapt to
different situations including road accidents, weather and
other variables. In particular, Deep RL differentiates itself
by its ability to handle high-dimensional inputs. The RL
agent learns to maximize a reward function by observing the
system state and by training a model that relate an output by
using a complicated function of input variables.

Given that our interpretability model needs both states
and actions to be discrete, we would like to choose a TLC
formulation that meets these requirements and facilitates the
analysis. Hence, we consider a single intersection traffic light
control scenario. We build a simulation model using SUMO
[25] consisting of a cross intersection with 4 incoming and
outgoing lanes. Each incoming road to the intersection is set
to be 750 meters long. We divide every road on the network
into n movements. These movements have predefined routes
for all the cars flowing through a particular lane. In our case,
let the left-most lane of every incoming edge be a movement
(left turn) and the other lanes be another movement (keep
straight), see Figure 4 as a reference. During the simulation,
the agent (traffic light controller) samples the environment
and receives a state s; and a reward r; at time ¢. According to
this observation the agent chooses its next action a;. At the
same time the agent learns about the consequence of having

State
Each incoming lane is discretized
in cells that identify the presence
or absence of a vehicle

Actions
North-South advance (active)

=== North-South left advance
East-West advance

=== East-West left advance

240m 60m 40m 20m 12m 7m

Fig. 4: Traffic Light environment.

chosen its previous action and updates its decision policy.

State: Following the model in [11] we let the state of the
system be the collection of variables describing the presence
or absence of vehicles on movement cells. We divide each
incoming road into movements and we assume the total
number of movements approaching the intersection is m. In
our scenario m = 8 as we divided each road in 2 (vehicles
turning left or keep straight) and we have 4 incoming roads.
Then, we divide each of these movements ¢ = 1, .., m into b;
cells, which might differ in size (see Figure 4). The choice
of the length of a cell is not trivial. If cells are too long we
have lower granularity, in contrast, when cells are too short
it brings higher computational complexity which requires
longer training times. The state is then s, = {z;;(t) | i =
1,...,m; j=1,.,b;} where the variable x;;(t) is equal to
1 when there is at least one vehicle present on cell j of
movement ¢ at time ¢, and 0 otherwise. Then the number of
possible states in the TLC system is |S| = 22=i=1 5,

Note that our interpretability tool is not limited to this
particular state-space. However, this representation meets our
need for discrete state variables. Some other approaches in-
clude variables such as the relative velocity between vehicles
[26], current traffic light phase [27], among others.

Actions: We consider a single agent (the traffic light
controller) which can choose between four possible actions.
Each of these actions corresponds to a given configuration
of red and green lights. The possible light phases are:
North-South (NS), North-South left-most lane (NSL), East-
West (EW), and East-West left-most lane (EWL). Hence
A = {NS,NSL,EW,EWL}. Once an action is selected,
the traffic light will maintain this light phase for a fixed
amount of time. We chose this length to be 10 seconds.
Note, that the controller might choose the same action if
for example, there is a lot of vehicles flowing on a particular
direction. This does not impose an upper bound on the time
a specific phase is active. In contrast, if the new selected
action is different from the previous action, a 4 seconds
yellow phase is initiated before starting the new phase. This
delay allows drivers to anticipate and prepare before reaching
the intersection. Additionally, it also benefits the model by
preventing switching too often between light cycles.

Reward Function: In a RL setting, the reward function
is the feedback the agent receives from the environment
after performing an action. This feedback helps the agent
improve its model of the environment in order to make better
decisions in the future. In the setting of TLC, the objective
is to maximize the traffic flow through the intersection over
time. Hence, the reward is usually a measure of a vehicle’s
delay, queue lengths, waiting times or overall throughput
which serve as proxies for traffic flow maximization. In this

495

paper we use the reward function r; proposed in [11].

Let wy(i,t) be the cumulative time over which a vehicle
1 has had speed smaller than 6 up to time ¢. Then, assuming
n cars have arrived to the environment before time ¢, the

n
total cumulative waiting time at ¢ is Wy(0) = > wg(i,).

We define a reward function 7; such that a pozsitlive value
encourages an action and a negative value discourages it.
Hence, a bad action can be represented by the increase
in the cumulative waiting time when compared with the
previous agent step (decision time). Let’s assume that the
agent would make decisions on the times defined by the
sequence {t1,%a,...}. Then the reward function at decision
time ¢; is 7, (0) = Wy,_, (6) — W4, (6).

