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Abstract— This paper studies optimal pricing and rebal-
ancing policies for Autonomous Mobility-on-Demand (AMoD)
systems. We adopt a macroscopic planning perspective to tackle
a profit maximization problem while ensuring that the system
is load-balanced. We describe the system using a dynamic fluid
model to show the existence and stability of an equilibrium
(i.e., load balance) through pricing policies. We then develop
an optimization framework that allows us to find optimal
policies in terms of both pricing and rebalancing. We first
maximize profit by only using pricing policies, then incorporate
rebalancing, and finally we consider whether the solution is
found sequentially or jointly. We apply each approach to a
data-driven case study using real taxi data from New York
City. Depending on which benchmarking solution we use, the
joint problem (i.e., pricing and rebalancing) increases profits
by 7% to 40%.

I. INTRODUCTION

WITH the rise of Mobility-on-Demand (MoD) services
(e.g. Uber, Lyft, DiDi) and the rapid technological

evolution of self-driving vehicles, we are closer to hav-
ing Autonomous Mobility-on-Demand (AMoD) systems. A
crucial step in the proper functioning of such a service is
to define pricing, rebalancing and routing policies for the
operator’s fleet. This paper focuses on the first two issues,
while the interested reader is directed to [1] for a discussion
on routing and rebalancing.

Pricing policies play an important role as they modulate
the inflow of customers traveling between regions in the
network. As a result, the controller has the ability to choose
prices such that the induced demand ensures a balanced
load of customers and vehicles arriving at each location.
In addition, the selection of prices enables the operator to
modulate demand such that the system can operate with
smaller or larger fleet sizes. If we restrict a pricing policy
to require balancing the load in every node, we expect
the solution to concentrate on balancing the network rather
than choosing the prices to maximize profit. To give the
pricing policy more flexibility, AMoD systems can leverage
rebalancing policies, i.e., send empty vehicles from regions
with excess supply of vehicles to regions with excess demand
with the objective of achieving higher profits.

Related Literature: Researchers have tackled the pricing
problem using two main settings: one-sided, or two-sided
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markets depending on whether the MoD controller has full
or limited control over the supply. One-sided markets assume
full control over the vehicles [2], [3], whereas two-sided
markets consider self-interested suppliers (drivers) [2], [4].
To the best of our knowledge, all these optimal pricing
policies, except [3], do not rebalance externally. Rather,
they incentivize the supply (human drivers) to reallocate
by the use of compensations. Our model differs from [3],
which uses a microscopic model and Reinforcement Learn-
ing techniques, by the level of abstraction performed. As an
alternative to a microscopic model we employ a macroscopic
(planning) model to assess the benefits of jointly solving the
pricing and rebalancing problem over other approaches.

In contrast to pricing, the rebalancing of AMoD systems
(without pricing) has been studied using simulation [5]–[7],
queuing-theoretical [8], [9], and network-flow [10], [11]
models and it has also been tackled jointly with routing
schemes [1], [12]. In [5], the rebalancing problem is ad-
dressed using a data-driven parametric controller suited for
real-time implementation. Alternatively, [10] uses a steady-
state fluid model which serves as a basis for our results.

Key contributions: In this work we provide a theoretical
framework to design optimal pricing policies for an AMoD
provider. We analyze the system in the spirit of [10], con-
verting the problem into profit maximization rather than an
operational cost minimization. Different from the existing
methods in pricing, we consider the destination of a customer
when designing the pricing policy. This allows the fleet
controller to modulate demand in such a way that the system
is balanced by solely adjusting prices. Additionally, we incor-
porate the rebalancing policy optimization framework in [10]
and formulate a joint optimization model. We compare this
joint strategy with four different methodologies. First by only
finding optimal prices, second by only rebalancing the fleet,
third by sequentially solving the rebalancing and then pricing
of the system, and fourth by jointly estimating pricing and
rebalancing with a unique surge price by origin. We apply
each approach to two case studies; one, with simulated data;
and another, with real taxi data from New York City.

