# Alfvénic Modes Excited by the Kink Instability in PHASMA

Peiyun Shi,<sup>1, a)</sup> Prabhakar Srivastava,<sup>1</sup> Cuyler Beatty,<sup>1</sup> Regis John,<sup>1</sup> Matthew Lazo,<sup>1</sup> John McKee,<sup>1</sup> Jacob McLaughlin,<sup>1</sup> Michael Moran,<sup>1</sup> Mitchell Paul,<sup>1</sup> Earl E. Scime,<sup>1, b)</sup> Ethan E. Scime,<sup>1</sup> Derek Thompson,<sup>1</sup> and Thomas Steinberger<sup>1</sup>

Department of Physics and Astronomy and Center for KINETIC Plasma Physics, West Virginia University, Morgantown,

West Virginia 26506, USA

(Dated: 26 January 2021)

Magnetic flux ropes have been successfully created with plasma guns in the newly commissioned PHAse Space MApping (PHASMA) experiment. The flux ropes exhibit the expected m=1 kink instability. The observed threshold current for the onset of this kink instability is half of the Kruskal-Shafranov current limit, consistent with predictions for the non-line tied boundary condition of PHASMA. The helicity, paramagnetism, and growth rate of the observed magnetic fluctuations are also consistent with kink instability predictions. The observed fluctuation frequency appears to be a superposition of a real frequency due to a Doppler shift of the kink mode arising from plasma flow ( $\sim 2$  kHz) and a contribution from a wave mode ( $\sim 5$  kHz). The dispersion of the wave mode is consistent with an Alfvén wave. Distinct from most previous laboratory studies of flux ropes, the working gas in PHASMA is argon. Thus, the ion cyclotron frequency in PHASMA is quite low and the frequency of the Alfvénic mode plateaus at  $\sim 0.5$  of the ion gyro frequency with increasing background magnetic field strength.

#### 18 I. INTRODUCTION

8

10

11

12

13

14

15

16

17

A magnetic flux rope is a current-carrying plasma with an embedded helical magnetic field. The field is comprised of background axial magnetic field  $B_z$ , and an azimuthal magnetic field  $B_{\theta}$ , generated by an axial plasma current. When the plasma current exceeds a threshold value, the m = 1 kink instability appears. The kink instability arises from the imbalance in magnetic pressure forces between inner bunched and outer spread magnetic field lines during transverse perturbations of flux rope column. Sakurai<sup>2</sup> first identified kinked structures on the Sun during remote imaging of solar flare events.<sup>3,4</sup> The kink instability drives a variety of explosive solar phenomena, e.g., corona mass injections and magnetic reconnection.<sup>5,6</sup> Kinked structures are also observed in magnetized jets emanating from astrophysical sources.<sup>7</sup> The kink instability plays important roles in a variety of laboratory plasma devices. In tokamaks, kink instabilities distort the plasma torus, drive sawtooth oscillations, and also drive other instabilities. <sup>8</sup> Kink instabilities also facilitate the conversion of toroidal magnetic flux into poloidal magnetic flux during the formation process of spheromak discharges.

Because of broad interest, a number of laboratory experiments have focused on the study of kink instabilities. A sampling of kink instability experiments in linear devices is listed in Table I. To excite the kink instability, the flux rope plasma current,  $I_{bias}$ , should exceed a threshold value,  $I_{KS}(r) = \alpha \frac{4\pi^2 r^2 B_z}{\mu_0 L_0}$ , where  $I_{KS}$  is the Kruskal-Shafranov limit and  $L_0$  is the flux rope length. The coefficient  $\alpha = 1$  for line tied (LT) boundary conditions and  $\alpha = \frac{1}{2}$  for non line tied Tourish rope is (free) ary in a linear experiment, the end of the flux rope is (free) fixed to a (resistive) conducting surface. Kink instabilities

50 with LT boundary conditions were investigated in the Resis-51 tive Wall Mode (ReMW) and Rotating Wall Machine (RWM) 52 devices at the University of Wisconsin-Madison. Internal kink modes and the stabilizing effects of different vessel walls were identified. 13,14 At Caltech, the growth rate of kink instabilities under LT boundary conditions as well as multiscale cascades arising from the kink instability were investigated. 9,15,16 57 Kink instabilities with NLT boundary conditions were stud-58 ied on the Reconnection Scaling eXperiment (RSX) device at 59 Los Alamos National Laboratory 17–19 and Large Plasma De-60 vice (LAPD) at the University of California, Los Angeles. 20 61 In these two very different NLT kink studies, the threshold 62 current was experimentally verified to be one half of  $I_{KS}$ . In 63 both NLT studies, the observed frequency of the fluctuations  $_{64}$  was attributed to a Doppler frequency shift,  $f_D$ , of a zero fre-65 quency kink mode (in the plasma frame) due to either axial flow,  $f_{VZ}$ , or  $E \times B$  drift,  $f_{E \times B}$ .

Here we report the appearance of a wave mode with 68 Alfvénic features in a kinking flux rope in the new PHASMA 69 (PHAse Space MApping) experiment at West Virginia Uni-70 versity. In PHASMA, the observed frequency of the fluctua-71 tions associated with the kink instability is much larger than <sub>72</sub> any plausible Doppler frequency shift and the characteristics 73 of the differential frequency,  $f - f_D$ , imply the presence of a 74 distinct wave mode. Because the working gas in PHASMA is 75 argon (to facilitate laser induced fluorescence measurements 76 of ions<sup>22,23</sup>), the observed fluctuation frequency is a signif-77 icant fraction of the ion gyro frequency  $f_{ci}$ . Since the kink 78 instability can be thought of as one part of the spectrum of sur-<sup>79</sup> face Alfvén waves, <sup>21</sup> coupling between low-frequency plasma 80 modes and the kink instability is not entirely unexpected. 81 Kink instabilities have been observed to provide free energy 82 to excite other wave modes in plasmas. For example, the kink 83 instability was recently found to excite whistler modes in the 84 Caltech jet experiment.<sup>24</sup>

This paper is organized as follows: The PHASMA device, the experimental apparatus used to create flux ropes, and the fluctuation diagnostics are described in Section II. The observed fluctuations are identified as kink instabilities in Sec.

