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Abstract— A multi-agent coverage problem is considered with
energy-constrained agents. The objective of this paper is to
compare the coverage performance between centralized and de-
centralized approaches. To this end, a near-optimal centralized
coverage control method is developed under energy depletion
and repletion constraints. The optimal coverage formation
corresponds to the locations of agents where the coverage
performance is maximized. The optimal charging formation
corresponds to the locations of agents with one agent fixed
at the charging station and the remaining agents maximizing
the coverage performance. We control the behavior of this
cooperative multi-agent system by switching between the opti-
mal coverage formation and the optimal charging formation.
Finally, the optimal dwell times at coverage locations, charging
time, and agent trajectories are determined so as to maximize
coverage over a given time interval. In particular, our controller
guarantees that at any time there is at most one agent leaving
the team for energy repletion.

I. INTRODUCTION

The coverage problem concerns deploying a team of
agents to cooperatively maximize the coverage of a given
mission space [1], [2], [3], [4], [5], where “coverage” is
usually measured through the joint detection probability
of random events [6]. Widely used methods to solve the
coverage problem include distributed gradient-based [2] and
Voronoi-partition-based algorithms [7]. These approaches
typically result in locally optimal solutions, hence possibly
poor performance when obstacles are present. Recently, the
coverage problem was approached by exploring the submod-
ularity property [8] of the objective function, and a greedy-
gradient algorithm is used to guarantee a provable bound
relative to the optimal performance [9].

In most existing coverage problem settings, agents are
assumed to have unlimited on-board energy to perform the
coverage task. However, in practice, battery-powered agents
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can only work for a limited time in the field [10]. Unlike
other multi-agent energy-aware algorithms [11], [12], [13],
[14] whose purpose is to reduce energy cost, we assume
that a charging station is available for agents to replenish
their energy according to some policy. We take into account
such energy constraints and add another dimension to the
traditional coverage problem. The objective is to maximize
an overall environment coverage measure by controlling the
movement of all agents in a centralized manner while guar-
anteeing that no agents run out of energy while in the mission
space. A decentralized feasible solution to this problem is
proposed in [15] via a hybrid system approach. Due to
the decentralized nature of the algorithm in [15], agents
have limited local information. Therefore, the performance
is degraded by the information inaccessibility. This raises
the question of what would be the “best” performance when
all information is available, which motivates us to study the
coverage problem via a centralized approach.

Therefore, we revisit the same problem as in [15]. The ob-
jectives are to find the optimal centralized solution for multi-
agent coverage problems and to compare the performance of
centralized and decentralized approaches. To this end, we
assume that the environment to be monitored is completely
known. Then, the optimal coverage (OCV) locations of the
agents while none of them needs recharging can be found
through the distributed gradient-based algorithm [2]. When
an agent needs recharging, it will head to the charging
station. If the agent still performs the coverage task at
the charging station, the OCV locations for the remaining
agents can be found using the aforementioned approach. The
optimal locations for all agents in this case are referred to
as “optimal charging (OCH) formation”. Therefore, every
agent’s behavior is to switch between the OCV formation
and the OCH formation. The missing piece for the overall
optimality is to determine the optimal way to manage the
transient behavior between these two modes. However, this
turns out to be a challenging task. To find a near-optimal
solution for the transient between switches, a Traveling
Salesman Problem (TSP) is solved to find the shortest total
distances if an agent traverses all locations in both the OCV
and OCH formations. The TSP solution dictates the order
of locations being visited by any agent. Next, when the
switching times of all agents are synchronized, the objective
becomes minimizing the transient time and the energy cost
during that time. By “synchronization”, we mean that all
agents leave the OCV formation at the same time, and
arrive at the OCH formation at the same time. To reduce
the transient time, it is optimal for agents to travel at the
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maximum speed. Therefore, the transient time is determined
by the agent which travels the longest distance. The speeds
of other agents can be determined by the transient time and
the travel distance.

The main contributions of this paper are as follows: (i).
Model the collective behavior of agents by formations (OCV
formations and OCH formations) and transitions between
them. (ii). Find the optimal orders of agents visiting different
optimal locations including the charging station through
solving a TSP. (iii) Derive optimal speed profiles for all
agents during the transient time to minimize the transition
cost. (iv). Quantify the price of decentralization through
simulation experiments.

