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Abstract— Optimal control problems with constraints ensur-
ing safety can be mapped onto a sequence of real time opti-
mization problems through the use of Control Barrier Functions
(CBFs) and Control Lyapunov Functions (CLFs). One of the
main challenges in these approaches is ensuring the feasibility
of the resulting quadratic programs (QPs) if the system is affine
in controls. In this paper, we improve the feasibility robustness
(i.e., feasibility maintenance in the presence of time-varying
and unknown unsafe sets) through the definition of a High
Order CBF (HOCBF); this is achieved by a proposed feasibility-
guided learning approach using machine learning techniques.
The effectiveness of the proposed feasibility-guided learning
approach is demonstrated on a robot control problem.

I. INTRODUCTION

Stabilizing a dynamical system while optimizing a cost
and satisfying constraints is a fundamental and challenging
problem in control theory. Typically, such problems include
autonomous driving in traffic and robot safe exploration in
unknown environments. When safety becomes critical, it is
desired to prioritize the strict satisfaction of constraints over
optimality. The barrier function method [1], [2], [3] has been
proposed as an approach to this problem.

Barrier functions (BFs) are Lyapunov-like functions [4],
whose use can be traced back to optimization problems
[5]. More recently, they have been employed to prove set
invariance [6], [7], [8], for multi-objective control [9], and
in assisting Lyapunov functions [10]. Control BFs (CBFs) are
extensions of BFs for control systems. Recently, it has been
shown that CBFs can be combined with control Lyapunov
functions (CLFs) [11], [12], [13] as constraints to form
quadratic programs (QPs) [1] for nonlinear control systems
that are affine in controls, and these QPs can be solved in
real time. While computationally efficient, the CBF and CLF-
based QPs can easily be infeasible in the presence of both
safety constraints and tight control limitations, especially for
high relative degree systems.

The CLF constraints are usually relaxed [13] such that they
do not conflict with the CBF constraints in the QPs. Recent
work showed that rich specifications given in signal temporal
logic [2] and linear temporal logic [14] can be translated
to constraints and implemented by the CBF method with
good solution feasibility if the constraints are with relative
degree one. Several approaches to improve feasibility for the
CBF and CLF-based QPs on specific applications have been
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proposed. For the adaptive cruise control (ACC) problem
(the system is with relative degree two) defined in [1], the
infeasibility issue is addressed by including the minimum
braking distance in the safety constraint. In this case, an
additional complex constraint needs to be added. Further, this
approach does not scale well for high-dimensional systems.
The penalty method [3] we recently developed can improve
the feasibility of the QPs by penalizing the class K functions
in the definition of a High Order CBF (HOCBF) [3] for an
arbitrary relative degree constraint.

In this paper, we adopt the CBF method to improve
the feasibility and feasibility robustness of optimal control
problems with stringent safety constraints (usually with high
relative degree) and tight control limitations in an unknown
environment. Feasibility robustness is defined in terms of
maximally ensuring the feasibility of the CBF-associated
QPs in the presence of time-varying and unknown unsafe
sets. Based on our proposed penalty method from [3], we
parameterize a HOCBF, and use the parameters to improve
the feasibility of the CBF and CLF-based QPs. Since tra-
jectories of a system may be required to avoid a number
of unsafe sets at the same time, we propose the idea of
minimizing the value of a HOCBF (usually a distance metric
to an unsafe set) when the corresponding HOCBF constraint
first becomes active. In other words, we want the HOCBF
constraint to become active as late as possible in the QPs.
The main benefits of maximizing the robustness lie in the
fact that the QP feasiblity can be maintained when the
unsafe sets are unknown and with detection noise. Another
contribution of this paper is to put forward a feasibility-
guided method to learn the optimal parameters in a HOCBF
corresponding to a specific type of unsafe set such that
the robustness is maximized. We compare the proposed
feasibility-guided method with the gradient-descent method
with results showing improved controller robustness in a
robot control problem.

II. PRELIMINARIES

Consider an affine control system of the form

ẋ = f(x) + g(x)u (1)

where x ∈ Rn, f : Rn → Rn and g : Rn → Rn×q are
globally Lipschitz, and u ∈ U ⊂ Rq (U denotes the control
constraint set). Solutions x(t) of (1), starting at x(0), t ≥ 0,
are forward complete.

