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ABSTRACT

With the rapid proliferation of IoT devices, our cyberspace is nowa-
days dominated by billions of low-cost computing nodes, which
are very heterogeneous to each other. Dynamic analysis, one of
the most effective approaches to finding software bugs, has be-
come paralyzed due to the lack of a generic emulator capable of
running diverse previously-unseen firmware. In recent years, we
have witnessed devastating security breaches targeting low-end
microcontroller-based IoT devices. These security concerns have
significantly hamstrung further evolution of the IoT technology.
In this work, we present Laelaps, a device emulator specifically
designed to run diverse software of microcontroller devices. We do
not encode into our emulator any specific information about a de-
vice. Instead, Laelaps infers the expected behavior of firmware via
symbolic-execution-assisted peripheral emulation and generates
proper inputs to steer concrete execution on the fly. This unique
design feature makes Laelaps capable of running diverse firmware
with no a priori knowledge about the target device. To demon-
strate the capabilities of Laelaps, we applied dynamic analysis
techniques on top of our emulator. We successfully identified both
self-injected and real-world vulnerabilities.
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1 INTRODUCTION

Software-based emulation techniques [43] have demonstrated their
pivotal roles in dynamically analyzing binary code. Running a pro-
gram inside an emulator allows analysts to gain semantically in-
sightful run-time information (e.g., execution path and stack layout)
and even dynamically instrument the binaries [6, 32, 36, 38]. How-
ever, these capabilities are difficult to be deployed to analyze the
firmware of low-end microcontroller-based IoT devices. A major
obstacle is the absence of a versatile emulator that could execute
arbitrary firmware of different microcontroller devices. Such an
emulator has to deal with the vast diversity of microcontroller
firmware in terms of hardware architecture (e.g., x86, ARM, MIPS,
etc), integrated peripherals (e.g., communication interface, DSP,
etc.), and the underlying operating system (e.g., bare-metal, mBed
OS, FreeRTOS, etc.). Customizing the emulator for every kind of
device is nearly impossible.

Dynamically analyzing embedded firmware has been studied
for a while. Unfortunately, existing solutions are far from mature
in many ways. They are either ad-hoc, tightly coupled with real
devices, or rely on an abstraction layer such as the Linux kernel.
Existing work [25, 28, 34, 44, 46] forwards peripheral signals to real
devices and run the rest of firmware in an emulator. In this way,
analysts could execute the firmware and inspect into the inner state
of firmware execution. However, this approach is not affordable
for testing large-scale firmware images because for every firmware
image a real device is needed. Besides, frequent rebooting of the
device and signal forwarding are time-consuming. Recent work
advances this research direction by modeling the interactions be-
tween the original hardware and the firmware [19, 23]. This enables
the virtualized execution of any piece of firmware possible without
writing a specific back-end peripheral emulator for the hardware.
However, existing approaches either require the real hardware to
“learn” the peripheral interaction model [23], or cannot handle com-
plex firmware logic [19]. In particular, P2IM restricts values to be
returned by the peripheral in a small subset of all possible values.
This is fundamentally limited by the nature of concrete execution.
Previous work also leverages the abstraction layer is simplify the
problem [9, 14, 48]. However, it relies on the presence of the Linux
kernel [9, 48] or the hardware abstraction layer in the firmware [14].

In this work, we demonstrate that the obstacles of device-agnostic
firmware execution are not insurmountable. We present Laelaps,
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a generic emulator for ARM Cortex-M based microcontroller units
(MCUgs). Instead of implementing peripheral logic for every device,
we leverage symbolic execution and satisfiability modulo theories
(SMT) [3] to reason about the expected inputs from peripherals
and feed them to the being-emulated firmware on the fly. There-
fore, our approach aims to achieve the ambitious goal of executing
non-Linux firmware without relying on real devices. The design
of Laelaps combines concrete execution and symbolic execution.
Concrete execution runs in a full system emulator, QEMU [4], to
provide the inner state of execution for dynamic analysis. How-
ever, the state-of-the-art whole system emulators cannot emulate
previously-unseen peripherals. If the firmware accesses unimple-
mented peripherals, the emulation will become paralyzed. Symbolic
execution then kicks in to find a proper input for the current pe-
ripheral access operation and guides firmware execution. We found
that symbolic execution is particularly good at inferring peripheral
inputs, because many of them are used in logical or arithmetical
calculations to decide a branch target.

In general, Laelaps’s concrete execution will be stuck when
accessing an unimplemented peripheral, and then it switches to the
symbolic execution to find proper inputs that can guide QEMU to
a path that is most likely to be identical with a real execution. One
significant practical challenge for automatic test generation is how
to effectively explore program paths. Various search heuristics have
been proposed to mitigate the path explosion problem in PC soft-
ware [30, 41, 45]. However, peripherals reveal many distinct features
that require special treatment, such as very common infinite loops
and interrupt requests. At the heart of our technique is a tunable
path selection strategy, called Context Preserving Scanning Algo-
rithm, or CPSA for short. CPSA contains a set of peripheral-specific
heuristics to prune the search space and find the most promising
path. Peripherals also interact with the firmware through inter-
rupts. In fact, embedded systems are largely driven by interrupts.
QEMU has built-in support for interrupt delivering, but it has no
knowledge with regard to when to assert an interrupt—this logic
should be implemented by peripherals. We address this issue by
periodically raising interrupts which have been activated by the
firmware. Although our solution may not strictly follow the path on
a real device, we demonstrate that it is able to steer the execution
to properly initialized and valid points suitable for further analysis.

We have developed Laelaps on top of angr [42] and QEMU [4].
Our prototype focuses on ARM Cortex-M MCUs, which dominate
the low-end embedded device market, but the design of Laelaps is
applicable to other architectures as well. We evaluate Laelaps by
running 30 firmware images built for 4 development boards. The
tested firmware spans a wide spectrum of sophistication, includ-
ing simple synthetic programs as well as real-world IoT programs
running Amazon FreeRTOS OS [1]. Our work makes the following
main contributions:

e We abstract the system model of ARM Cortex-M based em-
bedded microcontroller devices and distill the missing but
essential parts for full system emulation of those devices.

o We fill the missing parts of full system device emulation by
designing a symbolically-guided emulator, which is capable
of running diverse firmware for ARM MCUs with previously-
unknown peripherals.
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e We demonstrate the potential of Laelaps by using it in com-
bination with advanced dynamic analysis tools, including
boofuzz [37], angr [42], and PANDA [17]. Laelaps is an
open-source tool availabe at https://github.com/dongmu/
Laelaps.

2 BACKGROUND
2.1 ARM Cortex-M Microcontroller

Previously, microcontroller units were often considered as special-
ized computer systems that are embedded into some other devices,
as contrary to personal computers or mobile SoC. With the emer-
gence of IoT, now they have been central to many of the innovations
in the cost-sensitive and power-constrained IoT space.

ARM Cortex-M family is the dominating product in the micro-
controller market. These devices support Thumb instruction set for
the most efficient code density. From the view point of a program-
mer, the most remarkable difference between PC/mobile processors
and Cortex-M processors is that Cortex-M processors do not sup-
port MMU. This means that the application code and the OS code
are mingled together in a flat memory address space. For this reason,
it does not support the popular Linux kernel.

ARM Cortex-M processors map everything into a single address
space, including the ROM, RAM and peripherals. Therefore, periph-
eral functions are invoked by accessing the corresponding registers
in the system memory. For each ARM core, ARM defines the basic
functionality and the memory map for its core peripherals, such
as the interrupt controller (Nested Vector Interrupt Controller or
NVIC), system timer, debugging facilities, etc. Then, ARM sells the
licenses of its core design as intellectual property (IP). The licensees
produce the physical cores. These participating manufactures are
free to customize their implementations as long as they conform to
the core ARM design. As a result, manufactures optimize and cus-
tomize their products in different ways, leading to a vast diversity
of Cortex-M processors.

