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ABSTRACT detection model to identify the existence of an app-virtualization en-

Repackaging popular benign apps with malicious payload used to
be the most common way to spread Android malware. Nevertheless,
since 2016, we have observed an alarming new trend to Android
ecosystem: a growing number of Android malware samples abuse
recent app-virtualization innovation as a new distribution channel.
App-virtualization enables a user to run multiple copies of the same
app on a single device, and tens of millions of users are enjoying this
convenience. However, cybercriminals repackage various malicious
APK files as plugins into an app-virtualization platform, which is
flexible to launch arbitrary plugins without the hassle of instal-
lation. This new style of repackaging gains the ability to bypass
anti-malware scanners by hiding the grafted malicious payload in
plugins, and it also defies the basic premise embodied by existing
repackaged app detection solutions.

As app-virtualization-based apps are not necessarily malware, in
this paper, we aim to make a verdict on them prior to run time. Our
in-depth study results in two key observations: 1) the proxy layer
between plugin apps and the Android framework is the core of app-
virtualization mechanism, and it reveals the feature of finite state
transitions; 2) malware typically loads plugins stealthily and hides
malicious behaviors. These insights motivate us to develop a two-
layer detection approach, called VAHunt. First, we design a stateful
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gine in APK files. Second, we perform data flow analysis to extract
fingerprinting features to differentiate between malicious and be-
nign loading strategies. Since October 2019, we have tested VAHunt
in Antiy AVL Mobile Security, a leading mobile security company, to
detect more than 139K app-virtualization-based samples. Compared
with the ground truth, VAHunt achieves 0.7% false negatives and
zero false positive. Our automated detection frees security analysts
from the burden of reverse engineering.

CCS CONCEPTS

« Security and privacy — Software reverse engineering.

ACM Reference Format:

Luman Shi, Jiang Ming, Jianming Fu, Guojun Peng, Dongpeng Xu, Kun
Gao, and Xuanchen Pan. 2020. VAHunt: Warding Off New Repackaged
Android Malware in App-Virtualization’s Clothing. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS °20), November 9-13, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3372297.3423341

1 INTRODUCTION

To lure mobile users into downloading malicious apps on their
devices, malware developers are always seeking to evade security
measures and sneak into mobile app marketplaces. A common way
to distribute Android malware used to be repackaging legitimate
apps [1-3]. Generally, attackers hijack a benign app’s logic by de-
compiling the original APK and adding malicious payloads before
distribution; users are fooled into installing the repackaged mal-
ware because they believe that they are running the original app.
However, since 2016, we have observed a disturbing new trend that
malware capitalizes on the latest app-virtualization progress as a
new repackaging practice, which causes malware distribution to
become easier and stealthier than other traditional approaches.

In an app-virtualization solution, the host app provides a virtual
environment on top of the Android framework by creating system
service proxies. As a result, the host app can directly launch other
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Figure 1: Popular app-virtualization apps and engines.

APK files, called guest apps or plugins, without the trouble of instal-
lation. Similar to repackaging, app-virtualization also adds extra
code in the form of a plugin, which affects the execution logic of
the host app. This new technique has been applied to a variety of
applications and gains tens of millions of users [4]. Figure 1 lists
some popular app-virtualization-based apps and two open-source
virtualization engines (VirtualApp [5] and DroidPlugin [6]). An
outstanding advantage of app-virtualization is to allow a single de-
vice to run multiple instances of the same app simultaneously [7],
such as running two WhatsApp accounts on one phone. Powered
by this innovation, the so-called “dual-instance” apps [8] are all the
rage in various app markets; the most-downloaded one, Parallel
Space [4], has more than 100 million downloads on Google Play.
Besides, developers using app-virtualization can also favor modular
programming [9], reduce the APK file size [10], and bypass the
65,535 methods limitation of a single DEX bytecode file [11]. For
example, the 360 Security app in Figure 1 includes multiple func-
tion modules (e.g., memory cleaner, smart performance booster,
and anti-virus scanner), and they all exist as plugins to load and
use, reducing the coupling of each module.

However, as would be expected, it never takes cybercriminals
long to catch on the latest technique trend; they have utilized app-
virtualization to repackage and load malicious plugins silently. For
example, security experts find that the new version of Trojan Plug-
inPhantom has evolved from using traditional repackaging style to
app-virtualization [12]: it implements each malicious function as a
plugin (e.g., intercept incoming phone calls and upload stolen data)
and utilizes an app-virtualization platform to schedule and control
its plugins. In this way, PluginPhantom achieves more flexibility
to update its modules without reinstalling apps. Besides, all of its
malicious payload plugins are further encrypted to frustrate static
analysis. As a result, only the executable code of the virtualiza-
tion framework is statically visible, posing a huge challenge for
the current anti-virus engines in the industry. Another example is
malware HummingBad, which once infected over 10 million An-
droid devices worldwide in 2016. HummingBad’s new variant has
resurfaced with using DroidPlugin [6] to perform the advertising
fraud even more efficiently than its predecessor. 20 Android apps
infected by HummingBad were already downloaded by over 12
million times before the Google Security team removed them from
the Play Store [13]. Our malware tracing study also confirms that
the increment of app-virtualization-based malware has exceeded
repackaged malware since the second quarter of 2017, and the gap

keeps growing (see Figure 4(b)). The rapid propagation of this new
repackaging style indicates that app-virtualization will become the
next generation of Android malware distribution channel.

Unfortunately, existing defense techniques are insufficient in
the face of new app-virtualization-repackaged malware. Significant
efforts remain to be done to understand and defeat this emerging
threat. Recent work focuses on the security threats caused by app-
virtualization [14-18]. They demystify the underlying mechanism
of app-virtualization and highlight the app-virtualization environ-
ment is not secure. Due to the share of UID, adversaries can inject
malicious code easily and conduct various attacks stealthily, such
as privilege escalation, privacy leakage, and phishing. Both Plugin-
Killer [14] and DiPrint [17] have presented viable solutions to detect
app-virtualization environment at run time. However, these dy-
namic detection heuristics are mainly used to protect benign apps
when they are loaded by host app as plugins. The app-virtualization-
repackaged malware, like PluginPhantom or HummingBad, is a
self-contained system that does not load any third-party plugins.
Moreover, all of malicious payload plugins are either encrypted
(e.g., PluginPhantom) or downloaded from Internet after the pro-
gram starts running (e.g., HummingBad). Therefore, static analyses
that attempt to inspect malicious payload plugins become futile as
well. Zhang et al’s study [16] demonstrates that app-virtualization-
repackaged malware can effectively evade both anti-virus scanners
and existing repackaged app detections that rely on measuring
code/interface-layout similarities [19-23].

To help security analysts and app market maintainers to defeat
malware threats armored by app-virtualization, in this paper, we ex-
plore the inner mechanism to make a verdict on app-virtualization-
based apps prior to run time. Our in-depth study results in two key
observations. First, the proxy layer (i.e., the virtualization engine)
between plugin apps and the Android framework is the core of app-
virtualization mechanism; it creates system service proxies and
wraps the plugin components with pre-defined stub components to
maintain the plugin lifecycle. Despite the various implementations,
the proxy layer transmits data via Intent wrapping/unwrapping in
the IPC (Inter-Process Communication) between plugins and sys-
tem services, and this common behavior reveals the feature of finite
state transitions. Second, to conceal malicious activities, malware
apps typically load and execute plugins stealthily without any user
interactions, which is the so-called “self-hiding behavior” [24].

These insights motivate us to develop a two-layer detection ap-
proach. First, we design a stateful detection model to identify the
existence of an app-virtualization engine in APK files. In particu-
lar, we abstract the behavior of wrapping the plugin app’s Intent
with the predefined stub component as a finite state machine (FSM)
model. Then, we extract all reachable Intent-related FSMs and their
associated stub components to check whether they match with
the reference pattern. Second, we perform data flow analyses to
extract stealthy loading and app hiding strategies to differentiate
between malware and benign ones. Based on FlowDroid [25], we
analyze the data flow and call graph that are related to path APIs
and file objects. We summarize four loading strategy features to dis-
tinguish malicious app-virtualization apps from benign ones. If an
app reveals both an app-virtualization engine and stealthy loading
features, we take it as a sample of app-virtualization malware.



The novelty of our design is to detect malicious app-virtualization-
based apps from a new standpoint: the way that the virtualization
engine loads plugins is a prominent malware feature, even if the
plugin’s APK file is encrypted or will be downloaded from Inter-
net at run time. We develop our two-layer detection model as an
open-source tool, named VAHunt. Since October 2019, VAHunt has
been deployed into Antiy AVL Mobile Security [26] to evaluate its
accuracy of malware detection. We have tested VAHunt with 139K
app-virtualization apps, and VAHunt shows a very high accuracy
with 0.7% false negatives and zero false positive. The small false
negatives come from several game fraud apps, which have an in-
terface to allow game fraudsters to modify game properties. In a
nutshell, we make the following three major contributions:

o Although repackaged Android malware via app-virtualization
has been on the rise for a while now, limited research work
studies the specific countermeasures. We hope our in-depth
study paints a cautionary tale for the security community
on this imminent threat.

e We zoom in on the inner mechanisms of this new threat and
unveil a two-layer detection model, which detects the pres-
ence of app-virtualization engine and the self-hiding loading
strategies of malware. Our work offers a viable solution to
avoid app-virtualization repackaged malware sneaking into
Android app stores.

e We have evaluated the efficacy of our prototype, VAHunt, in
an anti-malware production environment. To inspire other
researchers to explore more comprehensive defensive strate-
gies, we release VAHunt’s source code at https://github.com/
whucs303/VAHunt.

