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1. Introduction

In his seminal 1976 paper, Bill Thurston observed [17] that, if S is a compact leaf of a
foliation F, then, up to sign, the Euler characteristic of S is equal to the Euler class of
F evaluated on [S], and used this to prove his celebrated result that compact leaves of
taut foliations are Thurston norm-minimizing. In brief, let M be a closed, orientable and
irreducible 3-manifold and F be a taut foliation on M. By Roussarie-Thurston general
position [14], [16], [17], [4], any oriented, embedded, incompressible surface S in M can
be isotoped so that any component of S is either a leaf or is transverse to F, except
for finitely many (Morse-type) saddle singularities. An application of the Poincaré-Hopf
index formula implies that the number of such singularities is exactly the absolute value
of the Euler characteristic of S. We call a singularity positive (resp. negative) if, at
the point of tangency, the transverse orientation of the surface and the foliation agree
(resp. disagree). Thurston’s insight was that the Euler class evaluated on —[S] equals the
sum of the signs of these singularities. In what follows, all surfaces are incompressible,
a requirement only relevant for tori and annuli; it is automatic for other connected
fully marked surfaces in tautly foliated manifolds. A compact surface S is positive (resp.
negative) fully marked if every component of S is either a leaf whose transverse orientation
agrees (resp. disagrees) with the transverse orientation of the foliation, or has only saddle
singularities all of which are positive (resp. negative). A surface is fully marked if it is
positive or negative fully marked. Let e(F)€H?(M;R) denote the Euler class of the

tangent bundle of F and consider the pairing (-, -) between the second cohomology and
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homology of M. A compact surface S is algebraically fully marked if
(e(F), [S]) = £x(5).

A fully marked surface with boundary should have each boundary component either
transverse to the foliation or be a leaf. By the Roussarie-Thurston theorem, in a tautly
foliated 3-manifold an algebraically fully marked surface is isotopic to a fully marked
surface.

Note that compact leaves of F (if it has any) are fully marked; similarly, a finite
union of oriented, compact leaves is fully marked provided that the elements of this union
(leaves) are oriented consistently. The converse, however, is not true, since F might have
no compact leaves while having fully marked surfaces. Indeed, any taut foliation of a
hyperbolic 3-manifold can be perturbed to one without compact leaves, without changing
the homotopy class of the plane field, and hence the Euler class. The main result of this
paper gives a converse to Thurston’s theorem for closed hyperbolic 3-manifolds, up to
homotopy of the plane fields of the foliations.

THEOREM 1.1. Let M be a closed hyperbolic 3-manifold, F be a taut foliation on M,
and S be an algebraically fully marked surface in M. Then, there exists a surface S’
homologous to S and a taut foliation G such that

(1) S’ is a union of leaves of G;

(2) the oriented plane fields tangent to F and G are homotopic.

COROLLARY 1.2. Let M be a closed hyperbolic 3-manifold, F be a taut foliation
on M, and S be an algebraically fully marked surface in M. Assume that S is the
unique norm-minimizing surface in its homology class, up to isotopy. There exists a taut
foliation G such that S is a union of leaves and the oriented plane fields tangent to F

and G are homotopic.

Now, assume that M has positive first Betti number and is atoroidal. Thurston
proved that, for any taut foliation F on M, the Euler class e(F) has norm at most 1 and

satisfies the parity condition. This means that, for any .5, the following inequality holds:

(e(F), [S]) < Ix(9); (1)

and the numbers (e(F),[S]) and x(S) have the same parity. The Euler class has norm
exactly equal to 1 if there exists a surface S such that the equality occurs. In particular
if F has some compact leaf, then the norm of the Euler class is equal to 1. Thurston
conjectured that, conversely, given any integral cohomology class a€ H2(M;Z) of norm
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equal to 1, there exists a [taut] foliation on M whose Euler class is equal to a.(!) In [19]
the second author constructed counterexamples to this conjecture assuming Corollary 1.2.

That, together with our main result, yields our main application.

THEOREM 1.3. There are infinitely many closed hyperbolic 3-manifolds M for which
Thurston’s Fuler class-one conjecture does not hold; i.e. there is an integral point in the
unit dual ball, satisfying the necessary parity condition, which is not realized by any taut

foliation.

This result resolves the last of three fundamental conjectures offered by Thurston in
[17]. In 1983, positive solutions to the first two were given by the first author in [6]. He

also proved a partial positive result for Thurston’s third conjecture.

THEOREM 1.4. (Gabai) Let M be a compact oriented irreducible 3-manifold, possibly
with toroidal boundary, and let a€ H*(M,OM;R) be a vertex of the dual unit ball. Then,

there is a taut foliation on M whose Fuler class is equal to a.

We expect Theorem 1.1 to fail in general without allowing to change S within its
homology class.

Conjecture 1.5. There exists a closed hyperbolic 3-manifold M supporting a taut
foliation F with a fully marked surface .S, such that there exists no taut foliation G on

M with oriented plane field homotopic to F such that S is a union of leaves of G.

Here, we give an informal sketch of the proof of Theorem 1.1. By Roussarie-Thurston
general position, the surface S can be isotoped such that each of its components becomes
either a leaf or such that the induced singular foliation on the component has only saddle
singularities. We do not touch any component of S that is already a leaf. Take the union
of components of S for which the second scenario happens, and by abuse of notation call
it S.

Note that, there might be 2-dimensional Reeb components on S. Since S is fully
marked, all saddle singularities on S have the same sign, that is the oriented normal
vectors to the surface and to the foliation always agree or always disagree. Without loss
of generality, we may assume the orientations always agree. We fix a line field that is
transverse to both F and S.

Cut M along S to get the manifold M\S. The boundary of M\\S consists of two
copies of S. We want to modify the foliation along S by adding leaves to the boundary

(1) Presumably, Thurston meant to state the conjecture for cohomology with real coefficients
rather than integral coefficients, as the general flow of his writing and his subsequent comments about
the motivation for the conjecture suggests. See [17, pp.137-138]. Thurston did not mention the parity
condition in his conjecture. However, it easily follows from the index sum formula, which was known to
him, that the parity condition is necessary.
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of M\S to obtain a foliation on M\\S that is tangential to the boundary. Then, the
desired foliation G can be obtained by gluing two copies of S in the boundary of M\\S.
Starting with a line field defined in a neighborhood U of S and transverse to F, the
modification of F to G is supported in U, and the leaves of G continue to be transverse
to this line field. It follows that the plane field of G is homotopic to that of F.

There are two main technical issues to carry out the proof as stated. First, G might
have Reeb components. The issue comes from certain bad solid tori inside the induced
foliation on M\\S. We show that one can avoid this unpleasant situation by replacing S
with a new surface S’ with [S]=[S’]. This is done by defining a set of moves for changing
the surface S while preserving its homology class. Moreover, a complexity function is
defined, strictly decreasing under these moves, that terminates after finitely many moves.
At this point, no bad solid tori remain. Second, the extension might require filling in
an Ax I, where A is an annulus, Ax{0}CL, L is a leaf of G', Ax{1}CS, and 0AX T is
transverse to G’. Here, G’ is the partially extended foliation. The problem is that the
holonomy on the two sides may not match, and hence there is no way to fill in. Such a
problem was encountered in [7]. Both these two technical issues require a more global
modification of the foliation. Nevertheless, by using a transverse line field to F, we can

modify to G without changing the homotopy class.

1.1. Outline

The paper is organized as follows. In §2, we review the background material. In §3,
Thurston’s theorem on compact leaves of taut foliations is stated. We note that its
proof shows that fully marked surfaces are norm-minimizing and each non-torus and
non-annulus component is incompressible. We then state the first author’s converse
to Thurston’s theorem, and show how he used it to give a partial positive solution to
Thurston’s Euler class-one conjecture. In §4 bad solid tori are introduced, and it is
shown that, at the cost of repeatedly replacing S by a surface in its homology class,
and modifying the foliation preserving the homotopy class of its plane field, all the bad
solid tori can be eliminated. In §5, it has been shown that, in the absence of bad solid
tori, one can find a complete system of coherent transversals. The complete system of
coherent transversals is used in §7 to ensure that the tautness property is preserved. In
86, combinatorial lemmas on train tracks and surfaces are presented to be used in §7. In
87, various constructions for modifying foliations are presented. These modifications are
shown to preserve the homotopy class of the plane field of the original foliation. §7 ends
with the proof of Theorem 1.1. In §8 we offer a further conjecture.
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2. Background
2.1. Taut foliations

By a foliation of a 3-manifold M, we mean a decomposition of M into injectively im-
mersed surfaces that locally looks like the product foliation R2xR. A leaf of the foliation
is a connected component of the surfaces in the foliation. Throughout this paper, we
assume that M is orientable and all foliations are transversely orientable, meaning that
there is a consistent choice of transverse orientation for the leaves.

A foliation F on the compact manifold M, transverse to the possibly empty 0M,
is called taut if every leaf has a closed transversal. A closed transversal is a closed loop
transverse to the foliation. For taut foliations transverse to M, a single transversal
suffices (see [2, p. 155]).

2.2. Regularity of foliations

A foliation F is called C°, or topological, if the holonomy of its leaves is continuous. It is
called C°V if the leaves are smoothly immersed with continuous holonomy. By Calegari,
every topological foliation of a 3-manifold is topologically isotopic to a C°*? foliation [1].

2.3. Suspension foliations

The exposition here is taken from [3, Chapter V]. Let p: E— B be a fiber bundle with
base B, fiber F', and total space E. We say that a foliation F of E is transverse to the
fibers if the following conditions hold:

(1) each leaf L of F is transverse to the fibers and dim(L)+dim(F)=dim E;

(2) for each leaf L of F, the restriction map p: L— B is a covering map.

When the fiber F is compact, condition (2) is implied by (1), as shown by Ehresmann.

Given a fiber bundle and a foliation transverse to the fibers, one can construct a

representation
¢:m1(B,by) — Homeo(F), bg€B,

that is the holonomy around the based loops lying in B. Conversely, we have the following

result.

THEOREM 2.1. Let B and F be connected manifolds. Given a representation
¢:m(B,by) —> Homeo(F'), b€ B,

one can construct a fiber bundle E(¢) over the base B and with fiber F, and a foliation
F(o) transverse to the fibers of E(¢p) such that the holonomy of F(¢) is equal to ¢.
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We are mainly interested in the case that F'=[0,1] or S! is 1-dimensional, and the
image of ¢ lies in Homeo™ (F), that is the group of orientation-preserving homeomor-
phisms of F. The construction is as follows.

Denote by B the universal cover of B. Consider the action of m1(B,by) on BxF
defined as

v-(b, £) = (v-b,6(7)-f) for yEm(B,by) and (b, f) € BxF,

where the action on the first factor is by covering transformations. This action preserves
the product foliation on BxF , meaning that it sends leaves to (possibly different) leaves.

Hence, there is an induced foliation on the quotient
BE(¢):=(BxF)/mi(B,by),

that satisfies the desired properties.

