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Solving complex eigenvalue problems
on a quantum annealer with applications
to quantum scattering resonances

Alexander Teplukhin, a Brian K. Kendrick *a and Dmitri Babikov b

Quantum computing is a new and rapidly evolving paradigm for solving chemistry problems. In previous

work, we developed the Quantum Annealer Eigensolver (QAE) and applied it to the calculation of the

vibrational spectrum of a molecule on the D-Wave quantum annealer. However, the original QAE

methodology was applicable to real symmetric matrices only. For many physics and chemistry problems,

the diagonalization of complex matrices is required. For example, the calculation of quantum scattering

resonances can be formulated as a complex eigenvalue problem where the real part of the eigenvalue is

the resonance energy and the imaginary part is proportional to the resonance width. In the present

work, we generalize the QAE to treat complex matrices: first complex Hermitian matrices and then

complex symmetric matrices. These generalizations are then used to compute a quantum scattering

resonance state in a 1D model potential for O + O collisions. These calculations are performed using

both a software (classical) annealer and hardware annealer (the D-Wave 2000Q). The results of the

complex QAE are also benchmarked against a standard linear algebra library (LAPACK). This work

presents the first numerical solution of a complex eigenvalue problem of any kind on a quantum

annealer, and it is the first treatment of a quantum scattering resonance on any quantum device.

1 Introduction

Quantum computers are expected to supersede classical

computers one day and scientists around the world are working

hard to bring that day closer. A number of quantum computing

models and physical platforms1,2 to realize reliable qubits are

under investigation and it is still not clear what model and

platform are going to win the competition. In the meantime,

scientists are also pursuing the development of quantum

algorithms3,4 for current Noisy Intermediate-Scale Quantum

(NISQ) devices,5 before true universal quantum computers

become available. The applications of quantum computers

and quantum algorithms are limitless and theoretical chemistry

is one of the fields that will significantly benefit from them.6–8

Currently, the twomost dominant quantum computingmodels

are gate-based quantum computing and adiabatic quantum

annealing.6 In the first model of computation, a sequence

of quantum gates (i.e., reversible unitary transformations)

is applied to a number of qubits and the states of all qubits

are measured at the end. The model has gained widespread

popularity because it gives full control over the qubits and

computation itself. In the literature, the Variational Quantum

Eigensolver (VQE)9–11 is one of the most popular algorithms

implemented on gate-based quantum computers. The solver

was successfully applied to the calculation of the electronic

ground state energy of a molecule – one of the most important

fundamental problems in computational chemistry.

Adiabatic quantum annealing is another, probably less

popular model of quantum computation. In this model, the

computation is based on the slow continuous transformation

of an initial (easy-to-prepare) Hamiltonian into a final (target)

Hamiltonian. The ground state of the initial Hamiltonian

adiabatically becomes the ground state of the final Hamiltonian.

In practice, a given problem must be formulated as an Ising

problem or equivalently a Quadratic Unconstrained Binary

Optimization (QUBO) problem. Specifically, a QUBO solver

finds the minimum of the QUBO function xTQx (called the

objective function), where Q is a matrix describing the problem

and x is a binary string (string of zeros and ones). At the

minimum, the optimal solution string x = xopt is obtained.

If a problem can be converted into a QUBO problem, then it can

be solved on an annealer, otherwise it cannot be solved on

that type of quantum device. This significantly decreases the

applicability of quantum annealing, as not every problem is

convertible. In comparison to the gate-based quantum computers,
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quantum annealers have a much larger number of qubits,

but this should not be misunderstood, as those qubits are

loosely-connected. In order to emulate an all-to-all connectivity

(i.e., full coupling between all of the qubits), one needs to

sacrifice a large portion of the qubits for chain construction

which effectively reduces the number of qubits from 2048 to just

64 on the D-Wave 2000Q.12 Interestingly, the two models of

computation: gate-based and adiabatic quantum annealing have

been shown to be formally equivalent (at least for ideal quantum

devices).13

Due to the limited applicability of quantum annealers, the

number of studies where this type of quantum device is used to

solve chemistry problems is quite small. For example, there are

only two studies where the electronic Hamiltonian is mapped

to a quantum annealer. The method of the first paper14 con-

verts all Pauli operators of the second-quantized Hamiltonian

to the sz operator (the only operator implemented in the

current generation of D-Wave annealers) and makes multiple

replicas of basis functions to mimic basis function weights. The

method was later implemented on a real D-Wave annealer to

find the ground state energy of H2 and LiH.15 The second

approach16 is based on the fact that if one writes the expecta-

tion value of the second-quantized Hamiltonian in terms of

Bloch sphere angles, then the expression becomes a sum of

products of primitive trigonometric functions. The quadrant

of each Bloch angle can be stored using one or two binary

variables. The function of these binary variables is then optimized

on a quantum annealer while the remaining angles within the

[0, p/2] range are optimized classically.

The Quantum Annealer Eigensolver (QAE)17 can also be used

to solve chemistry problems. For example, previously, the

method has been applied to compute the vibrational spectrum

of a molecule.17 The QAE is a general-purpose eigenvalue solver

that runs on the D-Wave quantum annealer. If a problem can

be formulated as eigenvalue problem, then the QAE can be

used to solve that problem. The method is Hamiltonian and

basis agnostic as only a matrix needs to be provided.

