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Abstract— We consider the optimal multi-agent persistent
monitoring problem defined on a set of nodes (targets) inter-
connected through a fixed graph topology. The objective is to
minimize a measure of mean overall node state uncertainty eval-
uated over a finite time interval by controlling the motion of a
team of agents. Prior work has addressed this problem through
on-line parametric controllers and gradient-based methods,
often leading to low-performing local optima or through off-line
computationally intensive centralized approaches. This paper
proposes a computationally efficient event-driven receding hori-
zon control approach providing a distributed on-line gradient-
free solution to the persistent monitoring problem. A novel
element in the controller, which also makes it parameter-
free, is that it self-optimizes the planning horizon over which
control actions are sequentially taken in event-driven fashion.
Numerical results show significant improvements compared to
state of the art distributed on-line parametric control solutions.

I. INTRODUCTION

A persistent monitoring problem arises when a dynami-
cally changing environment is monitored by a set of mobile
agents and encompasses applications such as environmental
sensing [1], surveillance systems [2], energy management [3]
and data collection [4]. In contrast to cases where every point
in the environment is equally valued for agents to monitor,
in many others, only a finite set of “points of interest”
(henceforth called “targets”) holds a positive value [5], [6].
The persistent monitoring problem considered in this paper
belongs to the latter class, where the goal of the agent team
is to monitor (sense or collect information from) each target
in order to reduce an “uncertainty metric” associated with the
target state. Typically, this uncertainty metric increases when
no agent is monitoring the target and decreases when one or
more agents are able to monitor it by dwelling in its vicinity.
The global objective is to control the agent movement so as
to minimize an overall measure of target uncertainties.

Persistent monitoring problems in 1D environments have
been solved using classical optimal control techniques. For
such problems, the optimal solutions have been shown to
be threshold-based parametric controllers [7]. However, this
synergy between optimal control and parametric controllers
does not extend to 2D environments [8]. Nevertheless, one
can still optimize agent trajectories within parametric fami-
lies [8], [9] (e.g., elliptical). Apart from the apparent sub-
optimality, failing to react to dynamic changes in target
uncertainties and the dependence of performance on the
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initial target/agent conditions are drawbacks of this approach.
As a solution, recent work [5] has proposed a graph abstrac-
tion (where targets are modeled as nodes and inter-target
agent trajectory segments are modeled as edges) to formulate
Persistent Monitoring on Graphs (PMG) problems.

In PMG problems, an agent trajectory is defined by
the sequence of targets to be visited and the dwell time
spent at each visited target. To overcome the complexity of
this problem, a distributed Threshold-based Control Policy
(TCP) is adopted in [5], where each agent enforces a set
of thresholds on its neighboring target uncertainty values to
make immediate trajectory decisions: the dwell time to be
spent and the next target to visit. The threshold values are
then optimized using an on-line gradient-based technique
based on Infinitesimal Perturbation Analysis (IPA) [10].
However, this IPA-TCP approach often converges to poor
locally optimal solutions. As a remedy, [6] has proposed to
append an off-line centralized threshold initialization scheme
which is shown to considerably increase performance at the
expense of significant computational effort.

Motivated by these challenges, this paper presents an
entirely different approach that can be used to solve the
same PMG problem. Specifically, the event-driven nature
of PMG systems is exploited to derive an Event-Driven
Receding Horizon Controller (ED-RHC) to optimally govern
each of the agents in an on-line distributed manner using
only a minimal amount of computational power. First, it is
shown that each agent’s trajectory is fully characterized by
the sequence of decisions it makes at specific discrete event
times. Second, for any agent, a Receding Horizon Control
Problem (RHCP) is formulated to determine locally optimal
decisions over a planning horizon, to be executed only over a
shorter action horizon, with the process sequentially repeated
as new events take place. In contrast to the prior ED-RHC
approaches [11], [9], [12] and gradient-based approaches [5],
[6], the proposed ED-RHC in this paper is both parameter-
free and gradient-free as shown in the sequel.

