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Abstract: A theoretical approach is developed for the description of all possible recombination
pathways in the ozone forming reaction, without neglecting any process a priori, and without
decoupling the individual pathways one from another. These pathways become physically distinct
when a rare isotope of oxygen is introduced, such as 80, which represents a sensitive probe of
the ozone forming reaction. Each isotopologue of O3 contains two types of physically distinct
entrance channels and two types of physically distinct product wells, creating four recombination
pathways. Calculations are done for singly and doubly substituted isotopologues of ozone, eight
rate coefficients total. Two pathways for the formation of asymmetric ozone isotopomer exhibit
rather different rate coefficients, indicating large isotope effect driven by AZPE-difference. Rate
coefficient for the formation of symmetric isotopomer of ozone (third pathway) is found to be in
between of those two, while the rate of insertion pathway is smaller by two orders of magnitude.
These trends are in good agreement with experiments, for both singly and doubly substituted ozone.
The total formation rates for asymmetric isotopomers are found to be somewhat larger than those for
symmetric isotopomers, but not as much as in the experiment. Overall, the distribution of lifetimes is
found to be very similar for the metastable states in symmetric and asymmetric ozone isotopomers.

Keywords: ozone; isotope effect; scattering resonances; hyperspherical coordinates

1. Introduction

The recombination reaction that produces the usual (isotopically unsubstituted) ozone
molecule may look relatively simple, O + O, — O3, but this is because in this case only
one, the most abundant isotope of oxygen (1°0) is involved. When a rare isotope is intro-
duced, say 180, several physically distinct reaction pathways (1)-(4) can be identified [1-8]:

A: 160+ 160180 %160160180 (1)
B: 180+ 160160 *)180160160 (2)
S: 160+ 180160 %160180160 (3)
I: 180+ 160160 *>16018016O (4)

Two of these pathways, A and B, produce an asymmetric ozone molecule 1606080,
while the other two pathways, S and I, produce symmetric ozone molecules 1°O'801°Q.
Three of them: A, B and S, correspond to the addition of an atom to a diatomic moiety
(a direct end-on processes), whereas the last one, I, represents the insertion of a rare isotope
in-between the two atoms of the reagent molecule (and thus is expected to follow a more
complicated indirect reaction path, see below). If two 8O isotopes are involved, then four
more recombination pathways need to be considered:

A: 180+ 180160 4>180180160 (5)
B: 160+ 180180 4>160180180 (6)
S: 180+ 160180 *>180160180 (7)
I: 160+ 180180 _>18016018O (8)
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with similar nomenclature, similar symmetry properties, and similar reaction mecha-
nisms. However, as we will discuss further below, some properties of the reaction pathways
(5)—(8) for doubly substituted ozone molecules appear to be just opposite to those of path-
ways (1)—(4) for singly substituted ozone molecules. The singly and doubly substituted
molecules are said to represent two isotopologues of ozone.

Different isotopologues are relatively independent, in a sense that they cannot inter-
convert one into another, although some of the reagents they use are the same, namely, the
160 and 180 atoms, and the 1°O'80 diatomic, see Equations (1)~(8). However, within each
isotopologue the symmetric and asymmetric ozone molecules are closely related, since
they can interconvert one into another, at least in principle, following an isomerization
path through the potential energy surface, for example:

160160180 = 160180160 (9)
or:
180160180 — 160180180 (10)

Therefore, symmetric and asymmetric ozone molecules within the same isotopologue
are called isotopomers. In Figure 1a,b, a schematic of the potential energy surface is given
for each isotopologue, with two isotopomers in each case, and four reaction pathways
indicated.

8+66 6+88

Figure 1. Schematic of the global PES of ozone that possesses a three-fold symmetry with respect to
the entrance channels and the product wells, but this symmetry is lowered when rare isotopes are in-
troduced. The channels and the wells are labeled for singly substituted (a) and doubly substituted (b)
isotopologues, respectively. Reagents are indicated by black numbers, the product ozone molecules
by white numbers, dotted lines are drawn through transition state regions seen as “bottlenecks” in
this figure. Four distinguishable reaction pathways are also indicated in each case, by red letters and
arrows. The insertion pathway is shown schematically by dashed arrow.

From this figure one can see that overall, on the global potential energy surface of
a triatomic ozone molecule, there are three entrance channels, connected through six
transition states to three potential energy wells. However, since two isotopes in each case
are indistinguishable (two °O in the singly substituted isotopologue, or two 80 in the
doubly substituted isotopologue) there are only two distinguishable sets of reagents, and
two distinguishable products, leading to four distinguishable reaction pathways in each
case: A, B and S and I, as introduced above. For the purpose of brevity, here and below, the
notations “6” and “8” will be used to designate isotopes °O and 8O respectively. Note
that 668 and 866 indicate physically indistinguishable asymmetric ozone molecules formed
simultaneously and counted in together as one product. The same is true for 688 and 886
in the case of double substitution.

Experimental studies started by the Mauersberger group [1-5] and continued by
Janssen and coworkers [6-8], gave us unique information about the magnitudes of recombi-
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nation rate coefficients for these four pathways: x4, xp, ks and x in both singly and doubly
substituted cases. Their results, summarized in Table 1 here, indicate a broad variation
of recombination rate coefficients through isotopomers and isotopologues of ozone (the
factor of 2 is introduced for x5 and xg to account for the usual symmetry effect associated
with the number of states in the homonuclear and heteronuclear diatomic reagents). In
the first row we collected the values of 2kg that can be used as a convenient reference for
each column (Indeed, note that the values of 2«xg are very close to each other and to the
experimental value for xgg5 = 60 x 1073 cm®/s for the usual unsubstituted ozone) [9].
The values of rate coefficients 2k and kg collected in the second and third rows deviate
significantly from 2xg, and, importantly, these deviations occur in the opposite directions
in the cases of single and double isotopic substitutions (compare even columns with odd
columns of Table 1). Finally, the values of x; for the insertion pathway, listed in the fourth
row, are much smaller than the other three, by up to two orders of magnitude.

073% cm®/s) for four pathways

Table 1. Experimental and theoretical rate coefficients (in the units of 1
of ozone formation at 296 K in the cases of single and double isotopic substitution, and the corre-

sponding three isotope effects as defined by Equations (61), (64)—(67) in Sections 3.1 and 3.2 below.