As a matrix-based method, the QAE inherits all intrinsic

limitations of the matrix representation, such as exponential

scaling with the problem size for the matrices constructed

using direct product basis sets. A smarter choice of the basis

potentially may improve the scaling. However, other methods

of solving the eigenvalue problem on existing annealers

(e.g., for the electronic structure14,16) scale exponentially as

well. This is a limitation of the current generation of D-Wave

annealers, which currently do not implement non-stoquastic

Hamiltonians, needed to realize a better scaling.18

Thus, the primary goal of the QAE17 and the present study is

to show how one can map a fundamental physics or chemistry

variational (eigenvalue) problem onto the existing quantum

annealer hardware or equivalently an Ising Hamiltonian,

and demonstrate it on available quantum devices. While the

long-term goals of quantum computing are to realize a quantum

advantage and ultimately an exponential speed-up, these goals

are beyond the scope of the current study and will require more

advanced quantum algorithms and hardware.

Specifically, in the present study, we generalize the QAE

to solve complex matrices, both Hermitian and complex sym-

metric. The new methodology is then applied to compute

quantum scattering resonances. The real part of a complex

eigenvalue is the resonance energy, while the imaginary part

is related to the resonance width G via: E = Eres + (�G/2)i. The

lifetime of a resonance is the inverse of the resonance width,

t = h�/G. We apply the complex QAE to a one-dimensional (1D)

O + O scattering problem using a simplified interaction

potential to facilitate calculations. The QAE is run on both

a classical annealer and a hardware quantum annealer (the

D-Wave 2000Q). Both sets of results are benchmarked against

a standard (classical) numerically exact linear algebra library

(LAPACK).19

To the best of our knowledge, this work is the first time

when a complex eigenvalue problem is solved on a quantum

annealer, and it is the first treatment of a quantum scattering

resonance on any quantum device.

2 Methodology

The Quantum Annealer Eigensolver (QAE)17 is based on the

min-max theorem which states (in the simplest formulation)

that for a n � n Hermitian matrix A the smallest (largest)

eigenvalue is equal to the minimum (maximum) of the Rayleigh–

Ritz quotient

RA = (Av,v)/(v,v) (1)

or

RA= (Av,v) (2)

if the vector v is normalized. The vector vmin (vmax) for which

this minimum (maximum) is reached is the associated eigen-

vector. One may notice that RA is quite similar to the QUBO

expression xTQx, which is what the D-Wave quantum annealer

optimizes. First, we will consider real symmetric A and then

generalize to the complex cases below. For the real case, a

matrix of real numbers is common to both expressions: A for

the quotient in eqn (1) and Q for the QUBO problem. However,

v is a vector of real numbers, whereas x is a vector of binary

values. To map the first to the second, we use a fixed-point

representation for the elements of v. In this encoding, an

element va is represented using K binary variables or qubits

qai , 1r ir K, so that each qubit contributes a fraction (1/2, 1/4,

etc.) to the va and one more qubit is responsible for the sign, see

eqn (10) in the Appendix. The products of powers-of-two and

the matrix elements of A give the matrix elements of Q. In this

way, we have mapped the eigenvalue problem onto the QUBO

problem required for running on a quantum annealer.

After the mapping is established, one also needs to consider

adding a normalization constraint to the QUBO, because the

optimal vmin represented by x might be a zero vector (i.e.,

the trivial solution v = 0). In order to avoid that, we have to

augment the QUBO function with some constraint to encourage

8v8 = 1. The most obvious way is to add a term l(8v8� 1)2 to the
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QUBO with some penalty parameter l, but this will make

the QUBO biquadratic in qai and unmappable to the D-Wave

annealer. There is a procedure to handle terms beyond quad-

ratic, but it requires adding more constraints which increases

the total number of unknown penalties (or constraint multipliers).

Instead, we suggest dropping the second power in the added

constraint to keep the QUBO quadratic in q. In practice, the usage

of a linear form of the constraint does not cause problems, see

Results and discussion section for additional details concerning

the constraint form. The constant shift l can also be dropped

once the constraint is linear. Thus, the final objective function

is given by

F(v) = (v,Av) +l�(v,v). (3)

While eqn (3) looks like a Lagrangian and is usually tackled

with the Lagrange multiplier method (for example, see the

standard Hartree–Fock method20), here we will be optimizing

F(v) for multiple values of l, chosen iteratively (see below). Now,

the v - q mapping discussed above can be used to construct

the corresponding QUBO function FQ(q) that can then be

minimized on a quantum annealer. Please see eqn (11) and (12)

in the Appendix for the explicit form of FQ(q).

The normalization penalty l balances two things in the

QUBO function F(v): the expectation value and the norm.