Learning Process:

1) Model: We use Deep (Q-Learning as our learning
algorithm. This technique combines ()-Learning and Deep
Neural Networks. ()-learning is a basic form of Reinforce-
ment Learning which uses ()-values to iteratively improve an
agent’s decision. These values are a learned metric of how
good it is to take a particular action given a specific state
and are formally expressed by

Q(Sti) ati) — Q(Stz) ati) + a({rti+1 (0) + Zneajl(Q(sti+1) a‘)
_Q(Stmati))

where « is the learning rate, and v € [0, 1] is the discount
factor used to leverage the importance of future rewards
compared to the immediate one.

Often, computing all possible combinations of states and
actions is intractable due to the curse of dimensionality which
results in not having ()-values for some state-action pairs.
To overcome this limitation, we estimate the (-learning
function using a deep neural network (DNN). We use the
DNN architecture as in [11]. This DNN is fully-connected
and is composed by an input layer of Y . b; (the size of
the state of the system) and 5 hidden layers of 400 neurons
each using a rectified linear unit (ReLU) function. The output
layer contains 4 neurons with a linear activation function
representing the value of an action given a particular state.

2) Training: We use Experience Replay [28] as our train-
ing method. This approach uses barch learning instead of
adjusting an agent’s policy at every decision. In other words,
rather than updating the policy at every step, the agent
uses all gathered information to update only at pre-defined
moments. We call every training cycle an episode and define
E as the total number of episodes used to train an RL agent.

In order to face the exploration-exploitation trade-off, we
use an e-greedy method with a linear exploration strategy.
Let e € {1,2, ..., E'} indicate the current episode index, then
the € parameter at e is expressed by ¢, = 1 — e/E. This
method gives more weight to exploring at the beginning of
the training phase, but as learning occurs, the agent exploits
and reinforces its learned knowledge about the system.

V. EXPERIMENTS

We perform experiments consisting on using the TLC
model presented in Section IV to train an efficient black-
box agent to control a traffic light. Once the agent is trained,
we compute multiple traces of state-action pairs which serve
as the input data D for the interpretability model explained

0r :

Agent 1
Agent 2
Agent 3
Agent 5
Agent 7
Agent 9
Agent 10

0 20 40 60 80
Episode

!
100

Fig. 5: Training different controllers. The agent number corresponds to the
number of observable cells from the intersection on each movement.

in Section III. Then, we interact with the interpretabilty tool
to reason over the underlying logic of the RL controller. To
train the agent we use the simulation environment created in
[11]. We provide a diverse set of traffic flows aiming to learn
real world scenarios. Moreover, we randomly increase and
decrease the traffic generation on each of the incoming roads
to create combinations of high and low traffic intensities on
the roads. Each simulation (or episode) consists of 5,400
seconds equivalent to 1.5 hours.

We consider the scenario with 8 movements and divide
each of these into 10 cells (i.e., n; = 10 for all 7) as
in Figure 4. Based on this state-space representation we
trained 7 different RL controllers aimed at assessing their
performance and reasoning over their underlying behavior.
The difference between these agents is their observation
ability. For each agent [= 1,...,10 we define their state-
space to be the first [cells of a movement i, formally,
s¢(l) = {zi;(t) | i = 1,...,m; j = 1,..,1}. For example,
agent 2 will be trained on a state-space based on x;;(t)
for j 1,2 exclusively. To assess the performance of
each agent we learn over 100 episodes (E = 100) and
compare the reward trend while learning, see Figure 5. An
interesting observation about this training process is that
Agent 2 and 3 have worse performance than Agent 1 even
though they observe everything 1 does and more. We believe
this behavior happens because the controller has difficulties
differentiating between presence on a cell due to congestion
or due to a passing vehicle. However, once the agent has
more information further down the road, as Agent 10 does,
it is easier to differentiate the cause of the presence of a
vehicle in a cell.

VI. TLC INTERPRETABILITY RESULTS

After training the controller, we ran 100 simulations for
each agent [= 1, ..., 10 to create historical data D;. We used
D as the input of the interpretability model to interact it with
the representation of the logical theory of the traffic light.
The results obtained matched our intuition on how a TLC
should operate. Take for example the first row in Table 1. In
this case Agent 1 observes the first cell of each movement.
We asked the interpretability model to give us the likelihood
of an action when a vehicle is present on the first cell of
the east-straight movement, unknown situation on the east-
left movement, and no vehicles on any other movement. The
result shows that the agent will choose either EW or EWL
cycle with 50% chance, given those condition. In Fig. 6, we
show the conditioned d-DNNF DAG for this query.

496

TABLE I: All the queries assume unknown state variables unless specified
in the table. Notation: R-GM.N stands for incoming Road (N/S/E/W),
Green phase, Movement (0=straight/1=left), and cell position N.