2 BACKGROUND & RELATED WORK

In this section, we first present the background information needed
to understand the Android app-virtualization technique. Then, we
summarize the existing work on the security threat study of app-
virtualization and their limitations. At last, we introduce the work
most germane to our detection methodology.

2.1 Technical Basics of App-Virtualization

In computing, virtualization generally refers to techniques that run
virtual machines on versatile platforms [27]. Besides the common
hypervisor-based virtualization like VMWare [28] and QEMU [29],
app-virtualization is used to isolate individual apps from the un-
derlying Android OS and other apps [30-33]. Since 2015, app-
virtualization emerges as a new technique that can load arbitrary
third party APKs without installation and modification. The host
app creates a virtual environment for plugin apps by dynamic proxy,
and it relies on API hooking and binder proxy to bypass system
service restrictions. The host app hooks API invocations of plugin
apps so that the Android system thinks that all API requests and
components are from the host app. Meanwhile, the host app pre-
defines stub components and permissions for plugin apps, and it
encapsulates plugin components in stub components at run time.
In this way, multiple instances of the same app are able to bypass
the UID restriction and run simultaneously.

Please note that the dynamic code loading (DCL) [34, 35] sounds
similar to the app-virtualization technique because both of them
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Figure 2: App-virtualization architecture. The host app and
plugin apps run in different processes but share with the
same unique user id (UID).

can load extra code. However, the DCL mostly invokes the methods
in an APK file and cannot support the component lifecycle, while
app-virtualization represents a more advanced technique to load a
whole APK file. This paper focuses on the app-virtualization tech-
niques represented by VirtualApp [5] and DroidPlugin [6]. Two
related research tools, Boxify [30] and NJAS [31], have been obso-
lete in Android 6.0 and later versions. Shi et al. [17] have compared
them with Virtual App/DroidPlugin and summarized the limitations
of Boxify and NJAS, such as lacking compatibility and robustness.
We attribute the rise of app-virtualization-based malware to the
power and availability of the new techniques represented by Virtu-
alApp/DroidPlugin.

VirtualApp and DroidPlugin are the two most popular app-
virtualization engines. They both support running multiple copies
of the same app on a single device. Although the implementation de-
tails are of little difference!, their key design ideas are quite similar.
Figure 2 outlines a typical app-virtualization architecture. The host
app provides an independent execution space for each plugin app;
it loads multiple plugins with different process IDs, but they share
the same UID with the host app. The core of app-virtualization is
a proxy layer (a.k.a. virtualization engine), which locates between
plugin apps and the Android framework. The proxy layer heavily
relies on hooking mechanisms to deceive both Android system
services and plugins. For example, it hooks ClassLoader to load
plugin’s DEX file, and it hooks IPC to maintain the lifecycle of
the plugin app’s components. In particular, an app-virtualization
framework reveals the following common mechanisms.

!DroidPlugin uses Service to realize IPC between the host app and plugins, while
Virtual App adopts ContentProvider, which is more suitable and concise for synchro-
nous IPC.
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Figure 3: Starting the plugin’s Activity by wrapping/unwrap-
ping “TargetActivity” with “StubActivity”.

Shared UID. Typically, each app installed on the Android sys-
tem is assigned a unique UID according to its package name. Users
cannot install two copies of the same APK file on a single de-
vice because of the UID restriction. As shown in Figure 2’s app-
virtualization environment, although the host app and plugin apps
are running in different processes (pid 100~300), they share the
same UID (uid 100). As a result, different plugins also have the same
list of permissions with the host app.

Excessive Permissions. Host apps have to apply for a plethora
of permissions to satisfy the plugin’s permission demand as much as
possible. For example, Virtual App applies for up to 186 permissions
by default, and the average number is 129 in app-virtualization-
based apps [17], while a benign app applies for 5 permissions on
average [36]. Apparently, excessive permissions violate the prin-
ciple of least privilege. A plugin is free to use all permissions that
the host app applies, even if it declares zero permission.

Predefined Stub Components. The plugin app’s components
are not registered in the host app’s manifest file beforehand, because
the host app cannot predicate the specific component names of
plugin apps. The host app solves this problem by predefining a set
of stub components in its manifest file. For example, VirtualApp
creates 100 stubs for each of the four components by default.

Component Lifecycle Management. The host app must in-
teract with the Android system to maintain the lifecycle of plugin
app components. Taking Activity component as an example, we
show how the host app manages the component lifecycle by using
predefined stub components and hooking Android system service
APIs in Figure 3. For example, app-virtualization hooks Activity-
ManagerProxy by reflection to rewrite other functions like “handle-
LaunchActivity”. Intent is a runtime binding mechanism that can
connect two different components and transmit data in IPC pro-
cesses. When a plugin starts an Activity () in Figure 3), the host
app first intercepts “startActivity” method to encapsulate the plugin
app’s “TargetActivity” intent into the intent of “StubActivity” (@)).
“StubActivity” has been predefined in the host app’s manifest file. In
this way, the host app can deceive Activity Manager Service (AMS)
server into creating a new activity for “StubActivity” (€)). Then,
the host app recovers the real Intent of “TargetActivity” by hook-
ing “handleLaunchActivity” API of ApplicationThread class and
callbacks of ActivityThread class (@@). At last, the plugin app’s Ac-
tivity component will be launched successfully (@). The processes

of handling Service, Content Provider, and Broadcast Receiver for
plugin apps are similar. In VAHunt’s detection method, we repre-
sent the proxy layer’s intent encapsulation behavior (as shown in
Figure 3) as a finite state machine model.

2.2 Security Threat Study of App-Virtualization

Despite the popularity of app-virtualization-based apps in Android
market, researchers have realized the security problems caused by
this new technical progress. Recent works have thoroughly studied
its security threats [14-18]. Shi et al. [17] shows that the current
app-virtualization design introduces serious “shared-everything”
threats to users, which makes severe attacks such as permission
escalation and privacy leak become tremendously easier. The con-
current work by Zhang et al. [16] conducts a systematic study with
32 popular app-virtualization frameworks. The authors find that
the new app-virtualization technique introduces seven common se-
curity risks. Moreover, they highlight that malware has abused the
app-virtualization as an “alternative and easy-to-use repackaging
mechanism”.

To inform users that an app is running in an untrusted app-
virtualization environment, Plugin-Killer [14] and DiPrint [17] in-
dependently develop an Android SDK, which contains a set of
dynamic detection features. App developers that wish to avoid hav-
ing their services hoisted into an app-virtualization environment
can embed Plugin-Killer or DiPrint in their own code. However,
app-virtualization-based apps are not necessarily malware; these
dynamic detection heuristics cannot distinguish malicious apps
from benign ones, and their usages are strictly limited when detect-
ing malware that does not load any third-party plugins.

Zhang et al. [16] propose a simple heuristic to detect repackaged
malware armored by app-virtualization. They suppose that the host
app loads malicious plugins and at least one benign plugin at run
time; they observe that the certificate of the host app is different
from that of the benign plugin. However, this certificate comparison
method is biased by a very small number of malware samples that
Zhang et al. analyzed. In our large-scale evaluation, only 0.3% of
malware samples comply with Zhang et al’s observation. Therefore,
a comprehensive study on app-virtualization repackaged malware
is necessary and of great practical significance.

2.3 App’s Stealthy Behavior Detection

Another line of research related to our work is app’s stealthy be-
havior detection [24, 37, 38]. Android malware performs stealthy
operations by hiding malicious behaviors to minimize suspicion
and prolong its lifetime. AsDroid [37] utilizes the contradiction be-
tween the implemented app actions and user’s expected behaviors
to detect stealthy behaviors. AsDroid relies on API-based detection
of six actions, such as starting a phone call, sending SMS, and insert-
ing data into a sensitive database. It then analyzes user-interface
components (for identifying user expectations) to detect stealthy
app behaviors. Compared with the inconsistent behavior detection
of AsDroid, StateDroid [38] finds that a stealthy attack is conducted
by a series of actions in a certain order, which can be abstracted as a
finite state transition. StateDroid constructs a FSM model via Horn-
Clause verification to analyze stealthy attack actions. The recent
work proposes the name of “self-hiding behavior” (SHB) [24] to



represent the malicious behavior of concealing app activities, such
as removing traces of suspicious actions and hiding the presence
of the app. SHB detection approach [24] traces stealthy actions by
performing control flow and static taint analyses; this work also
inspires VAHunt’s detection on malicious-plugin loading strategies.

3 NEW REPACKAGED ANDROID MALWARE
IN APP-VIRTUALIZATION’S CLOTHING

In this section, we present our in-depth study on tracking the de-
velopment of app-virtualization-based malware over three years.
Our findings unveil the characteristics of this new generation of
malware and highlight a pressing need for the security community
to design specific countermeasures.

The limitations of the app-virtualization technique, such as lack-
ing permission separation and data isolation, have little impact
on malware development. On the contrary, cybercriminals skim
the cream off app-virtualization as a new malware repackaging
way. As a result, malware development and distribution turn out
to be much easier and stealthier than ever before. In particular,
app-virtualization repackaged malware reveals the following ad-
vantages.

(1) Bypass anti-virus detection. App-virtualization enables
malicious functions (as different plugins) are decoupled from
the host app, and each plugin is either stored under “As-
sets” directory in an encrypted form or is dynamically down-
loaded. As long as the host app does not involve any mali-
cious actions, antivirus scanners are difficult to detect it.

(2) Low development cost. Traditional repackage still requires
quite a heavy reverse engineering effort: adversaries have
to modify the original app’s code, change the package name
using Apktool or DEXIib, and repackage the app into a new
APK file. By contrast, app-virtualization makes repackage
much easier: original APK can be directly loaded as a plugin
without any modifications.