II. PROBLEM FORMULATION

Consider an n-dimensional mission space containing M
targets (nodes) in the set T = {1,2, . . . ,M} where the
location of target i is fixed at Yi ∈Rn. A team of N agents in
the set A = {1,2, . . . ,N} is deployed to monitor the targets.
Each agent a ∈A moves within this space and its location
at time t is denoted by sa(t) ∈ Rn.

a) Target Model: Each target i ∈T has an associated
uncertainty state Ri(t) ∈ R which follows the dynamics:
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Ṙi(t) =

{
Ai−BiNi(t) if Ri(t)> 0 or Ai−BiNi(t)> 0
0 otherwise,

(1)
where Ni(t) = ∑a∈A 1{sa(t) =Yi}(1{·} is the indicator func-
tion) and the values of Ai,Bi,Ri(0) are prespecified. There-
fore, Ni(t) is the number of agents present at target i at time
t. According to (1): (i) Ri(t) increases at a rate Ai when
no agent is visiting target i, (ii) Ri(t) decreases at a rate
BiNi(t)−Ai where Bi is the uncertainty removal rate by a
visiting agent (i.e., agent sensing or data collection rate) to
the target i, and, (iii) Ri(t)≥ 0, ∀t. This problem set-up has
an attractive queueing system interpretation [5] where Ai and
BiNi(t) are respectively thought of as the arrival rate and the
controllable service rate at target (server) i∈T in a queueing
network.

b) Agent Model: Some persistent monitoring models
(e.g., [7], [13]) assume each agent a ∈ A to have a finite
sensing range ra > 0 allowing it to decrease Ri(t) whenever
it is in the vicinity of target i ∈T (i.e., when ‖sa(t)−Yi‖ ≤
ra). Since we will adopt a graph topology for this problem,
the condition ‖sa(t)−Yi‖ ≤ ra is represented by the agent
residing at the ith vertex of a graph and Ni(t) is used to
replace the role of the joint detection probability of a target
i used in [7], [13]. Moreover, similar to [6] the analysis in this
paper is independent of the agent motion dynamic model.

c) Objective: Our objective is to minimize the mean
system uncertainty JT over a finite time interval t ∈ [0,T ]:

JT ,
1
T

∫ T

0
∑

i∈T
Ri(t)dt, (2)

by controlling the motion of the agents through a suitable
set of feasible controls to be described in the sequel.

d) Graph Topology: A directed graph topology G =
(T ,E ) is embedded into the mission space such that
the targets are represented by the graph vertices T =
{1,2, . . . ,M}), and the inter-target trajectory segments are
represented by the graph edges E ⊆ {(i, j) : i, j ∈ T }. We
point out that these trajectory segments in Rn may take
arbitrary shapes so as to account for potential constraints in
the agent motion; in the graph G , each segment represented
by an edge (i, j) ∈ E has an associated value ρi j ∈ R≥0
representing the transit time an agent spends to travel from
target i to j. The neighbor set and the neighborhood of a
target i ∈ T are defined respectively as Ni , { j : (i, j) ∈
E } and ¯Ni = Ni∪{i}.

e) Control: Based on this embedded graph topology G ,
whenever an agent a ∈A is ready to leave a target i ∈ T ,
it selects a next-visit target j ∈Ni. Hence, the agent travels
over (i, j) ∈ E to arrive at target j after an amount of time
ρi j. Subsequently, it selects a dwell-time τ j ∈ R≥0 to spend
at target j (which contributes to decreasing R j(t)), and then
makes another next-visit decision.

Therefore, in a PMG problem the control exerted consists
of a sequence of next-visit targets j ∈Ni and dwell-times τi ∈
R≥0. Our goal is to determine (τi, j) for any agent residing

at i at any time t ∈ [0,T ] which are optimal in the sense of
minimizing (2). As pointed out in [5], this is a challenging
task even for the simplest PMG problem configurations due
to the nature of the search space.

f) Receding Horizon Control: The on-line distributed
IPA-TCP method proposed in [5] requires each agent to
use a set of thresholds applied to its neighborhood target
uncertainties {R j(t): j ∈ ¯Ni} in order to determine its dwell-
time and next-visit decisions. Thus, the objective in (2) is
viewed as dependent on these threshold parameters. Starting
from an arbitrary set of thresholds, each agent iteratively
adjusts them using a gradient technique that exploits the
information from observed events in agents’ trajectories.
Although this approach is efficient due to the use of IPA,
it is limited by the presence of local optima.