2.4. Corners

Consider a codimension-1 foliation of a 3-manifold M with non-empty boundary. Let
pEIOM be a point. We say that p is a tangential point if there is a foliated neighborhood
of p in M that is homeomorphic to a foliated neighborhood of (0,0,0) in

{(x,y,z)€R3 1220},

where the leaves consist of the planes z=constant. By definition, p is a transverse
point if there is a foliated neighborhood of p in M that is homeomorphic to a foliated
neighborhood of (0,0, 0) in the foliation of

{(w,y,z)eR?’:x}O},

where the leaves are the half-planes z=constant.
We say that p is a convex corner if there is a foliated neighborhood of p that is

homeomorphic to a foliated neighborhood of (0,0, 0) in the foliation of
{(z,y,2) €R*:2x>0 and 2 >0},

where the leaves consist of the half-planes z=constant.
A point p is a concave corner, if there is a foliated neighborhood of p that is home-

omorphic to a foliated neighborhood of (0,0,0) in the foliation of

{(z,y,2) ER*:2>0 or z >0},
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Figure 1. The points labelled with 1, 2, 3, 4, and 5 are, respectively, convex corner, concave
corner, transverse point, node, and tangential point.

where the leaves consist of the planes and half-planes z=constant.
A point p is a node if there is a foliated neighborhood of p that is homeomorphic to
a foliated neighborhood of (0,0, 0) in the foliation of

{(z,y,2) €R*:2>0 and 2 >0}U{(z,y,2) ER*: 2<0 and (x>0 or y=0)},

by the half-planes and three-quarter-planes z=constant. See Figure 1, where the dashed
lines indicate that the leaves are cut open in the figure in order to make them more
visible.

Define the tangential boundary of M, 0, M, as the closure of the union of tangential
points in OM. Let the transverse boundary of M, Oy M, be the closure of the union of
transverse points in @M. In particular, convex corners, concave corners, and nodes are
included in both 9+ M and 0, M.

2.5. I-bundle replacement

Let L be a leaf of the transversely orientable codimension-1 foliation F of the compact
3-manifold M. Informally speaking, we want to blow air into the foliation along L and
fill the gap with a packet of leaves. This well-known and frequently used operation, also
known as Denjoy blow-up, goes back to 1932 [5], when Denjoy showed how to replace a
leaf by a product bundle of leaves. Here, we replace L by any foliated product I-bundle
over L. As an example, two dimensions lower, we have the Denjoy blow-up of the dyadic
rationals in the interval. This replaces each dyadic rational in (0,1) by a closed interval.
The reverse operation starts with the standard middle thirds Cantor set in the interval.
Pass back to the interval by identifying the closure of each complementary arc to a point.

In our setting, we start with a transverse line field V to F. We now describe the most
interesting case, which is when L is dense in M. Blowing up L, produces a laminated
space X C M which is transversely a Cantor set. Here, V induces the product structure
LxI on M\X completed with the induced path metric. We recover M by identifying
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Lo

Figure 2. A schematic picture of partial I-bundle replacement in one dimension lower: the
left-hand (resp. right-hand) side shows the picture before (resp. after) the partial I-bundle
replacement. The vertical segments (in blue) indicate the transverse part of the boundary.
The dashed lines (in red) indicate the newly added leaves, i.e. the I-bundle over Lo. Note
that a new component of 94 M, next to (OR)N Lo, is created.

each connected interval of LxI to a point. I-bundle replacement is the operation of
passing from F to G by filling in L x I with a foliated bundle transverse to the I-factor.
For more details see, for example, [2, Example 4.14]. If the starting foliation is taut, the
new constructed foliation remains taut. Indeed, the same single curve, transverse to all
the leaves of F, is a transversal for all the leaves of G.

We will need a slight variation of the I-bundle replacement, which we call a partial I-
bundle replacement. Assume that M satisfies the following boundary condition: Let 0, M
and J4 M be the tangential and transverse boundary of M, respectively. The intersection
of 0, M and 04 M is a finite union of disjointly embedded 1-complexes and simple closed
curves in dM, whose vertices (resp. edges and simple closed curves) correspond to nodes
(resp. convex and concave corners) on OM.

Let T be a component of 0. M, and L be the leaf of F containing T'. Define the
preferred side of L as the side facing OM. Let R be a compact subsurface of LN (0, M).
Define a partial I-bundle replacement along L\int(R) as the result of first doing an I-
bundle replacement along L on the preferred side where I is identified with [0, 1], and
then removing the restriction of the (0,1]-bundle over int(R). If Ly is a connected
component of L\int(R), we define the partial I-bundle replacement along Lo by first
doing a partial I-bundle replacement along L\int(R), and then collapsing the I fibers
above all other components of L\int(R). See Figure 2 for a schematic picture of partial
I-bundle replacement in one dimension lower.

The following will be used for establishing tautness of newly constructed foliations.

Observation 2.2. Let M be a compact 3-manifold, and F be a codimension-1 fo-
liation on M. Let F' be obtained from F by an I-bundle replacement. Then, any

transversal (resp. transverse vector field) for F is naturally a transversal (resp. trans-
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verse vector field) for F’. Also, if v is a transversal for L, a leaf of F that is blown up,

then + is a transversal for the blown up leaves. In particular, if F is taut, then so is F’.

2.6. Homeomorphisms of the interval

In this section, we gather some of the results that will be needed about orientation-

preserving homeomorphisms of the interval.

LEMMA 2.3. If F is any surface with boundary which is not compact planar and b
is a boundary component of F, then there are foliations of F'xI (I is a closed interval),
transverse to the I factor that have a given holonomy on b and trivial holonomy on all
other boundary components. In the remaining case that F is compact planar (not a
disk), if b and b are two boundary components with the induced orientations from F,
then there exists a foliation transverse to the I factor that has a given holonomy @ on b

1

and p~t on V', and trivial holonomy on all other boundary components [7].

The next lemma is a modification of [7, Lemma 2.1].

LEMMA 2.4. Let u and v be given orientation-preserving homeomorphisms of the in-
terval. There exist an orientation-preserving homeomorphism T such that T is conjugate
to each of the following:

(a) u-T~ 1,

Here, u-v denotes concatenation, likewise for u-7—1-v.

Proof. Identify the interval with [—1,1]. By the concatenation f of u and v, we mean
that there exists —1<a<1 such that f|_; ) is conjugate to u and f[(, 1) is conjugate
to v. The choice of a does not affect the conjugacy class of f. Note that the inverse of
u-v is equal to u=t-v7L.

(a) Break this interval into symmetric pieces as

[FL=sl sl e Ieals

Define 7 to be conjugate to u and v, respectively, on [—1,—1] and [4,1]. Then, define

N |—

it to be conjugate to u~" and v™!, respectively, on [—1,—1] and [, ], and continue so
1 1
vl

on. Finally, set 7(0)=0. As constructed, we have r=u-u""-...-.v71-v, and therefore its

1 1

inverse is u~!-u-...-v-v~!. Hence, T is conjugate to u-71-v.
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(b) Similar to the previous part.

(c) Break the interval as

J:

On each subinterval, define 7 to be conjugate to u. Finally set 7(1)=1. Then, we have

1.0, [0.5], [5

winy

T=u-u-..., which is conjugate to u-7.
(d), (e), (f) Similar to part (c). O

2.7. Roussarie—-Thurston general position

Let M be a closed, orientable 3-manifold and F be a taut foliation on M. Roussarie [14]
and Thurston [16] proved that any connected, embedded, incompressible surface SC M
can be isotoped such that S is either a leaf or is transverse to F except at finitely many
points of saddle tangencies.

The theorem holds in more generality when M has boundary; in this case, we assume
that F is transverse to M, and each component of 95 is either transverse to F|gps or
tangent to F|sas. Both Roussarie and Thurston state the result for connected surfaces
in transversely C2-foliations. With foliations now known to be at least C°*°, the proof
holds for all taut foliations. The proof works for disconnected surfaces as well, the key
point being that a surface tangent to a compact leaf with non-trivial holonomy can be
isotoped slightly to be a fully marked surface that is not a leaf. In fact, unless F is
a bundle, we can arrange that, after the isotopy, no component of S is a leaf. The
first author generalized it to the case of immersed incompressible surfaces, and without
any orientability assumption on the manifold and the foliation, only assuming that the

foliation is tangentially smooth [9].

2.8. Haefliger’s theorem on compact leaves

THEOREM 2.5. (Haefliger [11]) Let F be a codimension-1 foliation of a compact n-
manifold M. The union of compact leaves of F is a compact subset of M. Moreover, if
F is transversely orientable and K is a compact (n—1)-dimensional manifold, the union

of leaves of diffeomorphism type K is compact as well.

By a packet of leaves, we mean either

(1) an injectively immersed copy of K x [0, 1], together with a foliation that is trans-
verse to the interval factor, or

(2) a single leaf K.
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In the first case, K x {0} and K x {1} are called the end leaves of the packet, while in
the second case the single leaf K is considered as the end leaf. Note the induced foliation
on the packet does not have to be the product foliation. It follows from Haefliger’s
theorem that when F is transversely orientable and K is compact, the union of leaves
of F that are diffeomorphic to K appear in finitely many packets. To see this, define
an equivalence relation on the leaves of F that are diffeomorphic to the compact K as
follows:

Ky~ K, if there is a packet of leaves, whose end leaves are K7 and Ks.

It is easy to see that this defines an equivalence relation, and there are finitely many

equivalence classes.

2.9. Poincaré—Hopf index theorem

The classical Poincaré—Hopf index formula asserts that, if X is a vector field on a closed
manifold N, then the Euler characteristic of IV is equal to the alternating sum of the in-
dices. In this paper, we use a special case of a generalization due to Goodman [10], which
states that, if N is a compact 3-manifold with a non-vanishing vector field that points
in (resp. out, tangent) along A (resp. B, T') where AUBUT=0N, then x(A)=x(B). In
application, F is a foliation on N where A (resp. B) is union of the components of 9N
consisting of leaves of F where the normal orientation points in (resp. out) and 7' is the

union of (torus) components of IN transverse to leaves of F.

2.10. Embedded tori in closed hyperbolic 3-manifolds

The following is standard.

LEMMA 2.6. Let M be an irreducible 3-manifold and let T Cint(M) be a compressible
embedded torus. Then, either T bounds a solid torus inside M or T is contained in a
3-ball. In particular, if T contains a curve homotopically essential in M, then T bounds

a solid torus.

Proof. Since T is compressible, some simple closed curve in 7" bounds an essential
embedded disk DCM with DNT=0D. Surger T along D to obtain an embedded 2-
sphere S. Since M is irreducible, S bounds a 3-ball B. There are two cases. If DNB=g,
then T bounds a solid torus while, if DCB, then TCB. O
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COROLLARY 2.7. Let N be a closed hyperbolic 3-manifold and T CN be an embedded

torus. If T contains a curve homotopically essential in M, then T bounds a solid torus.

Proof. Hyperbolic 3-manifolds are irreducible and any torus in a closed hyperbolic

3-manifold is compressible. Therefore, the previous lemma applies. O

3. Thurston’s Euler class-one conjecture

Roussarie [14] and Thurston [16] realized that taut foliations and embedded incompress-
ible surfaces have an ‘efficient intersection property’, and furthermore Thurston deduced
inequality (1) from that general position [17]. Thurston introduced a natural norm on
second homology of 3-manifolds, now called the Thurston norm and studied connections
between taut foliations and this norm. Putting inequality (1) in the language of the
Thurston norm, he obtained that the Euler class of any taut foliation of a 3-manifold has

dual Thurston norm at most 1.

THEOREM 3.1. (Thurston) Let M be a compact oriented 3-manifold and F be a
codimension-1, transversely oriented foliation of M. Suppose that F contains no Reeb
components and each component of OM is either a leaf of F or a surface T such that
F is transverse to T and each leaf of F which intersects T also intersects a closed

transverse curve (e.g. F|r has no Reeb components). Then,
x*(e) <1

holds in

(1) H?(M).

(2) H?>(M,0M).

Here, x* is the dual Thurston norm and e is the Euler class of the tangent plane
bundle to the foliation F.