Definition 1: A set C ⊂ Rn is forward invariant for
system (1) if its solutions starting at any x(0) ∈ C satisfy
x(t) ∈ C for ∀t ≥ 0.
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The relative degree of a high order differentiable function
b : Rn → R with respect to system (1) is the number of
times we need to differentiate it along its dynamics until the
control u explicitly shows in the corresponding derivative.
In this paper, since function b is used to define a constraint
b(x) ≥ 0, we will also refer to the relative degree of b as
the relative degree of the constraint.

For a constraint b(x) ≥ 0 with relative degree m, b :
Rn → R, and ψ0(x) := b(x), we define a sequence of
functions ψi : Rn → R, i ∈ {1, . . . ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m}, (2)

where αi(·), i ∈ {1, . . . ,m} denote differentiable class
K functions [15]. We further define a sequence of sets
C1, . . . , Cm associated with (2) in the form:

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (3)

Definition 2: (High Order Control Barrier Function
(HOCBF) [3]) Let C1, . . . , Cm be defined by (3) and
ψ1(x), . . . , ψm(x) be defined by (2). A function b : Rn → R
is a high order control barrier function (HOCBF) of relative
degree m for system (1) if there exist differentiable class K
functions α1, . . . , αm such that

sup
u∈U

[Lm
f b(x)+LgL

m−1
f b(x)u+R(b(x))+αm(ψm−1(x))] ≥ 0,

(4)
for all x ∈ C1∩, . . . ,∩Cm. In (4), Lf , Lg denote Lie
derivatives along f and g, respectively, R(·) denotes the
remaining Lie derivatives along f with degree less than or
equal to m− 1 (omitted for simplicity, see [3]).

Theorem 1: ([3]) Given a HOCBF b(x) from Def. 2 with
the associated sets C1, . . . , Cm defined by (3), if x(0) ∈
C1∩, . . . ,∩Cm, then any Lipschitz continuous controller
u(t) ∈ U, ∀t ≥ 0 that satisfies (4) renders C1∩, . . . ,∩Cm
forward invariant for system (1).

Definition 3: (Control Lyapunov function (CLF) [13]) A
continuously differentiable function V : Rn → R is a glob-
ally and exponentially stabilizing control Lyapunov function
(CLF) for system (1) if there exist constants c1 > 0, c2 >
0, c3 > 0 such that, for ∀x ∈ Rn, c1||x||2 ≤ V (x) ≤
c2||x||2 and

inf
u∈U

[LfV (x) + LgV (x)u+ c3V (x)] ≤ 0. (5)

Note that (5) can be relaxed by replacing 0 with a
relaxation variable δ ∈ R at its right-hand side. However, this
may not guarantee stability. Recent works [1], [2] combine
CBFs and CLFs with quadratic costs to form optimization
problems. Time is discretized and an optimization problem
with constraints given by CBFs and CLFs is solved at each
time step. Note that these constraints are linear in control
since the state is fixed at the value at the beginning of the
interval. Therefore, the optimization problem is a sequence
of quadratic programs (QPs).

III. PROBLEM FORMULATION

Consider an optimal control problem for system (1) with
the cost defined as:

min
u(t)

∫ tf

0

C(||u(t)||)dt, (6)

where || · || denotes the 2-norm of a vector; tf denotes the
final time; and C(·) is a strictly increasing function.

State convergence: We want the state of system (1) to
converge to a point K ∈ Rn, i.e.,

||x(t)−K|| ≤ ξ, ∀t ∈ [t′, tf ], (7)

where ξ > 0 is a small number and t′ ∈ [0, tf ].
Constraint 1 (Unsafe Sets): Let So denote a set of unsafe

sets. System (1) should always avoid all unsafe regions
(obstacles) j ∈ So, i.e.,

bj(x(t)) ≥ 0, ∀t ∈ [0, tf ]. (8)

where bj : Rn → R, ∀j ∈ So is continuously differentiable.
A HOCBF constraint for (8) becomes active when a

control u makes (4) become an equality.
Feasibility robustness: The feasibility robustness of a

controller with respect to a constraint (8) can be quantified
by the value of bj(x(ta)) when the HOCBF constraint (4)
for (8) first becomes active at ta ∈ [0, tf ] and is active
afterwards. The value of bj(x) usually denotes a distance
metric to the unsafe set j ∈ So. In order to maximize the
feasibility robustness, we need to minimize

min
ta

bj(x(ta)), j ∈ So. (9)