To address this limitation, this paper proposes an Event-
Driven Receding Horizon Controller (ED-RHC) at each
agent a ∈A . The basic idea of RHC has its root in Model
Predictive Control (MPC) but, in addition, it exploits the
event-driven nature of the PMG problem to reduce com-
plexity by orders of magnitude, provide flexibility in the
frequency of control updates, and improve performance by
avoiding many local optima resulting from gradient-based
optimization. As introduced in [11] and extended in [9],[12],
ED-RHC solves an optimization problem of the form (2)
but limited to a given planning horizon whenever an event
is observed; the resulting control is then executed over a
generally shorter action horizon defined by the occurrence
of the next event of interest to the controller. This process
is iteratively repeated in event-driven fashion. In the PMG
problem, the aim of the ED-RHC when invoked at time t with
an agent residing at i ∈ T is to determine the immediate
next-visit j ∈ Ni and dwell times at i, j, jointly forming
a control Ui(t). This is done by solving an optimization
problem of the form:

U∗i (t) = argmin
Ui(t)∈U(t)

[
JH(Xi(t),Ui(t);H)+ ĴH(Xi(t +H))

]
, (3)

where Xi(t) is the current local state and U(t) is the feasible
control set at t. The term JH(Xi(t),Ui(t);H) is the immediate
cost over the planning horizon [t, t +H] and ĴH(Xi(t +H)
is an estimate of the future cost evaluated at the end of
the planning horizon t +H. The value of H is selected in
prior work [11],[9],[12] exogenously. However, in this paper
we will include this value into the optimization problem
and ignore the ĴH(Xi(t +H)) term. Thus, by optimizing the
planning horizon we compensate for the complexity and in-
trinsic inaccuracy of ĴH(Xi(t+H)). Further, this modification
enables solving (3) in closed form. Thus, the proposed ED-
RHC is both parameter-free and gradient-free. Moreover, the
proposed ED-RHC is also distributed as it allows each agent
to separately solve (3) using only local state information.

A. Preliminary Results

According to (1), the target state Ri(t), i∈T , is piece-wise
linear and its gradient Ṙi(t) changes only when one of the
following (strictly local) events occurs: (i) An agent arrival
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at i, (ii) [Ri(t)→ 0+], or (iii) An agent departure from i. Let
the occurrence of such events be indexed by k = 1,2, . . . with
an associated occurrence time tk

i with t0
i = 0. Then,

Ṙi(t) = Ṙi(tk
i ), ∀t ∈ [tk

i , t
k+1
i ). (4)

Remark 1: Allowing agents to have overlapping dwell
sessions at some target (also known as “target sharing”) is
widely regarded as inefficient [14], [5], [6]. This motivates
us to enforce a constraint on the controller to ensure:

Ni(t) ∈ {0,1}, ∀t ∈ [0,T ], i ∈T . (5)

Clearly, this constraint only applies if N ≥ 2.
Under the constraint (5), it follows from (1) and (4)

that the sequence {Ṙi(tk
i )}k=0,1,... is a cyclic order of three

elements: {−(Bi−Ai),0,Ai}. Next, to make sure that each
agent is capable of enforcing the event [Ri→ 0+] at any i ∈
T , the following simple stability condition [6] is assumed.

Assumption 1: Target uncertainty rate parameters Ai and
Bi of each target i ∈T satisfy 0 < Ai < Bi.

a) Decomposition of the objective function: The fol-
lowing Theorem 1 provides a target-wise and temporal
decomposition of the main objective function JT in (2) (due
to space limitations, all proofs are provided in [15]).

Theorem 1: The contribution to the main objective JT by
a target i ∈ T during a time period [t0, t1) ⊆ [tk

i , t
k+1
i ) for

some k ∈ Z≥0 is 1
T Ji(t0, t1), where,

Ji(t0, t1) =
∫ t1

t0
Ri(t)dt =

(t1− t0)
2

[
2Ri(t0)+ Ṙi(t0)(t1− t0)

]
.