The idea of the proof of Theorem 3.1 is the following [17]. Let a€ Ho(M,0M;Z) be
an integral homology class. In order to compute the quantity {(e(F),[S]), first represent
a by an incompressible surface S. Putting S in Roussarie-Thurston general position,
we may assume that S is transverse to F except at finitely many points of saddle, or
circle tangencies. In fact, circle tangencies can be avoided whenever the foliation is
taut as shown by Thurston [16], so we do not discuss them here (In any case their
contribution to (e(F), [S]) is zero, even if they exist). Assign —1 (resp. +1) to a saddle
tangency p€ S, if the oriented normal vectors to S and F agree (resp. disagree) at the
point p. Then, the quantity (e(F),[S]) can be obtained by adding up all the numbers
corresponding to saddle tangencies. Now, by the Poincaré—Hopf formula, the number of
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saddle tangencies is equal to |x(S)|. It is clear that the sum of the numbers associated
with saddle tangencies is maximum in absolute value, when all of the numbers are equal

so there is no cancellation. Hence we have

The proof of Thurston’s theorem implies the following important property of fully

marked surfaces: any fully marked surface is norm-minimizing.

COROLLARY 3.2. Let M#S%2xS"' be a closed orientable 3-manifold, and F be a
taut foliation on M. Any fully marked surface S has no sphere component, and is norm-
minimizing and incompressible. Moreover, any compact leaf of the induced foliation on

S is mi-injective in S, and hence in M.

Theorem 3.1 shows that not every integral second cohomology class can be realized
as the Euler class of some taut foliation. In particular, the number of such classes is finite
if M is an-annular and atoroidal. This is in contrast with the case of general foliations
on closed 3-manifolds, where Wood showed that every integral second cohomology class
satisfying the parity condition can be realized as the Euler class of some transversely
oriented foliation [18] (see [19]). Conversely, Thurston conjectured the following (see [17,
p. 129, Conjecture 3]).
(

Conjecture 3.3. (Thurston) If M has no ‘essential” singular tori, and if a€ H?(M;Z)
is any element with 2*(a)=1, then there is some [taut] foliation F of M such that e(F)=a.

Thurston showed that the unit ball for the dual Thurston norm is a convex polyhe-
dron whose vertices are integral points [17]. Later the first author proved the conjecture
holds for the vertices of the dual ball (See [8, p.24, Remark 7.3]).

THEOREM 1.4 (Gabai) Let M be a compact oriented irreducible 3-manifold, possibly
with toroidal boundary, and let a€ H*(M,0M;R) be a vertex of the dual unit ball. Then,

there is a taut foliation on M whose Euler class is equal to a.

Proof. We will give the proof when z is a norm. Let a€ H*(M,OM) be a vertex of
the dual unit ball, and C be the face dual to the point a. As a is a vertex, C is a top-
dimensional face. Let a€ Hy(M,0M) be a rational point in C, and S be an embedded

norm-minimizing surface representing a multiple of the homology class a. Denote by
(-,-): H*(M,0M) x Hy(M,0M) — R
the pairing between the second cohomology and homology of M. By definition, we have

(a,a) =1=x(a).
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By [6], there exists a taut foliation F on M such that S is a leaf of F, the foliation F is
transverse to M, and OF has no Reeb component. We show that e(F)=a.

Since a is in the interior of the top-dimensional face C, we can choose a basis
ai,0as, ..., a, for the second homology of M such that each a; lies in the closure of C
and

G=1t1G1+...+tndn,

with 0<¢;<1 and > ; t;=1. By hypothesis, for each 1<i<n we have
<CL7 (_IZ‘> =1= l‘(C_Lz)

Since S is a leaf of F, we have

which implies tat

Therefore, we have

1= |(e(F).)| =

1) (2)
Zti<€(]:), &i> < Z |ti<€(]:), al>| < Ztiw(di) = Z t;=1.
Here, the implication (1) is the triangle inequality, and (2) is the fact that the Euler class
e has dual norm at most 1. So, each of the inequalities in (2) should be in fact equality.

As t;>0, for each index i we have
(e(F),a:) =(a;) = (a,a;).

Since a@; are a basis for the second homology of M, we have e(F)=a. O

4. Eliminating bad solid tori

In §7 we will give a procedure that starts with a fully marked surface S in the 3-manifold
M with a taut foliation F and produces a new foliation G with S a union of leaves, such
that 7 and G have homotopic plane fields. In general, G will have Reeb components,
hence will not be taut. The problem is that the pair (F,S) may have bad solid tori.
In this section, we show that after replacing F with F’ by I-bundle replacement and
replacing S with a homologous surface S/, then (F’,S’) has no bad solid tori. Our S’
may have more or less components than S, in particular S itself may be disconnected.
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Definition 4.1. Let S be a compact surface, and F|g be a singular foliation on S
with only finitely many singular points P, all of which are saddles. If L is a leaf of
F|s passing through a singularity, then a separatriz is a connected component of L\ P
together with the one or two points of P from which it emanates from. If no separatrix

is compact, then we say that F' has the compact-free separatriz property.
The following lemma allows for simplification of various technical issues in this paper.

LEMMA 4.2. Let M be a compact orientable 3-manifold and F be a taut foliation
of M such that every component of OM 1is either tangent or transverse to F. Let S be
an embedded orientable incompressible surface that is transverse to F except at finitely
many saddle tangencies. One can do I-bundle replacement along some of the leaves of
F, together with an arbitrary small isotopy of S to obtain F' and S’ such that F'|s has

the compact-free separatriz property.

Proof. Let py,...,pn be the saddle singularities on S. By [4, Theorem 7.1.10], we
may assume that no two distinct p; are connected by a separatrix inside F|g. This does
not need the hypotheses on F being taut, or S being incompressible.

The next step is to get rid of a separatrix from a singularity to itself. Let + be
a separatrix from p; to itself, and L be the leaf of F containing . The loop 7 is
homotopically non-trivial in S; otherwise, if D was a disk bounding v in S, there would
have been a center tangency inside D by the Poincaré—Hopf formula.

The surface S is embedded, incompressible and two-sided. Hence, S is mi-injective.
Therefore, v is homotopically non-trivial in M, and hence in L as well.

Since p; is a saddle tangency, there are locally four separatrices coming out of it.
There are either two compact separatrices passing through p;, or just one. Consider
a small standard neighborhood of p;, where the surface S can be seen as the graph of
the function z=x2—y?, and the foliation F is by horizontal planes. Do an I-bundle
replacement along L, and call the resulting foliation F’. Note that F’|s is obtained from
Fl|s by a singular I-bundle replacement along LNS. We abuse notation by letting p;
denote the new singularity of F'|s. Note that if the holonomy along the loop = is a shift,
then the number of compact separatrices passing through p; is reduced, and the status of
separatrices passing through p; for j>1 is not changed. Repeat this with other compact

separatrices. O

Remark 4.3. If every Reeb component of F|g is disjoint from the singularities, then
the operation of Lemma 4.2 maintains that property and keeps the number of Reeb

components unchanged.

Notation 4.4. Given the closed oriented embedded surface SCM, let M; denote
M\S compactified with the induced path metric. We sometimes call M; the closed
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Figure 3. A schematic picture for a bad solid torus. The horizontal lines represent Sp and S;.

complement of M\ S. Given the foliation F on M, then F; denotes the induced foliation
on M;. We denote by Sy (resp. S1) the component of 9M; where the orientation points
in (resp. out) at every point of tangency. At times it will be useful to view M; as being

naturally immersed in M.

Definition 4.5. A bad annulus is a properly embedded annulus leaf U of F; with
both boundary components lying on S7 or both lying on Sj.

Definition 4.6. Let SCM be a fully marked surface with respect to the taut folia-
tion F. A bad solid torus for (F,S) is an embedded solid torus B C M; which is bounded
by bad annuli U; together with annuli subsurfaces A; such that either

(1) A,;CS; for all j, and the normal to the foliation F points out of B along all U,
or

(2) A,;CSp for all j, and the normal to F points into B along all U;; see Figure 3.

PROPOSITION 4.7. Let M be a closed hyperbolic 3-manifold, F be a taut foliation
on M and S be a fully marked surface. One can do I-bundle replacement along some of
the leaves to obtain F' and replace S by a homologous fully marked surface S’ such that

(F',S") has no bad solid torus and F'|s: has the compact-free separatriz property.

By Lemma 4.2, we may assume that F|g has no arc connecting separatrices. In what
follows, the reader should remember that this implies that F|s contains no topologically
immersed circle that intersects a singularity. Before embarking on the proof, we give

some preliminary definitions and lemmas.

LEMMA 4.8. Let M be a compact orientable 3-manifold, F be a taut foliation on M,
and S be a fully marked surface. Let T=AUB be a torus, where A and B are annuli, A

is in a leaf, B is in S, and F|p is a suspension. Then, T is a 71-injective torus.

Proof. The torus T contains a smooth circle leaf « of F|g. The curve « is mi-injective
in M, by Corollary 3.2. Since F is transversely oriented, the transverse orientation on A



THE FULLY MARKED SURFACE THEOREM 385

agrees with the induced transverse orientation on the suspension F|g. Therefore, T
can then be isotoped slightly to be transverse to F and have « as a leaf of the induced
foliation which is a suspension. Every non-trivial element of 7 (7T) is represented by
either a multiple of o or a curve transverse to F. The latter curves are essential in M
by Novikov’s theorem [13]. We conclude that T' is 7i-injective in M. O

Definition 4.9. e A string is an annulus S'x[0,1] lying inside a leaf of F such
that the [0, 1] factor can be decomposed as 0=tg<t; <...<t;=1, where each S* x [t;, ;1]
intersects S exactly along its boundary circles. The height of the string is equal to k,
and S x [t;, t;11] are called the pieces of the string.

o A maximal string is a string that cannot be extended to a string of larger height.

o A packet of strings is an embedding i: A x I — M, where A=S"x [0, 1] is an annulus
and the [0, 1] factor can be decomposed as 0=ty <t; <...<t;=1, where the image of each
piece ST x [t;,ti11] x I is a packet of leaves in M; with end leaves i(S* x [t;, ;1] x OI), and
intersecting M, exactly along i(S'x{t;,t;11}xI). The number k is called the height
of the packet. A single string is also considered as a special case of a packet of strings.

e Define the tangential boundary of a packet of strings as the restriction of i to

Ax0I, and the transverse boundary as the restriction of ¢ to A X I.

Remark 4.10. A packet of strings intersects S in annuli that are foliated as suspen-

sions. By abuse of notation, we identify a string with its image in M.

Remark 4.11. Let M be a closed hyperbolic 3-manifold, F be a taut foliation on
M, and S be a fully marked surface. Then, the condition that the transverse boundaries
(and hence also tangential boundaries) of a packet of strings are disjoint is automatic by
Lemmas 4.8 and 2.7, since M does not contain any incompressible torus. In other words,

we only need to assume that the restriction of i to the interior of Ax I is injective.

LEMMA 4.12. If SCM is a fully marked surface with respect to the taut foliation
F in the closed atoroidal 3-manifold M, then the height k of any string s is uniformly
bounded by some K <oo.

Proof. By Haefliger’s theorem, there are finitely many packets Py, ..., P, of leaves
of F1 in M; which contain all the annuli leaves of F7. If Height(s)>m, then s passes
through some packet, say P, in at least two of its pieces. Thus, there exists an annulus
A in the transverse boundary of P, and an annulus BCs whose union is an embedded
torus or Klein bottle TC M.

If T is a Klein bottle, then the boundary of a regular neighborhood N(T') bounds
a solid torus to the outside, and hence M is either reducible or a Seifert fibered space.
Now, suppose that T is a torus. By lemma 4.8, T is m-injective in M. O
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P At most Ky
possibilities for continuing

At most Kg+1
possibilities for stopping

Figure 4. The string can either end at C' or continue into the 1-packets.