Experiment [1-8] Theory, This Work
Rate Coefficient
ate Loetliclents Single Double Single Double
2Kg 60 62 60 61
2KA 86 55 73 57
KB 55 90 55 73
K1 0.36 1.74 0.18 1.39
Isotope Effects
4 1.68 1.77 1.45 1.38
N 1.13 1.19 1.02 1.08
¢ 4.8 7.9

These experimentally measured rate coefficients suggest the presence of three definite
isotope related phenomena, namely (see Table 1):

(1) Quantum AZPE-effect, responsible for large difference, about 60%, between 2k and
xp of the pathways A and B that are just slightly endo/exothermic (one with respect
to another). This phenomenon will be named Z-effect.

(2) Symmetry-driven n-effect [1,10-12], that favors formation of asymmetric molecules,
160160180 and 160180180, compared to the symmetric ones, 160180160 and 180100180,
by about 16%;

(3) Very large difference, by a factor of ~5, between the insertion rate coefficients x in the
singly and doubly substituted cases [1]. Here we will call it &-effect.

The first two effects received a lot of attention from the theory community [13-24].
First, the large AZPE-effect was shown to originate from quantum mechanics [14-16] and
thus is fundamentally important for our understanding of the chemical reaction rate laws
in general. Nowadays this phenomenon is understood relatively well [17,20-22] and will
naturally emerge as a part of the theory developed below. The symmetry-driven n-effect,
practically important for atmospheric chemistry [6,12], remains mysterious, despite of
significant efforts dedicated to finding its origin [18-24]. One of the goals of this work
is to develop theoretical grounds for the description of this effect (although at present
time we cannot say that we entirely understand it). In sharp contrast with the first two
phenomena, the third and the largest isotope effect, related to the insertion pathway in
singly and doubly substituted isotopologues, has never been discussed in the literature.

Indeed, the rate coefficient k7 of insertion has never been computed theoretically by
anyone. One reason for this is that in the experiment the values of xj are smaller than those
of x4, kg and g, roughly, by two orders of magnitude [1], and therefore for theorists it is
very tempting to neglect k1. But then the relevant isotope effect is also lost. In this work
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we develop a theory that includes all pathways of ozone formation, without neglecting
anything a priori.

Another reason for the absence of any theoretical work on the insertion pathway is
that this process is not a simple direct reaction. In the Figure 1 above, for simplicity, this
process is shown by a straight arrow but, in reality, the reaction path cannot cross the center
of this figure (at any relevant temperature) since the PES is extremely repulsive in that
part of the configuration space. The insertion path must be indirect, akin to the roaming
mechanism [25], when the reagents enter through one channel, form an excited complex in
the adjacent well, then roam through the other channel, isomerizing into the other well,
where the second complex is formed and finally stabilized by bath gas collisions. For
example, in the case of singly substituted isotopologue this process can be represented as:

180 + 160160 N 180 . 160160 d_ef 180160 . 160 roi;n 160 . 180160 St_a;J 160180160 (11)
In the doubly substituted case:
160 4 180180 form 160 ... 180180y dec 160180y .. .18 ™M 18y . 16)18() stab 18016180y (12)

How to describe these processes theoretically? Classical trajectories are used for the
description of roaming [25], but the classical approach is efficient and accurate only if
roaming is the dominant mechanism of the reaction, or the only one possible. In the
case of ozone, the insertion by roaming is a minor pathway, with a small probability.
Prediction of rare events using classical trajectories is problematic on its own, and therefore
is not expected to be helpful in the case of ozone. The quantum dynamics treatment,
such as the wave packet method [26], is usually employed for the description of direct
reactions, that proceed through the transition state relatively fast, without formation of
a long-lived complex. The propagation of wave packets through the extended parts of
the potential energy landscape, in particular over the deep wells where the long-lived
complexes (scattering resonances) are formed, is numerically challenging [26]. Therefore,
the quantum dynamical description of roaming is not routinely done [27]. It appears that
all previously developed theoretical models of ozone formation either used an approximate
treatment for scattering resonances or did not include the lifetimes at all, appealing to the
low-pressure regime [28-31].

In this work, for theoretical description of the insertion process, we employed a general
time-independent quantum mechanical approach, in which the metastable ozone states
above dissociation threshold are described by scattering resonances. Complex absorbing
potential is introduced in the asymptotic part of the PES, and the widths of individual
scattering resonances I'; are obtained from the complex parts of the total energy, that are
used to compute rate coefficients of decay (spontaneous, first order) of the individual
scattering resonances as:

T
h

Importantly, within this approach, we can setup the complex potential in the individ-
ual channels on the PES, in order to split the resonance width and the corresponding decay
rate coefficient onto two channel-specific contributions:

ke = (13)

h1 h2
Lt =T+ I (14)
k;iec — k?ec,chl + k?ec,chZ (15)

Here k?eC'Chl = T'$hl /1, whereas k?ec’Chz = T$h2/1. For example, in the singly sub-

kel corresponds to the decay of metastable ozone onto 0 + 100160

k;:lec,chZ

stituted case

through one channel at the bottom of Figure 1a, while corresponds to the decay of

a metastable ozone onto °O + 00 through two indistinguishable channels at the top

chl corresponds to the decay of

of Figure la. Similar, in the doubly substituted case k?ec’
ozone onto 20 + 800 through one channel at the bottom of Figure 1b, while k?ec’cm

corresponds to the decay of a resonance onto 80 + 18060 through two indistinguishable
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channels at the top of Figure 1b. Using the equilibrium constant (computed statistically),
the rate coefficients of decay can be converted into the rate coefficients for formation of the
metastable ozone states. Note that this part of the method is based on rigorous quantum
mechanical calculations.

