
Two-Level Lattice Neural Network Architectures
for Control of Nonlinear Systems

James Ferlez∗†, Xiaowu Sun∗†, and Yasser Shoukry∗

Abstract— In this paper, we consider the problem of automat-
ically designing a Rectified Linear Unit (ReLU) Neural Network
(NN) architecture (number of layers and number of neurons
per layer) with the guarantee that it is sufficiently parametrized
to control a nonlinear system. Whereas current state-of-the-art
techniques are based on hand-picked architectures or heuristic-
based search to find such NN architectures, our approach
exploits a given model of the system to design an architecture;
as a result, we provide a guarantee that the resulting NN
architecture is sufficient to implement a controller that satisfies
an achievable specification. Our approach exploits two basic
ideas. First, we assume that the system can be controlled by a
Lipschitz-continuous state-feedback controller that is unknown
but whose Lipschitz constant is upper-bounded by a known
constant; then using this assumption, we bound the number
of affine functions needed to construct a Continuous Piecewise
Affine (CPWA) function that can approximate the unknown
Lipschitz-continuous controller. Second, we utilize the authors’
recent results on the Two-Level Lattice (TLL) NN architecture,
a novel NN architecture that was shown to be parameterized
directly by the number of affine functions that comprise the
CPWA function it realizes. We also evaluate our method by
designing a NN architecture to control an inverted pendulum.

I. INTRODUCTION

Multilayer Neural Networks (NN) have shown tremendous
success in realizing feedback controllers that can achieve
several complex control tasks [1]. Nevertheless, the current
state-of-the-art practices for designing these deep NN-based
controllers are based on heuristics and hand-picked hyper-
parameters (e.g., number of layers, number of neurons per
layer, training parameters, training algorithm) without an
underlying theory that guides their design. For example,
several researchers have studied the problem of Automatic
Machine Learning (AutoML) and in particular the problem
of hyperparameter (number of layers, number of neurons
per layer, and learning algorithm parameters) optimization
and tuning for deep NNs (see for example [2], [3], [4], [5],
[6] and the references within). These methods perform an
iterative and exhaustive search through a manually specified
subset of the hyperparameter space; the best hyperparameters
are then selected according to some performance metric
without any guarantee on the correctness of the chosen
architecture.

In this paper, we exhibit a systematic methodology for
choosing a NN controller architecture (number of layers and
number of neurons per layer) to control a nonlinear system.
Specifically, we design an architecture that is guaranteed
to correctly control a nonlinear system in the following
sense: there exist neuron weights/biases for the designed
architecture such that it can meet exactly the same spec-
ification as any other continuous, non-NN controller with

† Equally contributing first authors.
∗Department of Electrical Engineering and Computer Science, University

of California, Irvine {jferlez,xiaowus,yshoukry}@uci.edu
This work was partially sponsored by the NSF awards #CNS-2002405

and #CNS-2013824.

at most an a priori specified Lipschitz constant. Moreover,
provided such a non-NN controller exists (to help ensure
well-posedness), the design of our architecture requires only
knowledge of a bound on such a controller’s Lipschitz
constant; the robustness of the specification; and the Lip-
schitz constants/vector field bound of the nonlinear system.
Thus, our approach may be applicable even without perfect
knowledge of the underlying system dynamics, albeit at the
expense of designing rather larger architectures.

Our approach exploits several insights. First, state-of-the-
art NNs use Rectified Linear Units (ReLU), which in turn
restricts such NN controllers to implement only Continuous
Piecewise Affine (CPWA) functions. As is widely known, a
CPWA function is compromised of several affine functions
(named local linear functions), which are defined over a set
of polytypic regions (called local linear regions). In other
words, a ReLU NN—by virtue of its CPWA character—
partitions its input space into a set of polytypic regions
(named activation regions), and applies a linear controller at
each of these regions. Therefore, a NN architecture dictates
the number of such activation regions in the corresponding
CPWA function that is represented by the trainable param-
eters in the NN. That is, to design a NN architecture, one
needs to perform two steps: (i) compute (or upper bound)
the number of activation regions required to implement a
controller that satisfies the specifications; and (ii) transform
this number of activation regions into a NN architecture that
is guaranteed to give rise to this number of activation regions.

To count the number of the required activation regions,
we start by assuming the existence of a Lipschitz-continuous,
state-feedback controller that can robustly control the nonlin-
ear system to meet given specifications. However, as stated
above, we make no further assumptions about this controller
except that its Lipschitz constant is upper-bounded by a
known constant, Kcont. Using this Lipschitz-constant bound
– but no other specific information about the controller –
together with the Lipschitz constants/vector field bound of
the system and robustness of the specification, we exhibit an
upper-bound for the number of activation regions needed to
approximate this controller by a CPWA controller, while still
meeting the same specifications in closed loop.