Definition 4.13. Two maximal strings so and s; are equivalent if there exists a
packet of strings P whose tangential boundary is syUs;, and moreover any string in P

with boundary lying on the transverse boundary of P is also maximal.
LEMMA 4.14. The number of equivalence classes of maximal strings is finite.

Proof. The proof is by successive use of the pigeonhole principle. By Haefliger’s
theorem, there are finitely many packets, say Ky, that include all the annuli leaves of Fj.
We call these 1-packets. One can more or less construct a branched surface by gluing
the 1-packets together in the obvious manner. The branch loci are circles that lie in S,
and at most K sheets can branch from such a circle in either direction. Let K be as in
Lemma 4.12. We show that the number of equivalence classes of maximal strings is less
than (2K,+1)2K.

To prove this, assume the contrary; that there are t=(2Ky+1)2X maximal strings,
no two of which are in the same equivalence class. Call the mentioned maximal strings
S1, 82, ..., S¢. Since there are

Ko <2Kp+1

1-packets, by the pigeonhole principle there are at least (2/K¢-+1)2%~1 distinct strings s;
that pass through the same 1-packet P. Fix an orientation for the [0,1] direction of P.
Let C be the bottom transverse boundary of P with respect to the chosen orientation.
Heading ‘downward’, a string can either end at C' or continue into one of the 1-packets.
There are at most 2K+ 1 possibilities, as Figure 4 shows.

Here K| possibilities are counted for continuing into a 1-packet, and Ky+1 possibil-

2K=2 of the strings s;

ities are considered for ending at C. Therefore, at least (2Ky+1)
have the same fate. If they end at C, we start heading upward at P, and repeat the same
argument. In any case, we can only go downward a maximum of K —1 steps and similarly
for upward, since the length of any string is at most K. Note that, at this point, still at

least 2K(y+1 strings s; had the same fate all along, and they have ended on both sides
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Figure 5. A maximal bad solid torus with m=1.

(up and down) together. But this means that they are in the same equivalence class. We

came to a contradiction, so the number of equivalence classes is at most (2Ky+1)%%. O

Proof of Proposition 4.7. Define the following complexity function for the pair (F, S):
C = (Cl, 62)7

where ¢y is the number of Reeb components on S, and cs is sum of the heights of the

equivalence classes of maximal strings. Equip C' with the lexicographic order, that is
(c1,¢2) < (d1,d2) if and only if ¢ <dy or (¢1 =dy and ¢p < da).

We show that, if there exists a bad solid torus, then one can replace S with a new surface
S’, homologous to S, such that the complexity function C for the pair (F,S5’) is less
than the corresponding one for (F,S). Recall that the boundary of a bad solid torus B
consists of m bad annuli U;, together with m annuli subsurfaces A; of S; (or Sp). We
may assume that A;C.Sp, as the other case is similar.

First, we outline the argument for the case m=1. Therefore, 0B=UU A.

Assume that B is maximal, in the sense that it cannot be extended further along U
by adding a packet of strings (Figure 5). This has the following consequence.

Let OU=0b1Uby. Since by and by are freely homotopic in U, they have the same
germinal holonomy. Since B is maximal, the germinal holonomy of b; on the side not
contained in A cannot have fixed points except for the origin; see Figure 5.

Replace S with (S\ A)UU and push it slightly out of B to make it disjoint from U.
Call this new surface S’. The surface S’ is homologous to S, since U\ A bounds the solid
torus B. We show that the complexity function for the pair (F,S’) is less than the one
for (F,S).

First, we examine what happens to the number of Reeb components. Note that
there is at least one Reeb component on A, since the normal vector to F points out of B
along U. After replacing S with S’, all the Reeb components on A disappear. We show
that at most one new Reeb component can be created, and therefore ¢; is non-increasing.

Let U’ be the portion of S” obtained from U after pushing out. The induced foliation
on U’ is as in Figure 6. Let R be a Reeb component of S’. If RNU’'=, then R is a Reeb
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Figure 7. Two scenarios for the induced foliation on a neighborhood of U’.

component of S as well. If RNU’'#@, then no leaf in U’ can be contained in a boundary
leaf of R, since every leaf of U’ has a closed transversal. Therefore, all leaves of U’
should be part of the interior leaves of R. The only ways that U’ can be completed to a
Reeb component are as in Figure 7. In the first (resp. second) scenario, there are closed
leaves b/, by, CS\ A parallel to by and by, respectively, such that the induced foliation on
the annulus cobounding b; and b} is a suspension of a shift homeomorphism (resp. 2-
dimensional Reeb component) for t=1,2. In the second scenario, ¢; decreases by at least
two. We now show that, if ¢; remains constant, then co decreases. The crucial point is

that all compact leaves of F|g: are disjoint from U’.

We now define a map
j: {maximal strings for (F,S)}/~ — {maximal strings for (F,S’)}/~',

where the equivalence relations ~ and ~’ are defined as in Definition 4.13 corresponding
to the pairs (F,S) and (F, S’), respectively. We prove the following properties of j:

(1) j is well defined;

(2) Height(j(s))<Height(s), and moreover, there exists at least one string s such
that the inequality is strict;

(3) j is surjective.



THE FULLY MARKED SURFACE THEOREM 389

Recall that co is defined as the sum of the heights of the equivalence classes of
maximal strings. Once proven, (1)—(3) together imply that co strictly decreases. Note
that no injectivity assumption is needed to make the conclusion.

First, we show that (1) and (2) hold. Let s be a maximal string for S. If sNA=g2,
then define j(s):=s. Note that there is at least one maximal string s for S such that
sNA#> (there should be some maximal string including U, for example). If sNA#Q,
then define j(s) as follows.

Assume Height(s)=k and 0=t(<t;<...<tr=1 be the interval decomposition for s;
therefore s has k pieces corresponding to the subintervals [t;,t; 1] for 0<i<k—1. If s hits
the annulus A in the first (last) consecutive r moments ¢, ..., t,_1, then delete the pieces
of s corresponding to the first (last) r subintervals. After doing this, the beginning and
the endpoint of the string lie on S\ A. Next, if the string hits A at moment ¢;, remove
t; from the list. This has the effect of joining some of the pieces of the string together.
Define j(s) as the new string.

The string j(s) is maximal, otherwise the string s would not have been maximal
either. Note that Height(j(s))<Height(s) is immediate, and the inequality is strict for
at least one maximal string s (for example, the maximal string containing U). It is
also possible that j(s) is the empty string. This finishes the definition of j, but we still
need to check that the definition does not depend on the choice of representative for the
equivalence class.

Suppose that s; and so are equivalent maximal strings for S. We need to show that
j(s1) and j(s3) are equivalent maximal strings for S’. Let J be a packet of strings having
s1Us; as its tangential boundary. Crucially, each component of JN.S lies completely in A
or completely in S\ A. To see this, let 0=t¢<t; <...<tp=1 be the interval decomposition
of J with Height(J)=k. There are two cases to consider.

First, let 0<i<k. Then, the restriction of J to t=t; cannot have non-empty inter-
sections with both A and S\ A. Otherwise the bad solid torus B would not have been
maximal as it could be extended further along U by adding some part of J to it.

Secondly, The restriction of J to t=tq (resp. t=tx) cannot have non-empty intersec-
tions with both A and S\ A. Otherwise, either B would not have been maximal, or one
of the intermediate strings in J would not have been maximal (could be extended to a
longer string by adding U).

This establishes the claim that each component of JNS lies completely in A or
completely in S\ A. Therefore, when we look at the pieces of s1 and sz, they go through
the same process for defining their image under j. That is, s; intersects A in the first
consecutive r moments if and only if s hits A in the first consecutive r moments, and

so on. Furthermore, we can do exactly the same process for the packet J to obtain a
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packet J' whose tangential boundary is j(s1)Uj(s2). Every intermediate string in J’ is
maximal, since the same was true for J. This shows that j(s1) and j(s2) are equivalent,
and hence j is well defined.

Now, we certify that (3) holds. Let s’ be a maximal string for S’. Recall that none
of the leaves inside U’ are part of a closed trajectory. Hence, the boundary of each piece
of s’ should lie on S"\U’, which is the same as S\ A. Extend s’ to a maximal string for
S by adding annuli pieces to the beginning and end of it, and also subdividing the pieces
if it intersects A. Let s be the string obtained this way. Then, s is a maximal string for
S and j(s)=s'. Hence, j is surjective.

This completes the proof of (1)—(3), which together imply that ¢ decreases when
m=1.

Now, consider the general case that there exists a bad solid torus B. Let

0B = 6 AZULWJ U;,
=1 =1

where U; is a bad annulus and A; is an annulus subsurface of S;. We may assume that
B is maximal (cannot be extended along any of U;). Each A; contains at least one Reeb

component, since the normal vector to F points out of B along all U;. Let S be the

(S\Q A)u[] U

surface obtained by pushing

slightly out of B.

Arguing as before, if the number of Reeb components on S equals that of S, then
to each b; component of JA;, there exists a leaf b} of F|g such that b; and b; bound an
annulus C; whose interior is disjoint from Ui A;, and where the induced foliation on C;
is a suspension. In addition, if b;€0A; for some j, then the number of Reeb components
on S is also reduced. Thus, the analogue of the first scenario holds for each component
of 0A;. Let S’ be the result of deleting the torus components of S. Since M is atoroidal,
all such torus components are homologically trivial, and hence S’ is homologous to S.
Finally, if S has the same number of Reeb components as S, and S #5’, then S’ has
fewer Reeb components.

Now, assume that S’ has the same number of Reeb components as S. We now
repeat the argument for the m=1 case to conclude that cs is reduced. Again, the crucial
observation is that all compact leaves avoid the modified part of S”.

To complete the induction step, we need to show that, after possibly doing I-bundle
replacement, the conclusion of Lemma 4.2 holds and the complexity has been reduced.

If the number of Reeb components on S equals that of S’, then Lemma 4.2 still holds
since any leaf through the modified part of S’ is non-compact. Actually, by construction,
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no leaf through the modified part of S’ hits a singularity. Therefore, in this case ¢; is
constant and ¢y is strictly reduced.

If the number of Reeb components drops, then the conclusion of Lemma 4.2 may
fail to hold. Before addressing this, we observe that the Reeb components of S’ are all
disjoint from the singularities. To see this, observe that if there is a compact arc « lying
in a leaf with both endpoints on singularities, then « passes through the modified part
of S, and hence there is a closed transversal through a. It follows that « is disjoint from
the Reeb components. Therefore, by Remark 4.3, after applying Lemma 4.2, S” has the
same number of Reeb components. In this case, ¢; is strictly reduced, and hence the
pair (¢1, c2) equipped with the lexicographic ordering is strictly reduced, no matter if ¢y

is increased or not. O

5. A complete system of coherent transversals

Definition 5.1. The positive orientation on a fully marked surface S, without torus
components, is the orientation such that at each point of tangency on S, the normal
orientation to S and the transverse orientation to the foliation agree. A transverse arc y
for S is positive at an intersection point peyNS if the orientation of v and the positive

orientation of S are compatible at p.
The following is the main result of this section.

PROPOSITION 5.2. Let F be a taut foliation on the closed hyperbolic 3-manifold M,
S be a positively oriented fully marked surface, My be the closed complement of M\S,
and F; be the induced foliation on My. Assume that F|s has the compact-free separatriz
property. Then, (F,S) has no bad solid tori if and only if there exist finitely many positive
closed transversals vi,...,n to F such that, if y=J, i, then the following conditions
hold:

(i) ~ intersects every leaf of JFu;

(ii) every intersection of ~ with S is transverse and positive.