One has to find a ‘‘sweet spot’’, such that the normalization

constraint is satisfied and the expectation value is the lowest

possible. With the linear form of the normalization constraint

there is not much of an actual constraint to satisfy, strictly

speaking. However, it does provide a way to avoid the trivial

solution and encourage a non-zero norm. A small l causes the

norm to be neglected, while a large l causes the Hamiltonian

contribution to be neglected (relative to the norm). Thus, the

optimal lopt is located somewhere in between. In the past,17

we did a simple scanning in l, but that required specifying the

l-range to scan. Instead, the current version of the QAE

iteratively searches for the best lopt without any additional

input from the user.

The positive and negative values of the maximum matrix

element of A serve as the range limits where lopt is searched.

On each l iteration, the QUBO is minimized and the vector v is

constructed from the binary string q. The vector v is then used

to evaluate the expectation value (v, Av). The expectation value

can be used to guide the next choice of l. However, for

inaccurate noisy QUBO solvers (see below), the expectation

value fluctuates on each run. Thus, it is not a reliable measure

to guide the next choice for l. Instead, we base our search on

the type of solution, trivial or non-trivial. The lopt is always

located around a ‘‘phase-transition’’ point – on the edge

between trivial and non-trivial solution areas. Thus, the QAE

iteratively shrinks the search range, so that the solution on the

left end is always non-trivial, whereas the solution on the right

end is always trivial. For each l the expectation value (v,Av) is

stored and the smallest one is returned to the user once the

iterations stop.

Currently, the QAE has two stopping criteria. One tracks how

much the expectation value changes and stops the search if the

recent changes are smaller than a user specified tolerance. The

other condition occurs simply when the l-search range shrinks

to a single point. The latter one guaranties that the algorithm

will eventually stop even when an inaccurate noisy QUBO solver

is used.

Since the number of qubits required to obtain reliable

results is much larger than the number of fully-connected

logical qubits on the D-Wave annealer (64 for the D-Wave

2000Q), the QAE uses an intermediate (interface) software

qbsolv.21 The qbsolv enables the treatment of large QUBO

problems. On each internal iteration, the qbsolv sorts the QUBO

variables of a large QUBO in order of importance, splits

the problem into subQUBOs of the size 64 qubits, minimizes

each chunk separately, appends the resulting binary strings

and refines the whole solution classically. The subQUBOs can

be minimized either classically using a Tabu search algorithm

or on a D-Wave quantum annealer. In this way, the QAE has two

modes of operation: classical and hardware (which control how

qbsolv’s subQUBOs are minimized).

While being a great tool to solve large QUBO problem, the

qbsolv is noisy. Running it many times for the same QUBO

problem gives different results on each run, independent of

how the subQUBOs are solved (i.e., either classically or on the

D-Wave annealer). This not only leads to fluctuating eigen-

values, but also limits a number of ways in which l can be

searched. For example, one cannot simply use gradient-based

methods to find lopt.

The QAE algorithm can also be used to compute more

than one eigenpair (i.e., the excited quantum states). The kth

eigenpair is found by repeating the whole procedure for a

modified matrix

A0 ¼ Aþ
X

k�1

i¼0

Siðvi � viÞ; (4)

where # denotes the outer product and the multipliers Si shift

the previously computed eigenpairs higher in the spectrum.

The Si should be large enough so that the next eigenpair of

interest is the minimum energy solution of A0. In the current

implementation they are set equal to the maximum matrix

element multiplied by 16. However, other multipliers such as 2,

4, 8 have also worked well. A more robust technique for

choosing the Si values could be investigated but this is not

our present focus.

2.1 Complex Hermitian matrices

In the complex case, both the given matrix A and its eigen-

vectors c are complex. This means that twice the number of

qubits are needed to encode the problem of the same size

(n� n) than for the real case. One half of the qubits encodes the real

part of an eigenvector cRe and the other half encodes the imaginary

part cIm. As shown in the Appendix (see eqn (13) and (14))

each (a,b) term of the objective function F(c) is now a complex

number. However, due to the Hermitian property of A, the sum

of two terms that have their indices exchanged (i.e., (a,b)

with (b,a)) gives a real number (see eqn (15)). Since the diagonal
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terms (a,a) are purely real for a Hermitian matrix, the whole

objective function F(c) and the resulting QUBO remain real. This

is fortunate since the D-Wave annealers optimize real QUBOs

only. A real objective function F(c) is expected for Hermitian

matrices since both components of F(c), the expectation value

(c,Ac) and the norm (c,c), have to be real. Thus, there are no

changes to the fundamental algorithm of the QAE for the complex

Hermitian case, other than doubling the qubit count and carefully

tracking real and imaginary parts of the complex numbers

involved. The final objective function is given by

Fherm(c) = (c,Ac) + l�(c,c) (5)