Next, we leverage this bound on activation regions using
the authors’ recent results on a novel NN architecture, the
Two-Level Lattice (TLL) NN architecture [7]. Unlike other
NN architectures where the number of activation regions is
not explicitly specified, the TLL-NN architecture is explicitly
parametrized by the number of activation regions it contains.
Thus, we can directly specify a TLL architecture from the
aforementioned bound on the number of activation regions.
The resulting NN architecture is then guaranteed to be
sufficiently parametrized to implement a CPWA function that
approximates the unknown Lipschitz-continuous controller in
such a way that the specification is still met. This provides a

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7447-1/20/$31.00 ©2020 IEEE 2198

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 04,2021 at 07:37:05 UTC from IEEE Xplore. Restrictions apply.

systematic approach to designing a NN architecture for such
systems.

II. PRELIMINARIES

A. Notation
We denote by N, R and R+ the set of natural numbers, the

set of real numbers and the set of non-negative real numbers,
respectively. For a function f : A → B, let dom(f) return
the domain of f , and let range(f) return the range of f . For a
set V ⊆ Rn, let int(V) return the interior of V . For x ∈ Rn,
we will denote by ‖x‖ the infinity norm of x; for x ∈ Rn and
ε ≥ 0 we will denote by B(x; ε) the ball of radius ε centered
at x as specified by ‖·‖. For f : Rn → Rm, ‖f‖∞ will denote
the essential supremum norm of f . Finally, given two sets
A and B denote by BA the set of all functions f : A→ B.

B. Dynamical Model
In this paper, we will assume an underlying, but not nec-

essarily known, continuous-time nonlinear dynamical system
specified by an ordinary differential equation (ODE): that is

ẋ(t) = f(x(t), u(t)) (1)

where the state vector x(t) ∈ Rn and the control vector
u(t) ∈ Rm. Formally, we have the following definition:

Definition 1 (Control System). A control system is a tuple
Σ = (X,U,U , f) where
• X ⊂ Rn is the compact subset of the state space;
• U ⊂ Rm is the compact set of admissible (instanta-

neous) controls;
• U ⊆ UR+

is the space of admissible open-loop control
functions – i.e. v ∈ U is a function v : R+ → U ; and

• f : Rn × U → Rn is a vector field specifying the time
evolution of states according to (1).

A control system is said to be (globally) Lipschitz if there
exists constants Kx and Ku such that for all x, x′ ∈ Rn and
u, u′ ∈ Rm:

‖f(x, u)− f(x′, u′)‖ ≤ Kx‖x− x′‖+Ku‖u− u′‖. (2)

For a Lipschitz control system, the following vector field
bound is well defined:

K , max
x∈X,u∈U

‖f(x, u)‖. (3)

In the sequel, we will primarily be concerned with so-
lutions to (1) that result from instantaneous state-feedback
controllers, Ψ : X → U . Thus, we use ζx0Ψ to denote
the closed-loop solution of (1) starting from initial condition
x0 (at time t = 0) and using state-feedback controller Ψ.
We refer to such a ζx0Ψ as a (closed-loop) trajectory of its
associated control system.

Definition 2 (Closed-loop Trajectory). Let Σ be a Lipschitz
control system, and let Ψ : Rn → U be a globally Lipschitz
continuous function. A closed-loop trajectory of Σ under
controller Ψ and starting from x0 ∈ X is the function
ζx0Ψ : R+ → X that uniquely solves the integral equation:

ζx0Ψ(t) = x0 +

∫ t

0

f(ζx0Ψ(σ),Ψ(ζx0Ψ(σ)))dσ. (4)

It is well known that such solutions exist and are unique
under these assumptions [8].

Definition 3 (Feedback Controllable). A Lipschitz control
system Σ is feedback controllable by a Lipschitz controller
Ψ : Rn → U if the following is satisfied:

Ψ ◦ ζxΨ ∈ U ∀x ∈ X. (5)

If Σ is feedback controllable for any such Ψ, then we simply
say that it is feedback controllable.

Because we’re interested in a compact set of states, X ,
we consider only feedback controllers whose closed-loop
trajectories stay within X .

Definition 4 (Positive Invariance). A feedback trajectory of
a Lipschitz control system, ζx0Ψ, is positively invariant if
ζx0Ψ(t) ∈ X for all t ≥ 0. A controller Ψ is positively
invariant if ζx0Ψ is positively invariant for all x0 ∈ X .

For technical reasons, we will also need the following
stronger notion of positive invariance.

Definition 5 (δ,τ Positive Invariance). Let δ, τ > 0 and
edgeδ(X) , ∪x∈X\int(X)(X ∩B(x; δ)). Then a positively
invariant controller Ψ is δ,τ positively invariant if

∀x0 ∈ edgeδ(X) . ζx0Ψ(τ)∈X\edgeδ(X) (6)

and Ψ is positively invariant with respect to X\edgeδ(X).