Definition 5.3. A positive system of transversals satisfying (i) and (ii) is called a
complete system of coherent transversals. A given positive transversal arc or simple

closed curve is called coherent if it satisfies (ii).

In §7 we show how to modify F to G so that S is a union of compact leaves. If
in addition (F,S) has no bad solid tori, then we show that ~ is transverse to G and
intersects each leaf, and hence G is taut.
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Proof. Since the boundary of a bad solid torus which intersects S; (resp. Sp) consists
of annular leaves of F; whose normals point out (resp. in) and annuli subsurfaces of Sy
(resp. Sp) whose normals point out (resp. in), it follows that the tangential boundary of
a bad solid torus cannot coherently intersect a closed transversal. Thus, the absence of
bad solid tori is a necessary condition for the existence of a complete system of coherent
transversals.

The proof of the other direction is a modification of an argument of Goodman [10].
We now assume that (F,.S) has no bad solid tori. Let L be a leaf of F;. Define

Ap, ={q € M :there exists a coherent transverse arc from L\S to g}.

It suffices to show that Ay, =M for all leaves L of F; transverse to S, including those
disjoint from S. If LC Ap, then we can find a coherent closed transversal v through L.
If L is tangent to S and A+ =M for some leaf L* just to the positive side of L, then by
piecing together a transverse arc from LT to a leaf L~ just to the negative side of L and
a transverse arc from L~ to L' through L, we obtain a closed transversal 4’ through L.
Now, ' serves as a coherent transversal for leaves comprising an open set of M, so the
result follows by compactness. We now fix a leaf L of F; transverse to S. In what follows,
we drop the subscript in Ay,.

We now establish some facts about A.

(i) A is open in M.

(i) A\S is saturated by leaves of Fi|in¢(ar,), Where int(M7) is the interior of M;.

(iii) If U=R2xR is a foliation chart for F disjoint from S, then UN.A is connected,
open and saturated.

(iv) If U=R2?xR is a foliation chart for F that intersects S in {0} xR? and ¢=
(0,0,0)€ A\ A, then V=UNA is open and connected, and after possibly passing to a
smaller chart, includes quadrants as in Figure 8.

(v) A point x of tangency between S and F does not lie in A\A. Proof: By
assumption, the leaf of F|g containing x is non-compact, and hence has an accumulation
point. Denote by L the leaf of F; containing x. So, using (iii), if some nearby (in M;)
leaf to L is in A, then so is L.

(vi) A is a compact manifold with boundary whose interior is .A.

(vii) OA consists of finitely many compact leaves L1, ..., L,, of F; and finitely many
subsurfaces Si, ..., Sy, of S. A is disjoint from points of tangency of F with S.

(viii) The normals to the L;’s and S;’s point into A.

(ix) Each S; is an annulus. Proof: F|g, is a foliation without singularities having
0S; as leaves.

(x) Each component of L; is an annulus. Proof: Double A along SNA.A to obtain
V', which has a non-singular inward pointing vector field. It follows that each component
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Figure 8. Different possibilities for a neighborhood of a point p€S. Note the two obvious
possibilities of having all quadrants or none are not drawn. The horizontal plane is the fully
marked surface S with positive normal pointing upward, and the vertical plane is a leaf of the
foliation.

of JV is a torus, and hence each L; is an annulus or torus. Since F is taut and M is
atoroidal, it has no torus leaves and hence each L; is an annulus.

(xi) Each component T of A is a torus bounding a solid torus W. Proof: By (ix)
and (x), T is a torus. It contains an essential simple closed curve, e.g. a leaf of F|g, and
hence, by Lemma 2.7, W is a solid torus. Note that either ACW or W is a component
of the complement of A.

(xii) The closure of each component R of SNint(W) is a finite union of properly
embedded annuli. Proof: Figure 8 shows that R is a properly embedded surface whose
boundary consists of leaves of F|g, and hence R is m-injective in M. Since R lies in a
solid torus, this implies that R is an annulus.

(xiii) The closure B of each component B of W\S is a solid torus. One such B is
bounded by a union of finitely many annuli, each of which lies in S or leaves of F. All
these normals point into B or all these normal point out of B. Proof: Suppose all the
normals to OW point out, which is the case when WNA=g. An R as in (xii), outermost
in W, cuts off a solid torus B. If the normal to R points out of B, we are done. Otherwise,
let W1 be the complementary solid torus. Its boundary consists of annuli lying in either
S or leaves of F and all the normals point out. The result then follows by downward
induction on the number of components of SNint(W).

(xiv) B is a bad solid torus. Proof: By construction, int(B)NS=. If the normal
vectors point out of (resp. into) B, then viewed in My, dBNS;#2 and 0BNSy=2 (resp.
0BNSy#2 and 0BNS,=2). O

6. Combinatorics of train tracks

6.1. Cutting surfaces

For the purpose of exposition, here is the definition of the complexity function of a surface
that will be used later. Let S be the set of compact connected orientable surfaces. For
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SeS, denote the genus and the number of boundary components of S with ¢(S) and
b(S), respectively. Define the complexity function ¢y(S) as the ordered pair (g(5), b(S)),
with the lexicographic order. We make the convention that, for every surface S€S,
¢o(S)>co(2), where @ is the empty set. If S is a compact orientable surface, then order

the components of S that are not disks or annuli as 51, ..., .5, with
00(51) Z 00(52) 2 2 Co(Sn),

and define the complexity function ¢;(S) as the tuple

Cl(S) = (60(51)760(52), ceey Co(Sn),CQ(@), CO(Q)7 )7 (2)

with the lexicographic order.

LEMMA 6.1. Let S be a compact orientable surface. Let o be a homotopically es-
sential simple closed curve in S that is not O-parallel. If we denote the cut-open surface
S\ by S, then ¢1(S")<c1(S).

LEMMA 6.2. Let S be a compact orientable surface and F be a compact subsurface
of S such that no component of F and S\F is a disk. Then, c1(F)<c1(S).

6.2. Train tracks

Let F' be a compact surface. A train track 7 on F' is a finite collection of 1-dimensional
CW-complexes and circles disjointly embedded in F' such that the following conditions
hold:

(1) every vertex is trivalent;

(2) at every vertex, there is a well-defined tangent line;

(3) every complementary region has non-positive index.

Figure 9, top-left, shows the local picture around a vertex of 7. The region around
the vertex with angle zero is called a cusp. A complementary region is a connected

component R of F\7, and the indezx of R is defined as
Ind(R) = x(R)— % (number of cusps of R).

Condition (3) rules out disks and monogons (i.e. a disk with one cusp), but we allow
bigons (i.e. a disk with two cusps) and annuli. Condition (1) is called genericity in some
texts. A transverse orientation on a train track is a choice of transverse orientation
on each edge such that they are compatible at each vertex. A train track 7 is called

transversely oriented if T comes equipped with a transverse orientation, and transversely
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Ny(7)

Figure 9. Left: the local model for a branched neighborhood of a train track around a vertex,
Right: a basic block.

orientable if there exists a choice of transverse orientation for 7. A curve 7 is transverse
to 7 if v intersects 7 transversely and not at the vertices of 7.

A branched neighborhood Np(7) of a train track 7 is a neighborhood modelled locally
as in Figure 9 (bottom-left) for the vertices of 7, and it comes with a projection map
7: Np(7)—7 such that, for each per, 7~ 1(p) is an interval called a tie. A singular tie
is m~1(v) for a vertex v of 7. Beware that some texts use a different definition for a
branched neighborhood, in which the boundary of a branched neighborhood is composed
of horizontal and vertical parts.

A singular foliation F is carried by a train track 7, if there is a branched neighbor-
hood Ny (7) of 7 such that the singularities of F correspond to the cusps of the branched
neighborhood Ny (7), the support of F is equal to Ny(7), and F is transverse to the ties.
By cutting the branched neighborhood along singular ties, one obtains the following
combinatorial description. Let ey, ..., e, be the edges or simple closed curve components
of 7. For each edge e;, consider the rectangle e; x I with the product foliation, and define
its vertical boundary as (9e;)x[0,1]. Similarly, for each simple closed curve component
e; of T, consider e; xI with the appropriate suspension foliation induced by F. The
branched neighborhood N(7) is obtained from the union e; xI; for 1<j<n, by iden-
tifying them suitably along their vertical boundaries. A rectangle is the image of an
immersion f: [0, 1] x [0, 1]— N, (7) such that the following conditions hold:

(1) fleo,1)x(0,1) is an embedding;

(2) for each t€[0,1], f([0,1]x{t}) is contained in a finite union of leaves and singu-
larities of F; if t€(0,1), then f([0,1] x{t}) is contained in a single leaf;

(3) f({t}x][0,1]) is transverse to F for every t€[0, 1].

In particular, for any edge e; of 7, e; X I is a rectangle.

We say that (F,7) splits to (F',7') if (F',7’) is obtained from (F,7) by a finite
sequence of moves, as shown in Figure 10.

A complementary region R is called embedded if the natural map R—F is an em-
bedding, where R is the closure of R. A smooth annulus complementary region is an

annulus complementary region with no cusps.
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= T N

Figure 10. Different splittings of a train track (bottom) and the carried foliations (top).

A closed curve (resp. an arc) aCrt is the image of an immersion S'—7 (resp.
[0,1]—7). We say that « is smooth if the induced tangent line on « from 7 is con-
tinuous. In other words, the image of a has no cusps (resp. has no cusps when restricted
to (0,1)). When the surface F is orientable and 7 is transversely orientable, a smooth
arc whose endpoints coincide is a smooth closed curve as well. This is because a cusp
at the endpoint of a smooth arc would be inconsistent with the transverse orientation
of 7. Note that a smooth simple closed curve aC7 is homotopically essential, since the
complementary regions to 7 have non-positive index.

If 7 is a transversely oriented train track, then an oriented closed curve v intersects
T coherently if yNT#D, v is transverse to 7, and at every point p€yN7 the orientation
of v is consistent with the transverse orientation of 7. An unoriented closed curve ~y
intersects 7 coherently if there is a choice of orientation for « such that all intersections

of v with 7 are coherent.

Definition 6.3. Let F' be a compact orientable surface, and 7 be a train track on F.

Define the complexity function c¢(F,7) as the triple
c(F,7) = (c1(F), ca(7), e3(7)),

where ¢; (F) is defined as in equation (2) in §6.1, ¢o is the number of edges of 7, and ¢3

is the number of circle components of 7. We order the triples ¢(F, 7) lexicographically.

Definition 6.4. A train track obtained by adding an edge connecting the boundary
components of an annulus is called a standard train tracked annulus (Figure 11). If we
give a transverse orientation to the train tracks in the right side of Figure 11, the picture
on the bottom right admits an outward (resp. inward) pointing transverse orientation
(with respect to the ambient annulus), while the picture on the top right admits a mixed

transverse orientation.

Definition 6.5. Let F be a compact orientable surface, and 7CF be a train track.
The pair (F,7) is called a basic block if the following conditions hold:

(1) 7 is the union of OF and finitely many disjoint arcs 7;, where each v; connects
two distinct components of JF';
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N
)
/D
N

Figure 11. Right: the two possible shapes for a standard train tracked annulus, Left: a
generalized basic block.

(2) for each component b of OF, all the cusps of 7 on b point in the same direction.
A pair (F,7) is an almost basic block if it satisfies condition (1) above. See Figure 9

for an example of a basic block.

Definition 6.6. A generalized basic block is obtained from a basic block by successive

attachment of standard train tracked annuli to its boundary components (Figure 11).