2.2 Complex symmetric matrices

The extension of the QAE to complex symmetric matrices is not

as elegant as for the real and complex Hermitian matrices. This

is due to the fact that both F(c) and resulting QUBO are not real

anymore. The sum of the (a,b) and (b,a) terms in F(c) has an

imaginary component, which replaces some of the real-valued

terms in the similar expression for Hermitian matrices, see

eqn (16). Generally speaking, the traditional variational method

is not applicable in the complex symmetric case, because the

eigenvalues are complex E = ERe + iEIm and minimizing only the

real part will not suffice. However, for the quantum scattering

problem, we are interested in the lowest lying bound and quasi-

bound (resonance) states which have the smallest energy ERe

and smallest width G = �2EIm. This means that the complex

eigenvalues of interest are variational in the sense that they

must have both small real and small imaginary parts. In a

typical 1D scattering problem, all ro-vibrational states until

the dissociation threshold are bound states with purely real

eigenvalues (i.e., they have zero width or infinite lifetime). The

quasi-bound (resonance) states which lie above the dissociation

threshold and are trapped behind the centrifugal barrier (and

also include some states above the barrier energy) have complex

eigenvalues with a finite width that increases with increasing

energy. Examples of this correlation can be found in the

literature, see Fig. 4 in ref. 22 (Lennard-Jones potential with

centrifugal term) and Tables 1, 2 and 4 in ref. 23 (double barrier

symmetric potentials). That is, the lifetime t decreases with

increasing resonance energy due to enhanced tunneling

through the barrier. At very high energies above the barrier,

the solutions approach the continuum states which have

infinite width (i.e., zero lifetime). Thus, at least for the complex

symmetric matrices generated for quantum scattering problems,

the QAE must be augmented with another constraint to minimize

the imaginary part or width G = �2EIm. Since the width is a

positive number and we are trying to minimize it, the addition of

the real valued term (�2EIm) in the F(c) is sufficient. The expres-

sion for EIm in terms of the matrix and vector elements is given in

the Appendix (see eqn (17)).

Similar to the normalization constraint, the new constraint

on G has its own penalty g. As before, the role of the new penalty

factor is to balance components in the objective function and

QUBO. Together, the two penalties, l and g, are used to balance

three components of the whole expression: energy, norm and

width. As a result, the search for the optimal weights, lopt and

gopt, makes the complex symmetric QAE more expensive than

the real and Hermitian versions. In practice, we found that the

2D search can be reduced to semi-2D by letting the l penalty

contribute to the G constraint, resulting in a lg(�2EIm) form

of the new constraint. The QUBO optimization in l is now

performed for multiple g values.

Unfortunately, the proposed changes discussed above were

not sufficient. After examining the QUBO terms, eqn (16) in the

Appendix, one can see there are only cRea cReb and cIma cImb products,

but there are no cross-terms cRea cImb or cIma cReb . This means that

the real and imaginary parts are independent and uncoupled.

In contrast, for the Hermitian case the cross-terms are naturally

included as part of the energy minimization and, as shown in

the Appendix eqn (18) and (19), are responsible for the ‘‘angular

repulsion’’ between the vector elements. With these terms

added, the optimization is encouraged to explore the full 2p

range of the complex phase and the complex symmetric QAE

becomes stable, giving reasonable energies and widths. Thus,

the final objective function for the complex symmetric QAE is

given by

Fcsym(c) = (c,Ac) + l�(c,c) � lg2EIm � lg0X(c) (6)

where X(c) contains all of the cross-terms from the Hermitian

case (see eqn (18) in the Appendix). The new g0 weight is

analogous to the g weight introduced above for the imaginary

constraint. It balances the relative contribution of the �X(c)

constraint with the other terms in eqn (6). The QUBO optimiza-

tion of the final form of the functional given in eqn (6) with

respect to l is now performed for multiple g and g0 values to

determine the overall optimal complex symmetric eigenvalue

solution. The addition of the �2EIm and �X(c) constraints does

not affect the final computed energies similar to the normali-

zation constraint.

3 Results and discussion

The new complex QAE methodology is applied to the calcula-

tion of both bound and quasi-bound (resonance) states of

molecular oxygen O2. The focus of the present work is to

demonstrate the new capabilities of QAE. Thus, we use a

simplified 1D model for O2 where the depth of the O2 potential

well is artificially decreased in order to reduce the number of

bound states to just one or two. The oxygen molecule is also

rotationally excited to j = 6 which gives rise to a small centri-

fugal barrier that supports at least one quasi-bound state.

The traditional approach for computing the quasi-bound

(resonance) spectrum is to add a Complex Absorbing Potential

(CAP) to the Hamiltonian. The Hamiltonian matrix is constructed

using a suitable basis and the matrix is diagonalized to obtain the

complex eigenvalues and eigenvectors. In the present work, we

use two different basis sets and absorbing potentials with two

different O2 model potentials. One model leads to a Hermitian

matrix and the other model gives a complex symmetric matrix.

Thus, with these two model problems we can demonstrate both
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the Hermitian and complex symmetric versions of the new

complex QAE methodology.