(3) Flexible to update modules. With app-virtualization, mal-
ware developers are free to update their modules without
reinstalling apps. In addition to updating malicious code,
many malware samples begin to add more profitable func-
tions, such as advertisement promotion and pornography
propagation.

(4) Easy to spread. As mobile developers and users have a
huge demand for app-virtualization applications, this fact
provides a natural coverage to spread app-virtualization-
based malware. For example, they can disguise themselves
as a dual-instance app; after a user installs it, the host app
dynamically downloads malicious plugins and executes them
without the user’s awareness.

Since the emergence of app-virtualization repackaged malware
in 2016, we are tracking their evolvement all the time. Figure 4(a)
shows the total number of app-virtualization-based benign apps and
malware samples collected by Antiy AVL in each quarter over three
years (2016 - 2019). Antiy AVL'’s threat detection engine provides
rich metadata to identify benign apps, malicious repackaged apps,
and app-virtualization-based apps. As DroidPlugin and VirtualApp
are two leading app-virtualization engines, we add additional static
features to recognize them. For other app-virtualization apps that do
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Figure 4: The statistics of app-virtualization-based apps.

not match such fingerprint features, we put them into the “custom-
made” category.

The two most popular app-virtualization engines, VirtualApp
and DroidPlugin, occupy the portion of 92.4% because of their open
source. The rest of the apps have custom-made virtualization en-
gines. The core principle of these custom-made engines is similar
to VirtualApp/DroidPlugin, but they have different implementation
details, such as using AIDL or Content Provider to implement IPC.
Custom-made category has 10,621 apps, including six different
app-virtualization frameworks. For example, the underlying virtu-
alization engine of Parallel Space is called MultiDroid, and we treat
it as a custom-made engine.

Interestingly, the number of malware armored by VirtualApp is
about three times larger than that of VirtualApp-based benign apps.
In addition, we also investigate the activity level of repackaged mal-
ware from September 2016 to December 2019. Figure 4(b) shows the
number of new malware samples that have different hash values
quarterly. Since 2016, the increment of traditionally repackaged
malware slows down, while app-virtualization-based malware ex-
hibits a fast growth from 2017 Q3. Especially, we observe many new
malware variants have switched from the previous repackaging
style to app-virtualization. The growing gap shown in Figure 4(b)
indicates that app-virtualization is very likely to dominate the next
generation of Android malware repackaging ways.

We elaborate some detailed characteristics of app-virtualization
repackaged malware and present Triada as typical app-virtualization-
based malware in Appendix.



4 VAHUNT OVERVIEW

Our in-depth study presented in §2 and §3 results in two key obser-
vations. First, the proxy layer between plugin apps and the Android
framework is the core of app-virtualization mechanism, and the
proxy layer’s intent encapsulation behavior (as shown in Figure 3)
reveals the feature of finite state transitions. Second, to conceal
malicious activities, malware apps typically load plugins stealthily
without any user interactions. These insights motivate us to cap-
ture a prominent malware feature: the way that the virtualization
engine loads plugins. This detection feature is effective even if the
plugin’s APK file is not statically visible.

We develop a two-layer detection approach, called VAHunt. First,
we design a stateful detection model to identify the existence of
an app-virtualization engine (i.e., proxy layer) in an APK file. Sec-
ond, we perform data flow analysis to extract self-hiding load-
ing strategies to differentiate between malicious and benign app-

virtualization-based apps. Figure 5 presents the workflow of VAHunt.

After extracting the necessary information from bytecode and man-
ifest, VAHunt identifies the intent wrapping behavior and searches
stub components to detect an app-virtualization engine. After that,
VAHunt traces file objects and path APIs to find the features of the
stealthy plugin installation. We discuss the details of VAHunt in
the following two sections.

5 APP-VIRTUALIZATION ENGINE
DETECTION

Activity Manager Service (AMS) manages component schedules in
each application. If an app starts an Activity or a Service, it first
reports to AMS, and AMS will decide whether to start the Activity
or the Service. Since the app and AMS are running in different pro-
cesses, their Inter-Process Communication relies on Intent [39]. A
technical challenge of app-virtualization is to maintain the lifecycle
of plugin app components, as all plugins are not installed on the
Android system but instead running in a virtual environment. Fig-
ure 3 shows how the proxy layer overcomes this obstacle: it wraps
the plugin intent with the host app’s predefined stub component to
deceive AMS into creating a new activity; then it hooks Android
system service APIs to unwrap the plugin intent from the stub
component and launches the plugin’s component finally.

In spite of different kinds of app-virtualization engines are cur-
rently in use, such as Virtual App, DroidPlugin, and custom engines,
wrapping the plugin app’s Intent with the predefined stub compo-
nent, as shown in Figure 3, is universal [18]. VAHunt detects this
inner mechanism as the presence of an app-virtualization engine.

5.1 Preprocessing

Given an APK file, we first extract the necessary information for our
follow-on analyses. We use the tool AAPT [40] to extract Manifest
and obtain the component information from an APK file. We get
Smali code from a DEX file by using the tool dexdump [41]. Since
the number of methods in a DEX file cannot exceed 65536 [11],
some apps are split into multiple DEX files. So we merge the Smali
code of all DEX files into one file for the convenience of follow-
on analyses. Besides, we use FlowDroid [25] to build control flow
graphs for each APK file.

5.2 Intent State Machine

We view the plugin intent wrapping behavior, which involves the
data transmission via intents, as a finite state machine (FSM) model.
The FSM states represent the statuses of intents, and the state
transitions are caused by related APIs (e.g., “setClassName” and
“setType”). We check whether the intent state machines extracted
from each app match with the reference FSM pattern.

l1private Intent startActivityProcess(Intent targetIntent)

2{

3 intent = new Intent(targetIntent);

4 Intent stubIntent = new Intent();

5 stubIntent.setClassName (PackageName, StubActivity);
6 ComponentName component = intent.getComponent();

7 stubIntent.setType(component);

8 startActivity(stubIntent);

9}

Listing 1: JAVA code of wrapping the plugin’s Intent.

1<activity

2 android:name="com.lody.virtual.StubActivity$Co"

3 android:configChanges="mcc|locale|touchscreen|..."
4 android:process=":p0@"

5 android: taskAffinity="com.lody.virtual.vt"

6 android: theme="@style/VATheme"

7/>

Listing 2: The predefined stub Activity in the manifest file.

5.2.1 Intent Operations Extraction. To generate Intent state ma-
chines, we need to extract all intent objects and operations. We
analyze the Smali code of Android apps to locate the objects with
the “android/content/Intent” type and extract all APIs operated
on these intents. Specifically, the operations of intent include the
creation, attribute setting, and transmission. After an intent is cre-
ated by “new-instance”, we can find operations on the intent object,
such as adding flags or setting actions (e.g., “addFlags” and “addAc-
tion”). We also record components and other intents related with
the intent object. For instance, “setComponent” operation explicitly
sets a component name to handle an intent. If the component of
an intent is set to a component name coming from another intent,
these two intents have a correlation relationship.

5.2.2  Wrapping the Plugin’s Intent. As shown in Figure 3, the host
app transmits the modified intent to AMS by wrapping the Target-
Activity intent in the predefined StubActivity intent. When AMS
creates the Activity, the host app recovers the real intent for the plu-
gin. Listing 1 shows the core code of wrapping an Intent. The intent
in Line 3 is the targetIntent from the parameter of startActivityPro-
cess() by creating a new instance. The stublntent is newly created
at Line 4, and it has a new Class of StubActivity at Line 5. Line 6 &
7 achieve the goal of wrapping the targetIntent: the targetIntent’s
component is added to the type of the stubIntent. After that, the
encapsulated stublntent is passed to AMS by “startActivity”. In this
way, AMS thinks this request of starting an Activity is from the
host app instead.

5.2.3 Intent State Transition. By default, an intent is created with
an initial state. Its state changes when adding attributes, such as
“setClass” and “addFlags”. For the transitions related to wrapping
an Intent, states of the targetIntent and stubIntent transform with
their instances, class names, component names, and type attributes
changing. The steps to generate an intent finite state machine (FSM)
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<manifest package="com.va.mal" >
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Figure 6: The steps of detecting the app-virtualization engine: 1) match the Intent state machine; and 2) locate stub components.

are as follows. If a statement creates a new intent, the entry of FSM is
the new intent object that is represented as a register in Smali code.
The state of the new intent object is initialized to the initial state
of its corresponding intent state machine. If a statement modifies
the attribute of the intent by invoking related APIs, the intent state
changes. Otherwise, reading the attributes of intent does not change
its state. Besides, VAHunt records related information, such as its
class name, function name, and intent operations. When the intent
object is sent to AMS by invoking “startActivity” or “startService”,
the intent state machine comes to an end.
5.2.4 Reference FSM Pattern Match. After generating state ma-
chines for each intent, we check whether they match with the
reference FSM pattern that represents app-virtualization. As shown
in Figure 6(a), this reference FSM pattern abstracts the behavior of
wrapping the plugin’s Intent in the following three ways: 1) it starts
with two source Intent creations (e.g., targetIntent and stubIntent),
and stubIntent’s final state starts the Activity (@) in Figure 6); 2)
the type of the stubIntent comes from the targetIntent (@); 3) the
stubIntent sets its Class attribute with a new Class name (@)). Once
the reference FSM pattern is found, we will perform backward slic-
ing, starting from the stubIntent’s new Class name (@), to confirm
that the stubIntent comes from a stub component, which has been
registered in the host app’s manifest file (@). In this way, we report
the detection of an app-virtualization engine after we successfully
match the Intent State Machine model and locate the predefined
stub component.