For a δ,τ positively invariant controller, trajectories that start
δ-close to the boundary of X end up at least δ-far away from
that boundary after τ seconds, and remain there forever after.

Finally, borrowing from [9], we define a τ -sampled tran-
sition system embedding of a feedback-controlled system.

Definition 6 (τ -sampled Transition System Embedding).
Let Σ = (X,U,U , f) be a feedback controllable Lipschitz
control system, and let Ψ : Rn → U be a Lipschitz
continuous feedback controller. For any τ > 0, the τ -
sampled transition system embedding of Σ under Ψ is the
tuple Sτ (ΣΨ) = (Xτ ,Uτ , ΣΨ

−→) where:
• Xτ = X is the state space;
• Uτ = {(Ψ ◦ ζx0Ψ)|t∈[0,τ] : x0 ∈ X} is the set of

open loop control inputs generated by Ψ-feedback, each
restricted to the domain [0, τ]; and

• ΣΨ
−→⊆ Xτ × Uτ ×Xτ such that x u

ΣΨ
−→ x′ iff

both u = (Ψ ◦ ζxΨ)|t∈[0,τ] and x′ = ζxΨ(τ).
Sτ (ΣΨ) is thus a metric transition system [9].

C. Abstract Disturbance Simulation

In this subsection, we propose a new simulation relation,
which we call abstract disturbance simulation, as a formal
notion of specification satisfaction for metric transition sys-
tems. Abstract disturbance simulation is inspired by robust
bisimulation [10] and especially disturbance bisimulation
[11], but it abstracts those notions away from their definitions
in terms of control system embeddings and explicit modeling
of disturbance inputs. In this way, it is conceptually similar
to the technique used in [9] and [12] to define a quantized
abstraction, where deliberate non-determinism is introduced
in order to account for input errors. As a prerequisite, we
introduce the following definition.

Definition 7 (Perturbed Metric Transition System). Let S =
(X,U, S−→) be a metric transition system where X ⊆ XM

for a metric space (XM , d). Then the δ-perturbed metric

2199

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 04,2021 at 07:37:05 UTC from IEEE Xplore. Restrictions apply.

transition system of S, Sδ , is a tuple Sδ = (X,U,Sδ−→)
where the (altered) transition relation, Sδ−→, is defined as:

x
u

Sδ−→ x′ iff

∃x′′ ∈ X s.t. d(x′′, x′) ≤ δ and x u
S−→ x′′. (7)

Note that Sδ has identical states and input labels to S, and it
also subsumes all of the transitions therein, i.e. S−→⊂Sδ−→.
However, the transition relation for Sδ explicitly contains
new nondeterminism relative to the transition relation of S.
This nondeterminism can be thought of as perturbing the
target state of each transition in S; each such perturbation
becomes the target of a (nondeterministic) transition with the
same input label as the original transition.

Using this definition, we can finally define an abstract dis-
turbance simulation between two metric transition systems.

Definition 8 (Abstract Disturbance Simulation). Let S =
(XS , U, S−→) and T = (XT , UT , T−→) be metric transition
systems whose state spaces XS and XT are subsets of the
same metric space (XM , d). Then T abstract-disturbance
simulates S under disturbance δ, written S �ADδ T if there
is a relation R ⊆ XS ×XT such that

1) for every (x, y) ∈ R, d(x, y) ≤ δ;
2) for every x ∈ XS there exists a pair (x, y) ∈ R; and
3) for every (x, y) ∈ R and x

u
Sδ−→ x′ there exists a

y
v

T−→ y′ such that (x′, y′) ∈ R.

Remark 1. �AD0
corresponds with the usual notion of

simulation for metric transition systems. Thus,

S �ADδ T ⇔ Sδ �AD0
T. (8)

D. ReLU Neural Network Architectures
We will consider controlling the nonlinear system defined

in (1) with a state-feedback neural network controller NN :

NN : X → U (9)

where NN denotes a Rectified Linear Unit Neural Network
(ReLU NN). Such a (K-layer) ReLU NN is specified by
composing K layer functions (or just layers). A layer with
i inputs and o outputs is specified by a (o × i) matrix of
weights, W , and a (o× 1) matrix of biases, b, as follows:

Lθ : Ri → Ro

z 7→ max{Wz + b, 0} (10)

where the max function is taken element-wise, and θ ,
(W, b) for brevity. Thus, a K-layer ReLU NN function is
specified by K layer functions {Lθ(i) : i = 1, . . . ,K} whose
input and output dimensions are composable: that is they
satisfy ii = oi−1 : i = 2, . . . ,K . Specifically:

NN (x) = (Lθ(K) ◦ Lθ(K−1) ◦ · · · ◦ Lθ(1))(x). (11)

When we wish to make the dependence on parameters
explicit, we will index a ReLU function NN by a list of
matrices Θ , (θ(1), . . . , θ(K)) 1.