The 1D model problem is given by the Schrödinger equation

��h2

2m

@2

@r2
þ �h2jð j þ 1Þ

2mr2
þ VðrÞ þ VabsðrÞ

� �

cðrÞ ¼ EcðrÞ (7)

where m is the reduced mass of O2, r is the internuclear distance

of O2, j is the rotational quantum number, V(r) is the O2

interaction potential, Vabs(r) is the absorbing potential, c(r) is

the wave function and E is the energy. The Hamiltonian

operator (H) consists of the terms in the brackets acting on

c(r) on the left hand side of eqn (7) (i.e., Hc(r) = Ec(r)). The

interaction potential is chosen to be a standard Morse potential

given by V(r) = De{exp[�b(r � r0)] � 2exp[�b(r � r0)]} where De,

b, and r0 are parameters specified below. Two forms of the

absorbing potential (Vabs) are utilized, a real quadratic potential

VrapðrÞ ¼ Zðr� rcÞ2 ðr � rcÞ

¼ 0 ðro rcÞ
(8)

and a complex (purely imaginary) quadratic potential

VcapðrÞ ¼ iZðr� rcÞ2ðr � rcÞ

¼ 0 ðro rcÞ
(9)

where Z is the potential strength and rc is its origin.

In the Hermitian model, the real absorbing potential of

eqn (8) (with Z = 0.01 and rc = 8.5a0) is used in eqn (7). The wave

function c(r) in eqn (7) is expanded using a complex Fourier

basis given by cjðrÞ ¼
P

þmmax

m¼�mmax

cjmexpðimfÞ=
ffiffiffiffiffiffi

2p
p

where

fk = 2pk/n, k is an integer labeling the kth grid point, and

n = 2m + 1 denotes the total number of grid points. The grid in

r is defined as: rk = rmid + fkdr where dr = (rf � ri)/2p and ri, rf
and rmid denote the initial, final and midpoint of the grid. The

grid parameters used in the Hermitian model are ri = 1.5a0,

rf = 9.5a0, and rmid = 5.5a0. The complex expansion coefficients

c jm are the eigenvectors. These are computed by diagonalizing

the Hamiltonian matrix (H) which when evaluated in the

complex Fourier basis is a Hermitian matrix. In order to keep

the problem size small for QAE so that it fits on the existing

quantum hardware (e.g., the D-Wave annealer), we chose a

small basis m = 10 which gives n = 21 grid points and a

Hermitian matrix of size 21 � 21. A discretization with K = 10

qubits was used which results in a QUBO of size 210 � 210.

To keep the problem size manageable, we also chose the

positions of the absorbing potential wall to be as close as

possible to the barrier, rc = 8.5a0. The dynamic range of the

Hamiltonian matrix was also reduced by setting all matrix

elements with absolute value larger than Emax = 200 cm�1 equal

to Emax. This avoids wasting ‘‘precious’’ qubits in resolving the

large matrix elements associated with the repulsive regions of

the potential (we chose Emax large enough so not to significantly

affect the low-lying eigensolutions of interest).

The true 1D potential for O2 contains too many bound states

(even with the centrifugal component added), which causes the

QAE to do a lot of work before it can reach the first resonance

state above the threshold. The QAE performs spectrum trans-

formations using the previously computed low-energy states,

as was explained earlier (see eqn (4)). This not only takes time,

but also introduces noise (from the qbsolv) to the transformed

matrices A0, which may in turn corrupt high-energy solutions.

Since the focus of the present work is to compute quasi-bound

states, we artificially lowered the well depth of our O2 model

potential so that it supports only one or two bound states. For

the Hermitian model, the Morse parameters for O2 were chosen

as De = 200 cm�1, b = 2.5836, and r0 = 2.28189a0 (we note that

the b and r0 values are the correct values for O2 and were

unchanged, only the De was reduced from its true value of 44,

457.26 cm�1). The corresponding model potential curve V(r) is

plotted in Fig. 1 (the thick black curve). This choice of Morse

parameters together with j = 6 supports two bound states and

one quasi-bound state (a shape resonance trapped behind the

broad centrifugal barrier).

The results of using the Hermitian QAE are shown in Fig. 1.

For comparison, we calculated all three states using a standard

numerical diagonalization library (LAPACK)19 plotted in solid

blue. The QAE results in classical mode are plotted in dashed

red, and the QAE results in hardware mode on the D-Wave

annealer are plotted in dashed black (thinner line). As one can

see, there is not much difference between the three methods.

Thus, the Hermitian QAE is working well for the calculation of

both bound and resonance state energies and wave functions.

The energies are all collected in Table 1. The optimal normali-

zation penalty, determined iteratively, for each of the three

states is lbound1 = 90.625, lbound2 = 31.25, and lres = �7.53326,

respectively. The eigenvectors computed using LAPACK and

QAE were found to agree up to an overall arbitrary phase. The

QAE eigenvectors had a different phase on each run, which

nicely demonstrates a property of Hermitian matrix eigen-

vectors – the arbitrariness of the phase. It seems that the qbsolv

Fig. 1 Application of the Hermitian QAE to the calculation of bound and

resonance states. Two bound states and one resonance were calculated in

a model O2 potential for j= 6 (black curve). The model Hamiltonian was

diagonalized using LAPACK (blue), and the QAE in both classical (dashed

red) and hardware (D-Wave,dashed black) modes. The wave functions of

all three methods are close to each other. The differences in state energies

(horizontal dashed lines) are small (see Table 1).
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noise ultimately determines the phase, rather than the less-

influential hardware noise. In contrast, the LAPACK eigen-

vectors had the same phase on each run.