Action Likelihood

Query Agent

Vehicle in E-G0_0-7;

E-G1.0-7 unknown; 1 0.0% 0.0% 50.0% 50.0%
No vehicle in the rest

No conditioning 7 33.6% 13.7% 373% 15.4%
Vehicle present in 7 214% 117% 582% 8.0%

E-G0_0-7

More interestingly, on the second row of Table I, we
asked for the likelihood of an action without conditioning on
anything. As expected, the time of EW vs. EWL (and NS vs.
NSL) was not uniform. This is because in the simulation, we
consider higher vehicle flows going straight versus turning
left (3 straight lanes versus 1 turning left). Hence, if the
RL controller tries to minimize the overall delay, we expect
it to give preference to the straight trajectories over turning
trajectories. From a debugging point of view we are satisfied
with this result as it matches our intuition. The last row
considers the presence of a car in the east-straight lane in
position 1 for Agent 7, and all the other state variables are
unspecified. Recall that Agent 7 observes for each road the
first seven cells starting from the intersection. We expect
this query to give us information about the marginal gain
that the action EW receives when the controller observes
presence of a vehicle on the first cell (0-7 meters from the
traffic light). Intuitively, we expect the likelihood of action
EW to be greater than the likelihood of other actions, which
is exactly what we observe in the results.

Another type of query we can ask our tool is to understand
the environment conditional on an action being active. Take
for example the question asked to Agent 1: What is the
likelihood of a state variable when the controller decides
on action NS? The result of this query is shown in Figure 7.
As we anticipate, we see that it is very likely to have vehicles
in the north and south straight movements, whereas it is less
likely to observe vehicles on the east, west or left movements.
In summary, the results obtained by the interpretability model
match our intuition. The technique naturally lends itself
to debugging black-box controllers, and ultimately aids in
understanding the operation of the controller.

VII. CONCLUSIONS

We use Knowledge Compilation techniques to reason
over the behavior of black-box controllers. We present an
example of this tool on a traffic light control setting where
the controller uses a Deep Neural Network to decide its
actions given a state. In this setting, the objective of the
agent is to dynamically select the best light phase given a
state composed by the presence (or absence) of vehicles
in different cells of a road network. Once the black-box
controller is trained, it is used to control the system. We then
sample historical state-action pairs and use them as an input
to the interpretability model. Then, we use the interactive
tool which allows us to reason over the environment and the
agent’s decisions. It is worth pointing out that this general
framework allows to reason over any type of decision-maker
(including humans) and it is not reserved for a particular
technique such as RL or any application such as TLC.
For all the queries we performed, the interpretation given

ar_in_E-Go_0-7 Undo Redo Reset CollapseAll ExpandAll
not(car_in_E-G0_0-7)

® car_in_E-G1_07
not(car_in_E-G1_0-7)
car_in_N-Go_0-7 °

@ not(car_in_N-Go_0-7)

car_in_N-G1_0-7

@ not(car_in_N-G1_0-7)

© noitear_in_W-Go_07)

Fig. 6: Screenshot of the controller logic of Agent 1 in the interactive tool.
On the left hand, the user can toggle (on/off) to condition on a particular
state variable or action. The controller is conditioned as stated in the first
line of Table I.

Fluent Likelihoods

Percentage

Fluents

Fig. 7: Environment likelihood of Agent 1 when it performs action NS. ILe.,
How does the state look like when Agent 1 performs action NS?.

by the tool about the traffic light controller matches our
intuition on the decisions we expect the agent must take given
that information. Also, it provides a very nice platform for
human-in-the-loop interaction with the system and we see its
potential to be used for debugging purposes.

Future Work: We identify two interesting and im-
portant areas for future work. First, we would like to
relax the assumption on policy determinism to allow for
non-deterministic policies. This implementation will require
weighted model counting which is a studied method within
the knowledge compilation community. Second, we would
like to have this interpretability tool available for richer
settings including continuous time action and state spaces.
This will require to have a pre-processing phase in which
the discretization of the domain occurs. This task is very
complex as it requires an optimization on the thresholds of
the state and action variables such that the interpretation of
the controller is maximized.

REFERENCES

[1] C. G. Cassandras, “Smart cities as cyber-physical social systems,”
Engineering, vol. 2, no. 2, pp. 156-158, 2016.

[2] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent rein-

forcement learning for integrated network of adaptive traffic signal

controllers (marlin-atsc): methodology and large-scale application on

downtown toronto,” IEEE Transactions on Intelligent Transportation

Systems, vol. 14, no. 3, pp. 1140-1150, 2013.