The second feature of our theory is the splitting of the rate coefficient for stabilization
of scattering resonances (second order, by collisions with bath gas) onto two components
- those that produce symmetric and asymmetric ozone molecules. This is done semi-
empirically, by assuming that stabilization rate coefficient for a scattering resonance is
proportional to the probability amplitude over certain area of the PES. Namely, integrat-
ing the moduli squared of wavefunctions of the individual scattering resonances over
the parts of the PES associated with symmetric and asymmetric ozone molecules (see
Figure 1), we can determine the product-specific probabilities p?ym and p?sym, and the total
probability [21-24]:

Pt = " (16)

1

The two product-specific stabilization rate coefficients, are then computed as:

k?tab, sym _ kstab p?}’m 17)

k?tab, asym _ kstab p;isym (18)

The values of probabilities p?ym and pfsym are rigorously determined for individual

scattering resonances, by integrating their wave functions. In the singly substituted case
p?ym and p?sym are associated with 10800 and °0'®0Q'80, while in the doubly substi-
tuted case they correspond to 0080 and 108080, respectively. Their sum defines
the total stabilization rate coefficient, naturally, as k?tab = kstab pi°t. One single value of
kstb — 9oy, where v = /8kT/ (rtu), p is reduced mass and og,p, = 154.03 a% is used
for all resonances, as was recommended earlier in the mixed quantum/classical study of
collisional energy transfer [32].

Combination of the two channel-specific rate coefficients for decay of resonances, with
two product-specific stabilization rate coefficients, permits to express four pathway-specific
recombination rate coefficients x4, g, ks and xj through I'¢ht, T$h2, p?ym and p?sym (for
each resonance). In addition, we will obtain, analyze and employ the expressions for
recombination rate coefficients ksym and xasym for production of symmetric and asymmetric
ozone molecules.

2. Theory
2.1. The Four Pathways of the Recombination Reaction

According to the Lindemann mechanism [33], the rate R of a recombination process is
a product of the concentration of metastable species [O3] represented here by scattering
resonances, the concentration of bath gas particles [M], and the stabilization rate coefficient
kst2P see Equation (19). If we assume that different resonances are populated and stabilized
independently, the total rate is given by the sum over scattering resonances (labelled by
index i):

R = Y k®°[M][03]; (19)

Using Equation (16) this formula splits onto two contributions that correspond to the
rates of production of symmetric and asymmetric ozone molecules, as follows:

1 1

— )stab [M} Y [Oé]iP?ym + fstab [M] Z [Og]ip?s}’m

- 1
1

R = The (™ 4 ) v 3
! (20)
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If we define the corresponding rates as:

Reym = k*°°M] ) [O5];p7"™ (21)

1

Rasym = kStab [M] Z [O;]ip?sym (22)

1

then the total rate is simply the sum of two:
Riot = Rsym + Rasym (23)

Note that summation in Equations (21) and (22) goes through all resonances, through
exactly the same set of states in both Equations (21) and (22). What differentiates Rsym
from Rasym are the values of stabilization probabilities defined for each state i: p?ym in
Equation (21) versus p?sym in Equation (22). Some states may contribute exclusively to Rsym,
others exclusively to Rasym, while some resonances with delocalized wavefunctions may
contribute to both Rsym and Rasym with certain probabilities. Our description is general
enough to incorporate all these cases.

Here we will consider the case of single isotopic substitution (the case of double sub-
stitution is similar and is presented in the Supplementary Materials). Since two physically
distinct reaction channels are present for each isotopologue, the concentration of metastable
ozone species [O3] is influenced by six processes indicated in the following diagram (for
the singly substituted case):

686
T kstub,sym
kform,ch1 kform,ch2
66 +8 ——— [668/686]" «————= 68+6 (24)
k dec.cha kaec.ch2

l ks‘tuh,ucym
668

This includes the processes of formation and decay through each channel, and the
processes of stabilization by bath gas collisions into the stable ozone molecules. These
processes can be accounted for as follows:

d[O3]; form,ch form,ch2 dec,chl %
[dt3] :kiormc 1[66][8] +kionnc [68][6] o kiecc 1[03]1'

25
_ k?eC,Chz [O;]l _ k?tab,s}’m [M] [Og]l _ k?tab,as}’m [M] [O;]l ( )

Employing the steady state approximation, and, using Equations (15), (17) and (18)
for the total rates of decay and stabilization, we obtain:

_ kgorm,chl [66] [8] + kform,ChZ [68] [6]

[O§ ] i k;:lec + klstab [M]

(26)

It is convenient to introduce, for each scattering resonance, the equilibrium constants
for two entrance channels, as follows:

hl kform,chl
eqenl
Ki - k(;lec,chl (27)
i
o kform,ch2
KV = (28)

1 k;lec,chZ
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This permits to express concentration through the rate of decay only (which is a
fundamental property of a resonance, related to its width):

h1 h2
k?ec,chl K§q,C giec,chZ eq,c

[03]; = m[%] 8] + m[%] [6] (29)

Note that these are microcanonical equilibrium constants that do not include Boltz-
mann average over the states of ozone, but instead are introduced for every individual
state of a product at given energy E; of a resonance:

2 1 —E;/kT
Kgq,chl _ ( I+ ) e (30)
i Qug ¢ DZPE/RT
eqch2 (2] + 1) e~ Ei/kT
! Qch2

Calculations of the reagent partition functions for two channels, Q.1 and Qyp, are
standard. The factor 2] + 1 accounts for space degeneracy, related to the quantum number
Mj. One important element to discuss is the factor e~ AZPE/KT in the denominator of the
first of these expressions. Figure 2 is used to emphasize that the two reaction channels are
not entirely isoergic.

K (31)

Kea.chi Kea.ch2
66+8 — [668/686]* — 68 +6

1 e
AZPE VA e
Y

Ch. 1 threshold Ch. 2

Figure 2. Two distinct channels of ozone formation (left and right) and the metastable ozone states
(middle) in the case of single isotopic substitution. Here “6” denotes °0O whereas “8” denotes '20.
Lower energy channel corresponds to the heavier diatomic reagent 100 with smaller zero-point
energy. Upper channel corresponds to the lighter diatomic reagent 1°0'°0. Energy difference of the
two channels, AZPE, is indicated.

Although the electronic energies of the reagents in the two channels are exactly
the same, their vibrational zero-point energies are different. For example, in the singly
substituted case, lower energy channel corresponds to the heavier diatomic 1°0'80, which
defines threshold of the recombination process. Higher energy channel corresponds to the
lighter diatomic '60'0. The difference of their vibrational zero-point energies is defined
as (for single substitution):

AZPE = ZPE(66) — ZPE(68) = 22.27 cm ™!