II. PROBLEM FORMULATION

Consider a bounded mission space S ∈ R2. The value of
a point (x, y) ∈ S in the mission space is characterized
by a reward function R(x, y), where R(x, y) ≥ 0 and∫ ∫
S R(x, y)dxdy < ∞. A team of mobile agents labeled

by V = {1, 2, . . . , N} is deployed in the mission space to
cover the area S . The coverage performance of the mobile
agent team to the area S is defined as

H (s) =

∫ ∫
S
R (x, y)P (x, y, s) dxdy, (1)

where s = [sT1 , . . . , s
T
N ]T with si = [xi, yi]

T is a column
vector that contains all agent positions, and

P (x, y, s) = 1−
∏N

i=1
[1− pi (x, y, xi, yi)] , (2)

represents the sensing ability of the team of agents for a
point (x, y) with pi (x, y, xi, yi) being the sensing function
of agent i. Note that H (s) is a function mapping a vector
s ∈ R2N into R. Details about the objective function can be
found in [2].

Here we are interested in a dynamic coverage control prob-
lem with energy constraints, where each agent is associated
with two state variables: location variable si(t) and state-of-
charge (SOC) variable 0 ≤ qi(t) ≤ 1, which is a percentage
of the battery level. The agents’ sensing and motion activities
are all powered by batteries, and there is a charging station
available at (0, 0) for all agents to replenish their energy. We
assume that there is only one outlet in the charging station.
In other words, only one agent can be charged at any time.
The agent’s motion is described by the following kinematic
equations:

ẋi(t) = vi(t) cos[θi(t)], ẏi(t) = vi(t) sin[θi(t)] (3)

where vi (t) ∈ [0, v̄] and θi(t) denote the instantaneous speed
and heading of agent i at time t, respectively, and v̄ is the
maximum speed of an agent. For simplicity, assume that the
speed and angular state can be controlled directly.

The state-of-charge (SOC) state satisfies the following
dynamic equation:

q̇i(t) = Ii(t)f(qi(t)) + (1− Ii(t))g(qi(t), vi(t)) (4)

where Ii(t) = 1 means the agent is in charging mode and
f(qi(t)) > 0, and Ii(t) = 0 means the agent is in energy
depletion mode and g(qi(t), vi(t)) < 0.

Our objective is to maximize the coverage of the mission
space S ∈ R2 over a time interval [0, T ], and at the same time
to keep all agents alive, that is, qi (t) > 0 for all t ∈ [0, T ].
The case qi (t) = 0 can occur only at the charging station
(0, 0). Therefore, we consider the following optimization
problem for each agent i:

max
v(t), θ(t)

1

T

∫ T

0

H (s (t)) dt (5)

s.t. (3) and (4) (6)
Ii(t) = 1 when si(t) = (0, 0), (7)
qi (t) > 0 when si (t) 6= (0, 0), (8)
0 ≤ vi(t) ≤ v̄, 0 ≤ qi(t) ≤ 1 (9)

Ii(t) ∈ {0, 1} and
∑N

i=1
Ii(t) ≤ 1, (10)

for i = 1, . . . , N , where T is a given time horizon, v(t) =
[v1(t), . . . , vN (t)]T , θ(t) = [θ1(t), . . . , θN (t)]T , and the
coverage metric H (s (t)) is defined in (1). The constraints
(7) indicate that an agent is in charging mode whenever
it arrives at the charging station; (8) prevents agents from
dying, i.e., running out of energy, in the mission space; (10)
ensures that only one agent can be served at the charging
station at any time.

III. MAIN RESULTS

Previous work in [15] solves this problem from an indi-
vidual agent point of view, where the behavior of an agent
is modeled through three different modes: coverage mode,
to-charge mode and in-charge mode. In this paper, however,
we aim to solve this problem from the team point of view.
We would ultimately like to maximize the coverage level
in (5) and minimize transient times that occur between the
OCV and OCH formations. This comes down to solving the
following problems:

1) In Section III-A, find the OCV and OCH locations for
all agents.

2) In Section III-B, solve a TSP to get an optimal path
connecting all OCV and OCH locations found in
Section III-A.