2.2 Firmware Execution

Th MCU firmware execution can be roughly divided into four
phases: 1) device setup, 2) base system setup, 3) RTOS initializa-
tion, and 4) task execution. In the device setup phase, the hardware
components, including RAM and peripherals, are turned on and
self-tested. In the base system setup phase, standard libraries such
as libc are initialized. That means dynamic memory can be used,
and static memory is allocated. Then the code of a RTOS (or bare-
metal) image is copied into the allocated memory regions, and core
data structures are initialized. If the firmware is powered RTOS,
the scheduler is also started. Finally, multiple tasks are executed
on the processor in a time-sharing fashion (in case of RTOS de-
sign) or a single-purpose task monopolizes the processor (in case
of bare-metal design).

Firmware execution highly depends on the underlying hardware,
and such hardware uncertainties have become the biggest barrier to
the development of a generic emulator. An improper emulation leads
to failed bootstrap very early in phase 1. We also note that there can
be multiple valid execution paths in a firmware execution. In fact,
manufacturers often include multiple driver versions to normalize
different peripherals. All the valid paths can lead to a successful
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Figure 1: Missing logic in QEMU (shaded memory regions
correspond to unimplemented peripherals).

execution. In other words, the executed driver version, as long as
it is valid, does not influence the result of firmware analysis. This
fact grants us a certain level of fault tolerance in firmware emula-
tion. That is, a wrongly selected path can still lead to a successful
emulation for analysis.

2.3 Dynamic Symbolic Execution

Symbolic execution, first proposed by King [27], is a powerful au-
tomated software testing technique. It treats program inputs as
symbolic variables and simulates program execution so that all
variables are represented as symbolic expressions. Together with
theorem proving technique [20, 33], symbolic execution is able to au-
tomatically generate concrete inputs that cover new program paths.
Notably, symbolic execution has achieved encouraging results in
testing closed-source device drivers [10, 29, 31, 39]. However, exist-
ing work mainly focuses on analyzing drivers in the full-fledged
OSs. MCU firmware exhibits very differently challenges that require
special treatment. Dynamic symbolic execution (a.k.a concolic exe-
cution) (7, 8, 21, 40] performs symbolic execution along a concrete
execution path, and it combines static and dynamic analysis in
a manner that gains the advantages of both. Dynamic symbolic
execution has achieved remarkable success in generating high-
coverage test suites and finding deep vulnerabilities in commercial
software [5, 11, 22, 31]. The core of Laelaps is a concolic execu-
tion approach for peripheral emulation. One particular challenge
for symbolic execution is the path explosion problem [30, 41, 45].
Our study proposes a set of peripheral-specific search heuristics to
mitigate the path explosion.

3 OVERVIEW

3.1 Function Gap

QEMU [4], the most popular generic machine emulator, has built-in
support for almost all of the functions defined by ARM. We call
them core peripherals/functions in the remainder of this paper. How-
ever, chip manufacturers often integrate custom-made peripherals
that are also mapped into the address space of the system. The
logic of these peripherals, together with the core peripherals, define
the behavior of an ARM MCU device. Therefore, to emulate a real
device, an emulator needs to support all the manufacturer-specific
peripherals. However, our source code review shows that QEMU,
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the state-of-the-art emulator, only supports three ARM-based mi-
crocontrollers (two TI Stellaris evaluation boards and one ARM
SSE-200 subsystem device). For unsupported devices, QEMU only
emulates the core peripherals defined by ARM. Figure 1 shows the
missing logics in QEMU.

When the processor interacts with an unimplemented peripheral
(shown as shaded in Figure 1), QEMU becomes paralyzed due to
two unfilled gaps. Gap 1: QEMU does not know how to respond
when the processor accesses an unimplemented peripheral register.
Gap 2: QEMU lacks the logic of unimplemented peripherals and
therefore cannot know when to send interrupt requests.

3.2 Motivating Observations

QEMU becomes paralyzed when the firmware access an unimple-
mented peripheral, simply because it cannot provide a suitable value
to the firmware. If QEMU provides a random value, the execution is
very likely to be stuck. Our in-depth study on the usage of periph-
eral values leads to three key observations. First, a large amount of
peripheral accesses do not significantly influence firmware execu-
tion. As shown below, this statement reads a value from peripheral
register base->PCR[pin] and assigns another value to the same
register after some logic calculations. This statement configures
the functionality of a pin on the board, but the values being read
and written do not influence the firmware emulation at all.
base->PCR[pin] = (base->PCR[pin] & ~PORT_PCR_MUX_MASK) |
PORT_PCR_MUX (mux) ;

Second, the rest of peripheral accesses that do actually influence
firmware execution have an important effect on the execution path,
and therefore, it is crucial to model them correctly. Third, if we can
find a value that drives the execution along a correct path, then
QEMU can usually execute the firmware as expected.

To explain this, we list a code snippet for a UART driver in
Listing 1. It outputs a buffer through the UART interface. In Line
3, it reads from a UART register (base->S1) in a while loop. Only
if the register has certain bits set would the loop be terminated.
Then the driver will send out a byte by putting the byte on another
register (base->D). It is clear that executing line 4 is necessary for
the firmware to move forward. To obtain the input leading to line 4,
we found symbolic execution a perfect fit. Specifically, if we mark
the value in the unknown register (base->S1) as a symbol, we can
instantly deduce a satisfiable value to reach line 4. Like this example,
we found many peripheral drivers use peripheral registers in simple
logic or arithmetic calculations, and then the results are used in
control-flow decision making.

1void UART_WriteBlocking (UART_Type xbase,
size_t length){

2 while (length--){

3 while (!(base->S1 & UART_ST_TDRE_MASK)){}

4 base->D = *(data++);

5

6

const uint8_t =*data,

Listing 1: Code snippet from real driver code.

3.3 Laelaps Overview

Laelaps combines concrete execution and symbolic execution,
namely concolic execution [7, 8, 21, 40]. Neither of them alone
could achieve our goal because 1) concrete execution cannot deal
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Figure 2: Laelaps’s branch exploration with the depth of two. The red color branches are selected by Laelaps.

with unimplemented peripherals; and 2) pure symbolic execution
faces the traditional path explosion problem. We design our system
based on concrete execution but employ symbolic execution to run
small code snippets to calculate suitable values for unimplemented
peripheral inputs. In this way, a firmware image runs concretely
and symbolically by turns, gaining the advantages of both.

Laelaps only needs basic information of a device to initialize
the execution environment. Specifically, it requires the target ar-
chitecture profile (e.g., ARM Cotex-M0/3/4) and locations of ROM
and RAM. Then it loads ARM core peripherals into the system map.
Next, memory regions used by chip-specific peripherals are marked
as unimplemented (e.g., the 0x40000000-0x400FFFFF region is used
as peripheral memory map in NXP chips). Accesses to them are
intercepted and handled in the symbolic execution engine. All the
other memory regions are unmapped and should never be accessed.
An access to the unmapped memory indicates a potential memory
corruption, which can be used by a fuzzing tool to capture crashes.
QEMU translates and emulates each instruction of firmware until
there is a read operation to an unimplemented memory. Our goal
is to predict a proper response. Peripheral write operations, on the
other hand, are ignored because they do not influence program
status in any way. As shown in Figure 2, when an unimplemented
read operation is detected, the processor context and memory are
then synchronized to the symbolic execution engine (S1).

During symbolic execution, every unimplemented peripheral
access is symbolized (S2), resulting in a list of symbols. Each time a
branch is encountered, we run a path selection algorithm (S3/4) that
chooses the most promising path (see §4.3). Symbolic execution
advances along the path until one of following events is detected:

E1: Synchronous exception (e.g., software interrupt)
E2: Exception return

E3: Long loop (e.g., memcpy)

E4: Reaching the limit of executed branches

E1 and E2 terminate symbolic execution because these system
level events cannot be easily modeled by existing symbolic exe-
cution engines (§4.2). E3 could consume a lot of time in symbolic
execution. Therefore, whenever detected, the execution should be
transferred to the concrete engine (§4.2.5). We do not allow emula-
tion to stay in symbolic engine forever due to the path explosion
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problem. Therefore, we set a limit for the maximum branches to en-
counter in each symbolic execution (§4.3). In Figure 2, we illustrate
a case in which we set this limit as two.