a) Electronic mail: peiyun.shi@mail.wvu.edu

b) Electronic mail: earl.scime@mail.wvu.edu

|                                                     | PHASMA   | RSX <sup>21</sup> | ReWM <sup>13</sup>          | RWM <sup>14</sup>           | LAPD <sup>20</sup>  | CalTech <sup>9</sup> |
|-----------------------------------------------------|----------|-------------------|-----------------------------|-----------------------------|---------------------|----------------------|
| Axial Boundary                                      | NLT      | NLT               | LT                          | LT                          | NLT                 | LT                   |
| Gas Species                                         | Argon    | Hydrogen          | Hydrogen                    | Hydrogen                    | Helium              | Hydrogen             |
| Electron Density $n_e$ (10 <sup>19</sup> $m^{-3}$ ) | 5        | 0.9               | 4                           | 25                          | 0.1                 | 10                   |
| Electron Temperature $T_e$ (eV)                     | 5        | 12                | 2                           | 10                          | 4                   | 12                   |
| Magnetic Field $B_z$ (Gauss)                        | 375      | 120               | 270                         | 600                         | 660                 | 800                  |
| Length $L_0(m)$                                     | 1-1.7    | 0.92              | 1.2                         | 1.2                         | 11                  | 0.25                 |
| Radius R <sub>0</sub> (cm)                          | 2        | 2                 | 6                           | 9                           | 2.5                 | 5                    |
| Bias Current I <sub>bias</sub> (A)                  | 500      | 320               | 5000                        | 5000                        | 75                  | 10 <sup>5</sup>      |
| Kink Frequency f (kHz)                              | 5-10     | 25                | 25                          | 20                          | 5                   | >100                 |
| Doppler Shift $f_D$ (kHz)                           | fvz, 1-3 | fvz, 20-40        | $f_{E\times B}$ , $\sim 25$ | $f_{E\times B}$ , $\sim 20$ | $f_{VZ}$ , $\sim 5$ | ~                    |
| $f/f_{ci}$                                          | 0.7      | 0.1               | 0.06                        | 0.02                        | 0.02                | 0.1                  |

TABLE I. List of fundamental plasma parameters regarding kink instabilities on different devices

89 III, including measurements of the instability threshold in 127 to 2200 Gauss in the helicon plasma source (375 Gauss for shift of a kink due to axial flow as described by Ryutov. 12 In equal to the differential frequency co-exists with kink instability. The Alfvénic nature of the plasma mode is verified by comparison with expectations for Aflvén wave dispersion. A brief summary of the results is given in Section V.

### **EXPERIMENTAL APPARATUS**

#### **PHASMA** Device

Construction of the new PHASMA plasma experiment at West Virginia University was completed in 2019. PHASMA is designed to study space plasma-relevant phenomena, including particle heating and acceleration at kinetic scales during magnetic reconnection, 25 electromagnetic instabilities driven by ion temperature anisotropy and plasma pressure,<sup>26</sup> on acceleration in expanding plasmas,<sup>27</sup> and cross-field ion ows near plasma-material interfaces immersed in a magnetized, high-density plasma.<sup>28</sup> A key feature of PHASMA is he availibility of volumetric, non-perturbative, laser diagnosics for ion and electron velocity distribution function measurements with spatial resolution at the kinetic scale ( $\sim$  mm for the electron inertial length). State-of-the-art laser induced fluorescence (LIF) schemes are available to measure velocity distribution functions of ions<sup>22,23</sup> and neutrals.<sup>29–31</sup> An incoherent Thomson scattering system<sup>32</sup> provides measurements of the electron velocity distribution function.

As shown in Fig. 1, PHASMA consists of two main sections, a helicon plasma source housed on a vacuum chamber 1.7 m in length and 15 cm in diameter and another vacuum vessel 2.7 m in length and 0.4 m in diameter that contains two plasma gun sources and a movable anode. The total three turbomolecular pumps located at the ends of the system provide a total pumping speed of 3800 L/s that maintain a base pressure of  $< 2 \times 10^{-7}$  Torr. A static axial magnetic field up

terms of the safety factor  $q = \frac{I_{bias}}{I_{KS}} < 2$ , the right (left) handed 128 plasma gun) is generated with 22 electromagnet coils. Variable for  $B_z \| J_z (B_z \| - J_z)$ , and the paramagnetic nature of 129 ous magnetic field configurations, uniform, flared, and magnetic field configurations. the fluctuations. As noted previously, the frequency of the 130 netic mirror are created by varying the relative currents in the fluctuations is much larger (5×) than the Doppler frequency 131 coils. The helicon source operates at an antenna frequency of 9-15 MHz and RF power up to 2 kW to create steady-state Sec. IV, we suggest that a plasma mode with a frequency 133 and pulsed plasmas in argon, helium, and xenon. 23,33,34 The 134 plasma guns form pulsed high-density argon, helium, and hydrogen plasmas with repetition rate of 1 shot per minute. The 136 two plasma sources are fully independent and can operate si-137 multaneously. Use of a background helicon generated plasma 138 during plasma gun discharges provides a pre-ionized, target plasma (for manipulation of the neutral density), introduces 140 flows in the interaction region between the plasma gun dis-141 charges, and controls density gradients across the interaction 142 region. In addition, background helicon source plasmas provide both steady-state and high repetition rate (> 1 Hz) target plasmas for testing of laser diagnostics. PHASMA accesses a wide range of magnetized plasma operational regimes, e.g., plasma beta  $0.001 \sim 1$  and Lundquist number  $1 \sim 100$ , by in-147 dependently controlling the plasma density.

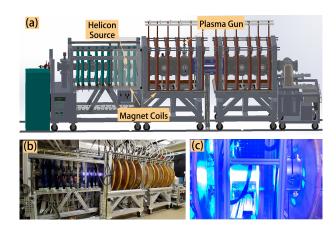



FIG. 1. (a) Solidworks rendering of the PHASMA facility highlighting the helicon source and plasma gun sections. Three turbomolecular pumps maintain a base pressure of  $< 2 \times 10^{-7}$  Torr. Twenty-two solenoid coils are used to generate the background axial magnetic field. (b) Photo of PHASMA with helicon plasma source operating. (c) Photo of an argon plasma gun discharge.

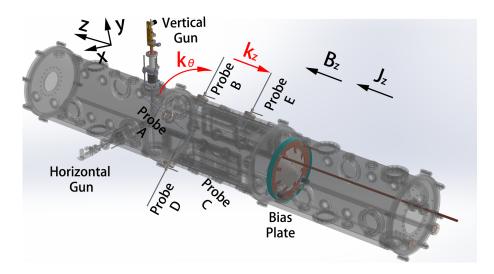



FIG. 2. Schematic of the experimental geometry used for these experiments. The vertical plasma gun and bias plate (anode) were used in these single flux rope studies. Four magnetic probes A, B, C, D are placed equidistant azimuthally while a fifth probe, E, is placed on a different axial plane at the same azimuthal location as probe B. When the background magnetic field,  $B_z$ , and the bias current density,  $J_z$ , are both along  $+\hat{e_z}$ , fluctuations propagate  $+\hat{e_\theta}$  azimuthally and  $-\hat{e_z}$  axially.