3) In Section III-C, establish problem feasibility.
4) In Section III-D, solve for the optimal speed problem

over transient intervals assumed in Section III-C.
5) In Section III-E, maximize the coverage performance

by optimizing dwell and charge times based on the
feasibility condition found in Section III-C and the
optimal speed profile found in Section III-D.

A. Optimal Locations

Let us assume that the environment is known, that is,
R(x, y) is known. If all agents are in the “coverage mode”,
they should be in the OCV locations as determined by
the gradient-based algorithm [2]. Let us denote the OCV
locations for N agents as s1 = {s11, . . . , s1N} in the mission
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space S . By assuming that the agent also performs the
coverage task while resting at the charging station, we can
calculate the OCH locations of the remaining N − 1 agents
by constraining one agent at (0, 0). Therefore, the OCH
locations can be found using the gradient method proposed
in [2]. Let s2 = {s21, . . . , s2N−1, s2N} be the OCH locations
with s2N = (0, 0). Therefore, when all agents have adequate
energy, the optimal choice is to occupy all locations at s1.
When an agent is at the charging station, the optimal choice
for all agents is at the locations specified by s2. Whenever an
agent leaves or re-joins the team, the agents switch between
s1 and s2. Assume that all agents are of the same type and
have the same initial SOC. The optimal scheduling is to let
agents take turns to visit the charging station. Therefore, we
essentially transform the original problem into a Multi-Agent
TSP (MATSP) in the next section.

B. Shortest Path

Before proceeding further, let us give the following stan-
dard definitions which can be found in [16] to model the
relationship between locations in s1 and s2.

Definition 3.1: A graph G is called bipartite if its vertex
set can be partitioned into two parts V1 and V2 such that
every edge has one end in V1 and one in V2.

Definition 3.2: A bipartite graph in which every two ver-
tices from different partition components are adjacent is
called complete.

If |V1| = |V2| = r, we abbreviate the complete bipartite
graph to K2

r , in which every part contains exactly r vertices.
When agent 1 (without loss of generality) switches to “to-

charge” mode, the locations {s12, . . . , s1N} are not optimal
for the remaining N − 1 agents. Therefore, the remaining
agents which are in the “coverage mode” need to switch
to the OCH locations. When this process repeats, it turns
out that an agent will visit all optimal locations in s1 and
s2. Therefore, this process boils down to finding the shortest
path for an agent to visit all optimal locations and return to its
location. This is exactly the MATSP with certain constraints,
i.e., when an agent is in one of the OCV locations, it has
to switch to one of the OCH locations. Thus, we can use
the bipartite graph to model such constraints. As the agents
switch between the formations, we need to minimize the total
traveled distance during transient times. Let K2

N = (V, E)
denote the underlying topology, where the vertex set V can
be partitioned into two sets: V1 = s1 and V2 = s2 such that
V1 ∪ V2 = V , V1 ∩ V2 = ∅ and |V1| = |V2| = N . Every
edge in V has one end in V1 and the other end in V2 and
vertices in the same set are not adjacent. In addition, K2

N is
complete, that is, every two vertices from different sets are
adjacent. The weight of every edge is the distance between
the two vertices.

Finding the shortest transient distance is equivalent to
finding the shortest path in the graph K2

N . This is a MATSP,
which can be solved by integer linear programming.

The underlying assumption is that when an agent switches
to “to-charge” mode, no other agents will switch to the
same mode until the agent returns and the OCV formation

is attained. We will find a condition to guarantee that this
assumption holds at all times.

C. Feasibility

Feasibility here means that the number of agents in both
“to-charge” and “in-charge” modes are less than two. For
simplicity, let us assume that the behavior of all agents is
synchronized, that is, they start and finish the process of
switching from V1 to V2 at the same time, and vice versa
(i.e., from V2 to V1). The intuition behind this assumption is
that the coverage performance depends on the agents’ relative
distances.

Then, the problem reduces to finding four critical times:
(1) the charging time τc at the charging station, (2) the dwell
time τd of agents on the OCV locations, (3) the transient
time τN−1t from the OCH locations to the OCV locations,
and (4) the transient time τNt from the OCH locations to the
OCV locations. Note that the dwell time of agents on the
OCH locations is exactly equal to the charging time at the
charging station.