A simple corollary of Theorem 1 is to extend it to any
interval [t0, t1) which may include one or more event times
tk
i (the proof is straightforward and found in [15]).

b) Local objective function: The local objective func-
tion of target i over a period [t0, t1)⊆ [0,T ] is defined as

J̄i(t0, t1) = ∑
j∈ ¯Ni

J j(t0, t1). (6)

The value of each J j(t0, t1) above is obtained through
Theorem 1 and its extension (see [15]) if [t0, t1) includes
additional events: [t0, t1) is decomposed into a sequence of
corresponding inter-event time intervals.

B. ED-RHC optimization problem formulation

Let agent a ∈A reside at target i ∈T at some t ∈ [0,T ].
In our distributed setting, we assume that agent a is made
aware of only local events occurring in the neighborhood ¯Ni.
As mentioned earlier, the control Ui(t) consists of the dwell
time τi at the current target i, and the next target j ∈Ni to
visit. Once j is known, then the agent can also determine the
dwell time τ j at the next target j. Moreover, a dwell time
decision τi (or τ j) can be divided into two interdependent
decisions: (i) the active time ui (or u j) and (ii) the inactive
(or idle) time vi (or v j), as shown in Fig. 1. Thus, agent a
has to optimally choose five decision variables which form
the control vector Ui(t) = [ui(t),vi(t), j,u j(t),v j(t)].

Fig. 1: Event timeline and control decisions under RHC.

a) Planning Horizon: Recalling (3), the ED-RHC de-
pends on the planning horizon H ∈ R≥0 which is viewed as
a fixed control parameter. Note that t +H is constrained by
t +H ≤ T , hence if this is violated we redefine the planning
horizon to be H = T − t. For simplicity, in what follows
we omit this situation which only arises as the process
approaches the terminal time T .

Let us decompose the control Ui(t) into its real-valued
components and its discrete (target index j ∈Ni) component.
Thus (omitting time arguments), set Ui j = [ui,vi,u j,v j] and
let the current local state be Xi(t) = {R j(t) : j ∈ ¯Ni}. Then,
the optimal controls are obtained by solving the following
set of optimization problems, henceforth called the ED-RHC
Problem (RHCP):

U∗i j = arg min
Ui j∈U

JH(Xi(t),Ui j;H); ∀ j ∈Ni, and, (7)

j∗ = arg min
j∈Ni

JH(Xi(t),U∗i j;H). (8)

Note that (7) involves solving a number |Ni| of optimization
problems, one for each j ∈ Ni. Then, (8) determines j∗

through a simple numerical comparison. Therefore, the final
optimal decision variables are U∗i j∗ and j∗. Here, the notation
| · | denotes the 1-norm or the cardinality operator when the
argument is respectively a vector or a set.

The objective function JH(·) above is chosen to reflect the
contribution to the main objective JT in (2) by the targets in
the neighborhood ¯Ni over the time period [t, t +H], which
is provided by (6) and Theorem 1 as

JH(Xi(t),Ui j;H) =
1
H

J̄i(t, t +H). (9)

The feasible control space U in (7) is such that ui, vi, u j,
v j are non-negative real variables. In addition, note that if
|Ui j|+ρi j = H (see also Fig.1) then this restricts the choices
of the four control variables. Thus, the selection of H affects
the problem’s optimal solution. For example, if H is very
large (or very small), clearly the optimal decisions U∗i j∗ and
j∗ are not globally optimal. Attempting to find the optimal
choice of H without compromising the on-line distributed
nature of the ED-RHC solution is a challenging task.

To address this problem, we introduce a variable horizon
w defined as:

w , |Ui j|+ρi j = ui + vi +ρi j +u j + v j, (10)

and replace H in (9) by w while, at the same time, imposing
the constraint: w ≤ H. Therefore, the objective function JH
and the feasible control space U in the RHCP are chosen as

JH(Xi(t),Ui j;H) =
1
w

J̄i(t, t +w), and,

U= {U : U ∈ R4, U ≥ 0, |U |+ρi j ≤ H}.
(11)
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Note that, the constraint |Ui j|+ρi j ≤ H above ensures w ≤
H. Moreover, this novel RHCP formulation allows us to
simultaneously determine the optimal planning horizon size
w∗ = |U∗i j∗ |+ρi j∗ in terms of the optimal control U∗i (t).