### 148 B. Flux Rope Formation

Figure 2 shows the experimental geometry for the flux rope experiments. Horizontal and Vertical plasma guns are inserted along the x and y directions at the z = 0 plane to launch plasma columns along  $-\hat{e}_z$ . In these single flux rope studies, only the vertical plasma gun along the y direction is used. The plasma column center is adjustable over 6 cm radially and  $\pm 6$ degrees azimuthally. A conical anode (bias plate) is placed at the end of PHASMA to drive axial current along the initial seed plasma columns, thereby forming flux ropes. The conical anode has a diameter of 250 mm and a half angle 60 degrees. The magnetic field penetration time of the anode is approximately 1  $\mu$ s. The ratio between the Alfvén transit time  $\tau_A$  and inductive decay time  $\tau_{L/R}$ , denoted by  $\kappa = \frac{\tau_A}{\tau_{L/R}} \gtrsim 10$ , confirming that non-line tied boundary condition models are appropriate for these experiments. 12,21 The conical anode is designed to be translated axially from z = -1.04 m to -1.73165

To characterize the flux rope, four magnetic probes A-D are placed at z=-0.25 m,  $\theta=\frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4}$  rad and a fifth magnetic probe E is placed at z=-0.61 m,  $\theta=\frac{3\pi}{4}$ . The propagation features of the fluctuations are determined from the phase differences between each probe. All magnetic signals are integrated in real time with active integrator circuits that have a time constant of  $10~\mu s$  and sampled at 5 MSamples/s. The plasma density and electron temperature are measured with triple Langmuir probes located at z=0 plane.

Figure 3 presents the typical temporal evolution of a single flux rope. Neutral gas injection starts at t=-38.5 ms and rope ends at t=-1.5 ms when an arc plasma is generated with a discharge current of approximately 700 A. At t=0 ms, a bias current  $I_{bias}$  of 500 A is fired during the plateau of the arc plasma. A flux rope with both axial and azimuthal mag-

 $_{181}$  netic fields lasts for more than 10 ms, much longer than the  $_{182}$  axial Alfvén time  $\sim 50~\mu s$ . The azimuthal magnetic field  $B_{\theta}$   $_{183}$  at r=2 cm is roughly 15 Gauss. Large fluctuations appear bethe the bias current reaches the peak value and persist for the remainder of the discharge. The plasma density and electron temperature at r=0 cm also increase due to the additional Ohmic heating and ionization when the bias current is trigagered.

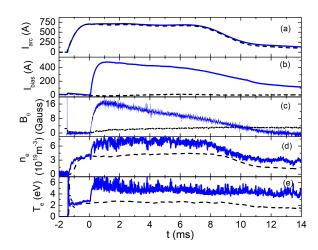



FIG. 3. Typical temporal evolution of a single argon plasma gun discharge in PHASMA. Solid blue traces are with bias current and black dashed lines are without bias current. (a) arc current; (b) bias current; (c) azimuthal magnetic field at r = 2 cm; (d) plasma density at r = 0 cm; (e) electron temperature at r = 0 cm.

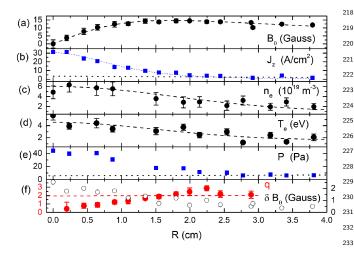



FIG. 4. Radial profile of a flux rope for  $B_z = 375$  Gauss and  $I_{bias} = 500 \text{ A.}$  (a) Azimuthal magnetic field  $B_{\theta}$  (black circles) and a fit assuming a Bennett profile (dashed line); (b) Axial current density,  $J_z$  (c) plasma density,  $n_e$ ; (d) electron temperature,  $T_e$ ; (e) Plasma pressure  $P \approx n_e T_e$ ; (f) Black circles are the amplitude of  $\delta B_{\theta}$  fluctuations and the red circles are the safety factor, q. Kink instability threshold q = 2 is marked by the red dashed line.

### **IDENTIFICATION OF KINK INSTABILITY**

#### Safety Factor, q, Profile

The measured magnetic field and pressure profiles are remarkably consistent with the classic Bennett profile for a zpinch in magnetohydrodynamic (MHD) equilibrium; similar results were reported for flux ropes in the RSX device.<sup>21</sup> The azimuthal magnetic field profile is plotted in Fig. 4a, and is well fit with a Bennett profile of  $B_{\theta}(r) = 2 \times 15 \frac{1.7 \times r}{1.72 + r^2}$ with a characteristic radius of 1.7 cm. The axial current density derived from the measured azimuthal magnetic field is  $J_z = \frac{1}{\mu_0} \frac{1}{r} \frac{d}{dr} (rB_\theta)$  (see Fig. 4b). Figures 4c and 4d show the 200 measured electron density and electron temperature profile for 201 the flux rope. The resultant pressure profile is shown in Fig. 4e, where  $P = n_e k_B T_e$  and  $k_B$  is the Boltzmann constant. The ion pressure is ignored assuming an ion temperature much 236 B. Helicity and Paramagnetism smaller than the electron temperature. From fits of the  $J_7$  and profiles, we determine the radius of the flux rope to be 2 cm;  $_{237}$ note the black dotted lines in the  $J_z$  and P profile plots represent the background levels for both quantities. The safety facwere also observed in ReWM. <sup>14</sup> If q < 2 were to be satisfied <sup>247</sup> right handed helicity,  $k_z \cdot m < 0$ , should dominate. <sup>21</sup>  $_{216}$  in a restricted region of the flux rope, e.g.,  $r < R_0$ , where  $R_0$  is  $_{248}$  Figure 6a shows the temporal evolution of  $\delta B_{\theta}$  fluctuations

218 significant perturbation of the plasma edge. <sup>13</sup> Here, the entire flux rope is unstable. The kink mode is therefore an external kink mode and significant perturbations at  $R_0$  are observed.

The global nature of this kink instability is also evident in high-time-resolution visible light images of the flux rope. Images obtained with a fast camera using a sample rate of 75,000 frames/s are shown in Fig. 5. Figure 5a shows the temporal evolution of a slice of the plasma along the y axis at z = -0.3226 m. Black and blue dashed lines show the amplitude of the image fluctuations at center and edge of the flux rope, respectively. The frequency of the fluctuations is consistent with those observed in  $\delta B_{\theta}$ . The plasma edge is clearly undergoing significant perturbation. Comparing the displacement of flux rope edge at z = -0.5 m (Fig. 5b), to that at at z = -0.3, we observe a slight increase in the displacement closer to the 233 bias plate. The increase in perturbation amplitude closer to 234 the bias plate is consistent with a non-line tied boundary con-235 dition at the bias plate.