Note that in the typical state machine of app-virtualization (Fig-
ure 6(a)), the order of “setClassName” and “setType” is exchangeable,

while the “getComponnet” operation of targetIntent must be ahead
of “setType” operation. “startActivity” is the prerequisite condition
to reach the final state. As the component information can be stored
in different ways, “setType” can be replaced by other similar func-
tions like “setData”, “setDataAndType”, “putExtra” and “putExtras”.
Furthermore, “setClassName” has the same functionality with the
“setComponent”— both of them can set a component name for an In-
tent. Therefore, “setComponent” is an alternative to “setClassName”

in the state transition €).

5.3 Locate Stub Component

§5.2 detects the existence of “wrapping the plugin’s Intent” behavior
in an APK file. Next, we go one step further to confirm that it is the
host’s predefined stub component to wrap the plugin’s Intent.

5.3.1 Component Slicing. After obtaining the final intent state ma-
chine information, we trace back the operations on the stubIntent
to find the real component name. Generally, the component name
exists as a ComponentName type, a ClassName type, or a String
type. Specific APIs can convert types, such as using “flattenToString”
to convert the ComponentName type to the String type. Developers
can set the component attribute of an intent either in the form of a
hard-code String or by calling APIs; “setComponent” and “setClass-
Name” are the two most common APIs used to set the component
name or the class name of component.

Hence, we trace the final component name with the following
steps. We first locate the parameters of “setComponent” or “set-
ClassName” from the information of intent state machine. If the



parameter value is not directly a hard-code String (or Component-
Name) but comes from other functions, we perform data flow analy-
sis to find the real component name. For instance, the parameters of
“setClassName” may come from the return value of other functions.
Specifically, we do backward slicing along the call graph from the
parameter of “setComponent” or “setClassName” to collect all APIs
used to construct the component name (@ in Figure 6). As there
exists string initialization and concatenation by StringBuilder or
StringBuffer, we calculate and record all component name values
generated at each transformation.

5.3.2  Stub Component Match. At last, we match the component
names extracted by slicing with that of pre-defined stub compo-
nents. Because the app-virtualization engine has to get the stub
components to assign stub intents, it must manage the current
available stub components. The typical stub component names
in the manifest file are composed of unified Strings and differ-
ent numbers. As the Listing 2 shows, the stub Activity name is
composed of “com.lody.virtual.StubActivity$C” and the number 0.
As the components run in different processes, the number in the
“android:process” property also differs. Other properties like con-
figChanges, taskAffinity, and theme are all the same with uniform
format. All app-virtualization platforms define their stub compo-
nent names in such a similar style, which is also confirmed by
Zhang et al’s study [16]. Therefore, if one of the collected compo-
nent names matches with that in the manifest file, VAHunt comes
to a decision that an app-virtualization engine is detected.

6 LOADING STRATEGY DETECTION

Given the identification of app-virtualization-based apps, another
problem rears its head. We need to further differentiate between
malware and benign apps. Unlike the traditional repackaged mal-
ware that can be detected by measuring code/interface-layout sim-
ilarities [19-23], most app-virtualization-based malware samples
encrypt their malicious plugins to deter static analyses. To over-
come this challenge, we study how malware host apps load plugins
silently and hide them after installation. This is the so-called “self-
hiding behavior”, which has been taken by researchers as a mali-
cious indicator [24, 37, 38]. We aim to find self-hiding features that
are required to run malicious plugins without raising suspicion.

6.1 Stealthy Loading Strategy

Figure 7 shows the plugin loading procedures of app-virtualization.
For benign apps, after locating the plugin APK’s path, plugins are in-
stalled with users’ consent and execute with normal user interface.
However, most app-virtualization-based malware loads plugins
silently without any prompt box or user clicking. Some malware
variants even hide plugins immediately after installation. Based
on these insights, we summarize four stealthy loading characteris-
tics in Table 1. The first two characteristics describe where to load
plugin APKs; the next two characteristics summarize the behavior
of loading and executing plugins stealthily. We search these four
features by performing data flow analysis on call graphs: we propa-
gate particular objects from the starting points (the second column
of Table 1) to end points (the third column of Table 1); we find if
objects are processed as expected behaviors or calls are invoked

Execute

Plugin Location I d
g User | Plugin
Customized Path Consent | -
(Assets/SDCard/Download) | | | F S Plugin
| Installation

e System Path

§ (getinstalledApps & ListView)

Figure 7: Compared with benign apps, app-virtualization-
based malware typically loads plugins without users’ con-
sent; they even hide plugins after installation.

with certain parameters. At last, we make decision rules to detect
the loading strategy of app-virtualization-based malware.

6.1.1 Load Plugin from Customized Path. The premise of loading
plugins in the virtual environment is to know where plugin APKs
locate. Most app-virtualization-based malware samples, such as
self-contained systems, knows their plugins in advance and loads
them directly from a customized location, which includes the public
storage that all app can access (e.g., SDCard) and the private data
area of the host app, such as Assets subdirectory. Even if plugins
are downloaded from the Internet at run time, they are still stored
in these locations. The host app gets plugin APK paths either by
invoking common Android path APIs or from hard-coded APK
paths. The recent work has summarized 22 Android path APIs [42],
and we classify them into five categories by different storage lo-
cations in Table 2. We analyze call graphs related to these path
APIs to search corresponding file objects. After getting the file
objects, we further determine whether they are installed by app-
virtualization. Generally, app-virtualization provides an installation
interface for the host app to install plugins. Developers only need
to invoke typical functions (e.g., installApp()/installPackage()) or
the overridden startActivity() method of app-virtualization. How-
ever, function names of the installation interface can be customized
into various names, so we cannot ensure that plugins are loaded
by app-virtualization through the fixed strings of the installation
interface. Instead, we perform data flow and call graph analysis
on file objects until tracing back to Intent wrapping functions (see
Figure 6), which demonstrates that the plugin file is installed by
app-virtualization.

6.1.2  Load Plugin from System Path. Another category of malware
apps that attack benign plugins would lure users into loading be-
nign apps that have been installed on the system. Compared with
customized paths, system paths are the isolated storage that host
app has no write permission. After requiring a package list, the host
app displays user interface elements for users to select which app to
load. Then, the host app copies plugin APK from the data space of
the original app to its own space and installs the plugin. Generally,
developers use getInstalledPackages() of PackageManager to get
the installed apps. Hence, we locate getInstalledPackages() in the
call graphs as the starting point and track forward to find whether
the installed package information is shown in ListView. ListView,
often used for the list display, is composed of several items that
exhibit words or images. The Android system shows the graphical
layout by creating an adapter to show item distributions according
to an XML file. When the host app creates a ListView and fills the



Table 1: Four loading strategy characteristics to detect app-virtualization-based malware. Characteristics 1 & 2 describe where
to load plugin APKs. Characteristics 3 & 4 describe actions that conceal malware behaviors from being noticed by victims.

Characteristics Starting Point

End Point

1. Load Plugin

from Customized Path Sensitive Path APIs (see Table 2)

Intent wrapping functions

2. Load Plugin
from System Path

getInstalledPackages()
Runtime().exec(“pm list packages”)

onCreateView()/onViewCreated()/
inflate()/onCreateViewHolder()/setContentView()

3. User Consent installApp()/installPackage()

OnClick()/setOnItemClickListener()
Launcher in Manifest ("android.intent.category. LAUNCHER")
App lifecycle (onCreate(), onStart(), onReceive())

setComponentEnabled(comp, 2, 1)
4. Hide Application

Window.addFlag(FLAG_NOT_TOUCH_MODAL)
Window.setFlag(FLAG_NOT_TOUCH_MODAL)

Components of the host app

Window.requestFeature(FLAG_NOT_TOUCH_MODAL)

Table 2: Android APIs to obtain the customized file path.

Directory APIs

getDataDirectory(), getCacheDir(), getFilesDir(),

/data/data getDir(), openFileOutput(),
getFileStreamPath(), getDataDir()
getExternalStorageDirectory(), getObbDir(),
/sdcard/ getExternalStoragePublicDirectory(),
getExternalCacheDir(), getExternalFilesDir()
. openOrCreateDatabase(), openDatabase(),
SQLiteDatabase openOrCreateDatabase()
getSharedPreferences(), getPreferences(),
SharedPreferences getDefaultSharedPreferences()
Others getAssets(), getCanonicalPath(),

getPath(), getAbsolutePath()

packages information in the list by setAdapter(), we search the
related XML file to find the real items of GUI If the items include
any words or images, that means the behavior of obtaining the
plugin packages is visible to users.

6.1.3  User Consent. Typically, benign app-virtualization apps re-
quire users to click installation buttons or pop up dialogs to acquire
users’ consent at the plugin installation time. However, most app-
virtualization-based malware samples load their malicious plugins
without any user interaction from the very beginning. To detect
the non-existence of user clicks, we first locate the plugin instal-
lation interface and then trace backward from the interface to the
startup of an app. The app startup is usually the component with
“android.intent.category. LAUNCHER?” label in the manifest file. If
we find that the beginning of plugin installation is in the component
lifecycles (e.g., onCreate() of Activity), we stop chasing the API call
chain. When users agree to load plugins, they often click buttons
or items on the screen. So we collect the call chain from the plugin
installation and see whether it includes onClick() or onltemClick().
If the call chain reaches the application entrance but showing no
user interaction, that means the host app loads the plugin silently.
We also deal with thread interruption problem in the call chain
analysis in Appendix §B.