Specifying the number of layers and the dimensions of
the associated matrices θ(i) = (W (i), b(i)) specifies the
architecture of the ReLU NN. Therefore, we will use:

Arch(Θ),((n, o1), (i2, o2), . . . , (iK ,m)) (12)

1That is Θ is not the concatenation of the θ(i) into a single large matrix,
so it preserves information about the sizes of the constituent θ(i).

to denote the architecture of the ReLU NN NN Θ.
Since we are interested in designing ReLU architectures,

we will also need the following result from [7, Theorem 7],
which states that a Continuous, Piecewise Affine (CPWA)
function, f, can be implemented exactly using a Two-Level-
Lattice (TLL) NN architecture that is parameterized exclu-
sively by the number of local linear functions in f.

Definition 9 (Local Linear Function). Let f : Rn → Rm
be CPWA. Then a local linear function of f is a linear
function ` : Rn → Rm if there exists an open set O such
that `(x) = f(x) for all x ∈ O.

Definition 10 (Linear Region). Let f : Rn → Rm be CPWA.
Then a linear region of f is the largest set R ⊆ Rn such
that f has only one local linear function on int(R).

Theorem 1 (Two-Level-Lattice (TLL) NN Architecture [7,
Theorem 7]). Let f : Rn → Rm be a CPWA function, and
let N̄ be an upper bound on the number of local linear
functions in f. Then there is a Two-Level-Lattice (TLL) NN
architecture Arch(Θ

TLL

N̄
) parameterized by N̄ and values of

Θ
TLL

N̄
such that:

f(x) = NN
ΘTLL
N̄

(x). (13)

In particular, the number of linear regions of f is such an
upper bound on the number of local linear functions.

Finally, note that a ReLU NN function, NN , is known
to be a continuous, piecewise affine (CPWA) function con-
sisting of finitely many linear segments. Thus, NN is itself
necessarily globally Lipschitz continuous.

III. PROBLEM FORMULATION

We can now state the main problem that we will consider
in this paper. In brief, we wish to identify the architecture
for a ReLU network to be used as a feedback controller for
the control system Σ: this architecture must have parameter
weights that allow it to control Σ up to a specification that
can be met by some other, non-NN controller.

Despite our choice to consider fundamentally continuous-
time models, we formulate our main problem in terms
of their (τ -sampled) transition system embeddings. This
choice reflects recent success in verifying specifications for
such transition system embeddings by means of techniques
adapted from computer science; see e.g. [13], where a variety
of specifications are considered in this context, among them
LTL formula satisfaction. Thus, our main problem is stated
in terms of the simulation relations in the previous section.

Problem 1. Let δ>0 and Kcont>0 be given. Let Σ be a feed-
back controllable Lipschitz control system, and let Sspec =
(Xspec, Uspec, Sspec−→) be a transition system encoding for a
specification on Σ. Finally, let τ = τ(Kx,Ku,K,Kcont, δ)
be determined by the parameters specified.

Now, suppose that there exists a δ,τ positively invariant
Lipschitz-continuous controller Ψ : Rn → U with Lipschitz
constant KΨ ≤ Kcont such that:

Sτ (ΣΨ) �ADδ Sspec. (14)

Then the problem is to find a ReLU architecture, Arch(Θ),
with the property that there exists values for Θ such that:

Sτ (ΣNNΘ
) �AD0

Sspec. (15)

2200

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 04,2021 at 07:37:05 UTC from IEEE Xplore. Restrictions apply.

The main assumption in Problem 1 is that there exists a
controller Ψ which satisfies the specification, Sspec. We use
this assumption largely to help ensure that the problem is
well posed. For example, this assumption ensures that we
aren’t trying to assert the existence of NN controller for
a system and specification that can’t be achieved by any
continuous controller – such examples are known to exist for
nonlinear systems. In this way, the existence of a controller
Ψ subsumes any possible conditions of this kind that one
might wish to impose: stabilizability, for example. Finally,
note that the existence of such a Ψ may require knowledge
of f to verify, but once its existence can be asserted the only
explicit knowledge of f we assume is Kx, Ku and K.

Moreover, there is a strong conceptual reason to consider
abstract disturbance simulation in specification satisfaction
for such a Ψ. Our approach to solve this problem will be
to design a NN architecture that can approximate any such
Ψ sufficiently closely. However, NN Θ clearly belongs to a
smaller class of functions than Ψ, so an arbitrary controller Ψ
cannot, in general, be represented exactly by means of NN Θ.
This presents an obvious difficulty because instantaneous
errors between Ψ and NN Θ may accumulate by means of
the system dynamics, i.e. via (4).

IV. RELU ARCHITECTURES FOR NONLINEAR SYSTEMS

Before we state the main theorem of the paper, we
introduce the following notation in the form of a definition.

Definition 11 (Extent of X). The extent of a compact set
X is defined as:

ext(X) , max
k=1,...,n

∣∣∣∣max
x∈X

πk(x)−min
x∈X

πk(x)

∣∣∣∣ , (16)

where πk(x) is the projection of x onto its kth component.