Remark 1: There are three main advantages in maximiz-
ing the feasibility robustness of the controller: (i) The QPs
are more likely to become feasible since fewer constraints
will become active when a system gets close to a number of
unsafe sets; (ii) In an unknown environment, the controller
obtained through the QPs is more robust to the change of
environment and the detection of unknown unsafe sets since
the corresponding HOCBF constraints only work (become
active) when a system gets close to these unsafe sets. If the
corresponding HOCBF constraints become active before the
unsafe sets are detected, the system may fail to avoid these
unsafe sets. (iii) There is higher probability to find a better
solution (e.g., energy optimal) if the feasibility robustness
is maximized since the QPs are less constrained. However,
achieving (9) can increase the chance of collision in the
presence of disturbances. This can be solved by relaxing the
requirement in (9), i.e., by minimizing ||bj(x(ta))−d0||, for
some d0 > 0. This can also be solved by considering the
noise bounds in (4) if the bounds are known [16].

Constraint 2 (Control limitations): Assume we have a set
of constraints (componentwise) on control inputs of system
(1) in the form:

umin ≤ u(t) ≤ umax, ∀t ∈ [0, tf ], (10)

where umin ∈ Rq and umax ∈ Rq denote the minimum
and maximum control input vectors, respectively. The state
constraints are similar to (10), and can be included in (8).

A control policy for system (1) is feasible if constraints
(8) and (10) are satisfied. In this paper, we consider:

Problem: Find a feasible control policy for system (1)
such that cost (6) is minimized, robustness is maximized
(i.e., (9) is minimized), and state convergence (7) is satisfied
with the smallest possible t′.
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Approach: The robustness objective (9) depends on the
time ta, where ta is determined once a HOCBF in the above
problem is defined. Therefore, we need to consider objective
(9) in the definition of a HOCBF. We decompose the above
problem into two sub-problems: (i) objective (6) subject to
(8), (10) and (7) that is solved with the QP-based method
from [1]; (ii) objective (9) after solving sub-problem (i).

IV. LEARNING TO INCREASE FEASIBILITY ROBUSTNESS

The learning objective is to maximize the feasibility ro-
bustness of the controller with respect to unknown unsafe
sets. We define unsafe sets as being of the same “type” if
they have the same geometry such that the feasibility of sub-
problem (i) is the same, e.g., circular unsafe sets are the same
type if they have the same radius but different locations. Let
St ⊆ So denote the index set of all the unsafe set types.

A. Online HOCBF and CLF-based QP (sub-prob. (i))

The approach to sub-problem (i) is based on partitioning
the time interval [0, tf ] into a set of equal time intervals
{[0,∆t), [∆t, 2∆t), . . . }, where ∆t > 0. In each interval
[ω∆t, (ω+1)∆t) (ω = 0, 1, 2, . . . ), we assume the control is
constant (i.e., the overall control will be piece-wise constant).
Then at t = ω∆t, we solve

min
u(t),δ(t)

C(||u(t)||) + p0δ
2(t) (11)

subject to (10), the CLF constraint (5) for (7) (by defining a
CLF for (7) such that the CLF constraint is satisified) and the
HOCBF constraints (4) corresponding to (8), where p0 > 0 is
a penalty on the relaxation δ(t) ∈ R, and δ(t) is a relaxation
variable on the CLF constraint as discussed after Def. 3. The
above optimization problem can easily become infeasible. In
the rest of the paper, we show how we can use machine
learning techniques in finding the optimal parameters in a
HOCBF such that the feasibility robustness is maximized;
this is accomplished in the next subsection.

B. The Penalty Method

To improve the feasibility [3] of the problem (11), we add
penalties on the class K functions α1(·), α2(·), . . . , αm(·),
where m denotes the relative degree of the constraint b(x) ≥
0 in the definition of a HOCBF b(x). Let ψ0(x) := b(x). In
the set of class K functions that consist of power functions,
we select the αi(·) functions in (2) as follows:

ψi(x) := ψ̇i−1(x) + piψ
qi
i−1(x), i ∈ {1, . . . ,m} (12)

where pi > 0, i ∈ {1, . . . ,m} and qi > 0, i ∈ {1, . . . ,m}.
Then, we can obtain the HOCBF constraint (4) when com-
bining with dynamics (1), as shown in Def. 2.