Without loss of generality, we can assume that the optimal
path to visit the locations for any agent follows the order:
1 → 2 → 3 → · · · → 2N − 1 → 2N , where the nodes
with odd numbers belong to the OCV locations, the nodes
with even numbers belong to the OCH locations, and 2N is
the charging station. Let us define q−i and q+i as the energy
when agents arrive at node i and leave node i, respectively,
and d2i2i−1 as the distance between node 2i − 1 and 2i. Let
us proceed backwards starting at node 2N . Clearly, we must
have q−2N ≥ 0 to make the problem feasible. Therefore,

q−2N = q+2N−1 + h(q+2N−1, τ
N
t , d

2N
2N−1) ≥ 0

where h(·) is an energy cost function determined by (4)
when Ii(t) = 0 under the assumption of the optimal speed
(which will be determined in Section III-D). If the process
is repeated recursively, the minimum energy at node 2N −1
will be

q+2N−1 = q−2N−1 + h(q−2N−1, τd, 0)

q−2N−1 = q+2N−2 + h(q+2N−2, τ
N−1
t , d2N−12N−2)

In general, the minimum energy requirements for the loca-
tions 2i and 2i− 1 are

q+2i = q−2i + h(q−2i, τc, 0)

q−2i = q+2i−1 + h(q+2i−1, τ
N
t , d

2i
2i−1) (11)

and

q+2i−1 = q−2i−1 + h(q−2i−1, τd, 0)

q−2i−1 = q+2i−2 + h(q+2i−2, τ
N−1
t , d2i−12i−2), (12)

respectively. Eventually, the minimum energy for node 1 will
be q+1 = q−1 + h(q−1 , τd, 0). Also note that

q−1 = q+2N + h(q+2N , τ
N−1
t , d12N ) (13)

q+2N = q−2N + κ(q−2N , τc) (14)

where κ(·) is the solution of the differential equation (4) with
the initial condition q−2N and Ii(t) = 1.
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We now include a cycle iteration index k = 1, 2, . . . , and
write

q−2N (k) ≥ q−2N (k − 1) ≥ 0

We then need to solve the following optimization problem

Feasibility Problem min
τc,τd=0,τN

t ,τ
N−1
t

q−2N (k − 1) (15)

subject to (11) and (12) for i = 1, . . . , N (16)

q−2N (k) ≥ q−2N (k − 1) ≥ 0 (17)

for any k ≥ 1, where we set τd = 0 to capture the extreme
case that the dwell time at the OCV locations is zero for all
agents. Note that q−2N (k) can be expressed as a function of
q−2N (k − 1), τc, τd, τNt and τN−1t .

Only if a solution to (15)-(17) exists we can further
maximize the dwell time τd. Therefore, it is clear that (15)-
(17) defines the feasibility problem. We want to find the
control variables τc, τNt and τN−1t so that the SOC does
not decrease during a cycle. This condition determines the
feasibility of the problem. Once the minimum q−2N (k − 1)
is obtained, we can calculate q+2N (k − 1) using (14), and
then q−11 (k) using (13) to start a new iteration. Repeating
the calculation forward, we are able to compute q−i (k), and
q+i (k) using (12) and (11) for i = 1, . . . , 2N .

D. Optimal Speed

In the previous section, we assume that the energy cost
is calculated under the optimal speed of an agent during a
transient period in which a switch between OCV and OCH
formations takes place. Here we will derive this optimal
speed when the travel time and distance of a transient
segment of an agent trajectory are given. During the transient
period τ , the optimal speed can be determined so as to min-
imize the energy cost. Therefore, the following optimization
problem is formulated:

min
vi(t), θi(t)

∫ t0+τ

t0

−q̇i(t)dt (18)

subject to (3) and (4) (19)
0 ≤ vi(t) ≤ v̄ (20)
si (t0) = s (21)
si (t0 + τ) = s̄ (22)
qi (t0) = q, (23)

where s and s̄ are initial and final positions of agent i,
respectively, and q is the initial SOC of agent i.