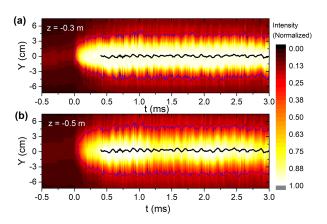



FIG. 5. Contour plots of visible emission light intensity during a flux rope discharge recorded at z = -0.3 m (a) and z = -0.5 m (b) with a fast camera operating at 75,000 frames/s. The black lines show the amplitude of the fluctuations at the center Y = 0 while the blue lines show the amplitude of the fluctuations in the outer region of the flux rope.

For a flux rope with both  $B_{\theta}$  and  $B_z$ , the equilibrium mag-238 netic field has a specific helical pattern, right (left) handed-239 ness for  $B_z ||J_z|(B_z|| - J_z)$ . Fluctuations with helical structure tor profile,  $q(r) = \frac{4\pi^2 r^2 B_z}{\mu_0 L_0 I(r)}$ , is plotted with red squares in Fig. 240 that matches the equilibrium magnetic field structure experi-4f. Extending to the edge of the current channel, a radius of 2 241 ence less twisting than those with the opposite helicity, i.e., cm, q < 2 is satisfied. Therefore, the entire non-line tied flux <sup>242</sup> less stabilizing magnetic tension force. Therefore, the helical rope is vulnerable to the kink instability. 12 Indeed, the mag- 243 perturbations that match the equilibrium structure are more netic fluctuations  $\delta B_{\theta}$  observed in PHASMA are distributed <sup>244</sup> vulnerable to the kink instability. <sup>10</sup> In other words, kink instaglobally (see the open black circles in Fig. 4f). Globally dis- 245 bilities with  $\vec{k} \cdot \vec{B} \approx 0$  should dominate. For the experimental tributed fluctuations with clear internal m=1 mode structure 246 configuration shown in Fig. 2,  $B_z||J_z|$ , kink fluctuations with

217 radius of flux rope, an internal kink mode would grow without 249 obtained with the azimuthally distributed magnetic probes (A

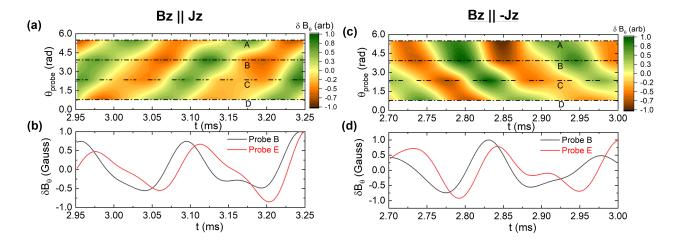



FIG. 6. Propagation of a coherent perturbation along the azimuthal and axial directions for two different experimental scenarios: background magnetic field  $B_z$  parallel and anti-parallel to  $J_z$ . Contour plots (a,c) of  $\delta B_{\theta}$  fluctuations as measured with the four magnetic probes, A to D, demonstrate that the fluctuation propagates along  $+\hat{e_{\theta}}$  when  $B_z\|J_z$  and along  $-\hat{e_{\theta}}$  when  $B_z\|J_z$ . (b,d) show time series of  $\delta B_{\theta}$  fluctuations obtained from axially spaced probes B and E, indicating  $k_z < 0$  for both scenarios. Thus, the fluctuations exhibit right (left) hand helicity for  $B_z || J_z (B_z || - J_z)$ , consistent with a kink instability.

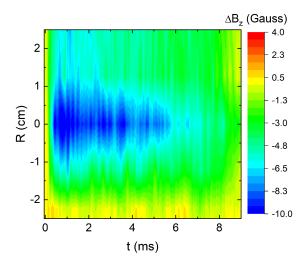



FIG. 7. The spatial-temporal evolution of the change in axial magnetic field,  $\Delta B_z$ . The change of  $\Delta B_z \sim -10$  Gauss results from the paramagnetic effect of the kink instability (5-6 Gauss) superimposed on the diamagnetic effect due to the radial pressure gradient (-14 Gauss).

to D) at the same radial location. A coherent large-amplitude mode is clearly progating in the azimuthal direction. From the measured phase difference, the azimuthal number m is determined. The frequency of the mode is  $\sim 7$  kHz and propagates along  $+\hat{e_{\theta}}$  with m=+1, the electron gyration direction. The phase difference between probes A and E located at similar  $\theta$ , but different axial positions is shown in Fig. 6b, indicat- 288 259 expected for a kink instability. With the axial magnetic field 291 cused our attention on the growth of the amplitude of the very reversed,  $B_z || -J_z$ , as is shown in Fig. 6c, the mode helicity 292 first oscillation of  $B_\theta$ . There are two contributions to  $B_\theta$  in

 $_{262}$  tion and  $k_z$  pointing from the gun tip towards the bias plate (Fig. 6d), m < 0,  $k_7 < 0$ .

One consequence of the right (left) handed helicity of the kink instability is its paramagnetic effect. 9,35 In laboratory experiments, proper accounting of contributions from other factors is also needed to reveal the paramagnetic effect of kink instability. For example, diamagnetic effects due to the plasma pressure gradient must be quantified and included in any analysis. For PHASMA, the expected decrease in axial magnetic field due to diamagnetic effects is given by  $_{272} \Delta(n_e T_e) = -45 \text{ Pa} = \Delta(B^2/2\mu_0) = B_7 \Delta B_7/\mu_0, \ \Delta B_7 = -14$ Gauss. As is shown in Fig. 7, the net change in axial magnetic field during the flux rope evolution is - 10 Gauss, meaning that the paramagnetic contribution from the kink instabil-276 ity is roughly 4 Gauss, close to estimated increase in axial 277 magnetic field that should result from the azimuthal compo-278 nent of the bias current  $\Delta B_z = \mu_0 I_{bias}/2R \cdot (B_\theta/B_z) = 5-6$ Gauss. For context, we note that for high-current operation in RWM,  $\Delta(n_e T_e) = -350$  Pa led to a diamagnetic effect of  $\Delta B_z = -70$  Gauss, while twisting of their 5 kA bias current  $_{282}$  introduced  $\Delta B_z \sim 100$  Gauss. The overall paramagnetic ef-283 fect was therefore  $\Delta B_z \sim 30$  Gauss, close to their reported <sup>284</sup> result. <sup>14</sup> Based on these measurements, the coherent fluctu-285 ation observed in PHASMA exhibits the expected paramag-286 netic feature of a kink instability.