The main result of the paper is the following theorem,
which directly solves Problem 1.

Theorem 2 (ReLU Architecture). Let δ > 0 and Kcont >
0 be given, and let Σ and Sspec be as in the statement of
Problem 1. Finally, choose a µ > 0 such that:

Ku · µ ·
µ

6 ·Kcont · K
· eKx

µ
6·Kcont·K < δ, (17)

and set:

τ ≤ µ

6 ·Kcont · K
and η ≤ µ

6 ·Kcont
, (18)

(which depend only on K, Kx, Ku, Kcont and δ).
If there exists a δ, τ positively invariant Lipschitz con-

tinuous controller Ψ : Rn → U with Lipschitz constant
KΨ ≤ Kcont such that:

Sτ (ΣΨ) �ADδ Sspec. (19)

Then a TLL NN architecture Arch(Θ
TLL

N) of size:

N ≥ m ·
(
n! ·

n∑
k=1

22k−1

(n− k)!

)
·
(

ext(X)

η

)n
(20)

has the property that there exist values for Θ
TLL

N such that:

Sτ (ΣNN
Θ

TLL
N

) �AD0 Sspec. (21)

Remark 2. The left-hand side of (17) looks like µ2 for small
µ, so we can choose τ ≈

√
δ, thereby obtaining limδ→0

τ
δ =

+∞. Thus, for δ small enough, the choice of τ in Theorem 2
is compatible with a δ, τ positively invariant controller (e.g.
if ‖f‖ > a > 0 on edgeδ′(X) for some δ′ > 0).

Proof Sketch:
The proof of Theorem 2 consists of establishing the follow-
ing two implications:
Step 1) “Approximate controllers satisfy the specification”:

There is an approximation accuracy, µ, and sampling
period, τ , with the following property: if the un-
known controller Ψ satisfies the specification (under
δ disturbance and sampling period τ), then any con-
troller – NN or otherwise – which approximates Ψ
to accuracy µ will also satisfy the specification (but
under no disturbance). See Lemma 2 of Section V.

Step 2) “Any controller can be approximated by a CPWA
with the same fixed number of linear regions”:
If unknown controller Ψ has a Lipschitz constant
KΨ ≤ Kcont, then Ψ can be approximated by a
CPWA with a number of regions that depends only
on Kcont and the desired approximation accuracy.
See Lemma 4 of Section VI.

We will show these results for any controller Ψ that
satisfies the assumptions of Theorem 2. Thus, these results
together show the following implication: if there exists a
controller Ψ that satisfies the assumptions of Theorem 2, then
there is a CPWA controller that satisfies the specification.
And moreover, this CPWA controller has at most a number
of linear regions that depends only on the parameters of the
problem and not the particular controller Ψ.

The conclusion of the theorem then follows directly from
Theorem 1 [7, Theorem 7]: together, they specify that any
CPWA with the same number of linear regions (or fewer) can
be implemented exactly by a common TLL NN architecture.

V. PROOF OF THEOREM 2, STEP 1: APPROXIMATE
CONTROLLERS SATISFY THE SPECIFICATION

The goal of this section is to choose constants µ > 0 and
τ > 0 such that any controller Υ with ‖Υ − Ψ‖∞ ≤ µ/3
satisfies the specification:

Sτ (ΣΥ) �AD0
Sspec. (22)

The approach will be as follows. First, we confine ourselves
to a region in the state space on which the controller Ψ
doesn’t vary much: the size of this region is determined
entirely by the approximation accuracy, µ, and the bound
on the Lipschitz constant, Kcont. Then we confine the tra-
jectories of ΣΨ to this region by bounding the duration of
those trajectories, i.e. τ . Finally, we feed these results into a
Grönwall-type bound to choose µ. In particular, we choose µ
small enough such that the error incurred by using Υ instead
of Ψ is within the disturbance robustness, δ. From this we
will conclude that Υ satisfies the specification whenever
‖Υ−Ψ‖ ≤ µ/3. A road map of these steps is as follows.
• Let µ be an approximation error. Then:

i) Choose η = η(µ) such that a Lipschitz function
with constant Kcont doesn’t vary by more than µ/3
between any two points that are 2η apart.

ii) Choose τ = τ(µ) such that ‖x−ξxv(τ)‖ ≤ η for any
continuous open-loop control v (use ‖f‖ ≤ K).

2201

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 04,2021 at 07:37:05 UTC from IEEE Xplore. Restrictions apply.

iii) Use i) and ii) to conclude that ‖Υ(ζxΥ(t)) −
Ψ(ζxΨ(t))‖ ≤ ‖Υ−Ψ‖∞ + 2µ/3 for t ∈ [0, τ]

iv) Assume ‖Υ − Ψ‖∞ ≤ µ/3. Choose µ = µ(δ) such
that a Grönwall-type bound satisfies:

‖ζxΥ(τ(µ))− ζxΨ(τ(µ))‖ ≤
Ku · µ · τ(µ) · eKxτ(µ) < δ. (23)

Conclude that if ‖Υ−Ψ‖∞ ≤ µ/3, then:

Sτ (ΣΥ) �AD0 Sτ (ΣΨ) �AD0 Sspec. (24)

Full proofs of the following can be found in [14].
First, we formalize i) - iii) in the following propositions.