Organization: The paper is organized as follows. In Sec-
tion II we introduce the fluid model consisting of queues
of customers and vehicles at every region. In Section III,
we show that the system is well-posed and establish the
existence of a load balance equilibrium through the selection
of prices. We also obtain local stability results. In Section IV,
we state the problems of optimal pricing, optimal rebalancing
and the joint formulation of these two. Then, we present case
studies to assess the performance of the joint formulation in
Section V. Finally, in Section VI we conclude.
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II. MODEL

In this section we present a steady-state deterministic fluid
model to find optimal prices in an AMoD system while en-
suring service to customers. This model is intended to serve
as a relaxation of the corresponding stochastic queueing
model where customers arrive according to a Poisson process
and travel times are non-deterministic (usually exponentially
distributed). The reason for making this relaxation is the
flexibility it provides to perform analysis of the system.

Consider a fully-connected network G = (N ,A) where N
is the set of nodes (regions) N = {1, ..., N} and A = {(i, j) :

i, j ∈ N ×N} is the set of arcs. A customer requests a ride
in region i, receives a transportation service from the AMoD
platform, and is charged a price composed of the product
of a base and a surge price. The total price is pij = p0ijuij
where p0ij , uij are the base and surge prices, respectively, for
traveling from node i to j. Throughout the paper, we will use
the surge price uij as our control variable, and we assume
that uij ≥ 1 as the platform is not willing to charge less than
its base price.

We further assume that customers’ arrival rate is a function
of the surge price, namely λij(uij) : R≥1 7→ R≥0 for a
customer travelling from i to j. This function is known as
the willigness-to-pay or the demand function. Let the base
demand be λ0ij = λij(1), i.e., the demand rate of customers
when the surge price is at its minimum.

As in [10], we use a queueing model for this system with
two queues per region. We let ci(t) ∈ R≥0 be the number
of customers at region i waiting to be assigned to a vehicle;
and denote with vi(t) ∈ R≥0 the number of available vehicles
waiting in region i at time t. Moreover, the AMoD provider
assigns vehicles to customers located in the same region at
a service rate µi. We assume that µi >

∑
j λ

0
ij , meaning that

the platform assigns vehicles to customers faster than the
rate at which customers arrive. This assumption is required
to avoid building large customer queues. For the purpose of
this paper, we consider the rate vectors λ = (λij ; ∀i, j ∈ N )

and µ = (µi; ∀i ∈ N ) to be invariant (we use bold notation
to represent a vector containing all the variables sharing the
same symbol). This allows us to analyze the steady-state
solution of the system. Finally, we let Tij ∈ R≥0 be the travel
time for a passenger to go from i to j, which we assume to
be fixed and not dependent on the routing decisions of the
AMoD system (see Fig. 1). To continue with our analysis,
we make the following assumptions:

Assumption 1. The function λij(·) is monotonically de-
creasing ∀i, j ∈ N , i.e., as price increases, the demand rate
decreases.

Assumption 2. There exists a surge price umax
ij for which

λij(u
max
ij ) = 0, ∀i, j ∈ N .

Customer Dynamics: Consider a customer queue ci(t)

for each region i ∈ N in the network. The queue dynamics
are:

ċi =


∑

j
λij(uij), if vi = 0,

0, if vi ≥ 0 and ci = 0,∑
j
λij(uij)− µi, if vi ≥ 0 and ci ≥ 0.
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Region 2

Region jRegion i
Rebalancing flows

AMoD user flow

Ti1

Ti2

Tij

λi1(ui1)

rij

ci

vi

∑
j λij(uij) λi2(ui2)

λij(uij)

c1

v1

c2

v2

cj

vj

Fig. 1: Customer traveling from i to j arrive to region i at rate λij(uij)
and it takes Tij units of time to reach j. The AMoD provider plans a
pricing policy u and a rebalancing policy of empty vehicles rij to serve
their customers such that its profit is maximized. Note this is a fluid model
as opposed to a discrete event system.