#### **Growth Rate**

A kink instability is expected to grow on an MHD time ing that the mode propagates along  $-\hat{e}_z$ , from the plasma gun 289 scale,  $\tau_A \sim 50 \mu s$  in PHASMA. 15,36 Since  $\tau_A$  is smaller than tip to the bias plate. This mode has right hand helicity, as  $\frac{290}{2}$  one oscillation of the observed m=1 structure, we have fo- $_{261}$  flips to left handed, with  $k_{\theta}$  along the electron gyration direc- $_{293}$  the initial phase of the flux rope formation. One contriburadial location, r, of the probe due to the axial plasma current. The difference between these two signals  $B_{\theta}^{kink}$  results from the perturbation of the kink instability shifting the axis of the plasma current, dr/dt.  $B_{\theta}^{kink} = \int dt I_{bias} (dr/dt) \frac{\mu_0}{2\pi R_P^2}$ , where the perturbation of the kink instability shifting the axis of the plasma current, dr/dt.  $B_{\theta}^{kink} = \int dt I_{bias} (dr/dt) \frac{\mu_0}{2\pi R_P^2}$ , where the perturbation of the kink instability shifting the axis of the plasma parameters as used in this study, the Doppler shift from axial flow contributes to the observed frequency of the light instability. Figure 10 m the values of  $V_f$  and  $I_e$  as measured with the triple Langmuir probe,  $E_r = d(V_f + 5.3 \times T_e)/dr$ .  $_{303}$   $R_P$  is magnetic probe's initial radial location.

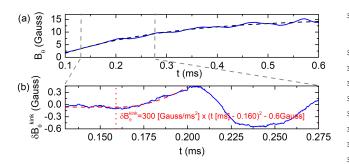



FIG. 8. (a) Measured  $B_{\theta}$  (blue solid line) and the calculated  $B_{\theta}$ based on the bias current (black dashed line) for the location of the magnetic probe; (b) Difference between measured and calculated  $B_{\theta}$ (blue line) and the quadratic fit (red dashed line); The dotted vertical red line denotes the time at which the kink instability begins to grow.

The initial phase of the perturbation, shown with a dotted red quadratic fit line in Fig. 8b demonstrates that the first quarter of first oscillation of  $B_{\theta}^{kink}$ , from t = 0.160 ms to t = 0.183ms is not a sinusoidal wave, but a signal that is growing in time. Note that the bias current is 160 A when the kink instability starts to grow at t = 0.160 ms, completely consistent with a threshold value for q = 2. The bias current is growing linearly during this short period, at a rate of  $dI_{bias}/dt = 1.2$  $A/\mu s$ . Therefore, the quadratic nature of the growth implies that dr/dt is constant, i.e., the kink instability is growing linearly. Linear growth of the shift in r is independently verified with camera images, in which  $dr/dt \approx 0.1 \text{ mm/}\mu\text{s}$  is observed. Using measured values, the predicted amplitude of the quadratic term in  $B_{\theta}^{kink}$  is  $\frac{1}{2} \frac{dI_{bias}}{dt} \frac{dr}{dt} \frac{\mu_0}{2\pi R_P^2} = 200 \text{ Gauss/ms}^2$ , 318 comparable to the value of 300 Gauss/ms<sup>2</sup> obtained from the quadratic fit. Linear growth of a kink instability has also been 320 reported in other experimental systems. 15,16

### **EVIDENCE FOR AN ALFVÉNIC MODE**

323 is zero.<sup>37</sup> In the laboratory frame, observed finite frequencies 353 portunity to identify the wave mode at later times after the

294 tion arises from the increasing bias current in the flux rope 329 drift frequency  $f_{E\times B}=E_r/B_z 2\pi R$  is one order larger than and the other comes from the increase (if any) in the ampli- 330 the observed frequency and decreases monotonically with intude of the m = 1 perturbation. Fig. 8a shows the experimen- 331 creasing background axial magnetic field strength  $B_z$ . The ratally measured  $B_{\theta}$  (blue line) as a function of time. The black 332 dial electric field is derived from calculations of the plasma dashed line shows the calculated increase in  $B_{\theta}$  at the fixed 333 potential 38,39 based on the values of  $V_f$  and  $T_e$  as measured 338 the kink instability. Figure 9c shows the estimated Doppler shift due to axial flow,

$$f_{VZ} \approx \frac{V_z}{4L} \sqrt{1 - V_z^2 / V_A^2} \cdot \frac{I_{bias}}{I_{KS}/2} , \qquad (1)$$

341 where the last term includes the contribution from a bias current larger than the threshold value 12,36 and axial flow speed is given by  $V_z = 0.4c_s$ , where  $c_s$  is ion sound speed. While comparable in magnitude to the observed frequencies, the scaling  $_{345}$  of  $f_{VZ}$  with increasing magnetic field is completely inconsis- $_{346}$  tent with the observations. Thus, the discrepancy between fand  $f_{VZ}$  suggests the existence of another mode with finite real 348 frequency.

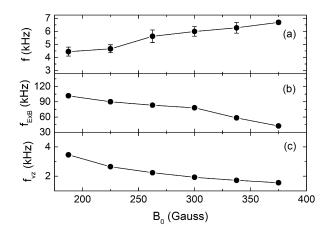



FIG. 9. (a) Observed frequency of coherent fluctuation as a function of applied axial magnetic field strength. (b) Estimated Doppler shifted frequency  $f_{E\times B}$  that would result from  $E\times B$  drift. (c) Estimated Doppler shift frequency  $f_{vz}$  that would result from axial flow

## Fluctuation Frequency Spectra

The evolution of the frequency spectrum of the fluctuations  $\delta B_{\theta}$  (Figure 10a) during the relatively long 10 ms discharges The real frequency of a kink instability in the plasma frame  $_{352}$  in PHASMA (compared to  $\sim 1$  ms in RSX) provides an opare typically attributed to Doppler shifts introduced by either 354 amplitude of the global kink instability decreases. We use the axial flow or  $E \times B$  drift. The observed frequency of the kink 355 inductance of the flux rope as one indicator of amplitude of instability reported here cannot be explained by  $E \times B$  drift. 356 global kink instability. The global twisting (deformation) of The observed frequency versus axial magnetic field strength is 357 a flux rope introduces extra inductance into the external bias 328 shown in Fig. 9a. As is shown in Fig. 9b, the calculated  $E \times B$  358 current circuit. The bias circuit inductance is related to the

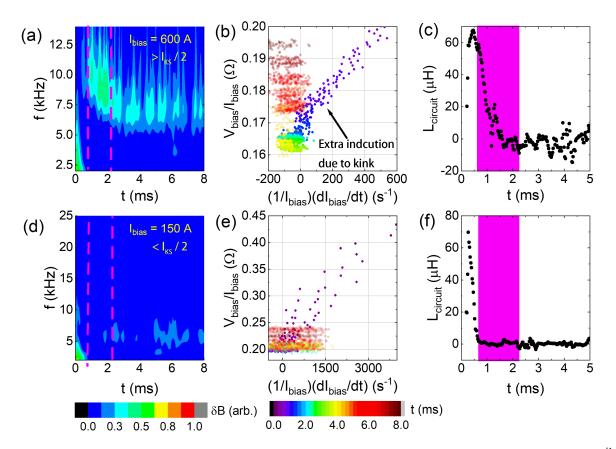



FIG. 10. (a) The frequency spectrum of  $\delta B_{\theta}$  for  $I_{bias} = 600$  A; (b) Temporal evolution of  $I_{bias}(t)$  and  $V_{bias}(t)$  in coordinates of  $\frac{dI_{bias}}{dt} \frac{1}{I_{bias}}$  along the x axis and  $\frac{V_{bias}}{I_{bias}}$  along the y axis. The colors indicate time intervals during the discharge. The slope of these data equals the effective inductance  $L_{circuit}$  in the bias circuit. (c) Temporal evolution of  $L_{circuit}$ . (d-f) Similar to (a-c), but for  $I_{bias} = 150$  A.