For the complex symmetric matrix model, the imaginary

absorbing potential of eqn (9) (with Z = 0.005 and rc = 13.0a0)

is used in eqn (7). The wave function c(r) in eqn (7) is

expanded using real valued particle-in-a-box basis functions:

cjðrÞ ¼
ffiffiffiffiffiffiffiffi

2=L
p

P

mmax

m¼1

cjmsinðmpr=LÞ where L is the width of the box

L = rf � ri. The grid parameters used in the complex symmetric

model are ri = 1.5a0 and rf = 13.5a0. The size of the basis set was

mmax = 20 which gives a 20 � 20 dimensional complex sym-

metric matrix. A discretization of K = 10 qubits was used which

results in a QUBO of size 200 � 200. For the complex symmetric

model, the Morse parameter De = 125 cm�1 was chosen for O2

(the b and r0 are the same as in the Hermitian model). The

corresponding potential curve V(r) is plotted in Fig. 2 (the thick

black curve). The smaller De value together with j = 6 supports

one bound state and one quasi-bound (resonance) state. As was

done for the Hermitian case, the dynamic range of the Hamilto-

nian matrix was reduced by setting all matrix elements with

absolute value larger than Emax = 75 cm�1 equal to Emax.

The QUBO optimization in the QAE with respect to l in

eqn (6) was repeated on a 9 � 9 grid for a total of 81 values of

the two new penalties g and g0. Specifically, each penalty was

discretized on a grid of 9 values decreasing by a factor of two

each time: 0.05, 0.025, 0.0125 0.00625, etc. In the present

problem, only positive values of g and g0 need be considered.

The optimal values for these penalties were determined by

running QAE ten times at each of the 81 values of g and g0.

The real part of the QAE energy eigenvalue was averaged over

the ten runs at each point and the point with the lowest average

energy value was chosen. This procedure is repeated for each of

the eigensolutions. The optimal g and g0 for the bound and

excited states were determined to be (gbound = 7.8125 � 10�3,

gbound
0 = 1.5625 � 10�2) and (gres = 7.8125 � 10�3, gres

0 = 0.25),

respectively. The optimal normalization penalty for each state,

determined iteratively, is lbound = 29.301453 and lres = �7.983398.

Fig. 2 shows the QAE results for the complex symmetric

matrix. Again the matrix was diagonalized using three methods: a

traditional LAPACK diagonalization (blue) and the QAE in both

classical (dashed red) and hardware (dashed black) modes. As with

the Hermitian matrices, the differences in the energy and wave

function computed using the three methods are very small.

However, these new calculations treat the imaginary component

of the energy explicitly and therefore provide the lifetime of the

resonance. In contrast, the Hermitian approach gives only the real

part of the eigenvalue (i.e., the resonance energy but no resonance

lifetime). The complex symmetric energies and lifetimes are

collected in Table 2.

There are a number of points about the QAE that are worth

discussing. As it was mentioned in the methodology section,

we cannot afford the second power of the normalization con-

straint and, because of that, we had to change the form of the

constraint to linear. In a sense, this means that the correct

value of the norm, unity, is approached from a single side, from

zero to one, and nothing is preventing it from exceeding unity.

With a full two-sided (quadratic) constraint, the minimum of

the QUBO F(v) will be the minimum of the expectation value

part (v,Av), for some reasonable l. For the one-sided constraint

that we use, the two minima diverge, the QUBO minimum

diverge further and further from the expectation value mini-

mum as l increases (the excessive norm drives the solution

away). In this case, we have to use the expectation value and the

solution type (trivial or non-trivial) to guide the choice of l and

avoid following the QUBO minimum as l increases. However, l

is not known for the full (quadratic) constraint either and

therefore requires searching as well. Thus, both forms of

the normalization constraint (linear and quadratic) are prac-

ticality the same, as both require l-searching. However, the

one-sided constraint has an advantage of being linear (and

therefore quadratic in q) and thus programmable on the

D-Wave annealer.

Table 1 The Hermitian bound and resonance state energies (cm�1)

computed using LAPACK, QAE in classical mode (QAE Cl.) and QAE in

hardware mode (QAE Hw.)

State LAPACK QAE Cl. QAE Hw.

Bound #1 �97.36 �96.44 �95.73
Bound #2 �32.00 �31.48 �30.73
Resonance 2.85 3.94 4.46

Fig. 2 Application of the complex symmetric QAE to the calculation of

bound and resonance states. One bound and one resonance state were

calculated in a model O2 potential for j = 6 (black solid curve). The same

complex symmetric matrix was solved using LAPACK (blue) and the QAE in

both classical (dashed red) and hardware (D-Wave, dashed black) modes.

The wave functions of all three methods are close to each other. The

energies of both states computed using the three methods are almost the

same (horizontal dashed lines).

Table 2 The complex symmetric bound and resonance state energies

(cm�1) computed using LAPACK, QAE in classical mode (QAE Cl.) and QAE

in hardware mode (QAE Hw.). The resonance lifetimes (ps) are also listed

State LAPACK QAE Cl. QAE Hw.