In order to express the customer dynamics with shorter
notation we let H(x) = 1x>0 be an indicator function for
positive values of x, and we use the following shorthand
notation:

λij := λij(uij), λi :=
∑

j
λij , vi := vi(t),

ci := ci(t), vij := vj(t− Tji), cij := cj(t− Tji)

where λi is the total endogenous outgoing flow from node
i; and cij , v

i
j are the customer and vehicle queue levels in

region j at time t − Tij , respectively. Then, we rewrite the
customer dynamics in compact form as follows:

ċi = λi(1−H(vi)) + (λi − µi)H(ci)H(vi).

Note that as a result of using a fluid model, the variables
denoting the number of customers in a region are real-valued.

Vehicle Dynamics: The outflow rate corresponding to
vehicles departing station i is given by:

v̇−i =


−λi, if vi ≥ 0 and ci = 0,

0, if vi = 0,

−µi, if vi ≥ 0 and ci ≥ 0.

which, by using the H(x) notation above, can be written as
v̇−i = −λiH(vi)+(λi−µi)H(vi)H(ci). In addition, the rate at
which customer-carrying vehicles arrive at station i is given
by: v̇+i =

∑
j(λjiH(vij)− (λji−µj)H(vij)H(cij)). Hence, the

vehicle dynamics is v̇i = v̇−i + v̇+i , which lead to

v̇i = −λiH(vi) + (λi − µi)H(ci)H(vi)

+
∑

j
(λjiH(vij)− (λji − µj)H(cij)H(vij)).

Then, the global system dynamics are expressed by the
following differential equations

ċi = λi(1−H(vi)) + (λi − µi)H(ci)H(vi), (1a)
v̇i = −λiH(vi) + (λi − µi)H(ci)H(vi) (1b)

+
∑

j
(λjiH(vij)− (λji − µj)H(cij)H(vij)).

which describe a non-linear, time-delayed, time-invariant,
right-hand discontinuous system.

III. WELL POSEDNESS, EQUILIBRIUM AND STABILITY

Similar to [10], we say that the system (1) is well posed if
two conditions are satisfied: (i) for any initial condition, there
exists a solution of the differential equations in (1), and (ii),
the number of vehicles in the system remain invariant over
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time. In order to analyze the model, we use the framework
of Filippov solutions [13]. Let us now give a proposition for
the well-posedness of the system:

Proposition 1 (Well-posedness of the fluid model).
1) For every initial condition in the fluid model repre-

sented in (1), there exist continuous functions ci(t) :

R≥0 7→ R≥0 and vi(t) : R≥0 7→ R≥0, ∀i ∈ N , satisfying
the system of equations in the Fillipov sense.

2) For all t > 0, the total number of vehicles is invariant
and equal to m =

∑
i∈N vi(0).

Proof: For 1), we use the framework in [14]. In particular,
we check that all assumptions and conditions of [14, Thm
II-1] are satisfied. This theorem, ensures the existence of
Fillipov solutions to the time-delayed differential equations
with discontinuous right-hand sides.

To prove the second claim, we separate the vehicle dynam-
ics in two parts: vehicles in transit vij(t), and vehicles at a
specific region vi(t). For the vehicles queued at i we know
their dynamics are as in (1b). For the vehicles in transit, we
let the total be

vij(t) =

∫ t

t−Tij
λijH(vi(τ)) + (λij − µi)H(ci(τ))H(vi(τ)) dτ,

and their dynamics are

v̇ij(t) = λijH(vi) + (λij − µi)H(ci)H(vi)

−(λijH(vji ) + (λij − µi)H(cji )H(vji )).

Hence, we let the total number of vehicles in the system be
m(t) =

∑
i vi(t) +

∑
ij vij(t) with dynamics:

ṁ(t) =
∑

i
v̇i(t) +

∑
ij
v̇ij(t), (2a)

=
∑

i

(
− λiH(vi) + (λi − µi)H(ci)H(vi) (2b)

+
∑

j
λjiH(vij)− (λji − µj)H(cij)H(vij)

)
+
∑

ij
v̇ij ,

=
∑

ij
−λijH(vi) + (λij − µi)H(ci)H(vi) (2c)

+
∑

ij
λjiH(vij)− (λji − µj)H(cij)H(vij) +

∑
ij
v̇ij ,

= 0. (2d)

Note this result is obtained by expanding the first term
in (2a) using (1b), rearranged terms and found that
−
∑
i v̇i(t) =

∑
ij v̇ij(t) =⇒ ṁ = 0, which implies that the

fleet size remains invariant over time.