Proposition 1. Let µ > 0 be given, and let Ψ be as above.
Then there exists an η = η(µ) such that:

‖x− x′‖ ≤ 2η =⇒ ‖Ψ(x)−Ψ(x′)‖ ≤ µ/3. (25)

Proposition 2. Let µ > 0 be given, and let η = η(µ) be as
in the previous proposition. Finally, let Σ be as specified in
the statement of Theorem 2. Then there exists a τ = τ(µ)
such that for any Lipschitz feedback controller Υ:

‖x− ζxΥ(t)‖ ≤ η = η(µ) ∀t ∈ [0, τ]. (26)

Proposition 3. Let µ > 0 be given. Let Σ and Ψ be as in the
statement of Theorem 2; let η = η(µ) be as in Proposition 1;
let τ = τ(µ) be as in Proposition 2; and let Υ : Rn → U
be a Lipschitz continuous function. Then:

∀t ∈ [0,τ] ‖Υ(ζxΥ(t))−Ψ(ζxΨ(t))‖ ≤ ‖Υ−Ψ‖∞+ 2µ
3 (27)

To prove Step iv) we first need the following two results.

Proposition 4 (Grönwall Bound). Let Σ and Ψ be as in the
statement of Theorem 2, and let Υ be as in the statement of
Proposition 3. If:

‖Υ(ζxΥ(t))−Ψ(ζxΨ(t))‖ ≤ κ ∀t ∈ [0, τ] (28)

then:

‖ζxΥ(t)− ζxΨ(t)‖ ≤ Ku · κ · t · eKxt ∀t ∈ [0, τ]. (29)

Lemma 1. Let Σ, Ψ and Υ be as before. Also, suppose that
µ > 0 is such that:

Ku · µ ·
µ

6 ·Kcont · K
· eKx

µ
6·Kcont·K < δ. (30)

If ‖Υ−Ψ‖∞ ≤ µ/3, then:

‖ζxΥ(τ(µ))− ζxΨ(τ(µ))‖ ≤ δ. (31)

The final result in this section is the following Lemma.

Lemma 2. Let Σ, Ψ and Υ be as before, and suppose that
µ > 0 is such that:

Ku · µ ·
µ

6 ·Kcont · K
· eKx

µ
6·Kcont·K < δ. (32)

If ‖Υ−Ψ‖∞ ≤ µ/3, then for τ ≤ µ
6·Kcont·K we have:

Sτ (ΣΥ) �AD0 Sτ (ΣΨ). (33)

And hence:
Sτ (ΣΥ) �AD0 Sspec. (34)

VI. PROOF OF THEOREM 2, STEP 2: CPWA
APPROXIMATION OF A CONTROLLER

The results in Section V showed that any controller, Υ,
whether it is CPWA or not, will satisfy the specification
if it is close to Ψ in the sense that ‖Υ − Ψ‖∞ ≤ µ/3
(where µ is as specified therein). Thus, the main objective
of this section will be to show that an arbitrary Ψ can
be approximated to this accuracy by a CPWA controller,
ΥCPWA, subject to the following caveat. It is well known
that CPWA functions are good function approximators in
general, but we have to keep in mind our eventual use of
Theorem 1: we need to approximate any such Ψ by a CPWA
with the same, bounded number of linear regions. Hence,
our objective in this section is to find not just a controller
ΥCPWA that approximates Ψ to the specified accuracy, but one
that achieves this using not more than some common, fixed
number of linear regions that depends only on the problem
parameters (and not the function Ψ itself, which is assumed
unknown except for a bound on its Lipschitz constant).

With this in mind, our strategy will be to partition the
set X into a grid of sup-norm balls such that no relevant
Ψ can vary by much between them: indeed, we will use
balls of size η, as specified in Section V. Thus, we propose
the following starting point: inscribe a slightly smaller ball
within each η ball of the partition, and choose the value
of ΥCPWA on each such ball to be a constant value equal to
Ψ(x) for some x therein. Because we have chosen the size
of the partition to be small, such an ΥCPWA will still be a good
approximation of Ψ for these points in its domain. Using this
approach, then, we only have to concern ourselves with how
“extend” a function so defined to the entire set X as a CPWA.
Moreover, note that this procedure is actually independent of
the particular Ψ chosen, despite appearances: we are basing
our construction on a grid size η that depends only on the
problem parameters (via µ), so the construction will work
no matter the chosen value of Ψ(x) within each grid square.