On the other hand, having a control-dependent denom-
inator term in the objective function and adding an extra
dimension to the feasible control space of the RHCP intro-
duce new technical challenges that we address in the rest
of the paper. To accomplish this, we will exploit structural
properties of (11) and show that the RHCP in (7) can be
solved analytically and efficiently.

b) Event-Driven Action Horizon: As in all RHCPs,
the solution of each optimization problem over a planning
horizon H is executed only over an action horizon h ≤ H.
In the ED-RHC setting, the value of h is determined by the
first event that takes place after t (when the RHCP was last
solved). Thus, in contrast to time-driven RHC, the control is
updated whenever asynchronous events occur; this prevents
unnecessary steps to re-solve the RHCP (7)-(8) with (11).

In general, the determination of the action horizon h may
be controllable or uncontrolled. The latter case occurs as
a result of random events in the system (if such events
are part of the setting), while the former corresponds to
the occurrence of any one event whose occurrence results
from an agent solving a RHCP. We define next the three
controllable events associated with an agent when it resides
at target i; each of these events defines the action horizon
h following the solution of a RHCP by this agent at some
time t ∈ [0,T ]:

1. Event [h→ u∗i ]: This event occurs at time t + u∗i (t).
If Ri(t + u∗i (t)) = 0, it coincides with an [Ri → 0+] event.
Otherwise, i.e., if Ri(t + u∗i (t)) > 0, this implies that the
solution of the associated RHCP is to terminate the active
time at target i before the [Ri → 0+] event. Therefore, by
definition, no inactive time may follow, i.e., v∗i (t) = 0, and
[h→ u∗i ] coincides with a departure event from target i.

2. Event [h→ v∗i ]: This event occurs at time t + v∗i (t).
It is only feasible after an event [h → u∗i ] has occurred,
including the possibility that u∗i (t) = 0 in the RHCP solution
determined at t. Clearly, this coincides with a departure event
from target i.

3. Event [h→ ρi j∗ ]: This event occurs at time t+ρi j∗ . It is
only feasible after an event [h→ u∗i ] or [h→ v∗i ] has occurred,
including the possibility that u∗i (t) = 0 and v∗i (t) = 0 in the
RHCP solution determined at t. Clearly, this coincides with
an arrival event at target j∗ as determined by the RHCP
solution obtained at t.

Observe that these events are mutually exclusive, i.e.,
only one is feasible at any one time. It is also possible
for a different event to occur after t and before one of
these occurs; such an event is either random (if our model
allows for such events) or it is controllable but associated
with a different target than i. In particular, let us define two
additional events that may occur at any neighbor j ∈Ni and
affect the agent residing at i. These events are a consequence
of control constraint (5) and pertain only to multi-agent
persistent monitoring problems, where our controller must

enforce the no-target-sharing policy.
A target j ∈T is said to be covered at time t if it already

has a residing agent or if an agent is en route to visit it from
a neighboring target in N j. Thus, j is covered only if ∃k ∈
N j and τ ∈ [t, t + ρk j) such that ∑a∈A 1{sa(τ) = Yj} > 0.
Since neighboring targets communicate with each other, this
information can be determined at any target in ¯N j at any
time t. Therefore, an agent a ∈ A residing at target i can
prevent target sharing at j ∈ Ni by simply modifying the
neighbor set Ni used in the RHCP solved at t to exclude all
covered targets. Let us use Ni(t) to indicate a time-varying
neighborhood of i. Then, if target j becomes covered at t,
we set Ni(t) = Ni(t−)\{ j}. The effect of this modification
is clear if a RHCP solved by an agent at target i at some time
t leads to a next visit solution j∗ ∈Ni, and if this is followed
by an event at t ′ > t causing j∗ to be covered, then Ni(t ′) =
Ni(t)\{ j∗} and the agent at i (whether active or inactive)
must re-solve the RHCP at t ′ with the new Ni(t ′). Note that
as soon as an agent a is en route to j∗, then j∗ becomes
covered, hence preventing any other agent from visiting j∗

prior to agent a’s subsequent departure from j∗.
Based on this discussion, we define the following two

additional neighbor-induced local events at j ∈Ni affecting
an agent a residing at target i:

4. Covering Event C j, j ∈Ni: This event causes Ni(t)
to be modified to Ni(t)\{ j}.

5. Uncovering Event C̄ j, j ∈Ni: This event causes Ni(t)
to be modified to Ni(t)∪{ j}.

If one of these two events takes place while an agent
residing at target i is either active or inactive, then the RHCP
(7)-(8) is re-solved to account for the updated Ni(t). This
may affect the values of the optimal solution U∗i from the
previous solution. Note, however, that the new solution will
still give rise to an event [h→ u∗i ] (if the RHCP is solved
while the agent is active) or [h→ v∗i ] (if the RHCP is solved
while the agent is inactive).

It is clear from this discussion that the exact form of the
RHCP to be solved at time t depends on the event that
triggers the end of an action horizon. In particular, there
are three possible forms of the RHCP (7)-(8):

RHCP1: This problem is solved by an agent when an
event [h→ ρki] occurs at time t for any k ∈Ni(t), i.e., the
agent arrives at target i. The solution U∗i (t) includes u∗i (t)≥
0, representing the amount of time that the agent should be
active at i. This problem may also be solved while the agent
is active at i if a C j or C̄ j event occurs for any j ∈Ni(t).

RHCP2: This problem is solved by an agent residing at
i when an event [h→ u∗i ] occurs at time t and Ri(t) = 0. The
solution U∗i (t) is now constrained to include u∗i (t) = 0 by
default, since the agent can no longer be active at i. This
problem may also be solved while the agent is inactive at i
if a C j or C̄ j event occurs for any j ∈Ni(t).

RHCP3: This problem is solved by an agent residing at
i when an event [h→ u∗i ] occurs at time t and Ri(t)> 0. The
solution U∗i (t) is again constrained to include u∗i (t) = 0 by
default; in addition, it is constrained to have v∗i (t) = 0 since
the agent ceases being active while Ri(t)> 0, implying that it
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must immediately depart from i without becoming inactive.
This problem is also solved when an event [h→ v∗i ] occurs
at time t, implying that the agent departs from i.

III. SOLVING THE EVENT-DRIVEN RECEDING HORIZON
CONTROL PROBLEMS

We begin with RHCP3 because it is the simplest problem
given that in this case u∗i (t) = 0 and v∗i (t) = 0 by default and
Ui j in (7) is limited to Ui j = [u j,v j].

1) Solution of RHCP3: In this case, the variable horizon
w in (10) becomes w= ρi j+u j+v j and ρi j ≤w≤H where H
is the fixed planning horizon. Therefore, any targets j∈Ni(t)
such that ρi j > H are omitted from (7).

a) Constraints: We begin by identifying a tight upper
bound for the active time control variable u j(t). This is
defined by the maximum active time possible to spend on
target j, which is given by R j(t + ρi j + u j) = 0. Denoting
this bound by uB

j , it follows from (1) that uB
j =

R j(t+ρi j)
B j−A j

=
R j(t)+A jρi j

B j−A j
. Note that even though we should write uB

j (t) since
it depends on the initial target uncertainty R j(t), we omit
this time dependence for notational simplicity. Moreover,
note that in order to have a positive inactive time v j > 0,
a necessary condition is that it first spends the maximum
active time possible u j = uB

j . We now see that any feasible
pair (u j,v j) in (7) belongs to one of the two constraint sets:
U1 = {0 ≤ u j ≤ uB

j , v j = 0} and U2 = {u j = uB
j , v j ≥ 0},

where (uB
j ,0) is allowed to be a feasible control in both sets.

An additional constraint is imposed by the variable horizon
w= ρi j+u j+v j ≤H. Thus, we define ū j ,min{uB

j , H−ρi j}
and v̄ j , H− (ρi j +uB

j ) where, ū j and v̄ j are the maximum
possible values of u j and v j respectively. Then, the two
constraint sets become

U1 = {0≤ u j ≤ ū j, v j = 0} and U2 = {u j = uB
j , 0≤ v j ≤ v̄ j}.