Equilibria: We say that the system is in equilibrium
if customer queues (and therefore, waiting times) do not
grow to infinity. We show the existence of an equilibrium
in the fluid model (1) when we control the prices of every
origin-destination pair. Additionally, we show that by having
the ability to control the prices, one can have find multiple
equilibria for a desired fleet size, giving the flexibility to
AMoD managers to operate the system at different demand
levels. Most remaining proofs are omitted due to space
limitations, but can be found in [15].

Theorem 1 (Existence of equilibria). Let U be a set of prices
u, such that when u ∈ U we have∑

j
λij(uij)− λji(uji) = 0, ∀i ∈ N , (3)

and let mu :=
∑
ij Tijλij(uij). Then, if u ∈ U , and m > mu,

an equilibrium exists with c = 0 and v > 0. Otherwise no
equilibrium exists.

Lemma 1 (Existence of an equilibrium). The set U is never
empty, hence, at least one equilibrium exists.

Proof: We use the fact that there exists a price umax
ij for

which λij(umax
ij ) = 0 for all i, j ∈ N . Then, setting u = umax,

implies that an equilibrium exists. This strategy means that
we are not providing service to any request, nevertheless the
equilibrium exists.

Lemma 2 (Infinite number of equilibria). If there is a
positive demand tour in the graph, then there exists an
infinite number of price vectors u which can steer the system
to an equilibrium point.

Proof: Assume that there exists at least one Eulerian tour
(or cycle) in the graph for which λ0ij > 0 for all (i, j) ∈
cycle. Then, let λcycle = {λ0ij | (i, j) ∈ cycle} and the
minimum rate on that tour be λcyclemin = min{λij}(i,j)∈cycle.
Then by setting uij = umax

ij for all (i, j) 6∈ cycle, we can
express the equilibrium condition as∑
j:(i,j)∈cycle

λij(uij)− λji(uji) = 0, ∀i : (i, j) ∈ cycle. (4)

Now, we use the fact that λij(uij) is a monotonically
decreasing function and we focus on (i, j) ∈ cycle. Hence
for all λij(uij) > λcyclemin we can find a uij such that
λij(uij) = λcyclemin . Then, extending this for higher prices on
λcyclemin and using the same argument as before, we show
that there exists a pricing strategy u for which we can
obtain an equilibrium with a tour demand rate with any
value in the range (0, λcyclemin ).

These two lemmata imply that by incorporating an origin-
destination pricing strategy, we can operate a MoD service
at equilibrium for any demand rate and with any fleet size.

Corollary 1 (Minimum number of vehicles in equilibria).
The minimum number of vehicles to operate in an equilib-
rium induced by policy u is at least m > m := minumu

where mu :=
∑
ij Tijλij(uij).

Stability: In this section we study local stability of
the equilibria presented in the previous subsection. As an
example, we look at cases when a disruptive change happens
to the system, either because of an increase in customers or
a decrease in the availability of vehicles. Let u ∈ U and
assume mu > m. Then, we define the set of equilibria as

Υu := {(c,v) ∈ R2N | ci = 0, vi > 0, ∀i ∈ N ,

and
∑

i
vi = m−mu}. (5)

Definition 1 (Locally asymptotically stable). A set of equilib-
ria Υu is locally asymptotically stable if for an equilibrium
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(c,v) ∈ Υu, there exists a neighborhood Bδu(c,v) such that
every evolution of (1) starting at (c(τ),v(τ)) = (c,v), and
with (c(0),v(0)) ∈ Bδu(c,v) has a limit which belongs to
the equilibrium set Υu i.e., (limt−→+∞ c(t), limt−→+∞ v(t)) ∈
Υu, where τ ∈ [−maxi,j Tij , 0) and

Bδu(c,v) := {(c,v) ∈ R2N | ci > 0, vi = vi, ∀i ∈ N ,
and ||(c− c, 0)|| < δ)}. (6)

Theorem 2 (Stability of the equilibria). Let u ∈ U and mu >

m; then, the set of equilibria Υu is locally asymptotically
stable.