LEMMA 6.7. Let Fy be a compact orientable surface, 7y be a transversely orientable
train track on Fy, and Fy be a singular foliation carried by 719. Let F be a compact
subsurface of Fy and T=719NF. Assume that

(1) (F,7) is an almost basic block;

(2) any smooth simple closed curve that is a union of edges of T is a component of
oF.

Then, (Fo, 7o) splits to (F1,71) in such a way that the splitting is supported on F,
and (F,7NF) is a basic block.

Proof. For each component ¢ of OF, let f;(c) be equal to the number of times that
the cusps of 7 lying on ¢ change their direction, as we go around c¢. Let n(7) be the
number of components ¢ of F' such that f,(c)=0. It is easy to show that, if 7 is not a
basic block but satisfies the hypothesis of the lemma, then (Fo, 79) splits to (Fi, ) with
the splitting supported on F' and in such a way that 7 also satisfies the hypothesis of
the lemma and n(m NF)>n(moNF). This implies the lemma. O

Notation 6.8. (Active subsurface) Given a transversely oriented train track 7CF

and a branched neighborhood Ny(7) of 7, let C' be the union of components of F'\ Ny(7)
that have no cusps. Define the active subsurface Ay, -y of 7 as F\C.

Remark 6.9. The active subsurface has tangential and transverse parts inherited
from Np(7). The boundary of the tangential/transverse part of the active subsurface
comes with a transverse orientation, except at nodes, induced from ANy (7).
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The following lemma is a key combinatorial tool for tangentially extending the foli-

ation F; of M;=M\S to one with S being a union of compact leaves.

LEMMA 6.10. Let F be a compact orientable surface, T be a transversely oriented
train track on F with OF Ct, and F be a singular foliation carried by 7. Then, there is a
sequence (F;,7;) for 1<i<k starting at (F,7) and ending at (F',7’) such that each term
s obtained from the previous one by either splitting or collapsing an embedded bigon, and
7' satisfies at least one of the following:

(1) there is a homotopically essential, non 0-parallel, simple closed curve §CF that
is disjoint from T';

(2) there is a homotopically essential, non O-parallel, simple closed curve YCF in-
tersecting 7' coherently;

(3) for each component K of Ay, (1, (K,7'NK) is a generalized basic block.

Proof. Consider the following two cases:

Case 1: There is a non-O-parallel smooth simple closed curve a that is either a
component of 7 or a union of edges of 7.

Case 2: Every smooth simple closed curve that is either a component of 7 or a union

of edges of 7 must be 0-parallel.

We first analyze Case 1. We may split (F,7) to (F',7’) and find a simple closed
curve o isotopic to « that is a union of edges of 7/ or a component of 7/, and is disjoint
from OF. Note that o/ is not d-parallel either, since o and o’ are isotopic. Pick a side
for o/ and call it the plus side. There are two subcases:

(a) there is no edge of 7 emanating from o’ on the plus side;

(b) there is at least one edge of 7/ emanating from o’ on the plus side.

If (a) happens, let § be a curve obtained by pushing o slightly to the plus side. Note
that o’ is homotopically essential, and hence so is §. Therefore, ¢ satisfies condition (1).

If (b) happens, there are two subcases:

(i) all edges of 7/ emanating from o on the plus side spiral in the same direction;

(ii) not all the edges of 7/ emanating from «’ on the plus side spiral in the same
direction.

If (i) happens, let v be a curve obtained by pushing o’ slightly to the plus side.
Then, (F',7') and v satisfy condition (2).

If (ii) happens, then there is a segment on o where two adjacent edges on the plus
side spiral in opposite directions and point towards each other. By splitting along one of
them, the resulting train track still embeddedly carries o/, but has one or two less edges
on the plus side. Eventually, either that side has no edges or they all spiral in the same
direction. Therefore, we are back in the previous cases. This completes Case 1.
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We now consider Case 2. Collapse embedded bigons one by one until no embedded
bigon is left. Let A(7) be the set of smooth simple closed curves « such that either « is a
union of edges of 7, or a is a simple closed curve component of 7. In particular, OF C A(7).
We claim that, after possibly splitting 7, any two elements of A(7) are disjoint. To see
this, recall that any element of A(7) is parallel to a component of F. Therefore, if two
elements «, S€ A(7) intersect, there must have been an embedded bigon complementary
region.

Let v be a vertex of 7. Consider the singular point p of the foliation F corresponding
to v, and let r be the singular leaf emanating from p in F. Let P be the projection of r
onto 7 under the projection map m: Np(7)—7. If P is a finite ray ending at a singularity,
split (F,7) to reduce the number of vertices. After splitting along all such finite P, we
obtain (F',7’). We show that, after splitting, all the vertices of the train track lie on A.
Let w be a vertex of 7" not lying on A(7'), if such a vertex exists. Then, the ray P
starting at w is an infinite smooth arc in 7’ starting at w. If PNA(7")#@, then we can
split (F',7') to move w to A(7'). If PNA(7")=2, then some vertex in P is repeated,
implying that there is a smooth simple closed curve in 7/, but not in A(7’), which is not
possible. Call the new pair (F”, 7). Every vertex of 7 lies on A(7").

Recall that every curve in A(7"”) is O-parallel in F', and any two elements of A(7")
are disjoint. For any component ¢ of OF, define A, as the maximal annulus neighborhood
of ¢ in F with 0A.CA. Let F;L:I*TCAc and 7y =7"NF]. After collapsing embedded
bigons, 71N A, is a union of standard train tracked annuli and smooth annuli attached
together.

The train track 71 is the union of 9F; and arcs 7; that go between (not necessarily
distinct) components of JF;. Note that no «; can connect a component b of 0F; to
itself; otherwise, the ends of ~; spiral around b in different directions, and hence one
may construct a smooth simple closed curve in 71 that is not a component of OF;.
By Lemma 6.7, (F”,7") splits to (F,7"") with splitting supported on Fj such that
(F1,7""NFY) is a basic block. Hence condition (3) is satisfied, and the proof of Case 2 is
complete. O

7. Construction of the new foliation

In this section, starting with a fully marked surface S for the foliation F in the closed
3-manifold M, and a complete system of coherent transversals v, we show how to modify
the foliation near S to obtain G so that .S is a union of leaves and the plane field of F is
homotopic to that of G.

We first show that there exists a vector field on M that is transverse to both S
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and F. This enables us to readily keep track of the homotopy class, as G will retain
this property. Next, we cut M along S to obtain the compact manifold M; and the
foliation Fy =F|y, , such that Fi|gas, is a singular foliation with saddle singularities. We
push SCM slightly in both directions to obtain a manifold NoC M; with foliation Fo.
Next, we extend F» to F3 and Ny to N3C M, so that the foliation near 0 N3 looks like a
manifold with corners; see Figure 1. After more extension to say F, and NyC M7, we see
that V4 has been foliated with 0N, as leaves, except for finitely many transverse vertical
annuli; see Figure 16. By using partial I-bundle replacements—generalizing some of the
ideas in [7]—we can remove the transverse vertical annuli one by one, to obtain F5 on
Ns=M; with OM; as leaves. Finally, G is the foliation induced from F5 by regluing dM;
to obtain M.

The operations can be done so that ~ remains a complete system of coherent
transversals for the constructed foliation, implying that the new constructed foliation

is taut.

7.1. A coherent transverse vector field

Definition 7.1. Let M be a compact orientable 3-manifold, F be a taut foliation
on M, and S be a fully marked surface. A vector field £ defined on M is coherently
transverse to F (resp. S) if £ is transverse to F (resp. S) and the orientation of L is

compatible with the transverse orientation of F (resp. positive orientation of 5).

PROPOSITION 7.2. Let M be a compact orientable 3-manifold, F be a taut foliation
on M, and S be a fully marked surface. There is a vector field L on M that is coherently
transverse to both F and S.

Proof. Equip S with its positive orientation. Let g be any initial metric on M, and
UT,(M) be the unit tangent space to M at pe M. Denote by ni(s) (resp. na(s)) the
oriented unit normal vector to F (resp. S) at s€.S, and by Hy(s) (resp. Ha(s)) the open
disk in UTs(M) corresponding to unit length vectors that make an acute angle with n4(s)
(resp. na(s)). Since S is a fully marked surface, we have Hq(s)NHz(s)#@ for each s€S.

The proof consists of two steps.

Construction of Ly in a tubular neighborhood of S: Hi(s)NHs(s) is a topological
disk, and the collection of all Hy(s)NHy(s) for s€S forms a disk bundle over S. Pick
a section of this disk bundle and set £i|g to be equal to this section. Let Sx[—2,2]
be a small tubular neighborhood of S. Extend £y to Sx[—1,1] by parallel transport.
Therefore, £; is coherently transverse to both S and F.
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Ezxtending L1 to M: Let L5 be any vector field that is defined on M, and is coherently
transverse to F. The tangent bundle TM of M is trivial ([15], or see [12, p.148]). Fix
a trivialization of TM to identify it with M xR3. Define £ to coincide with £; on
Sx[—1,1], and with £5 on M\(Sx[—2,2]). Moreover, using the identification T'M =
M xR3, define

L(s,t)=(t|-1)La+(2—|t])L1 for s€ S and |t| €[1,2].

Note that, at |t|=1 (resp. |t|=2), L coincides with £y (resp. L£2). Moreover, as both £
and Lo are coherently transverse to F, then so is any convex combination of them. In

particular, £ is non-zero at every point. This completes the proof. O

PROPOSITION 7.3. Let M be a compact orientable 3-manifold and L be a vector
field on M. Assume that F and G are transversely oriented codimension-1 foliations
on M. If both F and G are coherently transverse to L, then the oriented tangent plane
fields to F and G are homotopic.

Proof. Choose a Riemannian metric on M. Then, the oriented plane field tangent
to F (resp. G) is homotopic to the orthogonal plane field to £, by a fiberwise straight-line
homotopy. O

7.2. Operations for changing the foliation

In this section, we will create a 5-tuple to keep track of the following data: a manifold
N with boundary sitting inside a compact collar neighborhood M; of N, a foliation F of
N, a vector field £ transverse to JF, a finite union - of 1-manifolds that are transverse to
F, as well as a train track in dN. The vector field £ keeps track of the homotopy class
of the plane field of the foliation F, the 1-manifold v keeps track of tautness, and the
train track 7 records how the leaves of F intersect ON.

We will construct operations that extend the foliation and simplify the 5-tuple to
eventually get a foliation of a submanifold N C N'C M; that has ON’ as leaves (i.e. 7/ =9),
and M;\N' is a tubular neighborhood of 9M;. During the operations, £ and 7 always
remain fixed. Then, we can easily extend the foliation to M; by filling in the region
M\ N’ with a product foliation, and finally we glue the boundary components Sy and
S1 of M, together, to obtain a foliation of M that has S as a leaf. Before reading the
technical details that follows, we recommend the reader to see the proof of Theorem 1.1
at the end of this section, to get an idea of how things fit together.

Throughout the section, let (M7, N, 7, L,7) be the following given data:

(1) N is a compact, orientable 3-manifold.
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(2) TCON is a transversely oriented train track with a branched neighborhood
Ny(7).

(3) Ny(7) induces a cornered structure on ON modelled as in Figure 1. The cornered
manifold N comes equipped with a transverse orientation on ON, coherent with Ny(7).
By definition, this means that the transverse orientation is transverse to 0, N and tangent
to the ties of Ny(7T).

(4) N is a cornered submanifold of the interior of the smooth manifold M;, where
M\ N is contained in a regular neighborhood N(0M;)=90M; x [0, 1] of OMj.

(5) L is a vector field on My whose flow lines induce the vertical fibration of

N(@Ml) :8M1 X [07 1}

The vector field L is coherent with the transverse orientation of N, as well as with the
cornered structure of 9N. Each vertical fiber of 9M; x[0,1] intersects N in a proper
connected interval starting on 9M; x {0}.