359 circuit impedance by

360

$$\frac{V_{bias}}{I_{bias}} = L_{circuit} \frac{dI_{bias}}{dt} \frac{1}{I_{bias}} + R_{circuit}, \qquad (2)$$

where  $L_{circuit}$  and  $R_{circuit}$  are the inductance and resistance in bias circuit. Based on Eq. 2, Fig. 10b shows  $I_{bias}(t)$  and  $V_{bias}(t)$  in coordinates of  $\frac{dI_{bias}}{dt} \frac{1}{I_{bias}}$  along the x axis and  $\frac{V_{bias}}{I_{bias}}$ along the y axis. Different colors identify different time intervals in the discharge. The slope of this plot is  $L_{circuit}$  and is shown in Fig. 10c as a function of discharge time. The decrease in  $L_{circuit}$  from t = 0.5 ms to 2 ms is a clear indication that the amplitude of the global kink instability is decreasing. For comparison, the time evolution of  $L_{circuit}$  for  $I_{bias} = 150$ , i.e., for a discharge current below the kink instability thresh-374 instability in our experiment.

 $_{379}$  t = 0.5 ms to 2 ms, both the amplitude and frequency of the  $_{403}$  in RSX. <sup>21</sup> These PHASMA discharges last long enough that 380 fluctuations decrease. After t=2 ms, the contribution from 404 other plasma modes are readily identifiable.

381 global kink instability to the observed fluctuation frequency 382 is negligible since the global deformation of the flux rope, as indicated by the dramatically smaller inductance, has ceased. Note that there is no change in the fluctuation amplitude and frequency without excitation of the kink instability (Fig. 10d). The presence of very weak fluctuation, still discernible in Fig. 10d, implies that the observed wave modes are a pre-existing fundamental modes in the plasma and the kink instability sim-389 ply provides more free energy to this mode. Note also that 390 frequency and amplitude of the mode remains almost constant 391 even after the bias current has dropped by roughly 30% from  $_{392}$  t=2 ms to 8 ms - further evidence that this wave mode is not 393 a global kink instability.

From t = [0.5 ms, 2 ms] to t = [2 ms, 8 ms], the frequency old,  $I_{KS}/2 = 180$  A, is shown in Fig. 10e and 10f. Below 395 of the fluctuations decreases by  $\sim 2$  kHz, consistent with the threshold, no additional inductance appears in the bias circuit 396 expected Doppler shift of a global kink instability arising from t = 0.5 ms to 2 ms. Thus, the measured inductance pro- <sup>397</sup> from axial flow. The predicted value of  $f_{VZ} = 1 - 2$  kHz, close vides a crude indicator of the amplitude of the global kink 398 to observed frequency, is consistent with Ryutov's model for 399 non-lined tied kink instabilities in a flowing plasma. 12 While The evolution of the  $\delta B_{\theta}$  frequency spectrum shown in Fig. 400 the kink instability only persists until t=2 ms, 2 ms is still 10a is obtained through a wavelet analysis of the fluctuations. 401 much longer than the Alfvén transit time,  $\sim 40\tau_A$ , and is As the amplitude of global kink instability decreases from 402 comparable to the "long-lifetime" kink instabilities observed

#### 406 B. Coupling to the Kink Instability

To investigate the relation between the kink instability and this new wave mode, we investigated the dependence of the amplitude of the mode on bias current from t=2 ms to 8 ms, shown as blue circles in Fig. 11a. When  $I_{bias} < 180$  A, the amplitude of the mode increases with increasing bias current, but the rate of increase is much smaller than for  $I_{bias} > 180$  A. The predicted threshold current for the kink is  $I_{KS}/2 \approx 180$  A. The amplitude of the global kink instability is also calculated by subtracting the amplitude of the additional mode from the total amplitude of fluctuations from t=0.5 ms to 2 ms (red squares in Fig. 11a). The resultant amplitude of the kink instability is shown as black circles in Fig. 11b, verifying  $I_{bias} = 180$  A is the threshold bias current for the global kink instability. Therefore, this additional large amplitude mode draws energy from the kink instability once it is excited.

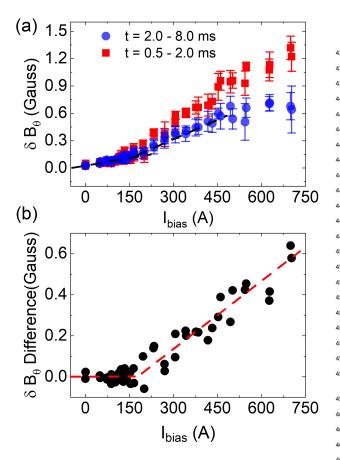



FIG. 11. (a) The dependence of amplitude of  $B_{\theta}$  fluctuations from t=2 ms to 8 ms (blue circles) and for t=0.5 ms to 2 ms (red squares) as a function of bias current. (b) The dependence of global kink instability amplitude, deduced from the difference in the two amplitudes in (a) as a function of current.

The kink instability is just one branch of the Alfvén sur-424 face wave spectrum. Thus, it seems reasonable that other 425 Alfvénic wave modes could couple to and draw energy from 426 the kink instability. Two features of this mode that point to-427 wards an Alfvénic nature are the mode's frequency being less 428 than the ion gyrofrequency and the strong perpendicular mag-429 netic field fluctuations,  $\delta B_{\theta}$ .