Qualitatively, one may say that in the case of single isotopic substitution the Channel
1 s lifted above threshold, defined by the Channel 2, as shown in Figure 2. This energy
difference, called AZPE, enters our formalism through the expressions for the equilibrium
constant of Channel 1, Equation (30).
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Putting together Equations (13), (21), (22), (29) and (31), we obtain:
b r¢h2 E
stal 1 _ 5
Rsym = [M][68][6] ]é " L2+ 1)P?ymﬁe kT
o k5P [M]
stab L E;—AZPE (32)
+ MJ[66][8] ' (2] + 1)p) " e~ F
Qchl i 1 riT+k$tab [M]
b reh2 E
stal 1 _ L5
Rasym = [M][68][6] kQ - L(2] + Dpi " e F
c i i +kl§tab [M]
et E;—AZPE (33)
+ [M][66][8] Ky (2] + 1)pi ™ o e
Qchl i 1 riT+k5tab [M]

Note that the term e~ 22PE/kT ywas moved to the numerator, to appear together with
thl / k. The reason behind this move is that the decay of resonances through Channel 1,
given by thl /I, is efficient only at energies above threshold for this channel, which is
AZPE (see Figure 2). Therefore, it makes sense to measure energies of such resonances
relative to the threshold of this channel, writing the Boltzmann factor as e~ (Fi~AZPE)/kT

At this point it becomes clear that the two terms in Equation (32) for Rsym correspond
to Rs and Ry whereas the two terms in Equation (33) for Rasym correspond to R and Rg:

Rsym = Rs + Rg (34)

Rasym = Ra + Rp (35)

This is because Rs and R correspond to the reagents in Channel 2, whereas R; and
Rg correspond to the reagents in Channel 1. Therefore, the rates of recombination through
four pathways are introduced as:

Ra = xa[M][68][6] (36)
Rp = x[M][66][8] (37)
Rs = x5[M][68][6] (38)
Ry = x([M][66][8] (39)

However, based on Equations (32) and (33), the expressions for xa, xp, ks and x; would
come out bulky. In order to make them more intuitive, we will introduce into the formalism
several handy moieties.

2.2. Kinetic Weight of a Resonance and the Dynamical Partition Function

The values of ratios in Equations (32) and (33) depend on the relative efficiencies of
resonance formation, decay and stabilization. It is convenient to name this moiety the
kinetic weight of a resonance, or simply the weight. If there would be only one channel of
resonance formation/decay, the expression for the weight would be:

r

R
T
# klstab [M}

w; =

(40)

In the low-pressure limit, kl?tab [M] < T;/h, the weight reaches its maximum value,
w; — 1, and the role of a resonance in the recombination process is maximized. In contrast,
in the high-pressure limit, k$®°[M] > T/, the weight is w; — 0, and the contribution
of a resonance may be small. At given finite pressure, different resonances have different
weights, determined by their widths I';. Broader resonances have larger weights, while
narrower resonances have lower weights. One can consider a limiting case of a bound state
with zero width, I'; = 0. Such states would have w; = 0 at any pressure. This makes sense,
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since the bound states do not decay spontaneously and are not formed directly from the
reagents, making no contribution to the recombination process.

When multiple (in our case two) decay channels are present, one can still use Equa-
tion (40) to define the weight, with the total width T'*** instead of I';. This can be introduced
into Equations (32) and (33) by factoring out the channel specific ratios I'"! /Tt and
I¢h2 /Tt a5 we will demonstrate further below.

Note that summation in Equations (32) and (33) goes over the metastable states of
ozone, multiplied by Boltzmann factors and degeneracy factors, and thus very much resem-
bles a partition function at the transition state, 0%, used in the RRKM theory [34], except
that our formulae take into account the processes of formation, decay and stabilization of
scattering resonances, and therefore are more general. Inspired by this similarity, we found
it instructive to introduce the dynamical partition function, Q, for four pathways of ozone
formation, defined as follows:

~ rChZ asym 74
QA = 2(2] + 1) wi I—-tot P, e T (41)
i
~ FCh1 _E;—AZPE
Qs = Y2 +1) w; rfot piY™ e T (42)
i
_ FchZ sym K
QS 2(2] + 1) Wi —ot I"tot pz e K (43)
i
~ chl E;—AZPE
Qr =) (2] +1) wi—e rtot pr e T (44)

i

Note that each factor in the definition of the dynamical partition function Q is unitless:
the degeneracy, the weight of a resonance (determined by the pressure of bath gas and
by the total resonance width, see Equation (40) above), stabilization probability, and the
Boltzmann factor (including the AZPE shift for pathways B and I that originate in the
upper Channel 1, see Figure 2). The values of Q for four pathways are obtained from
four combinations of the relative decay rates through one of two reagent channels (either
I¢hl/Ttot or [¢h2 /Tiot) with two stabilization probabilities (either p;>™ or pi ™)

It is also important to note that our definition of Q takes into account the probabilities
of wave function in the inner region of the PES (either p ™ or pasy ), where the resonance
can be quenched into a stable ozone molecule by collisions with bath gas. This factor plays
important role in obtaining both physically meaningful and numerically converged value
of Q. As we will discuss in Section 3.3 below, the spectrum of states above dissociation
threshold contains, unavoidably, the free-particle states with large widths (short lifetimes).
Since they possess large weights (w; ~ 1) one may think that they would make large
contributions to the recombination process, which would be unphysical. This is where the
probabilities p ™ and pasy Come into play. The free-particle states, hosted by the asymp-
totic part of the PES, have p ; ™ and p?sym close to zero, which makes their contributions to
Q vanishingly small, as it should be. So, in order to contribute to the dynamical partition
function Q and the recombination reaction, a resonance should possess non-vanishing
weight w; and probability (either p " or pasym) both. A very narrow resonance has p?ym
or pl.asym close to one, but small weight w;. A very broad resonance has large weight
w; but small probabilities pfym and p?sym. Neither makes large contribution to Q. Only
the resonances with optimal combination of the weight and probability play role in the
recombination process.

With these definitions, the four pathway-specific rate coefficients are concisely written
as follows:

— kstab QA (45)

QchZ
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xp = kb gil (46)
_ kstab giz (47)
_ kstab QQ}I11 ( 48)

Note that each of these formulae has a simple intuitive form: recombination rate coef-
ficient is a product of stabilization rate coefficient with the ratio of the partition functions
(products over reagents). All complexity is absorbed by the dynamical partition functions
of four recombination pathways, computed quantum mechanically: Qa, Qp, Qs, Q1.