6.1.4 Hide Application. After installation, benign apps add their
icons to the home screen for users’ convenience of the next use.
However, malware instances tend to hide themselves and run in
the background without showing any icon or Activity. As a result,
users cannot see any GUI on the screen. Malware either modifies
manifest file to remove the app from the default launcher or invokes

setComponentEnabledSetting() to disable icon during running [24].
To hide Activities, malware has two options: 1) malware runs as a
Service in the background; 2) malware makes the Activity’s main
layout transparent and removes the action bar and window title by
using the “FLAG_NOT _TOUCH_MODAL” flag. The host app hides
its own components to be stealthier in the same way. We perform
data flow analysis backwards to investigate the parameters of these
special APIs and ensure that the host app configures the compo-
nents involved in the APIs to hide plugins and itself. For example,
as shown in the last row of Table 1, when the three parameters
of “setComponentEnabledSetting” are set as startup component of
host app, 2, and 1, the outcome of this API is to hide app icons.

6.2 Decision Rules

We take stealthy plugin loading and app hiding actions as mali-
cious behaviors because they violate Google Developer Content
Policy [43]. As shown in Figure 7, the malware host app could
load plugins from a customized path (@)) or load a benign app to
attack it from a system path (@). Considering an app may contain
an app-virtualization engine but never uses it, features €) and @
are used to confirm that the host does indeed load plugins using
the app-virtualization engine. Based on that, most malware host
apps install their malicious plugins silently without users’ consent
(@), leaving no visible footprints in the user interface. We define a
decision rule, silentInstall, to detect the malicious loading strategy.
silentInstall’s formula is: (@) OR @) AND @). As long as an app
reveals an app-virtualization engine and silentInstall, VAHunt labels
it as the app-virtualization-based malware.

In addition, we also interested in malware that takes more stealthy
actions by hiding icons or Activities after installation (@) in Fig-
ure 7), which we represent as silentInstall+, and its formula is:
silentInstall AND 9 In our evaluation, we also measure malware
exhibiting silentInstall+ behavior. If an app hides application but
does not install plugins stealthily, we report it as a suspicious case.

7 EVALUATION

We have presented our preprocessing to an APK file in §5.1. We use
AAPT [40] and dexdump [41] to extract the necessary information
for VAHunt. The prototype of VAHunt includes two components: an
app-virtualization engine detector and a malicious loading strategy
detector. The whole chain of VAHunt has 7, 052 lines of python code.
All of our experiments are performed on a laptop with one Intel



Core 19-8950HK processor and 32GB memory, running Windows
10 Pro. Our evaluation aims to answer three research questions:

RQ1: How accurately can VAHunt detect app-virtualization-
based apps that are built on various virtualization engines (e.g.,
Virtual App, DroidPlugin, and custom-made engines)?

RQ2: How accurately can VAHunt further differentiate between
malicious and benign app-virtualization-based apps?

RQ3: How well does VAHunt perform in comparison with exist-
ing dynamic and static solutions?

7.1 Datasets

Our test cases include three datasets to evaluate VAHunt’s detection
accuracy. To the best of our knowledge, our evaluation is the largest
evaluation to test app-virtualization-based apps so far.

Officially Labeled App-Virtualization-Based Samples. Since
October 2019, we have deployed VAHunt into Antiy AVL Mobile
Security [26], a leading mobile security company, to evaluate its
detection accuracy. At the time of writing, we have tested 139, 358
app-virtualization-based samples that are collected by Antiy AVL
over three years by dynamic/static approaches and manual reverse
engineering. Most benign apps in the ground-truth dataset are from
major APP markets, such as Google Play, 1Mobile Market, Tencent
App Gem, and Qihoo 360 Mobile Assistant. Many app-virtualization-
based malware samples have been removed from Google Play [44—
46]. At the very beginning, the app-virtualization-based malware
samples were reported by victims because they bypassed malware
detection engines. Security analysts manually reverse-engineer
these samples to extract both dynamic and static detection features.
Given a suspicious sample, AVL’s threat detection engine first uses
amachine learning model to match similar syntactic feature vectors.
If it does not have similar static features, the AVL engine will run
each sample for 5 to 10 minutes to detect malicious or suspicious
behaviors, such as plugin process activities and the network traffic.
However, 44.4% of app-virtualization-based apps have no local plu-
gins, and 51.8% of plugins have trigger conditions. For unknown
malware that does not reveal suspicious behaviors at runtime, se-
curity analysts have to manually reverse-engineer the sample. It
typically takes an experienced security analyst 25 to 50 minutes to
dissect an app-virtualization-based app. The AVL dataset is accurate
but at a high cost.

Taking these 139, 358 labeled samples as a ground-truth dataset,
VAHunt focuses on the inner mechanisms of app-virtualization
and offers a viable detection prior to run time. According to the
underlying virtualization engine, we divide these samples into three
categories, Virtual App [5], DroidPlugin [6], and custom-made en-
gine. We detect both benign and malicious apps in each category,
and their specific numbers are shown in Row 2~4 of Table 3. Since
Virtual App and DroidPlugin are open-sourced on GitHub, it is con-
venient for developers and attackers to reuse their source code
with a low cost; some of them even modify the source code to gen-
erate custom-made engines. Please note that among the total of
81, 225 Virtual App-based apps, up to 77.2% of them are malware
samples, which indicates that Virtual App has a better acceptance
by malware authors. Another interesting observation is that 4, 320
samples are packed in total, but 4,276 of them are from benign
apps. We attribute the low packing ratio of malware to the fact that
the app-virtualization mechanism has already provided a layer of

Table 3: Accuracy evaluation results of VAHunt’s two-layer
detection model. The last column is the only previous work
to detect app-virtualization repackaged malware. Column
4~6 show the detection accuracy data.

Virtu. Engine  Category Number VAHunt1! VAHunt2? Certificate [16]

. Benign 18,508 100% 11.7%
VirtualApp e 62,717 100% 99.3% 0.3%
. . Benign 44,498 100% 17.1%
DroidPl 100%
TOIEEIBIN  Malware 3,014 98.7% 0.5%
Benign 8,261 100% 13.7%
Custom-made ) ) vare 2,360 100% 99.2% 0.3%
Dual-Instance  Benign 147 100% 100% 0
. Benign 1,638 3 3
No app-virtu. Malware 3212 100%
Benign 73,052 100% 14.9%
Overall Malware 71,303 100% 99.3% 0.3%
Avg. Time 6.9s 12.1s 0.6s

1VAHunt1 is the App-virtualization Engine Detector of VAHunt.
2VAHunt?2 is the Loading Strategy Detector of VAHunt.
3VAHunt2 and [16] do not detect the apps without using app-virtualization.

effective protection. For the packed samples, we apply Antiy AVL’s
commercial unpacking tool to obtain their original DEX files.

Dual-instance Apps. Since dual-instance apps allow users to
load arbitrary APKs, they are ideal cases to evaluate app-virtualization
environment detection tools, such as Plugin-Killer [14] and DiPrint [17].
These tools only take effect when they are embedded into the plu-
gin’s code. We search related keywords, such as “dual instance”
and “multiple accounts”, from Google Play and download 147 dual-
instance apps.

Apps without App-Virtualization. To test whether VAHunt
causes false positives when detecting apps without app-virtualization,
we also download 1638 benign apps from Google Play and col-
lect 3212 malicious apps in April 2020. Moreover, all of these non-
virtualization apps are manually verified by AVL security experts to
confirm that they do not contain app-virtualization engines. Since
this process is very costly, we only obtain 4850 non-virtualization
apps. Even so, this number is already much larger than the false-
positive tested apps in [16], which only evaluated 180 apps.

7.2 App-Virtualization Engine Detection

Table 3 shows the overall results of our experiments. We classify
the samples by app-virtualization engine types and maliciousness.
We calculate the detection accuracy in the following formula [47]:

_ TP+TN
Accuracy = TRITprFNFP

TP means true positives, and TN represents true negatives. Col-
umn 4~6 of Table 3 show the detection accuracy data. The data
in Column 4 indicate that VAHunt’s results on app-virtualization
engine detection are perfect in all cases: no false positives and no
false negatives. In this step, VAHunt extracts all operations on In-
tents to generate Intent state machines, and therefore VAHunt’s
performance here hinges on the number of available Intents. The
running time imposed by App-virtualization Engine Detection is
about 6.9s (preprocessing 1.2s, Intent state machine 3.3s, and locate
stub component 2.4s) on average.

To get a sense of the complexity of building Intent state ma-
chines from an APK file, we investigate the Intent distribution in
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Figure 8: Benign app-virtualization-based apps create more
Intents than malware.

app-virtualization-based benign apps and malware. Figure 8 shows
that benign app-virtualization-based apps have more Intents than
malware (average number: 331 vs. 113). The reason for such a dif-
ference is that benign apps typically have more functionalities and
embed more third-party packages than malware.

The reference FSM pattern we created involves two correlated
intents (see Figure 6(a)), in which the field information of one
intent comes from another one. Additionally, we also investigate the
occurrence of such multiple-intent related cases inside and outside
app-virtualization code. In addition to the intent encapsulation like
Figure 6(a), only 4% of our test cases have multiple-intent related
cases for the following two scenarios: intent deep copy and shortcut
creation/deletion. A deep copy is a fully independent copy of an
object, and making changes in the copied object will not affect the
original object [48]. Line 3 of Listing 1 shows an example of deep
copy by creating a new instance of intent with an existing intent.
The “intent” copies all attributes (e.g., Class name and Actions)
from “targetIntent”, but the two intents are independent. For a
shortcut creation, Listing 4 in Appendix shows that the “shortcut”
intent informs the Android system to create a shortcut for an app
by sending the jump destination in the “intent”. After receiving
the “shortcut” intent, the Android system creates a shortcut on the
screen. When users click the shortcut icon, the app is launched
with the information of “intent” that comes from the extra attribute
of “shortcut” intent. The difference between multiple-intent related
cases inside and outside app-virtualization code is that they transmit
different data: only the intent encapsulation behavior transmits the
component information of plugins, and VAHunt’s locating stub
component can rule out other similar multiple-intent related cases.
Therefore, our selection of the reference FSM pattern reduces the
detection overhead of VAHunt.