The first step in this procedure will be to show how to
extend such a function over the largest-dimensional “gaps”
between the smaller inscribed balls. This result must control
the error of the extension so as to preserve our desired
approximation bound, as well provide a count of the number
of linear regions necessary to do so; this is Lemma 3. The
preceding result can then be extended to all of the other
gaps between inscribed balls to yield a CPWA function with
domain X , approximation error µ/3, and a known number
of regions; this is Lemma 4. Full proofs appear in [14].

Definition 12 (Face/Corner). Let C = [0, 1]n be a unit
hypercube of dimension n. A set F ⊆ C is a k-dimensional
face of C if there exists a set J ⊆ {1,. . . ,n} such that
|J | = n−k and

∀x ∈ F .
∧
j∈J

πj(x) ∈ {0, 1}. (35)

Let Fk(C) denote the set of k-dimensional faces of C, and
let F (C) denote the set of all faces of C (of any dimension).
A corner of C is a 0-dimensional face of C.

Lemma 3. Let C = [0, 1]n, and suppose that:

Γc : F0(C)→ R (36)

is a function defined on the corners of C. Then there is a
CPWA function Γ : C → R such that:

2202

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 04,2021 at 07:37:05 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

t (s)

x
1
(r
a
d
)

0 1 2 3 4 5 6 7 8 9 10
�0.4

�0.2

0

0.2

0.4

0.6

t (s)

x
2
(r
ad

/s
)

0 1 2 3 4 5 6 7 8 9 10

�6

�5

�4

�3

�2

�1

0

t (s)

u
(N

·m
)

Figure 2: Initial condition [0.7, 0.5]

3

0 1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

t (s)

x
1
(r
ad

)

0 1 2 3 4 5 6 7 8 9 10
�0.4

�0.2

0

0.2

0.4

0.6

t (s)

x
2
(r
ad

/s
)

0 1 2 3 4 5 6 7 8 9 10

�6

�5

�4

�3

�2

�1

0

t (s)

u
(N

·m
)

Figure 2: Initial condition [0.7, 0.5]

3

0 1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

t (s)

x
1
(r
ad

)

0 1 2 3 4 5 6 7 8 9 10
�0.4

�0.2

0

0.2

0.4

0.6

t (s)

x
2
(r
ad

/s
)

0 1 2 3 4 5 6 7 8 9 10

�6

�5

�4

�3

�2

�1

0

t (s)

u
(N

·m
)

Figure 2: Initial condition [0.7, 0.5]

3

Fig. 1. States and inputs of the inverted pendulum with initial condition [0.7, 0.5]T .

0 1 2 3 4 5 6 7 8 9 10

�0.4

�0.3

�0.2

�0.1

0

0.1

t (s)

x
1
(r
a
d
)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

t (s)

x
2
(r
ad

/s
)

0 1 2 3 4 5 6 7 8 9 10
�0.5

0

0.5

1

1.5

2

2.5

3

t (s)

u
(N

·m
)

Figure 1: Initial condition [�0.4, 1.0]

2

0 1 2 3 4 5 6 7 8 9 10

�0.4

�0.3

�0.2

�0.1

0

0.1

t (s)

x
1
(r
ad

)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

t (s)

x
2
(r
a
d
/
s)

0 1 2 3 4 5 6 7 8 9 10
�0.5

0

0.5

1

1.5

2

2.5

3

t (s)

u
(N

·m
)

Figure 1: Initial condition [�0.4, 1.0]

2

0 1 2 3 4 5 6 7 8 9 10

�0.4

�0.3

�0.2

�0.1

0

0.1

t (s)

x
1
(r
ad

)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

t (s)

x
2
(r
ad

/s
)

0 1 2 3 4 5 6 7 8 9 10
�0.5

0

0.5

1

1.5

2

2.5

3

t (s)

u
(N

·m
)

Figure 1: Initial condition [�0.4, 1.0]

2

Fig. 2. States and inputs of the inverted pendulum with initial condition [−0.4, 1.0]T

• ∀x ∈ F0(C).Γ(x) = Γc(x), i.e. Γ extends Γc to C;
• Γ has at most 2n−1 · n! linear regions; and
• for all x ∈ C,

min
x∈F0(C)

Γc(x) ≤ Γ(x) ≤ max
x∈F0(C)

Γc(x). (37)

Lemma 4. Let η = η(µ) be chosen as in Proposition 1, and
let Ψ be as before. Then there is a CPWA function ΥCPWA :
Rn → U such that:
• ‖ΥCPWA −Ψ‖∞ ≤ µ

3 ; and
• ΥCPWA has linear regions numbering at most

m ·
(
n! ·

n∑
k=1

22k−1

(n− k)!