2.3. Formation of Symmetric and Asymmetric Molecules

One has to realize that both Rsym and Rasym include contributions from two reaction
channels with different reagents [66][8], in Channel 1 and [68][6], in Channel 2, see Equa-
tions (49) and (50). Therefore, rate coefficient xsym is not a simple sum of ks and xj, and
likewise Kasym is not a simple sum of x4 and xg. The following manipulations, however,
permit to derive all necessary formulae:

Roym = Rs + R = xs[M][68][6] + x1[M][66][8] )
= (s + xefegfi] ) 168116]1M] = xsym[68] 6] [M]
Rasym - RA + RB = KA[M] [68] [6] + KB[M] [66] [8] (50)

= (a + rufealte ) (681[6][M] = Kasym[68][6]M]

In this approach the contributions of two reaction channels are added together, by
re-expressing the two rates through the concentrations of reagents in the lowest energy
channel (Channel 2 in the singly substituted case).

Note that the ratio of four concentrations in these expressions represents the equi-
librium constant for isotope exchange between the two channels, with forward direction
defined to be from Channel 2 to Channel 1:

68+6 = 66+8 -
o [66][8]  Qenie AZPE/KT
e T Qe (52)

The value of this equilibrium constant is expected to be on the order of 1/2 due to
symmetry of the homonuclear diatomic reagent in the Channel 1, in which every other
rotational state is forbidden by quantum mechanical selection rules.

With this definition, the expressions for product-specific recombination rate coeffi-
cients are:

Ksym = Kg + K K™ (53)

Kasym = KA + kg K (54)

Indeed, neither of these expressions is a simple sum. The isotope exchange constant
K®* enters these expressions, multiplying the rate constant for the upper channel.

Substitution of Equations (45)-(48) for four rate constants into Equations (53) and (54)
permits to obtain the following expressions:

Ksym = jstab QQSY:; (55)
C

Cagm = oo oo, 56)
C
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where we introduced the dynamical partition functions for the formation of symmetric and
asymmetric ozone molecules as:

~ ~ ~ AZPE
stm = Qs+ Qe T (57)

~ ~ ~ AZPE
Qasym = QA+QB6_ kT (58)

Note that Ksym and Kasym use the same reference channel, namely, the lower energy
Channel 2, so the partition function of this channel, Qu», shows up in the denominator

of both expressions. Also note, that in @Sym or Qasym the two contributions come not as a

simple sum; the contribution of the upper channel is multiplied by e~A4PE/KT,
It is instructive to express Qsym and Qasym through the properties of individual

resonances. Substitution of Equations (41)—(44) into (57) and (58) gives us:

Qsym = LI+ w rm e P e

AZPE E; — AZPE

e W 2(2]+1)wi%pime*7kr (59)
1 1

Ei

=Y(2]+1) w; pfym e fT;
i

~ c _E
Qasym = 2(2] + 1) wi rtot plasym kT
AZPE E; — AZPE
e AT z(z]+1)wz rm pf‘sym TR (60)

= Y@+ 1) p e
i
This result is very interesting, since several moieties disappeared in the final expres-

sions for stm and Qasym- First, all AZPE factors canceled analytically, which means that
quantum zero-point energies are unlikely to cause any isotope effect related to symmetric
vs. asymmetric ozone molecules (at least not directly). Then, two contributions to the total
resonance width, T" fhl and l"fhz, added up and cancelled with FfOt. This means that, for
the description of symmetry driven isotope effects, the widths of scattering resonances,
or lifetimes of the metastable states, may not be important either (again, not directly).
They still enter the weights w;, but the same weights enter stm and @asym. The only
difference between @sym and Qasym comes from the stabilization probabilities, p?ym VS.
plasy Importantly, in the case of double isotopic substitution the formulae identical to
Equations (59) and (60) are obtained, as we show in the Supplementary Materials.

3. Results and Discussion
3.1. Pathway-Specific Rate Coefficients

Our database of the rovibrational states of ozone [22] includes 380,434 states of singly
substituted isotopologue and 400,183 states of doubly substituted isotopologue, at energies
up to 800 cm~! above dissociation threshold, computed for the values of total angular
momentum of the molecule from | = 4 to | = 56 with a step of 4, within the symmetric-top
rotor approximation for the values of K from zero to K = ], with a step of 2. Out of these
states, about 520,000 states are the bound states below dissociation threshold of singly
and doubly substituted isotopologues, whereas the remaining 260,000 states are scattering
resonances above threshold. The approach developed above uses properties of all these
scattering resonances as input parameters (E;, l"fhl, l"fm, p‘c-’ym, Pi SY™ for each state), to

compute the relevant dynamical partition functions (Q A, QB, Qs, QI) by summation over
these states, see Equations (41)—(44), and to predict the corresponding recombination rate
coefficients (xa, kB, ks, k1) using Equations (45)—(48).

Theoretically predicted rate coefficients for the four pathways in singly and doubly
substituted ozone molecules are added to the Table 1. The most significant new addition to
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the previous work is theoretical prediction of rate coefficients for the insertion pathways,
k1, never computed before by anyone else. Experimental information for the insertion
pathway in ozone is also rather limited and consists of only two values of rate coefficient
x1 cited in Table 1, both at room temperature, one for the insertion of 6 into 88, and the
other for the insertion of 8 into 66. In agreement with experiment, our theory predicts very
small rate coefficients for the insertion pathway, in the range of two orders of magnitude
smaller than rate coefficients for the other three pathways (compare to x4, xg and xg in
Table 1). This is consistent with an indirect reaction path, that must circle the origin in
Figure 1, going from the reagent channel at the bottom of the figure (Channel 1 with a
homonuclear diatomic) into the product well at the top of the figure (to form a symmetric
ozone molecule). A schematic of this process is provided in the Supplementary Materials,
Figure S2. Absolute value of theoretically predicted x is quite close to the experimental
value in the case of double isotopic substitution (see Table 1), whereas it deviates more in
the case of single isotopic substitution. One must remember, however, that dealing with
the insertion pathway we look at the relatively small rate coefficients influenced by both
theoretical assumptions and experimental limitations.