For each type of unsafe set j ∈ St, we consider an
arbitrary location for it and get an unsafe set constraint
bj(x(t)) ≥ 0, similar to (8). Let p := (p1, . . . , pm),
q := (q1, . . . , qm). We know from [3] that the values of
q1, . . . , qm affect the feasibility region of (11), as well as
what time the HOCBF constraint (4) will be active, i.e., we
can rewrite bj(x(ta)) as bj(x(ta),p, q). Let Dj(p, q) :=
bj(x(ta),p, q). Since bj(x(ta),p, q) is fixed once p, q are

given, bj(·) no longer explicitly depends on x(ta), therefore,
we can reformulate (9) so that the minimization is over p, q:

min
p,q
Dj(p, q), j ∈ St. (13)

We can view the minimization of Dj(p, q) as the maximiza-
tion of the feasibility robustness that depends on p, q.

Then, we need to find the optimal p and q that minimize
(13) for each unsafe set type j ∈ St. However, this optimiza-
tion problem is hard to solve. We will introduce an approach
using machine learning techniques in the following section.

C. Offline Feasibility-Guided Optimization (sub-prob. (ii))

Given an arbitrary x(0), most of the p, q values result
in infeasible solutions of problem (11), which makes (13)
difficult to solve. Therefore, we need to first solve the infea-
siblity problem of sub-problem (i). We randomly sample p, q
values over their domain (positive), and for each set of p, q
values, we solve problem (11) until the state convergence
(7) is achieved. If problem (11) is feasible at all times, then
we label this particular set of p, q values as +1, otherwise,
we label it as −1. Eventually, we get sets of feasible and
infeasible p, q points. Note that the penalty method [3]
guarantees that +1 data points exist given the control bounds
(10). We assume that the control bounds (10) are properly
defined such that we can select balanced data sets with large
enough data size from the randomly sampled data. Then
we can apply a classification method, e.g., a support vector
machine (SVM), to classify these two balanced sets and get
a continuously differentiable hypersurface Hj : R2m → R,
where

Hj(p, q) ≥ 0 (14)

denotes the set of p, q values which leads to the feasible
solution of QPs (11), i.e., the feasibility constraint for the
set of p, q values associated with the QPs (11). We wish
to get the set of p, q values such that (14) is satisfied, but
(14) is usually complex, therefore, we define Hj(p, q) to be a
HOCBF. Just like b(x) is associated with the dynamic system
(1), we need to introduce an auxiliary dynamic system for
Hj(p, q) and take p, q as state variables, as shown later.

Note that subproblem (ii) depends on subproblem (i),
and the feasibility of subproblem (i) depends on control
bounds (10). We have imposed the assumption that the
control bounds (10) are properly defined such that the
whole problem is well-posed to get a proper constraint (14)
from the hypersurface. With the assistance of the feasiblity
classification hypersurface, we look further to optimize (13),
i.e., we consider (13) subject to (14). However, the learned
hypersurface is generally complex, and thus makes this op-
timization problem very hard to solve. We use the following
approach to simplify this optimization problem.

We start at some feasible p0 ∈ Rm, q0 ∈ Rm to search
for the optimal p, q values. Since the determination of the
optimal p, q is a dynamic process, we define the gradient
(auxiliary dynamics) for p, q as the variations of p, q that
are controlled, i.e., we have

(ṗ(t), q̇(t)) = ν(t), p(t0) = p0, q(t0) = q0, (15)
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where ν ∈ R2m denotes an input vector in the dynamic
process constructed in order to determine the optimal p, q.
t denotes the dynamic process time for the optimization of
(13), which is different and independent from t in (1) and
problem (11). t0 ∈ R denotes the initial time.

Considering feasibility of problem (11), the dynamic pro-
cess that is determined by ν should be subjected to (15), as
well as subjected to the HOCBF constraint for (14) since we
define the hypersurface in (14) to be a HOCBF to simplify
the feasibility constraint (14), as discussed in the last three
paragraphs. Note that we can get the feasibility constraint
(14) from the classifier hypersurface Hj(p, q). Since we take
all the state variables of the auxiliary dynamics (15) as the
input for the classifier, the relative degree of the feasibility
constraint (14) with respect to (15) is 1, i.e., we only need
to differentiate Hj(p, q) along the dynamics (15) once to let
ν show up. We then define the hypersurface in (14) as a
HOCBF with m = 1 for the auxiliary system (15), and a
control ν should satisfy the HOCBF constraint (4) which in
this case is:

dHj(p, q)

d(p, q)
ν + α1(Hj(p, q)) ≥ 0, (16)

where α1(·) is a class K function. Any control ν that satisfies
(16) implies that the resulting p, q (determined by ν) leads
to a feasible solution of QPs (11) in the dynamic process.