Bound E �32.16 + i0.003 �31.87 + i0.003 �31.51 + i0.003
Resonance E 6.76 � i0.102 7.05 � i0.108 7.75 � i0.097
Resonance t 26.0 24.5 27.3
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Specifically for quantum scattering problems, the imaginary

part of the energy has to be negative, because the physical state

width is always a positive number. This means that we do not

need the qubit that is responsible for the sign of the imaginary

part of eigenvector element. Thus, we can probably save n

qubits for this particular class of problems and this may help

to improve the quality of solution.

The QAE energies and lifetimes reported in Tables 1 and 2

are not exactly the same as those computed using LAPACK.

We found that the qbsolv software, that is used to divide

large QUBO problems into smaller ones, is noisy and causes

discrepancies in energies and lifetimes. More details and

possible ways to improve the accuracy can be found in the

original QAE paper.17

The addition of the Hermitian cross-terms (i.e., the coupling

between the real and imaginary components X(c)) as an addi-

tional constraint in the complex symmetric QAE might be

improved upon. The choice of this constraint was motivated

by the Hermitian expression but other forms for this constraint

might be derived and investigated which could lead to more

accurate solutions.

Finally, the method is limited by the number of fully-

connected qubits. It uses as many of those as are available

(only 64 on the D-Wave 2000Q) which are realized as chains of

loosely-connected physical qubits. The lack of full connectivity

is compensated classically by the qbsolv interface which effec-

tively boosts the number of fully-connected qubits by two

orders of magnitude. As a consequence, for a typical level of

discretization K = 10 used in the present work for the real and

imaginary parts, the largest complex matrix that can probably

be targeted is about 300 � 300, or a diatomic molecule. This

estimate is very approximate and should be taken with caution.

While the upcoming D-Wave Advantage will have 5k qubits and

better connectivity, it is hard to tell if resonances in a triatomic

molecule could be computed reliably. The classical part of

the QAE (constructing the matrix and submitting QUBOs) has

negligible resource requirements.

4 Conclusions

In the present work, we generalized the Quantum Annealer

Eigensolver to the complex Hermitian and complex symmetric

matrices. The Hermitian case is fundamentally very similar to

the real case, since the imaginary terms in the underlying

QUBO expression completely cancel out. Thus, the problem

is solvable on D-Wave annealers as in the real case. In the

complex symmetric case, the imaginary part does not vanish

and is treated as another real valued constraint in the QUBO.

Since the bound states have zero width (i.e., their eigenvalues

are purely real) and the quasi-bound (shape resonance) states

also have small widths that increase with increasing resonance

energy, we constrain the imaginary part of the QUBO to be of

small magnitude. The complex symmetric case also requires yet

another constraint between the real and imaginary components in

order to maintain stability and converge to a reasonable solution.

The Hermitian QUBO provides motivation for a natural choice for

this constraint but other possibilities could exist.

Using the newly developed complex QAE extensions, a few

ro-vibrational states of molecular oxygen O2 were calculated in

a model 1D potential including a centrifugal component with

j = 6. The Hermitian QAE gives only real energies, whereas

the complex symmetric QAE gives complex eigenvalues which

include both the energy and width. All of the bound and

resonance state properties, i.e. energies, lifetimes and wave

functions, were reproduced by the QAE quite well. The D-Wave

2000Q and qbsolv software were used to solve the underlying

QUBO problems. In principle, the method can be easily

extended to molecules with multiple degrees of freedom by

constructing a Hamiltonian matrix in a direct-product or

any other optimal basis set and using exactly the same QAE

methodology to solve the matrix on an annealer.17 This,

however, would require very substantial quantum resources.

This first-ever treatment of scattering resonances on a

quantum annealer opens the door to the calculation of rate

coefficients of chemical reactions that proceed through for-

mation of long-lived intermediate species, described in quan-

tum mechanics by scattering resonances, and the modeling of

chemical dynamics on quantum annealers. We hope that this

work will help stimulate additional studies in this fascinating

new computational paradigm.
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Appendix

This appendix gives detailed QUBO expressions for the real,

Hermitian and complex symmetric input matrices.

Real matrix QUBO

We approximate each vector element va with a finite number of

qubits qak (1 r k r K) using a fixed-point representation:

va ¼
X

K�1

k¼1

2k�Kqak � qaK 2 ½�1; 1Þ (10)

As a result, the F(v) function is approximated by

FQðqÞ ¼
X

n;n

a;b

vaðAa;b þ lda;bÞvb ¼
X

n;K;n;K

a;k;b;l

Qa;k;b;lq
a
kq

b
l ; (11)

where the QUBO matrix element is defined as

Qa,k;b,l = (Aa,b + lda,b) � 2k+l�2K(�1)dk,K+dl,K (12)

Thus, in order to obtain a QUBO element, an element of the

input matrix A, with l added to the diagonal, has to be multi-

plied by the appropriate power of two with the correct sign.

Most of the QUBO elements are positive, except those that have

either k or l equal to K (but not both simultaneously). The

expression for Q in eqn (12) is symmetric with respect to the
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exchange a,k 3 b,l pairs of indices which is a property of any

QUBO problem.