Theorem 1: Assume that the energy model in (4) when
Ii(t) = 0 has the following linear form

g(qi(t), vi(t)) = −αvi(t)− β

where α > 0 and β > 0 are two constants. Then, the optimal
solutions to the above optimization problem are

v∗(t) =
‖s̄− s‖

τ

and θ∗(t) = s̄− s for t ∈ [t0, t0 + τ), where s̄− s is the
heading from s to s̄. The minimum energy cost is

α‖s̄− s‖+ βτ.
The proof is omitted here but can be found in [17].

The energy cost is determined by both the distance and
the travel time τ . Therefore, to reduce the transient time, it
is always optimal to use the maximum speed for agents who
travel the longest distance during the transient times when
the energy consumption model is a linear function of the
speed.

E. Optimal Dwell Time and Charging Time

Once the solution to the MATSP is available, the remain-
ing task is to maximize the coverage time and minimize the
transient time during a cycle. Then, we define a duty cycle-
like objective function below as the fraction of the total cycle
τc + τd + τNt + τN−1t used by the dwell time τd (which
provides maximum coverage):

max
τc,τd

τd

τc + τd + τNt + τN−1t

(24)

subject to τc ≤ τ̄c (25)
{τc, τd} ∈ F (26)

where F is the set of all pairs of (τc, τd) which can satisfy
the inequality (17) in Section III-C, and τ̄c is the time when
the battery is fully charged starting with an initial SOC q−2N .
In addition:

τNt =
d̄N

v̄
, τN−1t =

d̄N−1

v̄
, (27)

where d̄N = max
i=1,...,N

d2i2i−1, and d̄N−1 = max
i=1,...,N

d2i−12i .

The first constraint requires an agent to leave the charging
station once its battery is fully charged. This is motivated by
the fact shown in our previous work in [5] that it is optimal to
fully charge an agent. The second constraint ensures that the
charging time and the dwell time must satisfy the feasibility
constraint.

IV. SIMULATION EXAMPLES

Let us consider a small network with 3 agents to cover a
600 × 500 rectangular mission space. The reward function
R (x, y) = 1 for any (x, y) ∈ S and the sensing function
pi(x, y, xi, yi) = 1 − (x−xi)

2+(y−yi)2
δ2i

with a sensing range
δi = 220 [5]. By using the gradient approach [2], the
OCV locations of all three agents are found to be s11 =
(186.7, 119.3), s12 = (160.3, 371.1), and s13 = (451.4, 290.4)
shown in blue in Fig. 1, and the OCV locations are s21 =
(0, 0), s22 = (169.3, 320.2) and s23 = (430.6, 185.0) shown
in red in Fig. 1. The charging station is located at s21. Let
us assume that the charging dynamics in (4) have the form
f(qi(t)) = c − β, and the energy depletion dynamics in
(4) have the form g(qi(t), vi(t)) = −αvi(t)−β, where α, β
and c are three constants. For a properly defined problem, the
following constraint should be satisfied c ≥ 3(av̄+β), which
ensures the feasibility to prevent any agent from running
out of energy in the mission space. By solving the TSP, the
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shortest path is s12 → s22 → s13 → s23 → s11 → s21 → s12. The
total traveling distance is 2388.
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Solution to Travelling Salesman Problem with Bipartite Graph Constraints

Fig. 1: The shortest path for the TSP

Let us solve the feasibility problem (15)-(17) first. Note
that node 6 is defined as the charging station in Section III-
C. Assume that q−6 = q0, that is, the SOC when an
agent arrives at the charging station. The distances are
d
s21
s11

= 221.5612, d
s12
s21

= 252.5939, d
s22
s12

= 107.4328, d
s13
s22

=

283.9381, d
s23
s13

= 51.6432, d
s11
s23

= 404.2416. When the energy
depletion model is linear in vi, it is optimal to choose the
shortest transient time. The lower bound of transient times
τ2t and τ3t are determined by the distances and maximum
speed. Therefore, we can choose

τ3t =
max{ds

1
2

s21
, d
s13
s22
, d
s11
s23
}

v̄
=

404.2416

v̄

and

τ2t =
max{ds

2
1

s11
, d
s22
s12
, d
s23
s13
}

v̄
=

221.5612

v̄

After charging for τc, the SOC increases to q0 +τc(c−β).
Then, the agent heads to s12, and its SOC decreases to
q0 + τc(c − β) − αd24 − βτ3t , where the third term and
the last term correspond to the energy cost of motion and
sensing, respectively. To solve the feasibility problem (15),
we set the dwell time at the OCV locations as zero. After
one cycle, when an agent returns to the charging station, its
SOC becomes q0 + τcc− 2388α− 3βτ3t − 3βτ2t − 3βτc, and
we require q0 + τcc− 2388α− 3βτ3t − 3βτ2t − 3βτc ≥ q0.