At the time when symbolic execution is terminated, we evaluate
the values of the list of symbols that navigate execution to the cur-
rent path (S5) and feed the solved values to QEMU (S6). Since these
values are verified via the constraint solver, they will guide the con-
crete execution to follow the selected promising path. Specifically,
QEMU re-executes the path explored by the symbolic execution
engine by following the solved values. In this paper, we call each
switching to symbolic engine a symbolic execution pass. Laelaps
pushes firmware execution forward by continuously switching
between QEMU and symbolic execution passes. In this way, we
provide a platform that execute the firmware to a state suitable
for further dynamic analysis (e.g., examining a hard-to-reach code
logic that was only possible with a real device previously). It leaves
to analysts to decide the right time to dig into firmware execu-
tion and perform further analysis. How to dynamically analyze the
firmware is out of the scope in this paper. We expect many tools
can be directly benefited from Laelaps because our design is not
specific to a particular tool. Nevertheless, we showcase one of its
applications (fuzz testing) in §6.3.

4 LAELAPS SYSTEM DESIGN

In this section, we present the details of Laelaps system design,
limitations, and our mitigations.

4.1 State Transfer

Whenever an unimplemented peripheral read is detected, the pro-
gram state is transferred to the symbolic execution engine. In our
current design, Laelaps synchronizes the processor context (gen-
eral purpose registers, system registers) of the current execution
mode to the symbolic execution engine. Since copying all RAM
is expensive, we adopt a copy-on-access strategy that only copies
required pages on demand. After symbolic execution, modified
memory is not synchronized to QEMU. Instead, it is re-constructed
in QEMU by following the same path explored by the symbolic
execution engine.
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4.2 Symbolic Execution

4.2.1 Basic Rule #1. Since the symbolic execution engine is invoked
by unimplemented peripheral read operations, the first instruction
in the symbolic engine is always a peripheral read. We generate a
symbolic variable for this memory access. Likewise, the following
peripheral read operations are also assigned with symbols. Note
that even if a peripheral address has been accessed earlier, we still
assign a new symbol. This is because of the volatile nature of pe-
ripheral memory — their values change nondeterministically due
to unforeseen events generated externally. In this sense, we assign
new symbols spatially (different addresses get different sym-
bols) and temporally (different times get different symbols).

4.2.2  Basic Rule #2. Firmware may contain OS-level functions that
inevitably involve the interaction between tasks and event handlers
running in the separated privileged mode. Our current symbolic
execution cannot correctly handle complex context switches due
to exceptions. Therefore, in each symbolic execution, we set a ba-
sic rule that the execution should always stick to the original
execution mode. To meet this rule, for each explicit instruction
that requires context switch, we immediately terminate symbolic
execution and transfer the execution to QEMU. This includes syn-
chronous exception instruction such as supervisor calls (SVC) and
exception returns. In an exception return, the processor encounters
a specially encoded program counter (PC) value and fetches the
real PC and other to-be-restored registers from the stack.

4.2.3 Basic Rule #3. As discussed in §3.3, Laelaps holds multiple
solved symbols to be replayed. In essence, Laelaps expects QEMU
to follow exactly the same path explored during symbolic execution.
This implies that QEMU should not take any asymmetric exceptions
when replaying the buffered symbol values. Otherwise, the QEMU
execution is deviated from the expected path, rendering the solved
symbols useless. We can certainly discard the remaining solved
symbols on a path deviation caused by exceptions. However, since
symbolic execution is expensive, we opt to adopt another practical
approach. That is, we set a basic rule that QEMU resumes replay-
ing without accepting any exceptions until all of the solved
symbols are consumed.

4.2.4  Unrecognized Instructions. Currently, state-of-the-art sym-
bolic execution engines cannot recognize system-level ARM in-
structions. We take another two strategies to handle this. First, for
the unrecognized instructions that do not affect program control
flow, we replace them with NOP instructions. This includes many
instructions without operands (e.g., DMB, ISB), instruction updat-
ing system registers (e.g., MSR), and breakpoint instruction BKPT.
Second, for the unrecognized instructions that directly change con-
trol flow (e.g., SVC) or update general purpose registers (e.g., MRS),
we immediately terminate symbolic execution and switch to QEMU.

4.2.5 Long Loop Detection. Symbolic execution is much slower
than concrete execution. Therefore, we need to keep the time spent
on symbolic execution as little as possible but at the same time yield
similar predicted paths. When encountering long loops controlled
by concrete counters, the loop would be executed symbolically
until the loop is finished. Unfortunately, there are numerous such
long loops in a firmware. Examples include frequently used library
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Figure 3: The illustration of Laelaps’s path selection strat-
egy: Context Preserving Scanning Algorithm. Executed path
is represented by red edges in the CFG. In each sector, CPSA
explores all possible paths within Forward_Depth steps. At
the node 0x424, two branches are explored. We choose the
left-hand branch because it has the most promising path.

functions such as memcpy and memset. Since those functions usually
contain long loops, symbolically executing them is extremely ineffi-
cient. Laelaps is able to detect long loops at run-time. If a long loop
is detected, the execution is forced to be transferred to QEMU. To
detect long loops, Laelaps maintains the execution trace based on
recently executed basic blocks and finds the longest repeated cycle.
Whenever the longest repeated cycle is longer than a threshold,
symbolic execution will be terminated. Based our empirical study,
we set this threshold as 5 in the experiments.

4.3 Path Selection Strategy: Context Preserving
Scanning Algorithm

The goal of Laelaps’s symbolic execution is to find the most promis-
ing path and direct QEMU towards this path. A promising path is
one that passes firmware’s internal checks and avoids disrupting
firmware execution (e.g., assertion failure and infinite loop). Since
we lack the high-level semantic information about data structures
and control flow, it is particularly challenging. At a high level, we
try to use symbolic execution to avoid generating problematic pe-
ripheral inputs that may lead to disrupted execution, and this is
achieved by a set of firmware specific heuristics.

Figure 3 shows how the proposed path selection strategy — Con-
text Preserving Scanning Algorithm (or CPSA for short) — works in
general. There are two parameters that can be used to adjust the
performance and accuracy of the algorithm. Context_Depth speci-
fies the number of branches the symbolic engine has to accumulate
before invoking the constraint solver and returning to the QEMU.
Forward_Depth is the maximum number of basic blocks that the
symbolic engine can advance from a branch. With Context_Depth
set to two, each symbolic execution pass decides the results for
two branches (from 0x424 to 0x454 and 0x800 to 0x838). Note that
before reaching a point to decide a branch, there might have been
multiple basic blocks executed. These intermediate basic blocks
end with a single branch or the corresponding conditions are deter-
mined by concrete values. We call an execution leading to a branch
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selection as a step, following the naming convention of angr [42].
With Forward_Depth set to three, symbolic engine explores as
many as three future steps for each branch. When encountering
a new branch in a step, both branches are explored. As shown
in the Figure 3, there are two branches at the end of basic block
0x424. The left-hand branch leads to three distinct paths within
Forward_Depth steps, while the right-hand branch leads two. Our
algorithm selects the most promising one among all of the paths.
In this figure, we choose a path starting from the left-hand branch.
Therefore, we pick the 0x454 branch to follow the 9x424 branch.
Similarly, at the node 0x800, the right-hand branch is selected.