Also, in agreement with experiment, our results indicate that insertion is much slower
in the singly substituted case, Equation (11), compared to the doubly substituted case,
Equation (12). In order to quantify this phenomenon, we propose to introduce the ratio of
corresponding rate coefficients, namely:

)

g =
NS

(61)

where indexes (s) and (d) stand for single and double isotopic substitutions, respectively. In
the experiment this ratio is larger than one, close to the factor of five, £ = 4.8. Importantly,
our theory shows the same effect (¢ > 1) with even larger magnitude, & = 7.9 (see Table 1).

The difference of experimental and theoretical absolute values of &-effect may originate
in the approximate theoretical treatment of stabilization step (since we assume the same
value of stabilization cross section for single and double isotopic substitutions, while they
may be different in reality), or in the details of potential energy surface (since this indirect
reaction path crosses several transition states, and thus is expected to be sensitive to the
reaction landscape), or in the difficulties of experimental measurements (since this is a
minor pathway with very small rate coefficient). Despite of these multiple uncertainties,
a semiquantitative agreement of theory with experiment is obtained, which is already a
successful first step.

An important qualitative question is why the insertion is much faster in the doubly

substituted case, 6 + 88 > 868, compared to the singly substituted case, 8 + 66 2 686.
For this, let’s consider the effective mass of reagents in these two processes. It may be
counterintuitive at first, but it appears that the reduced mass of reagents in the doubly

substituted case:
(d) - 16 x 36

6136~ 11.07 (amu) (62)
is appreciably smaller than in the singly substituted case:
18 x 32
(s) = ~
813 11.52 (amu) (63)

Smaller effective mass is associated with faster motion and thus larger rate coefficients
at the same temperature, but also with more efficient tunneling. Since the rate coefficients
are small for the insertion, the effect of tunneling becomes comparable [22]. The “shape-
type” resonances are populated by tunneling, which is exponentially sensitive to the
masses of isotopes. It should also be stressed that, in the case of single substitution,
Channel 1 (where the insertion process starts) is the upper channel, but in the case of
double substitution Channel 1 is the lower channel. All experimental data indicate that
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lower channels exhibit higher recombination rates than upper channels (see discussion of
the AZPE effect below), and it looks like the insertion pathway follows the same rule.

As for other three recombination pathways included in Table 1, the values of rate
coefficients x 4 and xg obtained here are very similar to those reported in the earlier work by
Teplukhin et al. [22], while the value of xp is different. This is because a bug was discovered
in the original version of the code, due to which the reduced mass of 160160 (instead of
180180) was used erroneously for the calculations of the reagent partition function for
Channel 1 in the doubly substituted case. This problem was corrected in the updated
version of the code, and resulted in a significant change of xg and K® for the doubly
substituted case (but no significant change in the isotope effects, where these two moieties
enter together and the effect of diatomic mass cancels, see below).

Overall, the trends we see for the values of x, kp, ks and k1 computed theoretically
for single and double substitutions of 80 in ozone follow experimental results reasonably
well. Namely, the values of 2xg are very similar in the singly and doubly substituted cases,
and their magnitudes are always in between of those for 2x5 and xp, whereas the order of
2k and kp is opposite in the singly and doubly substituted cases. Namely, in the singly
substituted case 2x 5 > kg whereas in the doubly substituted case 2x 5 < xp. This is explained
by the fact that in the singly substituted case the lower energy pathway is A (since ZPE of
160180 is smaller than that of 12Q1°Q, see Figure 2 above), but in the doubly substituted
case the lower energy pathway is B (since ZPE of 080 is larger than that of 18080, see
Figure S1 in the Supplementary Materials). The mechanism of this AZPE phenomenon was
discussed in detail in the literature [14-17,20-22], and will not be reiterated here.

3.2. Isotope Effects

The most convenient and reliable characteristic of ozone formation process is the value
of isotope effect computed as a ratio of pathway-specific rate coefficients, since in the ratio
some of uncertain parameters cancel. This was the case in the experimental studies of
ozone [1,3,4,6], and is also true for our theory. Namely, the theory developed above relies
on a simple empirical stabilization model with one value of stabilization cross section o,
determined approximately in a simplified semiclassical study [30]. But, if one considers the
ratio of rate coefficients, then the values of stabilization rate coefficients cancel, enabling
more reliable predictions and more straightforward comparison with experiment.

Thus, the symmetry-driven #-effect in the singly substituted case can be characterized
by the ratio:

Kasym KA +xkpK®™ @A + QBE_% _ Qasym

(s) — = = = ==
T 2Ksym 2<KS + Kk KeX) 2 (@S + Qle_%) 2stm

(64)

We see that the final expression for 7 includes only the dynamical partition functions Q,
computed rigorously using quantum mechanics. Similar, in the case of double substitution
(see Supplementary Materials) we obtain:

U(d) - Kasym KAKex + KB QAef AkZTPE + QVB _ Qasym

_ = <A = = = (65)
2ksym  2(ksK™ +x1) o (Qse*% + QI) 2Qsym

i.e., the same final result.

Next, two terms in the numerator of Equations (64) and (65) can be used to set up
the ratio for characterization of the AZPE-driven C-effect. For single substitution, from
Equation (64):

(s) _ _*¥a QA (66)

~ AZPE
KK Qpe™ kT
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and similar for double substitution, from Equation (65):

é(d) _ kB _ QB (67)

o K KeX o @Ae_%

Note that all definitions are set such that no anomalous isotope effect would corre-
spond to { =1 and # =1 in all cases, and all experimentally observed isotope effects would
correspond to ( >1and 1 > 1.

Equations (64)—(67) were used to populate Table 1 with experimental and theoretical
values of parameters ¢ and 7 for singly and doubly substituted cases. Theoretically pre-
dicted C-effect is large and goes in the same direction as in the experiment (¢ > 1) in both
singly and doubly substituted cases, although in our calculations its magnitude, about ¢ =
1.42 £ 0.03 (in the singly and doubly substituted cases, respectively), is somewhat smaller
compared to the experiment, which is ¢ = 1.73 = 0.04 (in the singly and doubly substituted
cases). Concerning the mysterious #-effect driven by symmetry, our calculations give =
1.02 and 1.08 (in the singly and doubly substituted cases), which is significantly smaller
than the experimental values of # = 1.16 = 0.03. The deviation is largest in the case of single
substitution, which is particularly sad since this case is relevant to the processes in Earth’s
atmosphere, with low abundance of 80. The direction of all isotope effects in Table 1 is,
nevertheless, consistent with experiment (1 > 1 in all cases).