Complex QUBO elements

Since the eigenvectors of a complex matrix A are complex, we have

to introduce separate real cRea and imaginary cIma parts of an eigen-

vector element ca. The l-normalization constraint does not change,

so we can introduce a complex matrix Z = A + lI for convenience.

The objective function that we want to minimize becomes

FðcÞ ¼
X

n;n

a;b

�caZa;bcb; (13)

where the bar above ca is complex conjugation. A single term of the

sum is a complex number

�caZabcb ¼ ðZRe
ab þ iZIm

ab ÞcRea cReb þ iZRe
ab � ZIm

ab

� �

cRea cImb

þ ðZIm
ab � iZRe

ab ÞcIma cReb þ ZRe
ab þ iZIm

ab

� �

cIma cImb

(14)

Next, we will see what happens to the sum of the (a,b) and

(b,a) terms, when the matrix A is Hermitian or complex

symmetric.

Hermitian matrix QUBO. Because Zab = %Zba for the Hermitian

matrix A, the sum of two opposite (a,b) and (b,a) terms of the

objective function F(c) is a real number

�caZabcb þ �cbZbaca ¼ 2ZRe
ab c

Re
a cRe

b � 2ZIm
ab c

Re
a cImb

þ2ZIm
ab c

Im
a cRe

b þ 2ZRe
ab c

Im
a cImb

¼ 2Reð�caZabcbÞ

(15)

Thus, for a Hermitian matrix the eigenvectors are complex

but the QUBO expression is purely real, due to the cancellation

of the imaginary part in the sum over the (a,b) and (b,a) terms.

This is consistent with the property that eigenvalues of a

Hermitian matrix are real.

Although the sum has reduced to the simple form of

Re((a,b)), all four terms in eqn (15) have to be added to the

QUBO, with both cRea and cIma discretized as in the real symmetric

case (eqn (10)–(12)). We note that by using the four terms in

eqn (15), the sums over a and b in constructing the functional F(c)

in eqn (13) are now restricted to a = 1,2,. . .n with b Z a.

Complex symmetric matrix QUBO. For the complex sym-

metric case, Zab = Zba. In contrast to the Hermitian case, the

sum of (a,b) and (b,a) terms in the QUBO is a complex number

�caZabcb þ �cbZbaca ¼ Zabð�cacb þ �cbcaÞ

¼ 2ZabðcRe
a cRe

b þ cIma cImb Þ

¼ 2ZRe
ab c

Re
a cRe

b þ 2ZIm
ab c

Re
a cRe

b � i

þ2ZIm
ab c

Im
a cImb � i þ 2ZRe

ab c
Im
a cImb

(16)

The first and fourth terms in eqn (16) are identical to those

in eqn (15), but the second and third terms are different

and now imaginary. Thus, in the complex symmetric case

the sum of (a,b) and (b,a) does not reduce to a real number.

This presents a problem, since the QUBO function has to be

real. To overcome this, we treat the imaginary terms as real and

include them in the functional as a second constraint (�2EIm)

which must be minimized along with the expectation value and

normalization constraint (see eqn (6) in the main text)

�2EImab = 2ZImab c
Re
a cReb + 2ZImab c

Im
a cImb (17)

We also note that there is no coupling (cross terms) between

the real cRe and imaginary cIm in eqn (16) in contrast to

eqn (15), which leads to stability issues. To overcome this

problem, a third constraint �X(c) (see eqn (6)) is added to the

QUBO. The pairwise terms of �X(c) are the cross terms from

eqn (15)

�Xab(c) = �2ZImab c
Re
a cImb + 2ZImab c

Im
a cReb (18)

The role of the �X(c) constraint becomes clear, once one

recognizes the cross product between the ca and cb, represented

as vectors on the complex plane (with x = Re and y = Im)

�Xab(c) = �2ZImab |ca||cb|sin(yab), (19)

where |ca| and |cb| are vector magnitudes and yab is the relative

angle between the vectors. Thus, the �X(c) constraint is a

weighted sum of pairwise terms, which encourages the optimi-

zation to explore regions away from sin(yab) = 0 (i.e., to explore

the full 2p range in yab) similar to the normalization constraint

which encourages solutions with non-zero norm. Without this

‘‘angular repulsion’’ between the vector elements, the optimi-

zation collapses to yab = 0 and does not explore the full 2p range

of possibilities. It therefore never converges to a solution and/or

becomes unstable. The normalization constraint separately

encourages non-zero |ca| and |cb|. Again, all the sums over a

and b are restricted to a = 1,2,. . .n with b Z a.

D-Wave setup

The D-Wave 2000Q was accessed using the D-Wave’s Ocean

tools. Since in an actual quantum annealer some qubits and

couplers are not active (unrepresented), we have been using the

Virtual Full-Yield Chimera (VFYC) version of a hardware QUBO

solver, which postprocess a QUBO solution to fix unrepresented

qubits and couplers. This allows for the development of a

‘‘portable’’ code. The embedding (mapping QUBO variables to

qubits) was done automatically based on Ocean’s heuristic

algorithms, and the default annealing schedule was employed.
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