4.3.1 Explanatory Example. Listing 2 is a code snippet of an Eth-
ernet driver from the NXP device SDK. The function enet_init
initializes the Ethernet interface, which calls PHY_Init to configure
the Network Interface Controller (NIC) with a physical layer (PHY)
address. If the invocation fails, the execution will be suspended
and lead to calling an assert function in line 5, which is an infinite
loop. Inside PHY_Init, PHY_Write interacts with NIC for actual
configuration. Lines 10 and 12 invoke PHY_Write twice. If either
invocation fails, PHY_Init returns with a failed result. If both of
them returns kStatus_Success, the program checks whether the
operations have been successful by reading back peripheral memo-
ries using PHY_Read, as indicted in lines 16 and 18. Different from
PHY_Write in lines 10 and 12, there are multiple chances indicted
by counter for the two PHY_Read functions to obtain the expected
result. If so (line 19), a short loop is executed to wait until the state is
stable (lines 21-24). In a word, a correct execution trace is expected
to follow “3-10-11-12-13-15-16-17-18-19-(21-23-24)*-25-34-4-6".
1static void enet_init(...){

2

3  status = PHY_Init(...);

4 if (kStatus_Success != status)

5 LWIP_ASSERT ("\r\nCannot initialize PHY.\r\n", 0);

63

7

8status_t PHY_Init(...){

9 ...

10 result = PHY_Write(...);

11  if (result == kStatus_Success) {

12 result = PHY_Write(...);

13 if (result == kStatus_Success) {

14 /% Check auto negotiation complete. =*/

15 while (counter --) {

16 result = PHY_Read(..., &bssReg);

17 if ( result == kStatus_Success) {

18 PHY_Read (..., &ctlReg);

19 if (((bssReg & ...) && (ctlReg & ...)) {

20/* Wait a moment for Phy status stable. x/

21 for (timeDelay = ©; timeDelay <
PHY_TIMEOUT_COUNT; timeDelay ++) {

22 /% Must be here to succeed. */

23 __ASM("nop");

24 b

25 break;

26 3}

27 }

28
29
30 3}
31 3}

32 )

33}

34 return result;
35}

if (!counter) {
return kStatus_PHY_AutoNegotiateFail;

Listing 2: Source code of a complex Ethernet driver.
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4.3.2  Heuristic #1: Context Preservation. Laelaps steers firmware
execution forward by continuously switching between QEMU and
symbolic execution passes. Each symbolic execution pass only
makes decision based on the current context instead of a holis-
tic context. Therefore, it cannot make an optimal decision globally.
Lines 16-19 in Listing 2 clearly demonstrate this. In line 16 and line
18, there are two PHY_Read invocations that read a symbolic value
to bssReg and ct1Reg respectively. In line 19, these two symbols
are used to determine a branch. If we transfers execution to QEMU
after line 16, the condition in line 19 might never be satisfied, be-
cause at that time bssReg is already a concrete value, which might
equal to zero. The root reason is that we concretize bssReg too
early and it later affects the subsequent path to be taken. We call
this “over-constraining”.

Inspired by speculative symbolic execution [47], we do not invoke
the constraint solver when encountering bssReg. Instead, our sym-
bolic execution advances along the path and solves bssReg together
with ct1Reg in line 19. More generally, we allow analysts to config-
ure a parameter Context_Depth, which is the specified number of
branches the symbolic engine has to accumulate before invoking
the constraint solver. In this way, we preserve the possibilities of
future paths and thus yielding more accurate results. The downside
is that a larger Context_Depth leads more paths to be explored
in symbolic execution, and so it consumes more time. Therefore,
Context_Depth serves as an adjustable parameter for a trade-off
between fidelity and performance.

4.3.3  Heuristic #2: Avoiding Infinite Loop. Symbolic execution be-
comes entangled in an infinite loop. As shown in Listing 2, any
failed invocations to PHY_Write or PHY_Read will trigger the ex-
ecution of line 5, an infinite loop. We allow analysts to specify
a parameter Forward_Depth, which is the maximum number of
steps that the symbolic engine can advance from a branch. Within
Forward_Depth steps, a branch could lead to multiple paths. If all
of these paths have an infinite loop, this branch is discarded. If
Laelaps singles out a branch because all the other branches are
eliminated due to infinite loop detection, we say Laelaps chooses
this branch on the basis of infinite-loop-elimination. To iden-
tify an infinite loop, our symbolic engine maintains the execution
traces and states of explored paths. It then compares execution
states within each path. If any two states are the same, meaning
the processor registers do not change at different times, we regard
the corresponding path as an infinite loop.

The infinite-loop-elimination heuristic might incorrectly fil-
ter out a legitimate path which seems to be a infinite loop. For
example, a piece of code may constantly queries a flag in the RAM,
which is only changed by an interrupt handler. Since the symbolic
execution engine is not interrupt-aware in our design, the legiti-
mate path is filtered out. To address this issue, CPSA does not filter
out paths with infinite loops completely. Instead, they are selected
at the lowest priority. In this way, when the execution is switched
back to the QEMU, an interrupt can be raised and handled (§4.4),
effectively unlocking the infinite loop.

4.3.4  Heuristic #3: Prioritizing New Paths. We maintain a list of
previously executed basic blocks and calculate a similarity measure-
ment between the historical path and each of the explored future
paths. We prioritize the candidate path with the lowest similarity,
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implying that a new path is more likely to be selected. To illustrate
how this heuristic helps us find the correct path of the code in List-
ing 2, consider how we can advance to line 21. As shown in line 15,
there are counter chances that Laelaps can try to solve the correct
values for bssReg and ctlReg. If an incorrect value is drawn from
angr due to under-constrained path selection, the execution starts
over from line 16. If our algorithm makes mistakes continuously
in the while loop, the same path pattern will be recorded for many
times. Eventually, this will activate similarity checking so that a
new path (line 21) is selected. If Laelaps singles out a branch, we
say Laelaps chooses this branch on the basis of similarity.

4.3.5 Heuristic #4: Fall-back Path. After applying the above-mentioned

path selection mechanisms, if we still have multiple candidate paths,
we choose the one with the highest address. This is based on two
observations. First, programs are designed to execute sequentially.
Second, the firmware typically initializes each peripheral one by
one. Therefore, our algorithm tends to move forward quickly.

Laelaps has to choose a fall-back branch if neither the infinite-
loop-elimination basis nor the similarity basis can single out a
branch. In this case, we say Laelaps chooses this branch on the
basis of fall-back path.

4.4 Interrupt Injecting

So far, we have presented how Laelaps fills gap 1 shown in Fig-
ure 1. That is, how to support firmware sequential execution even if
the firmware access unimplemented peripherals. On the other hand,
in addition to generating data for the firmware to fetch, peripherals
also notify the firmware when the data are ready through the inter-
rupt mechanism. Typical, a firmware for embedded application just
waits in low-power mode, and it only wakes up when receiving an
interrupt request. Therefore, without being activated by interrupts
(gap 2), most firmware logic remains dormant.

To fill gap 2, we implement a python interface that periodically
delivers activated interrupts. This simple design works fine for two
reasons. First, in a real execution, firmware only activates a limited
number of interrupts. Therefore, delivering activated interrupts will
not introduce too much performance penalty. Second, an interrupt
handler can often gracefully deal with unexpected events. Although
additional code is executed, they will not cause great impacts on
firmware execution.

4.5 Limitations & Mitigations

Laelaps is designed to automatically reason about the expected
peripheral inputs with only access to the binary code. However, it is
impossible to exactly follow the semantic of the firmware in certain
circumstances. If the peripheral inputs do not influence control
flow, the solution made by symbolic execution would be random.
We summarize common pitfalls to complicate automatic firmware
execution and how we handle them.