It was proposed in the literature [10-13] that #-effect is exclusively driven by symmetry
(somehow), whereas the AZPE difference of two formation channels manifests only in
C-effect. The logic for this statement can be seen in Equations (64) and (65), where the AZPE-
factor cancels out, in contrast to Equations (66) and (67), where it survives. While here
we came to the same analytic result, our interpretation of the origin of 57-effect is different.
Energies and widths of scattering resonances near the process threshold are strongly
affected by the presence of AZPE “step” on the potential energy landscape of the process,
and even if the Boltzmann factor e ~24PE/kT cancels out analytically in the Equations (66)
and (67), the values of @Sym and Qasym in these formulae still carry information about the
spectra of scattering resonances, influenced by the AZPE. To this extent, the small #-effect
seen in our results is also related to the AZPE.

3.3. Distribution of Resonance Widths

Although all scattering resonances are included in the dynamical partition functions Q
introduced above, different resonances exhibit different properties and those vary dramati-
cally through the database. Therefore, different resonances make different contributions to
the rate of the reaction, and to the resultant isotope effects. Here we will take closer look at
the distribution of resonance widths I'; that determine decay rates (inversely proportional
to their lifetimes). For this purpose, it is convenient to consider zero-pressure limit, when:

~ E;
Qoym = 2(2J +1) p¥™e 7 (68)
i
- E;
Qasym = Y (2] +1) pi™ e &t (69)
i
and therefore: -
Qe = Y (2] +1) plote &t (70)

1

The point is that in the zero-pressure limit all resonances are equally weighted, with
w; = 1 regardless of the width I';, and therefore all resonances are made “visible” in the
distribution. Moreover, if we set p!°* = 1 (see below) then the expression for the dynamical
partition function Q2 gives just the Boltzmann average over scattering resonances includ-
ing rotational degeneracies, equivalent to the statistical partition function at the transition

state, QF.
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In Figure 3 we plotted a “raster” image of Qfot versus I (or vs. I'®" to be exact) obtained
as a histogram with boxes generated using a log-scale for I'. This can be thought of as Q%
stretched along the I'-axis (such that the sum of values in the histogram boxes gives the
total value of Qg in the equation above). The range of resonance widths in this picture
is eight-orders-of-magnitude broad, from the extremely narrow (T ~ 107® cm 1) to very
broad resonances (I' ~ 100 cm™!). The data for singly and doubly substituted molecules
are presented in Figure 3 separately, but they look very similar and both indicate that the
overall distribution is likely to represent a convolution of three components that dominate
in three different ranges of T".

107 |

108 free

105 F
F covalent

o 1 /

10° i

Qtat

10° r T T
10°® 10+ 102 100 10?

-1
lor €M

Figure 3. Distribution of resonance widths in singly (grey) and doubly (orange) substituted ozone
molecules. Three ranges with different trends can be identified.

Fortunately, our theory gives an efficient, simple and rigorous method for “deconvo-
lution” of this distribution, by splitting the total probability, and the total partition function
onto three contributions:

pltpt —1= plgov + p;/dw + plfree

Qtot = Qeov + Qsdw + Q?ree

Indeed, the PES of ozone (see Figure 1) contains three deep localized wells that corre-
spond to stable symmetric and asymmetric ozone molecules with covalent bonds. Those
wells are connected, through relatively tight transition states (bottlenecks in Figure 1), to
the shallow and broad plateaus that host the weakly-bound van der Waals complexes
adjacent to the channels [35-37]. So, for each resonance state, one can define four proba-
bilities obtained by integrating its wavefunction over four regions of the PES indicated
in Figure 4 by different colors: pfym, p?sym, pYdwl, p¥dw2 The total covalent probability is
pi® = p?ym + p?sym, while the total van der Waals probability is p}’dw = p}’dm + p}’dwz.
From these data, we can also compute, for each resonance state, the probability of wave-
function in the asymptotic range of the PES: pfree =1— pYd" — pco, associated with the
unbound (scattering) state behavior, similar to free particle states. These data are available
for all resonances of ozone in our database.

The results of such deconvolution are presented separately for singly substituted
case and for doubly substituted case in the two frames of Figure 5. We see that in the
log-log scale used for these histograms, the distribution of resonance width for the covalent
well of ozone (red) covers a broad range below I' ~ 1 cm ™!, growing roughly linearly,
but then drops quickly. At about the same point the number of free-particle states (blue)
starts growing rapidly into the range I' > 1 cm~!. The distribution of the van der Waals
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states (green) overlaps with both distributions, covering the range T' > 1073 cm ™!, and also
growing roughly linearly in this log-log plot.

Figure 4. Four areas on the PES of ozone that correspond to the covalent wells with symmetric
(green) and asymmetric (blue) ozone molecules, and two types of van der Waals complexes (light
blue and light green). Hyper-angle ¢ is used to differentiate between symmetric and asymmetric
ozone molecules. Dotted lines are drawn through transition state regions seen as “bottlenecks” in
this figure. This diagram can be compared to both frames of Figure 1.
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Figure 5. Deconvolution of the overall distribution of resonance widths (given in Figure 3) onto three
components that correspond to the covalent well states (red), van der Waals plateau states (green),
and the continuum states in the asymptotic region of the PES (blue). The cases of single and double
isotopic substitutions are given in the upper and lower frames, respectively.
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Using Q°Y, QV9" and Qe it is straightforward to compute the average resonance
width T ~ in each group of states (see Supplementary Materials), and the corresponding
average lifetime, T = i/ I’ ~. These data are presented in Table 2. They indicate that in
ozone the resonances localized in the covalent well are much narrower (more stable) than
those distributed over the van der Waals plateau. Indeed, the covalent states are trapped
behind the transition state point and therefore they must decay slower (and are populated
slower too). In contrast, the wave functions of the van der Waals states are located outside
of the transition state, very close to the dissociation channel (see Figure 4). Therefore, they
are less stable, they decay (and are populated) much faster.

Table 2. Average resonance widths and their corresponding lifetimes for the states of three types in
the singly and doubly substituted ozone molecules.