J. Wen, J. Zhao, and P. Jaillet, “Rebalancing shared mobility-on-

demand systems: A reinforcement learning approach,” in 2017 IEEE

[3]

497

[4]

[51

[6

[t

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
(21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

20th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2017, pp. 220-225.

A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (xai),” IEEE Access, vol. 6, pp.
52138-52160, 2018.

B. Goodman and S. Flaxman, “European Union Regulations on Algo-
rithmic Decision-Making and a “Right to Explanation”,” Al Magazine,
vol. 38, no. 3, pp. 50-57, 2017.

T. Griggs and D. Wakabayashi, “How a self-driving uber
killed a pedestrian in arizona,” NY Times, Mar 2018.
[Online]. Available: https://www.nytimes.com/interactive/2018/03/20/
us/self-driving-uber-pedestrian-killed.html

M. K. Hanawal, H. Liu, H. Zhu, and I. C. Paschalidis, “Learning
policies for markov decision processes from data,” IEEE Transactions
on Automatic Control, vol. 64, no. 6, pp. 2298-2309, June 2019.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

C. Muise, S. Wollenstein-Betech, S. Booth, J. Shah, and Y. Khazaeni,
“Modeling blackbox agent behaviour via knowledge compilation,” in
The AAAI 2020 Workshop on Plan, Activity, and Intent Recognition,
2020.

A. Darwiche and P. Marquis, “A knowledge compilation map,” J. Artif.
Intell. Res., vol. 17, pp. 229-264, 2002.

A. Vidali, L. Crociani, G. Vizzari, and S. Bandini, “A deep rein-
forcement learning approach to adaptive traffic lights management,”
in Workshop From Objects to Agents (WOA), 2019.

L. Prashanth and S. Bhatnagar, “Reinforcement learning with average
cost for adaptive control of traffic lights at intersections,” in 2011 14th
International IEEE Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2011, pp. 1640-1645.

S. M. A. Shabestary and B. Abdulhai, “Deep learning vs. discrete
reinforcement learning for adaptive traffic signal control,” in 2018
21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2018, pp. 286-293.

S. G. Rizzo, G. Vantini, and S. Chawla, “Reinforcement learning
with explainability for traffic signal control,” in 2019 IEEE Intelligent
Transportation Systems Conference. 1EEE, 2019, pp. 3567-3572.
A. Barredo-Arrieta, I. Lafia, and J. Del Ser, “What lies beneath: A note
on the explainability of black-box machine learning models for road
traffic forecasting,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). 1EEE, 2019, pp. 2232-2237.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in neural information processing
systems, 2017, pp. 4765-4774.

C. Muise, S. A. Mcllraith, J. C. Beck, and E. Hsu, “DSHARP: Fast
d-DNNF Compilation with sharpSAT,” in Canadian Conference on
Artificial Intelligence, 2012.

A. Darwiche, “New advances in compiling CNF to decomposable
negation normal form,” in Proceedings of the 16th European Con-
ference on Artificial Intelligence, 2004, pp. 318-322.

J. Lagniez and P. Marquis, “An Improved Decision-DNNF Compiler,”
in Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-
25, 2017, 2017, pp. 667-673.

D. L. Robertson, “Transyt: a traffic network study tool,” 1969.

J. D. Little, M. D. Kelson, and N. H. Gartner, “Maxband: A versatile
program for setting signals on arteries and triangular networks,” 1981.
J. L. Fleck, C. G. Cassandras, and Y. Geng, “Adaptive quasi-dynamic
traffic light control,” IEEE Transactions on Control Systems Technol-
0gy, vol. 24, no. 3, pp. 830-842, 2015.

P. Hunt, D. Robertson, R. Bretherton, and R. Winton, “Scoot-a traffic
responsive method of coordinating signals,” Tech. Rep., 1981.

M. Abdoos, N. Mozayani, and A. L. Bazzan, “Traffic light control
in non-stationary environments based on multi agent g-learning,” in
2011 14th International IEEE conference on intelligent transportation
systems (ITSC). 1EEE, 2011, pp. 1580-1585.

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Liicken, J. Rummel, P. Wagner, and E. WieBner, “Mi-
croscopic traffic simulation using sumo,” in 2018 IEEE International
Conference on Intelligent Transportation Systems. 1EEE, 2018.

J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive traffic signal
control: Deep reinforcement learning algorithm with experience replay
and target network,” arXiv preprint arXiv:1705.02755, 2017.

K.-L. A. Yau, J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk,
“A survey on reinforcement learning models and algorithms for traffic
signal control,” ACM Computing Surveys, vol. 50, pp. 1-38, 2017.
L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Machine learning, vol. 8, no. 3-4,
pp. 293-321, 1992.