4.5.1 Data Input. Laelaps works well when the peripheral inputs
only decide control flow. However, the firmware also interacts with
the external world by exchanging data. Data exchange is supported
by fetching data from a particular data register at the agreed time
slots. Obviously, we cannot feed the randomly generated data by
symbolic execution to the firmware. Fortunately, in many dynamic
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analyses, these input channels are intercepted and fed with manu-
ally generated test-cases. In other words, Laelaps does not need to
generate the inputs anyway. In §6, we show how we use Laelaps
to hook network functions in FreeRTOS and reproduce the vulner-
abilities in the TCP_IP stack of FreeRTOS [26].

4.5.2  Lack of Holistic Analysis. Laelaps preserves context infor-
mation by staying in the symbolic engine for up to Context_Depth
branches. However, Context_Depth cannot be set too large as it
will slow down performance significantly. If a sub-optimal solu-
tion is generated under a low Context_Depth, the execution could
go wrong. To overcome this limitation, we design several inter-
faces that analysts can leverage to override the solution from the
symbolic execution engine and thus avoid unwanted execution.
Analysts usually identify a false or unexpected execution when
the firmware goes into an infinite loop or a crash. Then based on
the execution trace, analysts override the solution accordingly. As
shown in our evaluation, with necessary human inputs, Laelaps
succeeds in dynamically running very complex firmware images.

5 IMPLEMENTATION

We developed the prototype of Laelaps based on QEMU [4] and
angr [42], which are concrete execution engine and symbolic ex-
ecution engine, respectively. To facilitate state transfer between
the two execution engines, we integrate Avatar [34, 46], a Python
framework for seamlessly orchestrating multiple dynamic analysis
platforms, including QEMU, real device, angr, PANDA [17], etc.
Our tool inherits the state transfer interface of Avatar, enhances
Avatar’s capability to handle Cortex-M devices, implements a mem-
ory synchronization mechanism between QEMU and angr, develops
the proposed CPSA on top of angr, and exports to firmware ana-
lysts an easy-to-use Python interface. Our tool emulates a generic
Cortex-M device on which firmware analysts can load and execute
the firmware that interacts with unimplemented peripherals. These
are implemented by 854 lines of Python code and 209 lines of C
code (QEMU modification).

5.1 Configuration

Although Laelaps does not need prior knowledge about periph-
erals, some essential information about the chip is required. This
information includes 1) the core being used (e.g., Cortex-M0, M3 or
M4), 2) the mapping range of ROM/RAM, 3) the mapping ranges
of chip-specific peripherals, and 4) how the firmware should be
loaded (i.e., how each section of a firmware image corresponds to
the memory map). The chip information can be oftentimes obtained
from the official product description page, third-party forums, or
the Federal Communications Commission (FCC) ID webpage [18].
But we acknowledge that there is a small portion of devices that
use custom chips or non-publicly documented microcontrollers. To
get information about how the firmware is loaded, moderate static
analysis is required. In the simplest form, a raw firmware image
as a whole is directly mapped from the beginning of the address
space. This kind of image can be easily identified based on some
characteristics (e.g., it starts with an initial stack pointer and an
exception table) [2].
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5.2 Peripheral Access Interception

When firmware accesses an unimplemented address specified in
the configuration stage, the memory request is forwarded to the
angr for symbolic execution. Our implementation is largely in-
herited from Avatar. In particular, Avatar implements a remote
memory mechanism in which accesses to an unmapped memory
region in QEMU are forwarded to a Python script. The Python
script then emulates the behavior of a real peripheral and feeds the
result to QEMU. Note that to symbolically execute the firmware,
angr needs the current processor status (i.e., register values) and
memory contents. Avatar fetches the processor status through a
customized inter-process protocol and memory contents through
the GDB interface. Unfortunately, in Laelaps, we cannot use the
GDB interface for memory synchronization (explained below). We
made modifications to Avatar so that additional Cortex-M specific
registers (e.g., Program Status Register (PSR)) are synchronized to
angr, and implemented our own memory synchronization interface.

5.3 Memory Synchronization

As mentioned earlier, Avatar uses the GDB interface to synchro-
nize memory. The Avatar authors demonstrate this feature by syn-
chronizing the state of a Firefox process from QEMU to angr and
continuing executing it symbolically. Note that to invoke GDB for
memory access, the target must be in the stopped state. However,
in Laelaps, we cannot predict the program counters that access
unimplemented peripherals and make breakpoints beforehand. An
alternative to this issue is to invoke QEMU’s internal function to
stop the firmware execution at the time of unimplemented periph-
eral access. Unfortunately, due to the design model of QEMU, this
idea cannot be achieved without significant modifications to QEMU.

We address this problem by exporting all RAM regions through
IPC. Specifically, in QEMU, when a RAM region is created, we cre-
ate a POSIX shared memory object and bind it with the RAM region
using mmap. As a result, angr is able to directly address the firmware
RAM by reading the exported shared memory object. Our solution
significantly outperforms Avatar in memory synchronization. As
with Avatar, the actual memory transfer is issued on demand at
page granularity. All memory modifications are kept locally and
never forwarded back to QEMU. By design, Laelaps forwards pe-
ripheral inputs to QEMU and lets QEMU re-execute the explored
path. Therefore, there is no need to transfer memory back to QEMU.

5.4 Interrupt Injection

Laelaps randomly injects activated interrupts to QEMU. This is
implemented on top of QEMU Machine Protocol (QMP) interface.
We added three new QMP commands: “active-irqs”, “inject-irq”, and
“Inject-irg-all”. They are able to get the current activated interrupt
numbers, inject an interrupt, and inject all the activated interrupt
numbers in one go, respectively. QMP is a JSON based protocol.
Laelaps connects to the QMP port of the QEMU instance and
randomly sends QMP commands to inject interrupts. For example,
to inject an interrupt with number 10, Laelaps sends the following
QMP message.
{"execute": "inject-irq", "arguments": {"irq": 10}}

To assert an interrupt, the added QMP command emulates a
hardware interrupt assertion by setting the corresponding bit of
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Table 1: Emulation summary of 30 firmware images.

FW # w/o FW # w/ ;
Board RTOS Human Intervention | Human Intervention Failed #
NXP_FRDM-K66F | FreeRTOS, Bare-metal | 14 | 2 | 6
NXP_FRDM-KW41Z | FreeRTOS, Bare-metal | 3 | 0 | 1
STM32100E_EVAL | FreeRTOS, Bare-metal | 2 | 0 [
STM32 Nucleo-L152RE |  ChibiOS, Mbed OS | 1 | 1 [

the interrupt status pending register (ISPR). It is worth noting that
the injected QMP commands can never be executed in QEMU in
our initial implementation. It turned out the threads handling QMP
commands and I/O cannot be executed concurrently. In partic-
ular, QEMU listens for QMP messages and handles I/O in sepa-
rate threads. Each thread must acquire a global lock by invoking
the function gemu_mutex_lock_iothread() to grab CPU. We ob-
served that QMP thread can never win in acquiring the lock when
/O thread is actively invoked. In fact, the default Pthread mutex
does not implement FIFO protocol. Therefore, OS cannot guarantee
QMP can ever acquire the lock. We made a workaround by delaying
100ps in each I/O loop.

6 EVALUATION

6.1 Firmware Emulation

6.1.1  Firmware Collection. To test how Laelaps deals with diverse
firmware, we collected/built 30 firmware images from/for four ARM
Cortex-M based development boards. They are NXP FRDM-K66F
development board, NXP FRDM-KW41Z development board, STMi-
croelectronics Nucleo-L152RE development board, and STM32100E
evaluation board. The reason why we chose development boards
is that we could run the firmware on real devices. Therefore, the
execution traces captured on real devices (see §6.2) form a ground
truth for evaluating the fidelity of firmware execution in Laelaps.
All the evaluated firmware images were built from the SDKs and
demonstration programs provided by the corresponding chip ven-
dors. We note that chip vendors are investing significant resources
into the development of SDKs to attract developers. Also, to reduce
time to market, more developers are willing to adopt the low-level
SDK codes from the vendors.