(12)
Therefore, (12) is the feasible control set for Ui j = [u j,v j].

b) Objective: Following (11), the objective function for
RHCP3 is JH(Ui j) = JH(Xi(t), [0,0,Ui j];H) = 1

w J̄i(t, t +w).
To obtain an exact expression for JH , first the local objective
function J̄i is decomposed using (6):

J̄i = J j + ∑
m∈ ¯Ni(t)\{ j}

Jm. (13)

Both J j and Jm in (13) are evaluated for the period [t, t +w)
using Theorem 1 and we get :
• J j =

ρi j
2 [2R j(t)+A jρi j]+

u j
2 [2(R j(t)+A jρi j)−(B j−A j)u j],

• Jm =
(ρi j+u j+v j)

2 [2Rm(t)+Am(ρi j +u j + v j)].
Combining the above two results with (13) gives the

complete objective function JH(Ui j) as

JH(u j,v j) =
C1u2

j +C2v2
j +C3u jv j +C4u j +C5v j +C6

ρi j +u j + v j
,

where, C1 = 1
2 [Ā− B j], C2 =

Ā j
2 , C3 = Ā j, C4 = [R̄(t) +

Āρi j], C5 = [R̄ j(t)+ Ā jρi j], C6 =
ρi j
2 [2R̄(t)+ Āρi j], and Ā =

∑m∈ ¯Ni
Am, R̄(t) = ∑m∈ ¯Ni

Rm(t), Ā j = Ā−A j, R̄ j = R̄−Ri.
Note that all these coefficients are non-negative except for
C1 which is non-negative only when: B j ≤ Ā.

c) Solving RHCP3 for optimal control (u∗j ,v
∗
j): The

solution (u∗j ,v
∗
j) of (7) is given by

(u∗j ,v
∗
j) = arg min

(u j ,v j)
JH(u j,v j), (14)

where (u j,v j) ∈ U1 or (u j,v j) ∈ U2 as in (12).
- Case 1: (u j,v j) ∈U1 = {0≤ u j ≤ ū j,v j = 0}: In this

case, v∗j = 0 and (14) takes the form:

u∗j = argmin
0≤u j≤ū j

JH(u j,0). (15)

Lemma 1: The optimal solution for (15) is

u∗j =

{
ū j if ū j ≥ u#

j and Ā < B j

0 otherwise,
(16)

u#
j =

Āρi j

Bi− Ā
. (17)

Note that u#
j in (17) can be thought of as a break-even

point for u j, where when ū j allows u j to go beyond such
a u#

j value, it is always optimal to do so by choosing the
extreme point u j = ū j as u∗j .

- Case 2: (u j,v j) ∈ U2 = {u j = uB
j , 0 ≤ v j ≤ v̄ j}: In

this case, u∗j = uB
j and (14) takes the form:

v∗j = argmin
0≤v j≤v̄ j

JH(uB
j ,v j). (18)

Lemma 2: The optimal solution for (18) is

v∗j =

0 if Ā≥ B j

[
1− ρ2

i j
(ρi j+uB

j )
2

]
min{v#

j , v̄ j} otherwise,
(19)

v#
j =

√
(B j−A j)(ρi j +uB

j )
2−B jρ

2
i j

Ā j
− (ρi j +uB

j ). (20)

Note that, unlike u#
j given in (17) for problem (15), v#

j
given in (20) for problem (18) is an optimal choice for v j.

Theorem 2: The optimal solution of (14) is

(u∗j ,v
∗
j) =



(0,0) if u#
j > ū j or Ā≥ B j

(ū j,0) else if ū j < uB
j

(uB
j ,0) else if Ā≥ B j

[
1− ρ2

i j
(ρi j+uB

j )
2

]
(uB

j ,v
#
j) else if v#

j ≤ v̄ j

(uB
j , v̄ j) otherwise.