(6) v is a set of disjoint oriented simple closed curves or properly embedded arcs in
M, where the orientations of arcs at their endpoints are coherent with the transverse
orientation of N, and the restriction of y to N(90M;)=0M; x [0, 1] is a union of vertical
fibers.

Remark 7.4. Note that, in (3), the cornered structure on ON induced by Np(7) is

meaningful even before considering a singular foliation on N.

Definition 7.5. A transversely oriented possibly singular foliation F is compatible
with (M1, N, 7, L,~) if the following conditions hold:

(1) (Boundary condition) F is a possibly singular foliation of N whose restriction to
the interior of N has no singularities. The foliation F is transverse to N along the inte-
rior of Ny(7), and tangential to N along ON\ Ny(7). The cusps of Np(7) correspond to
the nodes of F, and the edges and simple closed curve components of dN,(7) correspond
to convex and concave corners for F. The singular foliation F|y, ;) is transverse to the
ties of the branched neighborhood N,(7), and their transverse orientations are coherent.

(2) (Homotopy condition) F is transverse to £, and its transverse orientation is
coherent with the orientation of L.

(3) (Tautness condition) F is transverse to 7, and its transverse orientation is co-

herent with the orientation of «. Moreover, every leaf of F intersects ~.
Definition 7.6. Assume that F is compatible with (My, N, 7,L,v). We say that

(F',N',7") is an (L,~)-extension of (F,N,7) if NCN'CM; and F' is compatible with
(M17N/7T/7£7PY) :
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In what follows, ' will be obtained by partial I-bundle replacement and an exten-
sion of F to N'\N.

Throughout the section, we will do a sequence of modifications to (L£,~)-extend the
foliation so that at the end the boundary of the manifold N becomes a union of leaves.

Operation 7.7. (Splitting the train track) Let F be a singular foliation compatible
with (M1, N, 7,L,7). Let G be the restriction of F to N, and assume that (G, ) splits
to (G',7'). There is an (L, vy)-extension (F', N',7') of (F, N, ) such that the restriction
of ' to ON’ is homeomorphic to G’. O

LEMMA 7.8. Let F be a compact orientable surface, T be a train track on F with a
branched neighborhood Ny(T), and F be a singular foliation carried by 7. If (F,T) splits
to (F',7"), then c(An,(r), ') <c(AN, (), T)- O

Define a ditch in OM as AULUB, where LC9; M is an annulus with 0L={a, 8},
such that the following conditions hold:

(1) A, BCOxM are annuli foliated as suspensions, with LNA=« and LNB=4;

(2) the points of aUp (resp. 0(AUB)\{«a, 5}) are concave (resp. convex) corners.

Operation 7.9. (Cutting the active subsurface) Let F be a singular foliation com-
patible with (M, N, 7,L,~) . Let § be a homotopically essential, non-9-parallel, simple
closed curve in Ay, (;) that is disjoint from 7. Denote the component of 9, M contain-
ing § by T. There is an (£, )-extension (F',N',7') of (F, N, ) such that, up to a
homeomorphism identifying ON with N’ 7/ is obtained as follows:

(1) If 6CT is separating and for some component 77 of T\4 the restriction of the
transverse orientation of 9T to Ty always points in, then 7/=7U§ with the transverse
orientation of § pointing out of 77.

(2) Otherwise, 7 is obtained from 7 by adding N (§) with transverse orientation
pointing out of N(§), where N(§) is a tubular neighborhood of § in 7.

In both cases, c1(An,(+))<c1(An,(r))-

Remark 7.10. Note that T} cannot have any cusp. If § is non-separating in 7', then
T'\6 is connected and has at least one cusp, since T'C Ay, (r) had at least one cusp; so,
we are in case (2) above. If § is separating in T, then at least one of the two components

of T\ 6 has a cusp; as a result, there is at most one choice for T;.

Proof. Let L be the leaf of F containing T. In case (1), do a partial I-bundle
replacement along L\int(77). Therefore, Ay, -y=An, ) \int(T1). If 71 has negative
Euler characteristic, then we have c1(Ay, (7)) <c1(An,(+))-

In case (2), do a partial I-bundle replacement along L\N°(d) where N°(¢) is the
interior of N(§). This has the effect of creating a ditch around . In this case, A, () is
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Figure 12. In the left, the vertical line is part of the transversely oriented train track 7, and
the horizontal lines are part of the curve ¢ intersecting 7 coherently. In the right, the new
train track after spiralling is drawn.

a subsurface of Ay, () \N°(0), and Lemmas 6.1 and 6.2 imply that

c1(Any (1)) < e1(Any (r) \N°(6)) < e1(Any (r))-

By hypothesis, every added leaf is attached to one of the former leaves, and hence
they share a transversal. This was the motivation for considering case (1) separately. O

Operation 7.11. (Embedded bigons) Let F be a singular foliation compatible with
(My,N,7,L,v). Assume that some complementary region B of 7 is an embedded bigon.
There is an (L, vy)-extension (F', N',7’) of (F, N,7) such that, up to a homeomorphism
identifying ON’ with ON, 7/ is obtained from 7 by collapsing the bigon B. In particular,
c1(An, () <c1(An,(r) and ca(7") <ca(T).

Operation 7.12. (Spiralling) Let F be a singular foliation compatible with
(MlaNa Ta‘ca’Y)

and §C Ay, () be a simple closed curve that intersects 7 coherently. There is an (£,7)-
extension (F', N, 7") of (F, N, ) where 7' is defined, up to a homeomorphism identifying
ON’ with ON, as follows. Denote a small neighborhood of ¢ in N by N(§). Let 7/ be
obtained from 7 by deleting 7NN (J) and adding ON(§) with inward pointing transverse
orientation (Figure 12). In particular if § C Ay, (r) is non-d-parallel, then

Cc1 (ANb(T’)> <c (.ANb(,,-)).

Proof. This is a relative version of “turbulization”, due to Reeb. See [6, Figure 5.3]
or [13, Figure 6]. Spiral the leaves of F|xs) around N(J) to obtain the desired F'.
Since 0 C Ay, (), we have A, () CAp, () \N°(0). By Lemma 6.2, we have

c1(An, () <ei(An, (r) \N°(9)).
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Note that ¢ is homotopically essential, since it has non-zero algebraic intersection number

with 7. If § is non-d-parallel in Ay, (), by Lemma 6.1 we have

c1(Any(r) \N°(6)) < e1(Any ()5

which implies
c1(Any () < e1(Any (7)) =

The following operation is a generalization of a construction due to the first author;

see [6, p. 476, Figures a—].

Operation 7.13. (Basic blocks) Let F be a singular foliation compatible with
(M17N7 T7 £7 fY)’

FCAp,(r) be a compact subsurface, and (F, 7N F') be a basic block with x(#)<0. There
is an (L, ~y)-extension (F', N’,7') of (F, N, 7) where, up to a homeomorphism identifying
ON' with ON, 7/ coincides with 7 outside of F', and the restriction of 7/ to F' is supported
in a tubular neighborhood of F in F' in the following manner: Let b be a component of
OF with the tubular neighborhood N(b), N (b)={b,b’'} with the transverse orientation
of &' pointing out of N(b). Then, the following conditions hold:

(1) If the transverse orientation of b points into F', then 7'| ) =b.

(2) If the transverse orientation of b points out of F' and b has no edges to the
outside or inside (b is a simple closed curve component of 7), then 7/| ) =bUV'.

(3) If the transverse orientation of b points out of F' and b has no edges to the
outside but has at least one edge to the inside, then 7/| ) =b or bUV'.

(4) If the transverse orientation of b points out of F' and b has at least one edge to
the outside, then 7/| ) =7|n @)UY

See Figure 13, where items (1)—(4) are shown from left to right. In particular,

c1(An, (=) < c1(An, ()

If (F,7NF) is a standard train tracked annulus with 0F={b,b'}, then we can find
the (£,~y)-extension in the following cases:

(i) If the transverse orientation of 7NF points into F, then 7/|p=bUb’.

(ii) If the transverse orientation of 7NF is mixed, b is the outward pointing compo-
nent of OF, and b has no edges to the outside, then 7/|p=0V’.

(iii) If the transverse orientation of TN F points outside F, and neither b nor b’ has
edges to the outside, then 7/|p COUY .
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Figure 13. Four possibilities for the Operation 7.13, from left to right. The solid color indicates
the surface F', and the middle curve is b. The arrows show the transverse orientation of the
train track.

-
wufnpoul

Figure 14. The relative position of the arcs 'yz' and v; . The arrows show the transverse
orientation of the train track, and the solid color indicates the tangential part T7. The broken
dashed line is a singular tie.

Proof. Consider the case of x(F)<0, as the other case is similar.

Special case. We start with the case that the transverse orientation of 7 =7NF
points into F' along JF; so we are in case (1) for all boundary components of F. Let
~v; CT be the arcs going between different boundary components of F' as in the definition
of a basic block. Let 7; x [0, 1] be the rectangle corresponding to v; in the branched neigh-
borhood Ny(7) of 7. Denote the sides v; x {0} and ~; x {1} by v, and ~;, respectively,
and assume that the transverse orientation points from 7, to -y;. Denote the tangential
part of F' by T;. To visualize the construction easier, we think of the rectangles ~; x [0, 1]
as perpendicular to both T3, and the rectangle e x [0, 1] for every edge e€OF adjacent to
vi (Figure 14).

Let N(v; ) be a tubular neighborhood of ~; in Tj with boundary ~; Uy}, and set

T2=T1\UN(’Y{)-
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Let ¢ be a component of 9715 that contains at least one of ~; or 'y;’ for some j. It follows
from the definition of a basic block that ¢ is a union of two types of transversely oriented
arcs in an alternate fashion:

(1) one of the arcs 7 or 4, running between two distinct components of OF, or

(2) an arc corresponding to a subset of OF.

Let I be a closed interval. Attach a copy of Ty x I, with the product foliation, to
N by identifying To x {0} with ToCON. After the attachment, there are walls on top
of each of the arcs v} and «; . By definition, the wall above v is v xICTyxI. The
wall above 7, is the union (vy; x [0, 1])U%+ (7§ xI). Here, the first term comes from the
rectangle corresponding to ;, the second term comes from the restriction of 75 x I to ~;,
and the two terms are glued along their common arc ;. Let J be a closed interval with
initial and terminal points i(J) and ¢(J), respectively. Now, we connect the walls above
~§ and v; by attaching N(v; ) xJ equipped with the product foliation to NUg, (T2 xI)
such that

(1) N(v;)xi(J) is identified with N(y;)CTy, and

(2) v; xJ (resp. v} xJ) is identified with the wall above ~; (resp. 7).

This operation replaces 7 with 7'=7\{J, 7. In particular, c1(An,r)) <ci(An,(r))-
Note we did not use the consistent spiraling (condition (2) in the definition of a basic

block) in this special case.

General case. Let B be the union of components of 9F whose transverse orientation
points out of F. Remove a tubular, possibly cornered, neighborhood of B from F' to
obtain F’. See Figure 15, where F’ is the part of the surface that lies below the broken
dashed line b™. Do the operations as in the special case for F’, pretending that the
transverse orientation points into F’, to obtain a foliation F;. The accumulation of leaves
of F creates a ‘wall’ on top of b*, with top boundary component b. If beB corresponds
to item (2) or (4) in the statement, then the new train track in a neighborhood of b has
the claimed description.