7.3 Loading Strategy Detection

Once a sample is detected having an app-virtualization engine,
VAHunt moves forward to detect its loading strategy. Column 5 of
Table 3 shows the detection accuracy for VAHunt’s second step with
12.1s running time on average. For all benign app-virtualization-
based apps, VAHunt does not introduce any false positives and false
negatives. Note that for the benign apps that use app-virtualization
for hot patch, they all notify users in advance, such as prompting
“downloading patch file” We find that 1,021 benign apps update

Table 4: The percentage of loading behavior characteristics.

N
A

X
N \8
(&eé & o o
. L . x© & ge“‘ A
Virtualization Engine ~ Category ¢ s S o>
Dual-Instance Benign 0 100% 0 0
. Benign 93.5% 6.5% 0 0
VirtualA|
HrHuaApP Malware 99.6% 0.4%  99.3% 7.6%
) _ Benign  90.2% 9.8% 0 0
DroidPl
roidPlugin Malware 99.9% 0.1% 98.7% 11.7%
Benign 86.3% 13.7% 0 0

Custom-mad
ustom-made Malware 99.7% 0.3% 99.2% 9.8%

LsilentInstall+ means host app loads plugins silently and hides app.

Table 5: Most app-virtualization-based apps either do not
store plugins locally or encrypt plugins.

Category No Plugin  Encrypted Plugin  Plain-text Plugin’

benign 76.8% 3.7% 19.5%
malicious 10.5% 89.2% 0.3%

Plain-text plugins are APK files that are not encrypted.

the installed plugins, but all of them show user interactions. How-
ever, for app-virtualization-based malware, VAHunt introduces
about 0.7% false negatives. Upon further investigation, all of these
false negatives come from game fraud apps. Game fraud apps load
both game modifiers and game apps in an app-virtualization envi-
ronment, and they have an interface to allow game fraudsters to
customize and modify different game properties for quick upgrades.
Therefore, game fraud apps exhibit user interactions and violate
the stealthy loading strategy. As the customers of game fraud apps
are quite limited, we argue that missing the detection of game fraud
apps is not a hard limit for VAHunt.

Next, we zoom in on the loading strategy characteristics and
decision rules to distinguish malicious apps from benign ones. Ta-
ble 4 shows the percentage of different loading behaviors in our
test cases. Most host apps load plugins from customized paths, but
benign app-virtualization apps use more system paths than mal-
ware. Especially for the popular dual-instance apps, all of them load
third-party apps (e.g., social media apps and game apps) that have
been installed on the system. The “silentInstall” column demon-
strates that no any benign apps would install their plugins silently.
Please note that the “silentInstall+” column indicates that about
10% of malware variants take more aggressive actions to conceal
plugins and themselves: in addition to the plugin silent installation,
they also hide app icons and Activities, posing a huge challenge
for users to perceive abnormals. Table 5 shows the plugin status
in app-virtualization-based apps. Apparently, how to store plugins
stands in stark contrast between app-virtualization-based malware
and benign apps. Most benign apps choose to download plugins
dynamically to reduce the APK file size. On the contrary, the ma-
jority of malware apps store encrypted plugins in Assets directory
for the convenience of distribution.

7.4 Comparison with Existing Solutions

We compare VAHunt with SafetyNet Attestation API [49], Plugin-
Killer [14], DiPrint [17], and Zhang et al’s work [16]. The first
three tools are used to detect the app-virtualization environment



dynamically; as they require developers to add their detection meth-
ods in the app code, we use 147 dual-instance apps to load three
home-made plugins that embed these three tools, respectively.

SafetyNet Attestation API [49]. Google SafetyNet is an ad-
vanced anti-abuse API They help developers to determine whether
their apps are running on a genuine Android device. SafetyNet’s
“basicIntegrity” testing can identify the signs of a rooted device, em-
ulator, and API hooking. Our result shows that SafetyNet’s “basicIn-
tegrity” can detect all of the 147 dual-instance apps’ environments
dynamically, but it is not fit for detecting app-virtualization-based
malware that does not load any third-party plugins.

Plugin-Killer [14] & DiPrint [17]. Plugin-Killer and DiPrint
are specifically developed to detect the app-virtualization environ-
ment with a set of heuristics, such as undeclared permissions and
multiple processes with the same UID. These two tools also success-
fully recognize all of the 147 dual-instance apps’ environments, but
they are much faster than SafetyNet—SafetyNet takes a few more
seconds to download detection code from the server. Plugin-Killer
and DiPrint have the same limitation with Google SafetyNet: they
cannot distinguish malicious app-virtualization-based apps from
benign ones. By contrast, VAHunt bridges this gap.

App in the Middle [16]. At the time of writing, the only re-
lated research work to detecting app-virtualization-based malware
is Zhang et al’s work [16]. They detect the different certificates be-
tween the host app and the benign plugin. We also test the accuracy
of Zhang et al’s work in our large-scale evaluation. Although their
simple detection heuristic is fast (0.6s on average), the last column
of Table 3 shows that their detection accuracy is not acceptable.
Only 0.3% of malware samples comply with Zhang et al’s observa-
tion: the host app loads malicious plugins and at least one benign
plugin, and the certificate of the host app is different from that of
the benign plugin. The encrypted plugins in the host app’s subdi-
rectory prevent the extraction of the certificate. Furthermore, this
certificate comparison method mislabels all tested dual-instance
apps as malware. Dual-instance apps load third-party applications
(e.g., WhatsApp) to enrich user experience, and the certificate of
the host app is of-course different from the plugin’s certificate.

Overhead. The running time imposed by VAHunt’s two-layer
detection is about 6.9s and 12.1s on average. Including the pre-
processing time, VAHunt completes the analysis for each APK file
within 30 seconds in our evaluation. The performance bottleneck
lies in the multi-round data flow analyses to detect the stealthy
loading strategy. Considering VAHunt is an automated detection to
free security professionals from the burden of reverse engineering
efforts, VAHunt’s overhead is acceptable.

8 DISCUSSION & FUTURE WORK

Our work tackles the challenge of detecting app-virtualization
repackaged malware prior to run time, but we argue that our results
show the challenge is not insurmountable. Our large-scale evalua-
tion in the production environment demonstrates that VAHunt is
an appealing technique to complement existing malware defenses.
However, VAHunt shares the same limitations with the Android
static analysis methods [50-52]. Attackers can encrypt strings in the
code (e.g., logs and common strings) to complicate static analyses.
In VAHunt’s design, we need to match the component names ex-
tracted from the Intent state machine with that of pre-defined stub

components. We argue that component names in the manifest are
hard to be encrypted because the Android system needs to correctly
recognize them to manage the component’s lifecycle; otherwise, it
may lead to an app crash. But if the stub component string in code
is encrypted, we cannot match it with that in the manifest. If the
malware’s installation is concealed beneath an onClick() callback,
semantic analysis is required to analyze the context of the but-
ton [53]. Using reflection or implementing function in native code
could also interrupt call graph generation of VAHunt. A packed app
is another long-standing challenge to any static detection methods.
If the host app is packed, it will impede VAHunt’s analysis from
the very beginning. Like what we did in our evaluation, the best
practice is to use VAHunt and a generic unpacking tool together.
Detecting malware features at run time has a better resistance
against code obfuscation. We also explore the direction of detecting
app-virtualization repackaged malware dynamically using simi-
lar features with VAHunt. First, we can capture the plugin intent
wrapping behavior by API hooking. We use Xposed [54] to hook
related APIs that are used to wrap the plugin’s intent (e.g., load-
Dex(), setClassName(), getComponent(), and setType()), and we
search the values of live program variables to find the reference
Intent state machine pattern like Figure 6(a). Second, to detect the
stealthy loading strategy at run time, we run the samples in the
experiment environment and observe whether it has the silentIn-
stall behavior. However, dynamic detection also suffers from the
limited path coverage and dynamic analysis environment evasions.
The Triada variant shown in Figure 9 is such a counterexample
against dynamic detection, because it is a remote C&C server to
control Triada’s activities. Without meeting the trigger condition,
we cannot observe Triada’s loading plugin behavior dynamically.

9 CONCLUSION

Recently, cybercriminals abuse app-virtualization as a new repack-
aging way, and malware distribution turns out to be much easier
and stealthier than ever before. In this paper, we focus on the in-
ner mechanism of this new threat and study the unique features
caused by app-virtualization-based malware. We develop VAHunt,
a two-layer detection method: 1) we first detect app-virtualization
engines in APK files with a stateful model; 2) we conduct data flow
analysis to further determine stealthy plugin loading strategies.
We have deployed VAHunt into a top anti-virus company to test
more than 139K app-virtualization-based samples. Our large-scale
evaluation shows that VAHunt reveals very small false negatives
and zero false positive. VAHunt significantly reduces the workload
of security analysts. We hope the open-source VAHunt inspires
more countermeasures against this new generation of repackaged
Android malware.

ACKNOWLEDGMENTS

We sincerely thank CCS 2020 anonymous reviewers for their in-
sightful and helpful comments. This research was supported in part
by the National Natural Science Foundation of China (61972297,
U1636107) and the National Science Foundation (NSF) under grant
CNS-1850434.