(21)

Remark 2: The above theorem implies that whenever: (i)
the planning horizon H is sufficiently large, (ii) the sensing
capabilities are higher B j > Ā and (iii) target uncertainty
R j(t) is larger than some known threshold, it is optimal to
plan ahead to drive the uncertainty level at target j to zero,
u∗j = uB

j . This conclusion is in line with Theorem 1 in [5].
d) Solving for optimal next target j∗: Using Theorem

2, when agent a is ready to leave target i, it can evaluate the
optimal trajectory costs JH(u∗j ,v

∗
j) for all j ∈Ni(t). Based on

the second step of the RHCP solved at t, i.e., (8), the optimal
neighbor to visit next is j∗ = argmin

j∈Ni(t)
JH(u∗j ,v

∗
j). Thus, upon

solving RHCP3, agent a departs from target i at time t and
follows the path (i, j∗) ∈ E to visit target j∗. In the spirit of
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(a) JT = 105.5.
(Impr.:+61.0%)

(b) JT = 63.7.
(Impr.:+30.5%)

(c) JT = 114.1.
(Impr.:+58.3%)

(d) JT = 97.2.
(Impr.:+51.7%)

Fig. 2: Simulation examples with ED-RHC solution (state
shown at terminal time t = T ) and the percentage improve-
ment with respect to the IPA-TCP solution.

RHC, recall that the optimal control will be updated upon
the occurrence of the next event, which, in this case, will be
the arrival of the agent at j∗, triggering the solution of an
instance of RHCP1.

2) Solution of RHCP1 and RHCP2: Due to space limi-
tations, this topic is omitted here but can be found in [15].

3) Complexity of RHCPs: As shown in this work and
[15], all three problem forms can be solved in closed form.
Therefore, their complexity is constant and the overall RHC
complexity scales linearly with the number of events in [0,T ].

IV. SIMULATION RESULTS

This section compares the performance JT in (2) ob-
tained for several different persistent monitoring problem
configurations using: (i) the proposed ED-RHC method
and (ii) the threshold control policy method (IPA-TCP)
proposed in [5]. Note that both ED-RHC and IPA-
TCP solutions are on-line and distributed (in contrast to
[6]). All these solutions have been implemented in a
JavaScript based simulator available at http://www.bu.edu/
codes/simulations/shiran27/PersistentMonitoring/.

A compilation of extensive simulation results observed
under a diverse set of scenarios is provided in [15]. Here,
we limit ourselves to the four multi-agent PMG problem
configurations shown in Fig. 2 (a)-(d). In each case, blue
circles represent the targets, while black lines represent
available path segments that agents can take to travel between
targets. Red triangles and the yellow vertical bars indicate the
agent locations and the target uncertainty levels, respectively.
Moreover, since both of those quantities are time-varying
(i.e., sa(t) and Ri(t)), in the figures only their state at
the terminal time t = T is shown when using the ED-
RHC solution. In each problem configuration, the problem
parameters are: Ai = 1, Bi = 10, Ri(0) = 0.5, ∀i ∈ T and
target location co-ordinates (i.e., Yi) are specified in each
problem configuration figure. In all examples, targets have
been placed inside a 600× 600 mission space. The time
period was taken as T = 500. Each agent’s maximum speed
was taken as 50 units/sec (under the first-order model [5]).
The initial locations of the agents were chosen such that
sa(0) = Yi with i = 1 + (a− 1) ∗ round(M/N). The fixed
planning horizon H was chosen as H = 250.

Each sub-figure caption in Fig. 2 provides the cost value
JT in (2) observed under the proposed ED-RHC approach
and the percentage improvement achieved compared to the
IPA-TCP method [5]. Based on these results (for more, see

[15]), the proposed ED-RHC method performs considerably
better (on average 50.4% better) than the IPA-TCP method.

V. CONCLUSION

This paper considers the optimal multi-agent persistent
monitoring problem defined on a set of targets interconnected
according to a fixed graph topology. Departing from existing
computationally expensive and slow threshold-based para-
metric control solutions, a novel computationally efficient
and robust event-driven receding horizon control solution is
proposed. Ongoing work is aimed to combine time-driven
features of parametric control strategies with the proposed
ED-RHC approach to construct a hybrid optimal control
solution to the PMG problem.
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