IV. OPTIMAL STRATEGIES

In this section, we present an optimization framework to
find optimal prices given endogenous demand rates. The
model aims to maximize the revenue of an AMoD provider
while ensuring load balancing of vehicles. We then present
a formulation which uses rebalancing (without prices) to
ensure load balancing. Finally, we combine these two ideas
into a single joint model.

Optimal Pricing: We are looking for the best pricing
policy that ensures the existence of an equilibrium (3).
Hence, we define the feasible set of the pricing problem
to be F = {u :

∑
i(λij(uij) − λji(uji)) = 0, ∀j ∈ N , u ∈

[1,umax]} and the profit maximization problem as

max
u∈F

∑
ij
λij(uij)uijp

0
ij − c

o
ijλij(uij)

− cc(λ0ij − λij(uij)), (7)

where λij(uij)uijp
0
ij and coij are the total revenue and the

operational cost of request i to j, respectively; and cc is
an additional penalty that the AMoD service incurs when a
costumer exists the platform because of a high price.

Note that if the functions Jij(uij) := λij(uij)uijp
0
ij −

coijλij(uij)− c
c(λ0ij(uij)−λij(uij)) are concave in the range

of [1,umax], then the optimization problem is tractable (we
maximize over a concave function with linear equality con-
straints). To ensure the concavity of the cost function Jij we
need its second derivative to satisfy

J̈ij ≤ 0 =⇒ λ̈ij(uij) ≤ −
2

uijp
0
ij − c

o
ij − cc

λ̇ij(uij). (8)

Recall that by Assumption 1 (λij is monotonically
decreasing) λ̇ij < 0. Hence, for any linear demand function,
the problem becomes tractable.

Optimal Rebalancing: We use the planning rebalancing
model developed in [10]. In this setting, we aim to find
a static rebalancing policy that reaches an equilibrium. Let
the rebalancing flow be rij , that is, the rate at which empty
vehicles flow from i to j. To solve the problem we use the
following Linear Program (LP) that minimizes the empty
travel time and seeks to equate the inflow and outflow of
vehicles at each region by using N2 variables

min
r≥0

∑
ij
Tijrij (9a)

s.t.
∑

i
λ0ij + rij − λ0ji − rji = 0, ∀j ∈ N . (9b)

TABLE I: Different policies evaluated to plan the operation of an AMoD
system.

Policy Type Formulation
Pij Individual (7)
Rij Individual (9)
Rij → Pij Sequential (9) then (7)

Pi + Rij
Joint with fixed
price by origin

(10) with uij = uik∀i, j, k ∈ N
Pij + Rij Joint (10)

Notice that in this case we use λ0ij instead of λij(uij) as we
do not consider the possibility of decreasing the demand
by adjusting prices. This LP is always feasible as one can
always choose rij = λ0ji > 0 for all i, j ∈ N which satisfies
the set of constraints (9b). All the results presented in
Section III hold for this problem as well and are studied
in [10].

Joint Pricing and Rebalancing: We are interested in
choosing the best policy which leverages different decisions
that the MoD providers face. In particular, we would like to
optimize the pricing, re-balancing and sizing problem. Then,
we can write the planning optimization problem as,

max
u,r,m

∑
ij
λij(uij)uijp

0
ij − c

o
ijλij(uij)− c

c(λ0ij(uij)

(10a)− λij(uij))− cr(rijTij)− cfm

s.t.
∑

i
λij(uij) + rij − λji(uji)− rji = 0, ∀j ∈ N

(10b)∑
ij
Tij(λij(uij) + rij) ≤ m, (10c)

u ∈ [1,umax], (10d)

where cr and cf are the cost of rebalancing and the cost of
owning and maintaining a vehicle per unit time, respectively.
Note that to ensure that solving (10) reaches a global
maximum, we must validate that (8) holds for u ∈ [1,umax].

This problem, if solvable, yields a solution with higher
profits than the individual formulations of pricing (7) and
(9), or the sequential approach of solving first the rebalancing
problem and then adjusting prices. This happens given that
the problem is jointly solving for u and r considering
simultaneously the full objective of the profit maximization
problem (10a).