In terms of software architecture, we tested three popular open-

source real-time operating systems (FreeRTOS, Mbed OS, and ChibiOS/RT)

as well as bare-metal firmware. In terms of peripheral diversity,
these firmware images contain drivers for a large number of dif-
ferent peripherals, ranging from basic sensors to complex network
interfaces. Depending on the sophistication of the SDK, the dri-
vers work either in polling mode or interrupt mode. Therefore,
the collected images resemble the functionality and complexity of
real-world firmware images. We put detailed information about
each firmware image in Appendix B.

6.1.2  Results. We tested each of the collected firmware images us-
ing Laelaps. The result is promising. As shown in Table 1, among
all 30 images, Laelaps is able to successfully emulate 20 images
without any human intervention. All the emulations advance to
the core logic of the tasks correctly. At this point, the environment
has been properly initialized, allowing for close inspection of in-
teresting code points. For three very complex firmware images



Device-agnostic Firmware Execution

(Column 4), Laelaps is able to emulate them with some human
interventions. Among these three images, two of them need data
input. We manually redirected the input stream (see §6.3.2).

On the other hand, there exist seven images that Laelaps can-
not handle even with human efforts (Column 5). We analyzed the
execution traces and attributed these failed emulations to the fol-
lowing reasons. First, sometimes the firmware reads a peripheral
register and stores the value in a global variable, but only uses
that value after a long time. From time to access to time to use,
there could have been multiple switches between symbolic execu-
tion engine and concrete execution engine. It is obviously that the
peripheral value cannot stay symbolized at the time of use. As a
result, symbolic engine cannot execute CPSA algorithm holistically.
Second, some firmware depends on custom-made peripherals to
implement complex computations such as hash or cryptographic
operations, which anger failed to handle. All the details, includ-
ing the Context_depth and Forward_Depth needed for successful
emulations, can be found in Appendix B

6.2 Fidelity Analysis

Although our experiments shows that Laelaps is able to boot a
variety of firmware images and reach a point suitable for dynamic
analysis, we have no idea as to whether the execution traces in
Laelaps resemble ones in real device execution. Therefore, we
collected two firmware execution traces of the same firmware image
on both Laelaps and real devices, and compared the similarity
between them. This firmware simply boots the FreeRTOS kernel
and prints out a “hello world” message through the UART interface.

6.2.1 Trace Collection. We collected the firmware execution trace
on a real NXP FRDM-K66F development board using the built-in
hardware-based trace collection unit called Embedded Trace Macro-
cel (ETM) [2]. ETM is an optional debug component to trace instruc-
tions, and it enables the transparent reconstruction of program
execution. We directly leveraged the on-board OpenSDA interface
to enable the ETM and access the traced data in a buffer called ETB.
We do not have the ETM component in Laelaps to collect traces.
However, QEMU provides us with great logging facility which al-
lows us to transparently print out execution traces. In particular, we
passed the option "-d exec,nochain" to QEMU so that it printed
out the firmware address before each executed translation block.
When mapping the start of each translation block to the firmware
code, we can recover the full execution trace.

6.2.2 Execution Trace Comparison. Figure 4 shows a visualized
comparison between the traces of the same firmware image col-
lected on Laelaps and real device. We showed the traces collected
from system power-on to the start of the first task, corresponding
to a full system execution described in §2.2. Figure 4 is a bitmap for
the two instruction traces. The top of the figure represents low ad-
dresses of the code, while bottom represents high addresses. When
an instruction is executed, the corresponding pixel is highlighted.
In the figure, the trace collected on Laelaps is in red, and the trace
collected on real device is in blue. We observed a large number of
overlapped regions labeled in purple, implying that the two traces
have similar path coverage. In the figure, we also marked the end of
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Figure 4: Bitmap of instruction traces collected on Laelaps
and the real device. Purple color represents overlapped trace
segments. e marks the end of device setup (phase 1). » marks
the end of base system setup (phase 2). A marks the end of
RTOS initialization and the start of the first task (phase 3).

Table 2: Jaccard indexes between the traces collected on
Laelaps and real devices when applying only the fall-back
path heuristic and all the heuristics.

| FW#1 | FW#2 | FW#3 | FW#4 | FW4#5 | FW#6 | FW#7

fall-back path 37.43 39.17 92.96 56.67 48.41 44.02 87.80
all 96.54 92.02 94.26 79.78 95.40 95.42 92.15

| FW#8 | FW#9 | FW#10 | FW#11 | FW#12 | FW#13 | FW #14

fall-back path 35.85 45.34 46.26 5179 40.54 32.74 45.47
all 96.54 92.02 94.26 79.78 95.40 95.42 92.15

the first three execution phases, which are essential milestones dur-
ing firmware execution. The figure clearly shows that both traces
reach all of them.

Note that having even exactly the same path coverage does
not mean the two execution traces are the same. For example, a
real device execution may encounter a long loop waiting for a
signal, while Laelaps can directly pass through the loop, leading
to different execution traces but the same coverage (the same set of
control flow transitions occur in both traces). However, many of
these deviations are not important. In fact, our emulation does not
need to faithfully honor the real execution path in this case.

Coverage similarity measurement visualized in Figure 4 is only
an intuitive demonstration of the fidelity achieved by Laelaps.
To be able to quantitatively measure the similarity of collected
traces, we also calculated Jaccard index (i.e., the number of com-
mon instructions between two traces divided by the number of
total instructions in the union of the two traces) to measure the
common instructions between the collected traces. Since we can-
not control the interrupts to be delivered at exactly the same pace
on two targets, we did an alignment to the raw traces so that the
comparison starts from the same address. In particular, interrupt
processing intrusions are extracted and compared separately. Then
the results were combined together. Table 2 shows the Jaccard
indexes when only applying the fall-back path heuristic and ap-
plying all the heuristics. The fall-back path heuristic represents a
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Table 3: Corruption detection under different probabilities
for corrupting inputs.

‘ Pc ‘ # of Test-cases ‘ # of Corruptions ‘ Detection Ratio

Test1 | 0.10 | 840 | 88 | 10.48%
Test2 | 0.05 | 936 | 47 | 5.02%
Test3 | 0.01 | 939 | 9 | 0.96%

straightforward path selection strategy that can be developed with
reasonable effort, while combining them all is only possible with
the proposed sophisticated symbolic guidance. We list the results
of 14 firmware images that Laelaps is able to emulate without
any human interventions. When all the heuristics are applied, the
calculated Jaccard indexes are higher than 90% in most cases, which
agrees with the visualized result.

6.3 Application to Dynamic Analysis

Based on the positive results we got in firmware emulation, we
further explored the possibility of using Laelaps to perform actual
dynamic analysis.

6.3.1 Fuzzing Mbed OS Firmware. Muench et al. observed that the
effectiveness of traditional dynamic testing techniques on embed-
ded devices is greatly jeopardized due to the invisibility of mem-
ory bugs on embedded devices [35]. They came up with an idea
that leverages six live analysis heuristics to aid fuzzing test in
QEMU. These heuristics help make “silent” memory bugs to be
easily observable. In their proof-of-concept prototype, they used
PANDA [17] which is a dynamic analysis platform built on top of
QEMU. Its plug-in system facilitates efficient hooking of various
system events. To do the experiments, their approach relied on a
real device to initialize the memory and then used Avatar [46] to
transfer the initialized state from a real device to PANDA.

To demonstrate Laelaps’s device-agnostic property, we ported
Laelaps to PANDA and tested the same firmware image used in
the paper [35]. In addition, we reproduced the same fuzzing experi-
ments. We did not use the real device but were still able to emulate
the firmware. After the device was booted, we took a snapshot. Dur-
ing fuzzing, if the device crashed, the fuzzer instructed the emulator
to restart from the snapshot.