We implement the feasibility constraint (14) by the
HOCBF constraint (16) in which the control ν explicitly
shows. However, the cost function (13) is only defined over
the state of the auxiliary dynamics (15), and we also wish the
control ν to show up in the cost function, which is required
by the CBF-based optimization, as shown in Sec. IV-A.
Therefore, we consider the derivative of the cost function
(13) as our new cost to let ν show up in the cost function.
As long as the derivative of (13) is negative, we make sure
that (13) is decreasing in each time step by discretizing t
similar to sub-problem (i). The dynamic process to simplify
the solution of problem (13) is as follows.

By taking the derivative of (13) with respect to t, we have

dDj(p(t), q(t))

dt
=
dDj(p(t), q(t))

d(p(t), q(t))
ν. (17)

Then, we reformulate sub-problem (ii) through the dy-
namic process (15). The result is the Feasibility-Guided
Optimization (FGO) algorithm that is implemented by the
same approach as introduced in Sec. IV-A, i.e., we discretize
t, and at each t = ω∆t, ω ∈ {0, 1, . . . }, where ∆t > 0
denotes the discretization constant, we solve

min
ν(t)

dDj(p(t), q(t))

d(p(t), q(t))
ν(t), s.t. (16), (15). (18)

Then update (15) for t ∈ (ω∆t, (ω + 1)∆t) with ν∗(t).
Note that in the last equation, dDj(p(t),q(t))

d(p(t),q(t)) is a vector of
dimension 1×2m, while ν is a vector of dimension 2m×1.
Therefore, the cost function in the last equation is a scalar
function of ν.

The optimization problem (18) is a linear program (LP)
at each time step for each initial p, q (we need to reset t

for each set of initial p, q values). Without any constraint
on ν, the LP (18) is ill-posed because it leads to unbounded
solutions. In fact, the value of ν determines the search step
length of the FGO algorithm implemented through the LP
(18), and we want to limit this step length. Therefore, we
add limitations to ν for the LP (18):

νmin ≤ ν ≤ νmax. (19)

where νmin < 0,νmax > 0 (componentwise), 0 ∈ R2m.
After adding (19) to (18), the dynamic process search

step length will become bounded. Although there are con-
trol limitations on ν, the resulting LP from the optimiza-
tion (18) is always feasible as the relative degree of (14)
with respect to (15) is 1 [3]. We also need to evaluate
∂Dj

∂p1
, . . . ,

∂Dj

∂pm
,
∂Dj

∂q1
, . . . ,

∂Dj

∂qm
at each time step, i.e., evaluate

the coefficients of the cost function (18).
The resulting process is the FGO algorithm formulated

from (18) to optimize p, q. For each step of the FGO
algorithm, the following four conditions may terminate it: (i)
the problem (11) becomes infeasible (since the hypersurface
from SVM cannot ensure 100% classification accuracy), (ii)
the evaluated values of ∂Dj

∂p1
, . . . ,

∂Dj

∂pm
,
∂Dj

∂q1
, . . . ,

∂Dj

∂qm
are all

0, (iii) the objective function value of (13) is greater than
the current known minimum value. (iv) the iteration time
exceeds some N ∈ N. The FGO algorithm can be found in
[17].

If we consider (18) without the constraint (16), then we
have the commonly used gradient descent (GD) algorithm.
The FGO algorithm is more conservative compared with
GD since the solution searching path is guided by the
feasibility of (11). Meanwhile, the hypersurface in (14)
cannot guarantee the correctness of the FGO method due to
the classification error. We can apply GD one step forward
whenever the FGO algorithm terminates to alleviate this
limitation.

Note that we can update the training set and get a new
classifier in (14) after running the FGO algorithm for a
number of different initial samples p0, q0, i.e., re-initialize
(15) for each FGO process. We will show how this may
affect the performance of FGO in the case studies considered
in Sec. V. Once we have learned feasibility and robustness
for some type-known unsafe sets with the FGO algorithm,
we can use these unsafe sets to approximate other types of
unsafe sets.