Therefore, in this case it is possible q0 = 0, and the
minimum charging time is

τc =
2388α+ 3β(τ3t + τ2t )

c− 3β

Based on q0 = 0, τc, τ2t , and τ3t , we are able to calculate
the minimum SOC for all 3 optimal locations as shown at
the end of Section III-C.

If an agent stays at the charging station more than the
minimum τc, then the dwell time τd will not be zero.
Therefore, we need to solve the optimization problem (24)-
(26) to maximize τd and its percentage during a cycle:

max
τc,τd

τd
τc + τd + τ3t + τ2t

subject to

τc ≤
1

c− β

τc ≥
2388α+ 3β(τ3t + τ2t + τd)

c− 3β

The first condition is to make sure that agents will not
stay at the charging station when it is fully charged which
corresponds to (25). The second condition is to guarantee
that an agent will not run out of energy in the mission space,
which corresponds to (26).

To solve the above optimization problem, the optimal
solution occurs when the first inequality become equality.
In addition, from the objective function we know that the
larger τd leads to better performance. Therefore, the optimal
solution for the above problem is to let the agent be fully
charged, that is, τc = 1/(c− β), and

τd =
1− 2388α

3β
− 1

c− β
− τ3t − τ2t

Let us choose α = 0.0005, β = 0.0005, c = 0.01, and
v̄ = 50. The coverage performance of the above centralized
algorithm and the decentralized approach computed using
the approach proposed in [15] is depicted in Fig. 2. The
cycles of the centralized approach are clearly visualized in
the figure, where the top horizontal lines and the bottom
horizontal lines correspond to the time when agents are in
the OCV formation, and in the OCH formation, respectively.
In the decentralized approach, agents may compete for the
charging station. When this case occurs, the agent with
lower priority has to turn off its sensing capability, therefore,
performance may be significantly compromised. Recall that
under the decentralized approach [15] an agent switches from
the coverage mode to the to-charge mode when its SOC falls
below the level which is just enough for the agent arriving
at the charging state within a given time. If the agent spends
more time than it plans, this will cost more sensing energy.
It thus may die in the mission space.
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Fig. 2: Coverage performance of 3 agents
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The average coverage performance over a time period of
1000 seconds of the centralized and decentralized approaches
is 177815 and 166917, respectively. The performance im-
provement is about 6.53%. Also note from both figures,
the performance lower bound of the centralized approach
is determined by the OCH formation. The bottom horizontal
line in Fig. 2 indicates that low priority agents turn off their
sensing when competing for the charging station. The results
show that both the average and the worst performance is
significantly improved by the centralized approach.
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Fig. 3: Coverage performance of 6 agents

Another set of simulation is done with 6 agents. In this
case, the parameters are chosen as α = 0.0005, β = 0.0005,
c = 0.025, and v̄ = 100. The coverage performance over
time for the centralized approach and decentralized approach
is depicted in Fig. 3. The average coverage performance over
time is 262946 for the centralized approach and 253278 for
the decentralized approach. In this case, the average coverage
performance improvement is 3.28% by the centralized ap-
proach. When the number of agents increases, the centralized
approach keeps a minimum coverage performance above
25000. However, the performance is critically compromised
for the decentralized approach when more agents compete
for the charging stations, as shown in Fig. 3.

V. CONCLUSIONS

In this paper, we propose a centralized near-optimal
solution to the multi-agent coverage problem with energy
constrained agents. The performance between the central-
ized approach and decentralized approach is compared. It
shows that the centralized approach in general produces
better average coverage performance than the decentralized
approach. In addition, the performance gap between the
OCV formations and the OCH formations of the centralized
approach is much smaller than that of the decentralized
approach.
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