The firmware image is empowered by the Mbed OS and inte-
grates the Expat [13] library for parsing incoming XML files. The
used Expat library has five types of common memory corruption
vulnerabilities. The firmware image took input from the UART
interface. As in the paper [35], we instrumented the fuzzer to force-
fully generate inputs which trigger one of the five kinds of memory
corruption vulnerabilities with a given probability Pc. We ran the
experiment for 1 hour under probabilities Pc = 0.1, Pc = 0.05 and
Pc = 0.01, respectively. The result is shown in Table 3. We can see
that there is roughly a linear relationship between Pc and detection
ratio. Also, the less corrupting inputs were given, the more test-
cases could be tested within one hour. This is because the PANDA
instance can persist on multiple valid inputs, but it has to take
time to restore when receiving malformed inputs. This experiment
demonstrates that Laelaps is able to do dynamic analysis without
relying on a real device.
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6.3.2 Analyzing FreeRTOS Firmware. We also tested the capabil-
ity of Laelaps in helping analyze real-world vulnerabilities in
FreeRTOS-powered firmware. These vulnerabilities locate in the
FreeRTOS+TCP network stack, which were reported in AWS FreeR-
TOS with version 1.3.1. Without Laelaps, the traditional dynamic
analysis of these vulnerabilities is very expensive, as it has to rely
on real devices and hardware debuggers. We prepared our testing
in two steps. First, since the reported vulnerabilities occur in the
FreeRTOS+TCP TCP/IP stack, we replaced Iwip, the default TCP/IP
implementation shipped with the SDK of NXP FRDM-K66F, with
FreeRTOS+TCP. Second, we identified the location of the network
input buffer and wrote a PANDA plugin to redirect the memory read
operations from the buffer to a file. We began our testing from the
function prvHandleEthernetPacket, which is the gateway func-
tion processing incoming network packets. In the end, we succeeded
in triggering four TCP and IP layer vulnerabilities (CVE-2018-16601,
CVE-2018-16603, CVE-2018-16523, and CVE-2018-16524). Note that
these vulnerabilities were all caused by improper implementation
at IP or TCP/UDP layers. We had not been able to identify vulnera-
bilities residing at higher levels of network stack because triggering
them needs highly structured inputs.

7 RELATED WORK

Several approaches have applied symbolic execution to addressing
security problems in firmware [15, 16, 24]. Like Laelaps, Incep-
tion [15] aims at testing a complete firmware image. It builds an
Inception Symbolic Virtual Machine on top of KLEE [7], which sym-
bolically executes LLVM-IR merged from source code, assembly,
and binary libraries. To handle peripherals, it either models read
from peripheral as unconstrained symbolic values or redirects the
read operation to a real device. However, this approach relies on the
availabilities of source code to retain semantic information during
LLVM merging. FIE [16] modifies KLEE to target a specific kind of
device (MSP430). It requires source code and ignores the interac-
tions with peripheral. S?E is a concolic testing platform based on
full system emulation [12]. Combining QEMU and KLEE, S?E en-
ables symbolic variable tracking across privilege boundary. Mousse
proposes selective symbolic execution of programs with untamed
Android environment [31]. S?E, Mousse and Laelaps are all con-
colic execution platforms. However, “selective symbolic execution”
in S?E and Mousse mainly apply to applications that run on top of
a standard OS. By contrast, Laelaps works on lightweight RTOS
and bare-metal systems. We offer a set of peripheral-specific search
heuristics to mitigate the path explosion for peripheral emulation.

To be able to execute firmware in an emulated environment,
many previous work forwards the peripheral access requests to the
real hardware [25, 28, 34, 44, 46]. However, a real device does not
always have an interface for exchanging data with the emulator.
Furthermore, this approach is not scalable for testing large-scale
firmware images because for every firmware image a real device
is needed. Instead of relying on real devices, our approach infers
proper inputs from peripherals on-the-fly using symbolic execution.
Our approach inherits many benefits of a traditional emulator. For
example, we can store a snapshot at any time and replay it for
repeated analyses.
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A very related work [23] to ours was recently proposed by Eric
Gustafson et. al. The authors proposed to “learn” the interactions
between the original hardware and the firmware from the real
hardware. As a result, analysts do not need to program a specific
back-end peripheral emulator for every target hardware. This ap-
proach achieves similar dynamic analysis capability with ours, how-
ever, it still needs the real hardware in the “learning” process. P2IM
removes the dependence on real hardware by automatically in-
stantiating the abstract machine model with the firmware-specific
information by learning the access pattern of the peripheral [19].
As such, P2IM is oblivious to peripheral designs and generic to
firmware implementations. However, this approach restricts values
to be returned by status registers in a small subset of all possible
values. In particular, P2IM employes explorative execution to find
proper responses from status registers. However, a search space of
232 candidates is impracticle for concrete execution. P?IM explictly
narrows down the search space by only investigating candidates
with a single bit set, meaning that only 32 plus 1 candidates are
checked. This fundamentally prevents PZIM from generating cor-
rect values for status registers. In Laelaps, we use to symbolic
execution to directly caculate the expected values for peripheral
registers.

Finally, previous work has made tremendous progress in ana-
lyzing firmware that relies on an abstraction layer, particularly
Linux-based firmware [9, 48]. The high-level idea is to design a
generic kernel for all the devices. This approach leverages the ab-
straction layer offered by the Linux kernel. For example, the WiFi
interface can be easily supported by providing a standard emulated
Ethernet interface, since the POSIX API is being used. However,
for microcontroller firmware, there is no such a unified interface
between the tasks and the kernel. Even if some MCU OSs provide
hardware abstraction layer (HALSs), the ecosystem is severely seg-
mented. Therefore, a database for matching HAL libraries needs to
be specifically built [14]. Our work does not rely on any abstraction
layers and directly interacts with the previously-unseen hardware.
Therefore, our approach can deal with more kinds of firmware.

8 CONCLUSION & FUTURE WORK

We present Laelaps, a device-agnostic emulator for ARM micro-
controller. The high-level idea is to leverage concolic execution
to generate proper peripheral inputs to steer device emulator on
the fly. Dynamic symbolic execution is a perfect fit for this task
based on our observations and experimental validations. To find a
right input, the key is to identify the most promising branch. We
designed a path selection algorithm based on a set of generally
applicable heuristics. We have implemented this idea on top of
QEMU and angr, and have conducted extensive experiments. Of
all the collected 30 firmware images from different manufacturers,
we found that our prototype can successfully execute 20 of them
without any human intervention. We also tested fuzzing testing
on top of Laelaps. The results showed that Laelaps is able to cor-
rectly boot the system into an analyzable state. As a result, Laelaps
can identify both self-injected and real-world bugs. In the future,
we plan to extend our prototype to support a border spectrum of
devices including ARM Cortex-A and MIPS devices.
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A IMPLEMENATION MISCELLANEOUS

In this section, we provide supplementary information about im-
plementation details for interested readers.

A.1 Precise PC in QEMU

When transferring processor state from QEMU to angr, we found
that the PC register always points to the start of the current trans-
lated block, instead of the real PC. We borrow the code from
PANDA [17] to address this problem. In particular, we injected
into the intermediate language some instructions so that the PC
can be updated together with each translated guest instruction.

A.2 Extending Interrupt in QEMU

The official QEMU supports 16 system exceptions and 64 hardware
interrupts. A real device often uses more interrupts. Therefore, we
extended the supported number of interrupt to 140 in our prototype.

A.3 Bit-banding

Bit-banding is an optional feature in many ARM-based microcon-
trollers [2] . It maps a complete word of memory onto a single bit
in the corresponding bit-banding region. Writing to a word sets or
clears the corresponding bit in the bit-banding region. Therefore,
it enables efficient atomic access of a bit in memory. In particular,
a read-modify-write sequence can be replaced by a single write
operation. QEMU has already perfectly supported this feature while
angr has not. We extended the memory model of angr to honor the
defined behavior when writing to a bit-band region. This augmen-
tation has been used by Laelaps to successfully emulate STM32
devices in our experiments.