Remark 2: The time complexity of subproblem (i), i.e.,
the QP (11), is O(d3), where d = q + 1 is the dimension of
decision variables. Since the CBF method (after pre-training)
does not need planning, it is more computationally efficient
than path planning methods, such as Rapidly-exploring Ran-
domized Trees (RRT) [18] and A* [19], as seen in Sec. V.

Remark 3: The time complexity of subproblem (ii) is that
of a LP [20], i.e., O((d+c)1.5dL), where d, c are the number
of decision variables and constraints, respectively, and L is a
given parameter. Thus, the complexity of the FGO is almost
the same as the GD one as it just has one more constraint than
the GD method, so the computational times are comparable.
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V. IMPLEMENTATION AND CASE STUDIES

We implemented the FGO algorithm in MATLAB and
performed simulations for a robot control problem. Suppose
all the obstacles are of the same type but the obstacle number
and their locations are unknown to the robot, and the robot
is equipped with a sensor ( 23π field of view (FOV) and 7m
sensing distance with 1m uncertainty) to detect the obstacles.

The robot dynamics are defined as ẋ = v cos(θ), ẏ =
v sin(θ), θ̇ = u1, v̇ = u2, where x, y denote the location
along x, y axis, respectively, θ denotes the heading angle of
the robot, v denotes the linear speed, and u1, u2 denote the
two control inputs for turning and acceleration, respectively.

We consider cost (6) as the energy consumption:
minu(t)

∫ tf
0

[
u21(t) + u22(t)

]
dt. We also want the robot to

arrive at a destination (xd, yd) ∈ R2, i.e., drive (x(t), y(t))
to (xd, yd), ∀t ∈ [t′, tf ], t′ ∈ [0, tf ], as defined in (7). The
robot dynamics are not full state linearizable [15] and the
relative degree of the position (output) is 2. Therefore, we
cannot directly apply a CLF. However, the robot can arrive at
the destination if its heading angle θ stabilizes to the desired
direction and its speed v stabilizes to a desired speed v0 > 0,
i.e., θ(t)→ arctan( yd−y(t)xd−x(t) ), v(t)→ v0, ∀t ∈ [0, tf ]. Now,
we can apply the CLF method since the relative degrees of
the heading angle and speed are 1.

The unsafe sets (8) are defined as circular obstacles:√
(x(t)− xi)2 + (y(t)− yi)2 ≥ r, ∀i ∈ S, (20)

where (xi, yi) denotes the location of the obstacle i ∈ S,
and r > 0 denotes the safe distance to the obstacle.

The speed and control constraints (10) are defined as:
Vmin ≤ v(t) ≤ Vmax, u1,min ≤ u1(t) ≤ u1,max, u2,min ≤
u2(t) ≤ u2,max,, where Vmin = 0m/s, Vmax =
2m/s, u1,max = −u1,min = 0.2rad/s, u2,max =
−u2,min = 0.5m/s2. Other parameters are p0 = 1,∆t =
0.1s. ∆t = 0.1,νmax = −νmin = (0.1, 0.1, 0.1, 0.1).

We set up the FGO algorithm training environment with
the initial position of the robot, the location of the obstacle
(with radius 6m and r = 7m) and the destination as
(5m, 25m), (32m, 25m) and (45m, (25+ε)m) where ε ∈ R,
respectively. The initial heading angle and speed of the robot
are 0 deg and Vmax, respectively. The map for FGO training
is shown in Fig. 2(a).

Note that the value of ε will affect the trajectory of the
robot since we have a circular obstacle. If ε = 0, the robot
will eventually stop at the equilibrium point shown in Fig.
2(a). If ε > 0, the robot goes left around the obstacle as
shown in Fig. 2(a). Otherwise, the robot turns right.

We choose a very small ε 6= 0 in our FGO algorithm. Since
the obstacle constraint (20) is with relative degree 2 with
respect to the dynamics, we have p = (p1, p2), q = (q1, q2).
We get balanced data sets (the ratio of the samplings between
+1 and −1 labelled data is 1:1 for both training and testing
sets) from the random samplings with M training and 1000
testing samples for p and q over interval (0, 3] and (0, 2],
respectively.