V. EXPERIMENTS

We carry out two case studies to assess the benefits of
solving the joint problem over other approaches. Our first
experiment uses a fictitious transportation network to analyze
sensitivities with respect to the network size. The second
one consists of a data-driven case study using historical
data from New York City. We report empirical results of
the achievable profit improvement of the AMoD system
when solving the problem using the different methodologies
presented in Table I.

We begin with the individual the policies Pij and Rij to
see the equilibrium under a pricing policy or rebalancing
strategy. We then turn to a sequential approach Rij → Pij
which solves the problem by finding a rebalancing policy
and, once the system is in equilibrium, select the prices.
Our motivation for this methodology comes from the fact
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that many companies tend to separate their pricing and
rebalancing processes, which would result in solving the
problem sequentially. Note that the sequential policy Pij →
Rij is not included because once the pricing problem is
solved, the system is at equilibrium and the rebalancing
problem becomes trivial (i.e., r = 0). Finally, the joint with
fixed prices by origin policy Pi + Rij is motivated by the
fact that current MoD services only use the origin (not the
destination) when setting surge prices [16], [17].

Note that in order to have a tractable solution for formu-
lations (7) and (10) we require a function satisfying (8). To
achieve this, we assume a linear demand (willingness-to-pay)
function, specifically we let

λij(uij) =
λ0ij

umax
ij − 1

(umax
ij − uij), (11)

where we set umax
ij = 4 as suggested in [17]. Hence,

by using this linear demand function, we get a tractable
Quadratic Program (QP) with linear constraints. Arguably,
linear demand functions may not be as accurate as desired
for realistic implementations of this model. However, using
linear functions allows us to recover a global maximum
solution to the problem and assess the potential benefits that
joint policies may achieve compared to other strategies.

For both experiments we let the base price be proportional
to the travel time using p0ij = 0.5Tij , where $0.5 is the
average price a user pays in dollars per minute of taxi
ride reported in [18]. Additionally, we set the operation and
rebalancing cost per kilometer be co = cr = $0.72 as in [19];
the lost customer cost cc is equal to $5, and the reguralizer
parameter on the fleet size to be cf = $1× 10−10.

Uniform Demand: We compare the solution of the dif-
ferent methods for a network with random uniform demands.
For each strategy, we let the base demand be λ0ij ∼ U(0, 4)

and travel time between regions be Tij ∼ U(0, 40) for all i, j.
Then, we solve the problem for networks with a number of
regions ranging between 0 and 60.

Figure 2a shows the value of the cost function (10a) for
each methodology. Moreover, in Figure 2b we observe the
relative deviation in profits for the solution of each strategy
against the joint pricing and rebalancing solution. We see that
as the number of regions increases, the deviation converges
to a stable value. To explain this phenomenon, we define
the potential of region i to be the load balance deviation
when no pricing or rebalancing policy is applied, namely,
ζi =

∑
j λ

0
ij − λ

0
ji. Then, since we draw samples from the

same uniform distribution to assign all λ0ij ∀i, j ∈ N , the
expected value of ζi is equal to zero for all i. Hence, this
convergence behavior is simply a direct implication of the
law of large numbers. Note that, for the same reason, the
individual policy Pij converges to zero.

New York City Case Study: We perform a case study of
New York city using the data available at [20]. Specifically,
we analyze the data set of High Volume For-Hire Vehicle
Trip Records of November 2019 [20]. To analyze stable
distributions of trips in the network, we filter the data to
consider only working days (Monday to Friday). Then, we
focus on four time slots: Morning Peak (AM) from 7:00-
10:00 hrs, Noon (MD) from 12:00-15:00 hrs, Afternoon Peak
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Fig. 2: Objective function value under different number of regions (zones)
and AMoD strategies, (a) Shows absolute values of (10a) when different
policies are implemented while (b) plots the relative difference between the
joint solution and the others.