A.4 CBZ/CBNZ Instruction

A CBZ instruction causes a branch if the operand is zero, while
CBNZ does the opposite. By definition, these instructions mark
the end of basic blocks because they branch to new basic blocks.
However, in the default implementation of angr, due to optimiza-
tion, they are not treated as basic block terminators. In fact, angr
uses a basic block variant called IRSB (Intermediate Representation
Super-Block) which can have multiple exits. This results in abnormal
behaviors when Laelaps selects a branch. Fortunately, angr pro-
vides a configuration option that enables using strict basic blocks.
Therefore, we enable this option throughout the use of angr.

A5

Some STM32 boards heavily depend on memory alias during boot-
ing. We extended the memory model of angr to redirect memory
accesses when encountering memory regions configured to be an
alias to others.

Memory Alias
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Device-agnostic Firmware Execution

B DETATILS OF COLLECTED FIRMWARE
IMAGES

We briefly describe the functionality of each firmware image. Also,
we summarize the details of execution results of these firmware
images in Table 4.

(1) It sets up the RTC hardware block to trigger an alarm after a
user specified time period. The test will set the current date
and time to a predefined value. The alarm will be set with
reference to this predefined date and time.

(2) User should indicate a channel to provide a voltage signal
(can be controlled by user) as the ADC16’s sample input.
When running the project, typing any key into debug console
would trigger the conversion. The execution would check the
conversion completed flag in loop until the flag is asserted,
which means the conversion is completed. Then read the
conversion result value and print it to debug console.

(3) It uses the systick interrupt to realize the function of timing
delay. The example takes turns to shine the LED.

(4) It uses notification mechanism and prints the power mode
menu through the debug console, where the user can set the
MCU to a specific power mode. The user can also set the
wakeup source by following the debug console prompts.

(5) It shows how to use DAC module simply as the general DAC
converter.

(6) It sets up the PIT hardware block to trigger a periodic in-
terrupt every 1 second. When the PIT interrupt is triggered
a message a printed on the UART terminal and an LED is
toggled on the board.

(7) In the example, you can send characters to the console back
and they will be printed out onto console instantly using
lpuart.

(8) The TPM project is a demonstration program of generating
a combined PWM signal by the SDK TPM driver.

(9) User should indicate an input channel to capture a voltage
signal (can be controlled by user) as the CMP’s positive
channel input. On the negative side, the internal 6-bit DAC
is used to generate the fixed voltage about half value of
reference voltage.

(10) EWM counter is continuously refreshed until button is pressed.
Once the button is pressed, EWM counter will expire and
interrupt will be generated. After the first pressing, another
interrupt can be triggered by pressing button again.

(11) Quick test is first implemented to test the wdog. And then
after 10 times of refreshing the watchdog in None-window
mode, a timeout reset is generated.

(12) The CMT is worked as Time mode and used to modulation
11 bit numbers of data. The CMT is configured to gener-
ate a 40000hz carrier generator signal through a modulator
gate configured with different mark/space time period to
represent bit 1 and bit 0.

(13) It sets up the FTM hardware block to trigger an interrupt
every 1 millisecond. When the FTM interrupt is triggered a
message a printed on the UART terminal.

(14) It sets up the LPTMR hardware block to trigger a periodic
interrupt after every 1 second. When the LPTMR interrupt
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is triggered a message a printed on the UART terminal and
an LED is toggled on the board.

(15) The example configures one FlexCAN Message Buffer to Rx
Message Buffer and the other FlexCAN message buffer to Tx
message buffer with same ID. After that, the example will
send a CAN message from the Tx message buffer to the Rx
message buffer through internal loopback interconnect and
print out the Message payload to terminal.

(16) It uses the RNGA to generate 32-bit random numbers and
prints them to the terminal.

(17) It excuates one shot transfer from source buffer to destination
buffer using the SDK EDMA drivers.

(18) One sai instance records the audio data from input and play-
backs the audio data.

(19) It uses the KSDK software to generate checksums for an
ASCII string.

(20) The SYSMPU example defines protected/unprotected mem-
ory region for the core access and tested whether memory
protection interrupt events can be delivered if memory vio-
lations are detected.

(21) The ENET example tests FreeRTOS+TCP network stack.

(22) This example introduces simple logging mechanism based
on message passing.

(23) It prints the "Hello World" string to the terminal using the
SDK UART drivers.

(24) The RTC demo application demonstrates the important fea-
tures of the RTC Module by using the RTC Peripheral Driver.
It tested the calendar, alarm and seconds interrupt.

(25) The bubble application demonstrates basic usage of the on-
board accelerometer to implement a bubble level. It uses
the FTM/TPM to modulate the duty cycle of green and blue
colors of onboard RGB LED to gradually increase intensity
of the colors as the board deviates from a level state.

(26) It is a simple demonstration program that uses the SDK
UART driver in combination with FreeRTOS.

(27) It outputs the printf message on the Hyperterminal using
USARTx.

(28) It coordinates two tasks with the help of semaphore in FreeR-
TOS.

(29) It flashes the board LED using a thread, by pressing the
button located on the board and output a string on the serial
port SD2 (USART?2).

(30) It is the same image used in paper [35]. It reads XML files
from UART and uses expat to parse them.
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Table 4: Details of Firmware Samples

Cao and Guan, et al.

. Need Human Minimal Minimal Image
RTOS # | Peripheral Success Intervention | Context_Depth | Forward_Depth | Size (iB)
1 RTC? Y N 2 5 20.0
2 ADC ? Y N 1 4 17.0
3 GPIO 3 Y N 2 3 5.1
4 SMC % Y N 4 5 26.0
5 DAC? Y N 3 4 17.0
6 PIT® Y N 1 3 18.0
7 LPUART ’/ Y N 1 2 12.0
8 TPM 8 Y N 1 3 20.0
9 CMP? Y N 2 3 17.0
10 EWM 10 Y Y 2 3 17.0
NXP_FRDM-K66F Bare-metal | 11 | WDOG ! Y N 3 5 17.0
12 CMT 2 Y N 2 3 18.0
13 FTM B3 Y N 2 3 19.0
14 | LPTMR™ Y N 2 3 18.0
15 | FLEXCAN P N - - - 22.0
16 RNGA T° N - - - 16.0
17 | EDMA T N - - - 24.0
18 SAT B N - - - 38.0
19 CRC T N - - - 17.0
20 MPU 20 N - - - 19.0
21 ENET 2T Y Y 2 3 65.0
FreeRTOS o —aRT 2 Y N 1 3 29.0
23 UART Y N 1 2 8.7
Bare-metal | 24 RTC Y N 1 3 22.0
NXP_FRDM-KW41Z oz e T N — = - 53.0
FreeRTOS | 26 UART Y N 1 3 22.0
Bare-metal | 27 | USART 2% Y N 1 2 4.5
STM32100E_EVAL FreeRTOS | 28 | USART Y N 1 2 13.0
ChibiOS | 29 USART Y N 4 4 5.5
STM32 Nucleo-L152RE (v r5e—35 UART Y N 5 6 92.0

1. Real Time Clock
4. System Mode Controller

7. Low Power Universal Asynchronous Receiver/Transmitter
10. External Watchdog Monitor

13. FlexTimer Module

16. Random Number Generator Accelerator
19. Cyclic Redundancy Check
22. Universal Asynchronous Receiver/Transmitter

24. Universal Synchronous/Asynchronous Receiver/Transmitter

2. Analog-to-Digital Converter
5. Digital-to-Analog Converter

8. Timer/PWM Module
11. Watchdog Timer
14. Low-Power Timer

17. Enhanced Direct Memory Access
20. Memory Protection Unit
23. Inter-Integrated Circuit
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9. Comparator
12. Carrier Modulator Transmitter
15. 10/100-Mbps Ethernet MAC

3. General-Purpose Input/Output
6. Periodic Interrupt Timer

18. Synchronous Audio Interface
21. Flexible Controller Area Network
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