)
·
(

ext(X)

η

)n
. (38)

VII. NUMERICAL RESULTS

We illustrate the results in this paper on an inverted
pendulum described by the following model:

f(x1, x2, u) =
[
x2

g
l sin(x1)− h

ml2x2 + 1
mlcos(x1)u

]T
,

where x1 is the angular position, x2 is the angular velocity,
and control input u is the torque applied on the point mass.
The parameters are the rod mass, m; the rod length, l; the
(dimensionless) coefficient of rotational friction, h; and the
acceleration due to gravity, g. For the purposes of our ex-
periments, we considered a subset of the state/control space
specified by: x1 ∈ [−1, 1], x2 ∈ [−1, 1] and u ∈ [−6, 6].
Furthermore, we considered model parameters: m = 0.5
kg; l = 0.5 m; h = 2; and g = 9.8 N/kg. Then for
different choices of the design parameters µ, we obtained
the following table of sizes, N , for the corresponding TLL-
NN architecture; also shown are the corresponding τ , η and
the δ that are required for the specification satisfaction.

µ δ τ η N
0.35 0.8694 0.0098 0.583 235
0.3 0.5287 0.0083 0.5 320
0.25 0.3039 0.0069 0.417 460
0.2 0.1610 0.0056 0.334 720
0.15 0.0749 0.0042 0.25 1280
0.1 0.0275 0.0028 0.167 2880

In the sequel, we will show the control performance of
a TLL-NN architecture with 400 local linear region. While
there are a number of techniques that can be used to train
the resulting NN, for simplicity, we utilize Imitation learning
where the NN is trained in a supervised fashion from data
collected from an expert controller. In particular, we designed
an expert controller that stabilizes the inverted pendulum; we

used Pessoa [15] to design our expert using the parameter
values specified above. In particular, we tasked Pessoa to
design a zero-order-hold controller that stabilizes the inverted
pendulum in a subset Xspec = [−1, 1]× [−0.5, 0.5]: i.e. the
controller should transfer the state of the system to this
specified set and keep it there for all time thereafter. From
this expert controller, we collected 8400 data points of state-
action pairs; this data was obtained by uniformly sampling
the state space. We then used Keras [16] to train the TLL
NN using this data. Finally, we simulated the motion of the
inverted pendulum using this TLL NN controller. Shown
in Fig. 1 and Fig. 2 are the state and control trajectories
for this controller starting from initial state [0.7, 0.5] and
[−0.4, 1], respectively. In both, the TLL controller met the
same specification used to design the expert.

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End
to end learning for self-driving cars,” arXiv:1604.07316, 2016.

[2] F. Pedregosa, “Hyperparameter optimization with approximate gradi-
ent,” arXiv:1602.02355, 2016.

[3] J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” Journal of Machine Learning Research, vol. 13, no. Feb,
pp. 281–305, 2012.

[4] S. Paul, V. Kurin, and S. Whiteson, “Fast efficient hyperparameter
tuning for policy gradients,” arXiv:1902.06583, 2019.

[5] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural net-
work architectures using reinforcement learning,” arXiv:1611.02167,
2016.

[6] Y. Quanming, W. Mengshuo, J. E. Hugo, G. Isabelle, H. Yi-Qi,
L. Yu-Feng, T. Wei-Wei, Y. Qiang, and Y. Yang, “Taking human out
of learning applications: A survey on automated machine learning,”
arXiv:1810.13306, 2018.

[7] J. Ferlez and Y. Shoukry, “AReN: Assured ReLU NN Architecture
for Model Predictive Control of LTI Systems,” in Hybrid Systems:
Computation and Control 2020 (HSCC’20), ACM, New York, 2020.

[8] H. K. Khalil, Nonlinear Systems. Pearson, Third ed., 2001.
[9] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic Models

for Nonlinear Control Systems Without Stability Assumptions,” IEEE
Transactions on Automatic Control, vol. 57, no. 7, 2012.

[10] V. Kurtz, P. M. Wensing, and H. Lin, “Robust Approximate Simulation
for Hierarchical Control of Linear Systems under Disturbances,” 2020.

[11] K. Mallik, A.-K. Schmuck, S. Soudjani, and R. Majumdar, “Compo-
sitional Synthesis of Finite-State Abstractions,” IEEE Transactions on
Automatic Control, vol. 64, no. 6, pp. 2629–2636, 2019.

[12] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10,
pp. 2508–2516, 2008.

[13] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer US, 2009.

[14] J. Ferlez, X. Sun, and Y. Shoukry, “Two-Level Lattice Neural Network
Architectures for Control of Nonlinear Systems,” arXiv:2004.09628,
2020.

[15] M. Mazo, A. Davitian, and P. Tabuada, “PESSOA: A tool for em-
bedded controller synthesis,” in Proceedings of the 22nd International
Conference on Computer Aided Verification, CAV’10, pp. 566–569,
Springer-Verlag, 2010.

[16] F. Chollet et al., “Keras.” https://keras.io, 2015.

2203

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 04,2021 at 07:37:05 UTC from IEEE Xplore. Restrictions apply.