TABLE II: Relative deviation in percentage of each policy compared to
the joint strategy Pij + Rij for different time slots

Policy AM MD PM NT
Pij -29.83 -8.77 -6.64 -26.00
Rij -33.33 -28.74 -29.20 -40.67
Rij → Pij -13.72 -9.38 -10.89 -15.75
Pi + Rij -5.3 -5.3 -5.1 -7.0

(PM) from 17:00-20:00 hrs and Night (NT) from 00:00-3:00
hrs. For every time window in November 2019, we collect
data on origin-destination pairs and travel times of every trip.
Then, we compute the average hourly demand and travel
times, and we use these values to preform our analysis and
test the different solutions.

Table II shows the deviation in profits (in percentage)
between the different approaches and the joint formulation.
As a reminder, Table I summarizes all policy definitions.
We observe that the joint method outperforms all the other
methods in the range from 5% to 40%, highlighting the
benefit of solving this problem using a joint strategy. In
particular, we observe that each of the individual strategies
performs on average worse than strategies that optimize both
pricing and rebalancing. Also, it is relevant to stress the 5%

deviation of the policy with fixed surge price by origin, as
it matches our expectations of the relevance of considering
the destination when pricing.

To better understand the different approaches, we gen-
erated plots of the pricing distribution and trend. Figure 3
shows histograms comparing the value of the solution u

for the individual pricing policy and the joint strategy.
As expected, we observe the distribution of the individual
approach to have higher variance than the joint. This happens
given the hard constraint to reach an equilibrium. When
no rebalancing is considered as in Pij the policy chooses
prices to ensure u ∈ F . In contrast, when solving the joint
problem, the solution leverages rebalancing and pricing and
gives the pricing decision more flexibility to concentrate to
select values that maximize profits.

Finally, we quantify how relevant the pricing is relative to
the rebalancing component when balancing the load of the
system. Letting r∗ and u∗ be the solution of (10), we define a
load dispersion metric as follows ζ̄0 = 1

N

∑
i |(
∑
j λ

0
ij−λ

0
ji)|

when nothing is applied, ζ̄r = 1
N

∑
i |(
∑
j λ

0
ij + rij − λ0ji −

rij)| when the rebalancing component is applied, and ζ̄u =
1
N

∑
i |(
∑
j λij(uij)−λji(uji))| when the pricing component

(but no rebalancing) is applied. Note that we do not define
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Fig. 3: Distribution of prices u∗ for different policies at different time slots

TABLE III: Dispersion on the average absolute value of potentials when
components of the joint policy u∗ and r∗ are applied.

AM MD PM NT
ζ̄0 57.03 16.62 34.77 17.64
ζ̄u∗ 20.44 4.10 6.80 6.24
ζ̄r∗ 36.71 13.23 28.36 11.49

ζ̄u,r as the result will be zero given that the system is at
equilibrium by (10b). Table III shows this dispersion metric
for the different time slots considered. Interestingly, we see
that the pricing component of the policy reduces this metric
in all cases, showing its relevance for load balancing the
system while also maximizing profit.

VI. CONCLUSION

In this paper we studied how a pricing policy which
considers origin-destinations can stabilize the system and
reach an equilibrium in terms of balancing the load of
customer and vehicles. In addition, we formulate a profit
maximization optimization model which considers selecting
pricing and rebalancing policies jointly. Moreover, we quan-
tify the achievable benefits of solving the problem jointly
compared to other methodologies using a data-driven case
study of the New York City transportation network. Our
results suggest that solving the problem jointly increases
the profits of the AMoD provider by up to 40% when
comparing it to individual strategies, 15% when comparing
it to sequential strategies, and 7% when comparing it to a
policy that restricts to a unique surge price per origin.

Future Work: This work can be extended as follows.
First, we would like to provide a framework capable of
handling more realistic nonlinear demand functions. Second,
we would like to complement this model with real-time
strategies through the use of a stochastic fluid model [21], as
well as a discrete event system [22] with the aim to provide
stochastic and microscopic results of the joint policy. Third,
we are interested in coupling this joint solution with the
routing problem in [1] in order to give an overall optimization
framework to operate AMoD systems. Finally, we would
like to solve the problem from a welfare maximization
perspective rather than from the profit maximization and
compare its results.
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