The classification model is the support vector machine
(SVM) with polynomial kernel of degree 7, i.e., the kernel

function k(y, z) is defined as k(y, z) = (c1 + c2y
Tz)7,

where y, z denote input vectors of SVM (i.e., y := (p, q),
as well as for z). We set c1 = 0.8, c2 = 0.5, and the
comparisons between FGO and GD are shown in Table I
(“better/worse than GD percentage” denotes the percentage
of data in the testing set that the FGO obtains a better
objective vaule (9) of subproblem (ii) than the GD method).

(a) FGO and GD algorithm search paths in 2D.

(b) FGO and GD algorithm search paths in 3D.

Fig. 1. FGO and GD comparison. The red and green circles denote
infeasible and feasible points for p, q in the training samples, respectively.

The FGO has better performance compared with GD in
finding Dmin when the number of training samples M for
the hypersurface (16) is large enough, as shown in Table
I. FGO and GD have almost the same computational cost,
i.e., < 0.01s for both. But this advantage decreases when
the classification accuracy of the hypersurface (16) further
increases, which may be due to over-fitting. One comparison
example between FGO and GD search paths is shown in Fig.
1(a), 1(b). Note that we can combine them to get improved
capability to search for p∗, q∗. If we apply the FGO method
to the good results from GD, the additional improvement
percentage is around 5% among all the testing samples.

We have implemented the learned optimal penalties and
powers (p∗1, p

∗
2, q
∗
1 , q
∗
2) = (0.7426, 1.9745, 1.9148, 0.7024)

in the definition of all the HOCBFs for all obstacles in a
robot exploration problem in an unknown environment. We
should also note that the optimal penalties and powers are
not unique. All the circular obstacles are with different size
to test the robustness of the penalty method with the learned
optimal parameters, and are static but randomly distributed.
The robot can safely avoid all the obstacles and arrive at its
destination if the obstacles do not form traps such that the
robot has no way to escape.

We also compared the CBF-based robot exploration frame-
work with the RRT [18] and A* [19] algorithms by consider-
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TABLE I
COMPARISONS BETWEEN THE GD AND FGO ALGORITHMS

items GD FGO
Training sample number M 500 1000 1500 2000 2500 3000 3500 4000

Classification accuracy 0.879 0.927 0.939 0.953 0.960 0.963 0.966 0.970
Better than GD percentage 0.210 0.248 0.254 0.252 0.244 0.282 0.288 0.266
Worse than GD percentage 0.270 0.190 0.232 0.204 0.218 0.218 0.240 0.240

Dmin/m (samples min.: 5.0) 4.6 4.6 4.6 4.6 4.8 4.6 4.6 4.6 4.6

TABLE II
PERFORMANCE COMPARISON BETWEEN CBF, A* AND RRT

item R.T.
compute

time

safety
guarantee

Environment
knowledge

pre-training

CBF < 0.01s Yes not required required
A* 1.3s No required not required

RRT 0.3s No required not required

ing the configuration shown in Fig. 2(b). The pre-training for
the CBF-based method could be several hours. Both the RRT
and A* algorithms have global environment information such
that they tend to choose shorter-length trajectories compared
with the CBF method. But this advantage disappears if the
environment is changing fast, in which case the CBF method
tends to be more robust and computationally efficient. Com-
parisons based on four different criteria are shown in Table II.
In a dynamic environment, the RRT and A* algorithms need
to re-plan their path at each time step, but the CBF method
does not need to do this. Therefore, we can see that the
CBF-based framework is able to better adjust to the change
of environment and computationally efficient.

(a) FGO pre-training map with fea-
sible example trajectories.

(b) Comparison of robot paths be-
tween CBF, A* and RRT.

Fig. 2. Case study setup and planning frameworks comparison.

VI. CONCLUSIONS

The proposed feasibility-guided learning approach has
shown an improved ability to determine the optimal parame-
ters of a HOCBF compared with the gradient-descent method
in terms of feasibility robustness. The implementation on a
robot safe exploration problem has shown good potential
and adaptivity of the proposed framework for planning
with safety guarantees compared with other path planning
methods. Although the improvement of the FGO in the
studied example is not impressive compared with GD, the
proposed FGO offers an effective approach to optimize

system parameters, and has the potential to have better
performance on other problems. Future work will focus on
how to deal with traps formed by obstacles, and apply the
proposed method to moving obstacles.
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