Now, let b€ B correspond to item (3) in the statement, so b has no edges to the
outside. Let b* and b. be the curves parallel to b, as in Figure 15. Let N(b) (resp. N'(b))
be the annulus cobounded by b* and b* (resp. b,). Spiral the leaves of F intersecting
N(b) around N (b) to converge to an annulus A such that A={bUb.}, where by, is a
leaf of the induced foliation on N’(b). Such leaf b, exists, since we assumed that b has no
edges to the outside. The new train track has either one copy of b (when b, #b,), or no
copy of b (otherwise). If the new train track has no copy of b, then use Operation 7.9 for
the curve b. The purpose of using Operation 7.9 is to make sure that ¢ (A, (r)) reduces
when y(F) <0 (if the complementary region R to the outside of b has a cusp, and if we
remove b from 7’ altogether, then R is merged with F’ to form a complementary region
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b

Figure 15. The arrows indicate the transverse orientation of the train track, and the solid
color shows the tangential part 77.

R’; but now R’ has a cusp and hence is included in the active subsurface of 7/). The result

is one of the two pictures in item (3). This completes the construction of (F’, 7). O

Remark 7.14. Let R be a 3-dimensional Reeb component and a; COR be a set of
disjoint curves parallel to the core of R. Let BC M; be a bad solid torus whose foliation
is homeomorphic to the foliation obtained by shaving a neighborhood of all «; in R.
Assume that B intersects S in annuli A; for 1<i<n, where the induced foliation on
each A; is a 2-dimensional Reeb component. If we use Operation 7.13 to tangentially
extend the foliation along A;, we may reproduce the Reeb component R. Therefore, the
constructed foliation may not be taut. This is why we did an initial preparation to ensure

that no bad solid torus exists.

Operation 7.15. (Spinning) Let F be a singular foliation compatible with

(M17N7 Ta£7’7)a

and ON be incompressbile. Assume that 7 is a union of disjoint simple closed curves
(e.g. Figure 16, left). There is an (£, v)-extension (F', N’,7’) of (F, N, 1) with 7'=0.

Proof. Any simple closed curve in 7 is homotopically non-trivial in 0N, since other-
wise some complementary region to 7 has to be a disk. Since ON is incompressible, any
simple closed curve in 7 is homotopically non-trivial in N as well. Pick a component «
of 7, and let A be the maximal regular neighborhood of « such that AC9+N. Denote
the holonomy of A by p, and let 9A=aUb, where the points of a (resp. b) are concave
(resp. convex) corners. See Figure 16. We show how to replace T by 7\ «.
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Figure 16.

Let Ly be the leaf of the foliation F containing a and set Lo:=L;\a. Let L3 be
the connected component of Lo which is on the tangent boundary side of a (Figure 16,
right). Note that L3 can be a proper subset of Lo or all of it. Take a small tubular
neighborhood N(a) of a in L3 with IN (a)=aUc, and set L:=L3\N°(a).

We do a partial I-bundle replacement for L and foliate it to have certain holonomies
on different boundary components, in such a way that the new holonomy along ¢ becomes
conjugate with the new holonomy of A. Consider three different cases, where in each
case the I-bundle exists by Lemma 2.3:

(1) L is not compact planar. Let the foliated I-bundle over L have holonomy 7 on
¢, and identity on all other boundary components, where n = p’ and ' is obtained from
1 by trivial Denjoy blow-up along all components of LNA.

(2) L is compact planar and some component d of OL\ ¢ is disjoint from A. Let the

foliated I-bundle over L have holonomy 7 on ¢ and 1!

on d, and identity on all other
boundary components, where n=p’.

(3) L is compact planar and all components of JL\c intersect A. Let d be one
such boundary component. Assume for the moment that d is equal to neither a nor b,
and denote by f and ¢ the holonomies of the two parts of A separated by d. Let the

foliated I-bundle over L have holonomy 7 on ¢ and n~!

on d, and identity on all other
boundary components. Choose 7 such that 7 is conjugate to f’-n-¢g’. Here, f’ and ¢’
can be obtained from f and g by trivial Denjoy blow-up of all components of LN(A\d).
Such a homeomorphism 7 exists, by Lemma 2.4.

Now, consider the case d=a. Choose 1 such that n is conjugate to n-g’, where ¢’ is
obtained from p after trivial Denjoy blow-up of all components of OLN(A\a). Such a
homeomorphism 7 exists by Lemma 2.4. The case d=b is similar.

The partial I-bundle replacement along L creates a transverse annulus B above ¢

with holonomy 7. Attach a foliated copy of annulus x I with holonomy 7, along
AUN (a)UB

to remove A and B from the transverse boundary. This replaces 7 with 7\ .
Repeat the above procedure for other components of 7. O
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THEOREM 7.16. Let F be a singular foliation compatible with (M, N,7,L,~). There
is a sequence of triples (F;, N;,7;) for 1<i<n starting with (F,N,T) and ending at
(Fns Nny ), with 7,=9, such that each term is an (L,~)-extension of the previous term

obtained by one of the Operations 7.7, 7.9, 7.11- 7.13, and 7.15.

Proof. Recall the complexity function ¢ from Definition 6.3. In what follows, we ab-
breviate c(Ap, (r,), Ti) by ¢(7:), where Ay, (,) is the active subsurface of 7; (Notation 6.8).
Complete the proof by repeatedly going through (1)—(3) below.

(1) Given 7, if the train track 7; has an embedded bigon, then use Operation
7.11 to find an (£, v)-extension (F;+1, Nij+1,Ti+1) of (Fi, N;, ) such that ¢(7i41) <c(7;).
After doing this finitely many times, there are no embedded bigons left.

(2) Assume that 7; has no embedded bigon, and 7; has at least one vertex. By
Lemma 6.10 (for the surface F'=Ay, (,)), using a sequence of splittings and collapsing
bigons, we may obtain (F’,7’) from (F;, 7;) such that at least one of the following holds:

(1) there is a homotopically essential, non-0-parallel, simple closed curve 6 C Ay, (-,
that is disjoint from 7/;

(2) there is a homotopically essential, non-d-parallel, simple closed curve yC Ay, (7,
intersecting 7' coherently;

(3) for each component K of A, (-, (K,7'NK) is a generalized basic block.

Assume that the total number of splittings and collapsing bigons is k. Now, set
Tivk=7". To simplify the notation, we assume that k=1. By Operations 7.7 and 7.11,
and Lemma 7.8, there is an (£, v)-extension (F;11, Nij11, Tix1) of (Fi, Ny, 1) with 7/ =714
and ¢(7;41)<c(1;). Now we show how to define (F;12,7it2) in each of the above three
cases.

Assume that (1) (resp. (2)) holds. Use Operation 7.9 (resp. 7.12) to find an (L£,7)-
extension (Fjta, Nijt2, Tit2) of (Fit1, Nit1,Tit1) such that c(7i42)<c(Tig1)-

Now, assume that (3) holds. If the generalized basic block has negative Euler
characteristic, then use Operation 7.13 to find an (L, ~)-extension (F;12, Nit2, Tit2) of
(Fit1, Nit1, Tig1) such that e(1i42) <c(7i41)-

At this point, each component of the active subsurface is a union of standard train
tracked annuli attached together along their boundaries. If there is any standard train
tracked annulus with inward transverse orientation, then use Operation 7.13 to reduce
the number of edges of the train track, cy. Then, start with a mixed standard train
tracked annulus (Figure 11, top-right) whose outward boundary has no edges to the
outside, and use Operation 7.13 to reduce the number of edges of the train track. Now
only standard train tracked annuli with outward transverse orientation are left, and we

may use Operation 7.13 to reduce the number of edges of the train track again. This is
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possible, since each such annulus has no edges to the outside. At this point, the train

track is a union of disjoint simple closed curves.

(3) Assume that 7; has no vertices, and is non-empty. Use Operation 7.15 to find

an (L,~)-extension (Ft1, Niy1,Tit1) of (Fiy, Ny 73) such that 7,41=0.
This algorithm terminates, since c¢(Ap, (), 7) is strictly decreasing. O]

Proof of Theorem 1.1. Let F be a taut foliation on the closed hyperbolic 3-manifold
M, and S be a positively oriented fully marked surface. By Proposition 4.7, after possibly
replacing S by a homologous surface S’ and modifying the foliation F to F’' using I-
bundle replacements, we may assume that F'|s- has the compact-free separatrix property,
and (F’,S’) has no bad solid tori. Note that the plane fields of 7 and F’ are homotopic,
since they share a common transverse vector field, by Observation 2.2 and Proposition
7.3. To simplify the notation, we keep using (F, S) instead of (F',S").

Step 1. Fix a complete system of coherent transversals v for (F,.S), which exists by
Proposition 5.2. By Proposition 7.2, there exists a vector field £ on M that is coherently
transverse to both S and F. Pick a collar neighborhood Sx[0,1] of S=Sx{%} in M
such that the flow lines of £ induce the vertical fibration inside S x [0, 1]. By adjusting ~,
we may assume that the restriction of vy to Sx[0,1] is a union of vertical fibers. Let
M; be the closed complement of S in M with the induced foliation F;. The collar
neighborhood of S in M naturally induces a collar neighborhood dM; x[0,1] of dM;
in M;. Push SCM in both sides to obtain a manifold No C M; homeomorphic to M,
whose boundary consists of the union of S x {%} and S'x {%} Let F5 be the induced
foliation on N>. By enlarging Ns to N3 and F> to F3, we obtain

(1) NoCN3CMj.

(2) A train track TC9ON3 and a branched neighborhood N(7) of 7 such that Ny (7)
induces a cornered structure on N3, and a transverse orientation on dNN3 coherent with
Ny(7).

(3) The vector field £ is coherent with the transverse orientation of dN3, as well as
with the cornered structure of ONs. Each vertical fiber of dM; x [0,1] intersects N3 in
a proper connected interval starting on 9M; x {0}, assuming that OM; is identified with
OM; x{1}.

(4) If we denote the restriction of £ and v to M; by £; and 1, respectively, and
set 3=, then Fj3 is compatible with (M, N3, 73, L£1,71).

Step 2. By Theorem 7.16, there is a sequence of triples (F;, Ny, 7;) for 3<i<n, with
T,=9, such that each term is an (L1, y1)-extension of the previous term. In particular,
Fn is tangential to ON,,, and JN,, is transverse to the vertical fibration of M x [0, 1].



412 D. GABAI AND M. YAZDI

Step 3. Enlarge N,, and F,, by adding leaves transverse to the vertical fibration
of OM;x[0,1] to obtain a foliation Gy of M;. Glue back the two copies of S in OM;
(equipped with the foliation Gy) to obtain the foliation G on M. The foliation G is taut,
since v is a complete system of coherent transversals for it. The oriented tangent plane
fields of F and G are homotopic, since both of them are transverse to the common vector

field £ (Proposition 7.3). By construction, S is a union of leaves of G. O

Remark 7.17. There are analogous results to Theorem 1.1 for taut foliations on
atoroidal sutured manifolds. In this case, recall that each boundary component of a fully

marked surface is either transverse to the foliation or is a leaf.

8. Conjectures

As mentioned in the introduction, we expect Theorem 1.1 to fail in general without
allowing to change S within its homology class. See Conjecture 1.5.

Our proof of the fully marked surface theorem uses the flexibility of I-bundle re-
placement which is a generalization of Denjoy blow-up [5]. The operation of Denjoy
blow-up can create foliations that are not topologically conjugate to any C? foliation [5].

We expect the analogue of Theorem 1.1 to be false for C? taut foliations.

Conjecture 8.1. There exists a closed hyperbolic 3-manifold M supporting a C? taut
foliation F with a fully marked surface S, such that there exists no C? taut foliation G
on M with oriented plane field homotopic to that of F such that .S is homologous to a

union of leaves of G.
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