I'(ecm™1) T(ps)
Resonance Type
Single Double Single Double
Covalent well 1.00 1.01 334 33.0
Van der Waals plateau 27.9 26.9 1.20 1.24
Asymptotic states (free) 68.9 67.3 0.484 0.496

3.4. Resonance Widths in Symmetric and Asymmetric Ozone Molecules

It was argued by several authors [10,11,38,39] that the lifetimes of metastable states in
symmetric and asymmetric ozone molecules may be quite different, and this may explain
the symmetry-driven 5-effect. Lifetimes are inversely proportional to resonance widths,
so, here, in order to check this hypothesis, will obtain the distributions of resonance
widths in symmetric and asymmetric ozone molecules. For this, we can readily split the
overall covalent probabilities between the wells that hold symmetric and asymmetric
ozone molecules, using pf° = pf’ym + p?sym, and plotting the distributions for @;’ym and
Qgsym, individually. This is done in two frames of Figure 6, for the cases of single and
double isotopic substitutions. For convenience of comparison, the data for symmetric
ozone molecules were multiplied by 2, in order to offset the effect of symmetry (see above).
We checked that without this symmetry factor, the sum of two curves in each frame of
Figure 6 gives the corresponding red curve in Figure 5. From Figure 6 we can see that
the distributions of resonance width are very similar in symmetric and asymmetric ozone
molecules in both singly and doubly substituted cases.

Based on these distributions, the average values of resonance width in symmetric
and asymmetric ozone molecules were computed and reported in Table 3. We see that the
average values of widths and lifetimes are also very similar in symmetric and asymmetric
ozone isotopomers, for both single and double isotopic substitutions. Based on these
data, we cannot claim that there is a significant difference in the lifetimes of resonances in
symmetric and asymmetric ozone molecules, that could be used to explain the symmetry
driven y-effect.

Table 3. Average resonance widths and their corresponding lifetimes for the resonances localized in
the covalent well of symmetric and asymmetric ozone molecules for the cases of single and double
isotopic substitutions.

T(em™ 1) T(ps)
Single Double Single Double

Symmetric 1.22 0.91 27.3 36.7
Asymmetric 117 0.94 28.5 35.5

Isotopomer of Ozone
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Figure 6. Distribution of resonance widths for the covalent well states in asymmetric (pink) and
symmetric (violet) ozone molecules. Upper and lower frames correspond to single and double
isotopic substitutions. To simplify the comparison, we plotted Qgsym and 2@§ym in order to offset the
effect of symmetry.

4. Conclusions

In this paper we worked out theoretical basis for the description of all possible
recombination pathways in the ozone forming reaction, without neglecting any process a
priori, and without decoupling the individual pathways one from another. These pathways
become physically distinct when a rare isotope of oxygen is introduced, such as 80, and
therefore they represent a sensitive probe of fine details in the ozone forming reaction.
Here we considered the cases of single and double substitutions with 80, but the cases of
isotope 170 can be described in a similar manner.

One should realize that, in each isotopic case, on the global potential energy surface
of O3 there are two types of physically distinct entrance channels (one with homonuclear
and the other with heteronuclear oxygen molecule) and two types of physically distinct
product wells (one with symmetric and the other with asymmetric ozone molecules).
This 2 x 2 combination leads to the appearance of four physically distinct recombination
pathways that are coupled. A consistent description of these processes can be achieved
only if, for each metastable ozone state, there is a method of partitioning the rate of
formation/decay between the two reagent channels, and splitting the rate of stabilization
between the two product wells.

Using the database of metastable ozone states (scattering resonances computed earlier)
as input parameters, we applied this theory to compute rate coefficients for four isotopically
labeled recombination pathways in the cases of single and double substitutions with 80,
eight rate coefficients total. Based on these data, the nascent isotope effects were determined
and compared with available experimental data.

To the best of our knowledge, this is the first theoretical work in which all four rate
coefficients are determined simultaneously, including the insertion processes characterized
by very small rates. Namely, the insertion of a rare isotope 'O in between the atoms in
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160160, and the insertion of 120 in between the atoms in 3080, are found to be two orders
of magnitude slower compared to the other six recombination rates, in agreement with
experimental data of the Mauersberger group. Two possible pathways for the formation of
each asymmetric ozone molecule (singly substituted 1°0'°0!80 and doubly substituted
160180180) indicate a pronounced, large isotope effect driven by AZPE-difference, which
is also in good agreement with available experimental data. The rate coefficient for the
formation of each symmetric ozone molecule (singly substituted 1°O'0'°0 and doubly
substituted 80'°0'80) is found to be in between of those two for the asymmetric ozone
molecule, again, in good agreement with experiment. The total formation rates of asym-
metric ozone molecules are found to be somewhat larger than those of symmetric ozone
molecules but unfortunately, not nearly as much as in the experiment (y-effect).

We also took closer look at the distribution of resonance widths that determine life-
times of the metastable ozone states. The distribution is several orders of magnitude broad.
We found that the metastable states of ozone can be characterized based on localization
of the wavefunction in different parts of the PES. Namely, the states with wavefunction
localized in the covalent ozone well (those that are expected to participate actively in the
ozone formation process) are typically narrow (width ~ 1 cm~!) and long lived (~33 ps on
average). In addition, there are many metastable states with wavefunctions delocalized
over the van der Waals plateau of the PES. Such states are found to be less stable, ~ 1.2 ps
on average, and are unlikely to participate in the ozone formation process (since their
stabilization into the covalent ozone well is expected to be inefficient). Still, the distribution
of widths of such resonances is mapped out here, and it is found to be quite different from
the distribution of the localized ozone states. However, very similar distributions of reso-
nance properties are found for symmetric and asymmetric ozone molecules, which seems to
disproof a popular hypothesis that the symmetry driven 7-effect is caused by the difference
of lifetimes of the metastable states in symmetric and asymmetric ozone molecules.

The least rigorous component of present theory is a simplified description of stabi-
lization step, which is the second step of the overall recombination process. Here it was
assumed that all resonances are stabilized at the same rate. This was done on purpose in
some sense, in order to focus on the properties of all resonances, regardless of their position
in the spectrum, to determine what isotope effect may come from the properties of the
metastable states alone, rather than from the collisions of the metastable ozone with bath
gas. Obviously, a more rigorous description of the stabilization step is desirable and will
be pursued in the future work.

Supplementary Materials: The following are available online. Section A, Section B and Section C of
the Supplementary Material contain all formula for the case of doubly substituted ozone and some
other useful equations, such as low- and high-pressure limits of the dynamical partition functions.
Section D provides some technical details of our calculations.
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