Very low frequency Alfvénic waves in an ideal MHD plasma propagate along the background magnetic field at the Alfvén speed,  $V_A$ . In PHASMA, the wave frequency is comparable to the ion gyrofrequency,  $0.1f_{ci} < f_{AW} < f_{ci}$ , thus finite frequency effects must be included in the wave dispersion relation

$$f_{AW} = \frac{1}{2\pi} \sqrt{\frac{1}{\left(k_z \overline{V}_A\right)^2} + \frac{1}{\left(2\pi f_{ci}\right)^2}},$$
 (3)

 $_{\rm 437}$  where  $k_z$  is the parallel wavevector and  $\overline{V}_A$  is the average  $_{\rm 438}$  Alfvén speed,  $\sqrt{2}V_A.^{21,41}$  The phase angle difference between the axially separated magnetic probes B and E is obtained 440 from a correlation analysis and used to calculate  $k_z$ . Figure 12a shows  $k_z$  a function of bias current; black squares for  $_{442}$   $B_z = 225$  Gauss and blue squares for  $B_z = 375$  Gauss. The co-443 herence found in the correlation analysis is large, > 0.9, only 444 for large bias currents, so smaller bias current  $I_{bias} < 300 \text{ A}$ are not included in these plots. The plasma density and elec-446 tron temperatures measured with the triple Langmuir probe do not increase with bias current when  $I_{bias} > 300$  A, consistent with the relatively constant values of  $k_z$  seen in Fig. 12a if the 449 mode is Alfvénic. The corresponding frequency of this mode  $f_{AW}$  is shown in Fig. 12b. Similar to the results for  $k_z$ , the fre-451 quency remains almost constant with increasing bias current  $I_{bias}$ , but increases with increased background magnetic field  $B_z$ . The theoretical predictions of  $f_{AW}$  based on the Alfvén 454 dispersion relation of Eq. 3 is shown in Fig. 12c as a function 455 of  $B_z$ . The uncertainty in  $f_{AW}$  shown by magenta shading is 456 due to an assumed 10% uncertainty in both  $k_7$  and  $n_e$ . The ex-<sub>457</sub> perimental measurements of  $f_{AW}$  are plotted as black and blue 458 squares and are consistent with the Alfvén dispersion relation.

Interestingly, the dispersion relation also predicts the observed increase of  $f_{AW}$  with increasing  $B_z$ , a key feature which could not be explained by Doppler shift effects arising from axial flow or  $E \times B$  drift. We note that other kink experiments have also reported an increase in the kink instability frequency with increasing  $B_z$ . Huctuations with somewhat similar characteristics were observed on the Encore Tokamak at similar plasma parameters. Those fluctuations were identified as drift Alfvén waves. However, in PHASMA the coupling between drift waves and Alfvén waves is not expected to be significant because the expected parallel phase speed (60 km/s) of the drift wave is much larger than  $V_A$ .

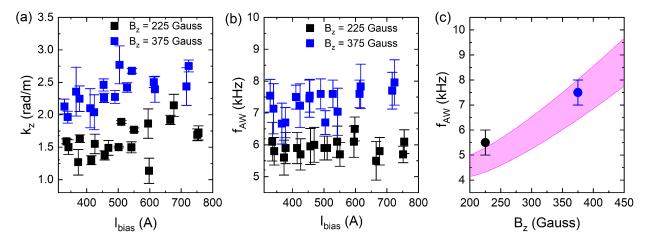



FIG. 12. (a) Parallel wavevector  $k_z$  and (b) wave frequency as a function of bias current for  $B_z = 225$  Gauss (black squares) and 375 Gauss (blue squares). (c) Range of theoretical predictions for the Alfvén wave frequency  $f_{AW}$  as a function of background magnetic field  $B_z$  (shaded region) assuming 10% uncertainties in  $n_e$  and  $k_z$ . Black and blue circles are the measured values of  $f_{AW}$  for  $B_z = 225$  Gauss and 375 Gauss.

#### Frequency Limit of the Mode D.

If the observed wave mode is Alfvénic nature, it should ex-474 hibit significant changes for frequencies near the ion cyclotron 475 frequency. To determine if there is a frequency limit for this 476 mode, we compare measurements in two working gasses, ar-<sub>477</sub> gon  $(f_{ci}^{Ar} = 14 \text{ kHz})$  and hydrogen  $(f_{ci}^{H} = 560 \text{ kHz})$ . Figure  $_{478}$  13 shows the dependence of  $f_{AW}$  and normalized mode fre-479 quency  $\frac{f_{AW}}{f_{ci}}$  on the bias current (argon as black squares and 480 hydrogen as blue squares). In contrast to a nearly constant  $f_{AW}$  in argon,  $f_{AW}$  in hydrogen increases monotonically with 482 bias current. These observations are consistent with those in other kink experiments in which no limit in mode frequency was seen when the normalized mode frequency is small, e.g.,  $f_{AW} < 0.1 f_{ci}$  in hydrogen RSX plasmas. 11,14 Whether or not 486 these observations point to resonance at  $f \approx 0.5 f_{ci}$  is not yet 488 clear.

#### CONCLUSION

In summary, a magnetic flux rope is successfully created with a pulsed plasma gun operating with argon gas in the PHASMA facility. A kink instability appears when the bias current exceeds  $I_{KS}/2$ , consistent with the prediction for the threshold current value for a non-line tied axial boundary condition. Both magnetic and visible light intensity fluctuation measurements indicate that the kink instability is globally unstable. From measurements of  $k_{\theta}$  and  $k_z$ , the m=1 fluctuations have right (left) handed helicity when  $B_z ||J_z|(B_z|| - J_z)$ , exactly as predicted for a kink instability. The predicted paramagnetic effect of a kink instability is measured experimentally and the magnitude of the paramagnetism is consistent with predictions for a kink instability. Linear growth of the 503 kink instability after onset is observed. However, the fre-504 quency of the observed fluctuations f is much larger than is 506 differential frequency  $f - f_{VZ}$  of the fluctations is attributed

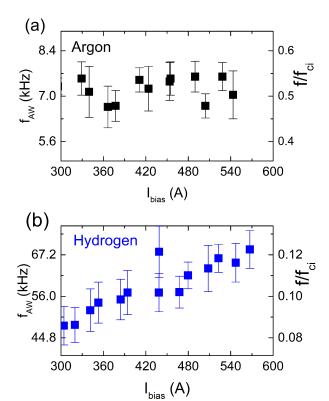



FIG. 13. The dependence of the mode frequency  $f_{AW}$  and the normalized mode frequency  $\frac{f_{AW}}{f_{ci}}$  on bias current for (a) argon plasma and (b) hydrogen plasma. A frequency limit is observed in argon plasma when  $f_{AW}$  is a significant portion of  $f_{ci}$ .

<sub>505</sub> explainable by a Doppler shift,  $f_{VZ}$ , due to axial flow. The <sub>507</sub> to another wave mode co-existing with kink instability. This

wave mode is driven by the kink instability since the mode 559 16S. C. Hsu and P. M. Bellan, Physics of Plasmas 12, 32103 (2005). amplitude dependence on bias current tracks that of the kink instability. The new wave mode is consistent with an Alfvén wave dispersion relation. The frequency of the mode is constrained when it reaches a significant portion of  $f_{ci}$ . It is unclear if an Alfvénic resonance is occurring at  $f \approx 0.5 f_{ci}$ . In future studies, the ion temperature and bulk flow speed will be measured with LIF<sup>44,45</sup> to identify any possibly resonant <sup>567</sup> interaction of the ions with the Alfvén wave that is coupled to 517 the kink instability.