REFERENCES

[1] LiLi, Daoyuan Li, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, David

[10
(1

[12

[14

[15

(16

(7

(18

[19

[20

[22

[23

[24

[25

]

]

]

]

]

]

]

]

]

Lo, and Lorenzo Cavallaro. Understanding Android App Piggybacking: A System-
atic Study of Malicious Code Grafting. IEEE Transactions on Information Forensics
and Security, 12(6), June 2017.

Kobra Khanmohammadi, Neda Ebrahimi, Abdelwahab Hamou-Lhadj, and
Raphaél Khoury. Empirical Study of Android Repackaged Applications. Empirical
Software Engineering, 24(6), December 2019.

Li Li, Tegawende F. Bissyande, and Jacques Klein. Rebooting Research on De-
tecting Repackaged Android Apps: Literature Review and Benchmark. IEEE
Transactions on Software Engineering, February 2019.

LBE Tech. How Parallel Space helps you run multiple accounts on An-
droid. http://blog.parallelspace-app.com/how-parallel-space-helps-you-run-
multiple-accounts-on-android/, July 2016.

asLody. VirtualApp. https://github.com/asLody/VirtualApp, 2019.

Qih00360. DroidPlugin. https://github.com/DroidPluginTeam/DroidPlugin, 2019.
JohnC. Mobile App Virtualization: Why the Best Architecture (Should) Always
Win. https://sierraware.com/blog/?p=75, May 2015.

Dan Price. How to Run Multiple Copies of the Same App on Android. https:
//www.makeuseof.com/tag/run- multiple-app-copies-android/, December 2019.
Joe Birch. Modularizing Android Applications. https://medium.com/google-
developer-experts/modularizing-android-applications-9e2d18f244a0, August
2018.

Jianqiang Bao. Android App-Hook and Plug-In Technology. CRC Press, 1st edition,
September 2019.

Google. Enable multidex for apps with over 64K methods. https://developer.
android.com/studio/build/multidex, 2019.

Cong Zheng and Tongbo Luo. PluginPhantom: New Android Trojan Abuses
“DroidPlugin” Framework. https://dwz.cn/tsm8kSF4, 2016.

Tom Spring. Apps Carrying HummingBad Variant Booted From Google
Play. https://threatpost.com/hummingbad-variant-booted-from-google-play/
123280/, January 2017.

Tongbo Luo, Cong Zheng, Zhi Xu, and Xin Ouyang. Anti-Plugin: Don’t Let Your
App Play as an Android Plugin. BlackHat Asia, 2017.

Cong Zheng, Wenjun Hu, and Zhi Xu. Android Plugin Becomes a Catastrophe to
Android Ecosystem. In Proceedings of the 1st Workshop on Radical and Experiential
Security (RESEC’18), 2018.

Lei Zhang, Zhemin Yang, Yuyu He, Minggi Li, Sen Yang, Min Yang, Yuan Zhang,
and Zhiyun Qian. App in the Middle: Demystify Application Virtualization
in Android and its Security Threats. In Proceedings of the 45th International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS’19),
2019.

Luman Shi, Jianming Fu, Zhengwei Guo, and Jiang Ming. “Jekyll and Hyde” is
Risky: Shared-Everything Threat Mitigation in Dual-Instance Apps. In Proceed-
ings of the 17th ACM International Conference on Mobile Systems, Applications,
and Services (Mobisys’19), 2019.

Deshun Dai, Ruixuan Li, Junwei Tang, Ali Davanian, and Heng Yin. Parallel
Space Traveling: A Security Analysis of App-Level Virtualization in Android. In
Proceedings of the 25th ACM Symposium on Access Control Models and Technologies
(SACMAT20), 2020.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repackaged
Smartphone Applications in Third-Party Android Marketplaces. In Proceed-
ings of the 2nd ACM Conference on Data and Application Security and Privacy
(CODASPY’12), 2012.

Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. Fast,
Scalable Detection of Piggybacked Mobile Applications. In Proceedings of the
3rd ACM Conference on Data and Application Security and Privacy (CODASPY’13),
2013.

Jonathan Crussell, Clint Gibler, and Hao Chen. AnDarwin: Scalable Detection of
Semantically Similar Android Applications. In Jason Crampton, Sushil Jajodia,
and Keith Mayes, editors, Proceedings of the 18th European Symposium on Research
in Computer Security (ESORICS’13), 2013.

Kai Chen, Peng Liu, and Yingjun Zhang. Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE’14),
2014.

Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. View-
Droid: Towards Obfuscation-Resilient Mobile Application Repackaging Detection.
In Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless &
Mobile Networks (WiSec’14), 2014.

Zhiyong Shan, Iulian Neamtiu, and Raina Samuel. Self-Hiding Behavior in
Android Apps: Detection and Characterization. In Proceedings of the 40th Inter-
national Conference on Software Engineering (ICSE’18), 2018.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid:

Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI'14), 2014.

[26]

[27]

[31

[32

[33

&
=)

[35

(36]

[37

[43

[44

[45

[46

[47

[48

[49

o
=

[51

Antiy AVL Mobile Security. Guarding the Security of Mobile Intelligence Era.
https://www.avlsec.com/en/home, [online].

Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and
Processes (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

VMware. VMware Workstation. https://www.vmware.com/, [online].

Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings
of the 2005 Annual Conference on USENIX Annual Technical Conference (ATC’05),
2005.

Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp
von Styp-Rekowsky. Boxify: Full-fledged App Sandboxing for Stock Android.
In Proceedings of the 24th USENIX Conference on Security Symposium (USENIX
Security’15), 2015.

Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna.
NJAS: Sandboxing Unmodified Applications in non-rooted Devices Running
stock Android. In Proceedings of the 5th Annual ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM’15), 2015.

Chaoting Xuan, Gong Chen, and Erich Stuntebeck. DroidPill: Pwn Your Daily-
Use Apps. In Proceedings of the 12nd ACM ASIA Conference on Computer and
Communications Security (ASIACCS’17), 2017.

Thi Van Anh Pham, Italo Ivan Dacosta Petrocelli, Eleonora Losiouk, John Stephan,
Kévin Huguenin, and Jean-Pierre Hubaux. HideMyApp: Hiding the Presence
of Sensitive Apps on Android. In Proceedings of the 28th USENLX Conference on
Security Symposium (USENIX Security’19), 2019.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. Execute This! Analyzing Unsafe and Malicious Dynamic
Code Loading in Android Applications. In Proceedings of the 21th Network and
Distributed System Security Symposium (NDSS’14), 2014.

Zhengyang Qu, Shahid Alam, Yan Chen, Xiaoyong Zhou, Wangjun Hong, and
Ryan Riley. DyDroid: Measuring Dynamic Code Loading and Its Security Im-
plications in Android Applications. In Proceedings of the 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’17), 2017.
Pew Research Center. An Analysis of Android App Permissions. http://www.
pewinternet.org/2015/11/10/an- analysis- of-android-app-permissions/, 2015.
Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. AsDroid:
Detecting Stealthy Behaviors in Android Applications by User Interface and Pro-
gram Behavior Contradiction. In Proceedings of the 36th International Conference
on Software Engineering (ICSE’14), 2014.

Mohsin Junaid, Jiang Ming, and David Kung. StateDroid: Stateful Detection of
Stealthy Attacks in Android Apps via Horn-Clause Verification. In Proceedings
of the 34th Annual Computer Security Applications Conference (ACSAC’18), 2018.
Google. Intents and Intent Filters. https://developer.android.com/guide/
components/intents-filters, 2019.

Android AAPT. https://androidaapt.com/, 2019.

Android dexdump.  http://manpages.ubuntu.com/manpages/xenial/man1/
dexdump.1.html, 2019.

Chris Chao-Chun Cheng, Chen Shi, Neil Zhengiang Gong, and Yong Guan. Evi-
Hunter: Identifying Digital Evidence in the Permanent Storage of Android De-
vices via Static Analysis. In Proceedings of the 25th ACM SIGSAC Conference on
Computer and Communications Security (CCS’18), 2018.

Google. Google Developer Content Policy. https://play.google.com/about/
developer-content-policy.html, 2020.

Swati Khandelwal. Nasty Android Malware that Infected Millions Returns to
Google Play Store. https://thehackernews.com/2017/01/hummingbad-android-
malware.html, 2017.

Rafia Shaikh. Chinese Ad Company That Turned Out to Be a Cyber Crime Group
Is Back with “a Whale of a Tale”. https://wccftech.com/hummingwhale-android-
malware/, 2017.

Cong Zheng, Wenjun Hu, and Zhi Xu. A New Trend in Android Adware: Abusing
Android Plugin Frameworks. https://researchcenter.paloaltonetworks.com/2017/
03/unit42-new-trend-android-adware-abusing-android- plugin-frameworks/,
2017.

Aswathi B.L.  Sensitivity, Specificity, Accuracy and the relationship be-
tween them. http://www.lifenscience.com/bioinformatics/sensitivity-specificity-
accuracy-and, 2009.

Joe. Java Clone, Shallow Copy and Deep Copy. https://javapapers.com/core-
java/java-clone-shallow-copy-and-deep-copy/, 2014.

Google. SafetyNet Attestation APL https://developer.android.com/training/
safetynet/attestation, 2019.

Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. Adaptive Unpacking
of Android Apps. In Proceedings of the 39th International Conference on Software
Engineering (ICSE’17), 2017.

Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin
Li, Xueqiang Wang, and XiaoFeng Wang. Things You May Not Know About
Android (Un) Packers: A Systematic Study based on Whole-System Emulation.
In Proceedings of the 25th Network and Distributed System Security Symposium
(NDSS’18), 2018.


http://blog.parallelspace-app.com/how-parallel-space-helps-you-run-multiple-accounts-on-android/
http://blog.parallelspace-app.com/how-parallel-space-helps-you-run-multiple-accounts-on-android/
https://github.com/asLody/VirtualApp
https://github.com/DroidPluginTeam/DroidPlugin
https://sierraware.com/blog/?p=75
https://www.makeuseof.com/tag/run-multiple-app-copies-android/
https://www.makeuseof.com/tag/run-multiple-app-copies-android/
https://medium.com/google-developer-experts/modularizing-android-applications-9e2d18f244a0
https://medium.com/google-developer-experts/modularizing-android-applications-9e2d18f244a0
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
https://dwz.cn/tsm8kSF4
https://threatpost.com/hummingbad-variant-booted-from-google-play/123280/
https://threatpost.com/hummingbad-variant-booted-from-google-play/123280/
https://www.avlsec.com/en/home
https://www.vmware.com/
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
http://www.pewinternet.org/2015/11/10/an-analysis-of-android-app-permissions/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://androidaapt.com/
http://manpages.ubuntu.com/manpages/xenial/man1/dexdump.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/dexdump.1.html
https://play.google.com/about/developer-content-policy.html
https://play.google.com/about/developer-content-policy.html
https://thehackernews.com/2017/01/hummingbad-android-malware.html
https://thehackernews.com/2017/01/hummingbad-android-malware.html
https://wccftech.com/hummingwhale-android-malware/
https://wccftech.com/hummingwhale-android-malware/
https://researchcenter.paloaltonetworks.com/2017/03/unit42-new-trend-android-adware-abusing-android-plugin-frameworks/
https://researchcenter.paloaltonetworks.com/2017/03/unit42-new-trend-android-adware-abusing-android-plugin-frameworks/
http://www.lifenscience.com/bioinformatics/sensitivity-specificity-accuracy-and
http://www.lifenscience.com/bioinformatics/sensitivity-specificity-accuracy-and
https://javapapers.com/core-java/java-clone-shallow-copy-and-deep-copy/
https://javapapers.com/core-java/java-clone-shallow-copy-and-deep-copy/
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

[52] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. DexHunter: Toward Extracting
Hidden Code from Packed Android Applications. In Proceedings of the 20th
European Symposium on Research in Computer Security (ESORICS’15), 2015.
Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan
Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, and Jian Lu. DeeplIntent:
Deep Icon-Behavior Learning for Detecting Intention-Behavior Discrepancy in
Mobile Apps. In Proceedings of the 26th ACM SIGSAC Conference on Computer
and Communications Security (CCS’19), 2019.
[54] rovo89. Xposed Module Repository. https://repo.xposed.info/, 2019.
[55] Avast Threat Intelligence Team. Malware posing as dual instance app steals users’
Twitter credentials. https://blog.avast.com/malware-posing-as-dual-instance-
app-steals-users- twitter- credentials, 2016.

[53

APPENDIX
A DETAILED INFORMATION ABOUT OUR
STUDY IN SECTION 3.1

A.1 Characteristics

We summarize the common characteristics of app-virtualization
repackaged malware. The first two characteristics cover how mal-
ware utilizes app-virtualization to perform malicious behaviors; the
next two characteristics are about how malware host apps store
and load plugins.

Self-contained Systems. In this category, malware authors
encapsulate an app-virtualization engine and malicious plugin mod-
ules as a self-contained system. These malware instances are spread
using social engineering tricks to deceive users into downloading
them. Once on the victim’s device, malware can load the malicious
plugins either from its own subdirectory like PluginPhantom [12]
or download plugins from Internet like Hummingbad [44]. These
plugins can perform various malicious functions, such as intercept-
ing incoming phone calls and SMS, advertisement/pornography
promotion, and ransomware behavior. As this kind of malware
does not load any third-party plugins, existing app-virtualization
environment detection heuristics [14, 17] do not work here.

Attack Benign Plugins. The second category of malware ex-
ploits the vulnerability of app-virtualization to compromise benign
apps. They disguise themselves as an attractive app-virtualization
application, such as a dual-instance app, to lure users into installing
them. Then, a malicious plugin conducts attacks in the background
when the benign plugin is running. Due to the “shared-everything”
threat [17], even with zero permission, the malicious plugin can
still get access to other plugins’ sensitive data and inject malicious
code dynamically into other running plugins.

Encrypted/Downloaded Plugins. To impede static analyses
that attempt to inspect malicious payload plugins, most malicious
plugins’ APK files are not statically visible. Our study shows that up
to 89.2% of app-virtualization-based malware samples encrypt their
plugins, and 10.5% of malware samples choose to download plugins
from Internet at run time. For malware samples that encrypt their
plugins, we also reverse-engineer the cryptographic algorithms
they use. 84.5% of them apply the standard AES algorithm, and
the left of them adopt a self-defined encryption algorithm, such as
performing XOR operations with specific byte streams.

Load Malicious Plugins Stealthily. Plugin loading strategies
stand in stark contrast between app-virtualization-based malware
and benign apps. In general, a user interface will show up when a
benign app is loading plugins. It is the user’s turn to select which
plugin to load, and then the host app copies and loads the plugin

APK file from the specific path that the user decided. Besides, benign
apps do not hide their icons from the phone’s desktop. On the
contrary, malware loads malicious plugins stealthily to hide their
malicious behaviors. Their plugin loading process typically does
not involve user interactions (e.g., button click or popup window).
The malware host app searches for plugin APKs by invoking path
APIs, because it has already known where malicious plugins locate.
After installation, malware tends to hide themselves by running in
the background without showing any icon or Activity.

A.2 Case Study

A new version of malware Triada? is developed on top of Droid-
Plugin to steal the victim’s personal information without raising
suspicion. Triada disguises itself as Wandoujia app, which is one of
China’s most prominent Android app stores. As shown in Figure 9,
after installation, Triada reminds users that “the program is incom-
plete and needs to be reinstalled” to lure users into installing the
real Wandoujia app, but Triada runs in the background by hiding its
icon. If users disagree, Triada cancels the real Wandoujia’s installa-
tion but stills runs in the background as a memory cleaning service.
Triada hides all APK plugins in its “Assets” directory, and each plu-
gin has a dedicated action. One of its plugins communicates with
a remote C&C server, which instructs Triada to load a particular
plugin to carry out an activity, such as connecting a WiFi signal,
recording calls, acquiring realtime location, sending messages, up-
loading private data, or updating itself. Besides, all of these plugins
run in the background without showing any interfaces.

host app
p- - .
' ' Triada malware
(fake Wandoujia)

Plugins Plugin Plugin

lure users to update

‘ modules }«77# main task %,"_{ update ‘

! +

‘ keyboard ‘ ‘ record ‘ i ﬂi
— [ real Wandoujia app
‘ WiFi ‘ ‘ SMS ‘ C&C server
‘ privacy ‘ ‘ location ‘ —+ load plugins  ——--» cmd
‘ files ‘ ‘screenshot‘ ——data —— direct installation

Figure 9: Triada malware disguises itself as Wandoujia app
and loads malicious plugins via DroidPlugin.

B THREAD INTERRUPTION ANALYSIS IN
SECTION 6

Detecting the user consent characteristic is to analyze the API
call chain from plugin installation to app startup. However, our
study shows many host apps start new threads to load plugins,
which complicates the chasing of API call chain. For example, a
Virtual App-based malware sample steals users’ Twitter credentials
in a new thread by using Thread Class and then starts the thread in

2SHA-1 value: e2b05c8fdf3b82660f7ab378e14bsfeab81417f0
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another Class [55]. The thread-related invocation is indirect—the
actual call destination of Thread.start() is the run() method of the
corresponding class, which will interrupt the call chain. Listing 3
shows a typical thread creation using Thread Class. A new thread is
started by creating an instance of MyThread (Line 3) and invoking
the start() function at Line 4. This causes an indirect invocation to
the real task code in the run() method of MyThread Class at Line 8.
Besides Thread Class, using Runnable interface and asynchronous
tasks (AsyncTask Class) can create threads as well. The implementa-
tions of these three thread creations are similar, so we take Thread
as an example to explain how we reconnect the interrupted call
chain via the indirect invocation solution [37].

1public class Installation {

2 public void goThread() {

3 MyThread threadl = new MyThread();

4 threadl.start(); //trigger the run () method at Line 8
5 }
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7public class MyThread extends Thread {

8 public void run() {

9 loadPlugins() //a time-consuming process

10 3}

11}

Listing 3: JAVA code of starting a Thread.

As we generate the call chain backwards, we will first meet the
run() method in Thread Class or Runnable interface. After finding
the Class name of run(), we traverse the code to find the real caller
that invokes the start() method and connect the interruption. Async-
Task Class is an encapsulation of thread based on the thread pool;
asynchronous tasks created by AsyncTask Class are asynchronous
with UI threads. Once the work in the AsyncTask thread has been
done, UI thread will continue to work by invoking onPreExecute(),
doInBackground(), onPostExecute() or onProgressUpdate(). We deal
with such cases similar with Thread Class to find the real caller.

1public void createShortcut()
2{
3 Intent intent = new Intent(Intent.ACTION_MAIN);

4 itent.addCategory(Intent.CATEGORY_LAUNCHER);

5 intent.setClass(context, clazz);

6 Intent shortcut = new Intent(Intent.ACTION_CREATE_SHORTCUT);

7 shortcut.putExtra(Intent.EXTRA_SHORTCUT_INTENT, intent);

8 shortcut.setAction("com.android. launcher.action.
INSTALL_SHORTCUT");

9 context.sendBroadcast(shortcut);

10}

Listing 4: Creating a shortcut involves two related Intents.
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