#### 518 ACKNOWLEDGMENTS

We would like to express our deep appreciation to the late 519 Dr. Thomas Intrator who constructed the original RSX device from which many of the components of PHASMA come. We also thank Dr. Glen Wurden of Los Alamos National Laboratory who helped with the transfer of the RSX components to the PHASMA laboratory. We thank the plasma physics group at the University of Wisconsin-Madison for the use of the plasma guns. This work is supported by NSF awards PHYS 1827325 and 1902111, NASA award 80NSSC19M0146, and DoE award DE-SC0020294.

#### **DATA AVAILABILITY**

529

530

The data that support the findings of this study are available 532 from the corresponding authors upon reasonable requests.

- <sup>1</sup>J. P. Freidberg, *Ideal Magnetohydrodynamics*, Cellular Organelles (Plenum 534 Press, 1987). 535
- <sup>2</sup>T. Sakurai, Publications of the Astronomical Society of Japan 28, 177 536 537
- <sup>3</sup>R. Liu, B. Kliem, V. S. Titov, J. Chen, Y. Wang, H. Wang, C. Liu, Y. Xu, 538 and T. Wiegelmann, The Astrophysical Journal 818, 148 (2016). 539
- <sup>4</sup>D. M. Rust and A. Kumar, The Astrophysical Journal **464**, L199 (1996). 540
- <sup>5</sup>A. Vourlidas, Plasma Physics and Controlled Fusion **56**, 64001 (2014). 541
- <sup>6</sup>M. Janvier, Journal of Plasma Physics **83**, 535830101 (2017). 542
- <sup>7</sup>R. C. Jennison and M. K. Das Gupta, Nature **172**, 996 (1953). 543
- <sup>8</sup>I. T. Chapman, Plasma Physics and Controlled Fusion **53**, 13001 (2010).
- <sup>9</sup>S. C. Hsu and P. M. Bellan, Physical Review Letters **90**, 215002 (2003). 545
- <sup>10</sup>M. Kruskal, J. L. Tuck, and S. Chandrasekhar, Proceedings of the Royal 546 Society of London. Series A. Mathematical and Physical Sciences 245, 222 547 548
- <sup>11</sup>I. Furno, T. P. Intrator, D. D. Ryutov, S. Abbate, T. Madziwa-Nussinov, A. Light, L. Dorf, and G. Lapenta, Physical Review Letters 97, 015002 550 551
- <sup>12</sup>D. D. Ryutov, I. Furno, T. P. Intrator, S. Abbate, and T. Madziwa-Nussinov, 552 Physics of Plasmas 13, 032105 (2006). 553
- <sup>13</sup>W. F. Bergerson, C. B. Forest, G. Fiksel, D. A. Hannum, R. Kendrick, J. S. Sarff, and S. Stambler, Physical Review Letters 96, 15004 (2006). 555
- <sup>14</sup>C. Paz-Soldan, M. I. Brookhart, A. J. Clinch, D. A. Hannum, and C. B. Forest, Physics of Plasmas 18, 52114 (2011).
- A. L. Moser and P. M. Bellan, Nature 482, 379 (2012).

- <sup>17</sup>I. Furno, T. Intrator, E. Torbert, C. Carey, M. D. Cash, J. K. Campbell, W. J. 560 Fienup, C. A. Werley, G. A. Wurden, and G. Fiksel, Review of Scientific Instruments 74, 2324 (2003).
- <sup>18</sup>X. Sun, T. P. Intrator, L. Dorf, I. Furno, and G. Lapenta, Physical Review Letters 100, 205004 (2008).
- <sup>19</sup>X. Sun, T. P. Intrator, M. Liu, J. Sears, and T. Weber, Physics of Plasmas 565 20, 112106 (2013).
- <sup>20</sup>T. DeHaas, W. Gekelman, and B. Van Compernolle, Physics of Plasmas 22, 82118 (2015).
- <sup>21</sup>T. P. Intrator, I. Furno, D. D. Ryutov, G. Lapenta, L. Dorf, and X. Sun, Journal of Geophysical Research: Space Physics 112, A05S90 (2007).
- <sup>22</sup>R. F. Boivin and E. E. Scime, Review of Scientific Instruments 74, 4352
- <sup>23</sup>E. E. Scime, J. Carr Jr., M. Galante, R. M. Magee, and R. Hardin, Physics 573 of Plasmas 20, 032103 (2013).
- <sup>24</sup>R. S. Marshall, M. J. Flynn, and P. M. Bellan, Physics of Plasmas 25, 112101 (2018).
- <sup>25</sup>M. Hesse and P. A. Cassak, Journal of Geophysical Research: Space Physics 125, e2018JA025935 (2020).
- <sup>26</sup>C. B. Beatty, T. E. Steinberger, E. M. Aguirre, R. A. Beatty, K. G. Klein, J. W. McLaughlin, L. Neal, and E. E. Scime, Physics of Plasmas 27, 122101 (2020).
- $^{\rm 27}{\rm X}.$  Zhang, E. Aguirre, D. S. Thompson, J. McKee, M. Henriquez,  $\,$  and E. E. Scime, Physics of Plasmas 25, 23503 (2018). 583
- <sup>28</sup>D. S. Thompson, R. Khaziev, M. Fortney-Henriquez, S. Keniley, E. E. Scime, and D. Curreli, Physics of Plasmas 27, 73511 (2020).
- <sup>29</sup>A. M. Keesee, E. E. Scime, and R. F. Boivin, Review of Scientific Instruments 75, 4091 (2004).
- <sup>30</sup>M. E. Galante, R. M. Magee, and E. E. Scime, Physics of Plasmas 21, 588 055704 (2014).
- <sup>31</sup>D. S. Thompson, T. E. Steinberger, A. M. Keesee, and E. E. Scime, Plasma Sources Science & Technology 27, 065007 (2018).
- <sup>32</sup>P. Shi, P. Srivastava, C. Beatty, R. S. Nirwan, E. E. Scime. (2020). *Inco*herent Thomson Scattering System for PHASMA. Manuscript submitted for publication.
- <sup>33</sup>J. L. Kline, E. E. Scime, R. F. Boivin, A. M. Keesee, X. Sun, and V. S. Mikhailenko, Physical Review Letters 88, 195002 (2002).
- <sup>34</sup>I. A. Biloiu and E. E. Scime, Physics of Plasmas **17**, 113509 (2010).
- <sup>35</sup>R. J. Bickerton, Proceedings of the Physical Society **72**, 618 (1958).
- <sup>36</sup>I. Furno, T. P. Intrator, G. Lapenta, L. Dorf, S. Abbate, and D. D. Ryutov, Physics of Plasmas 14, 022103 (2007).
- <sup>37</sup>P. M. Bellan, Journal of Geophysical Research: Space Physics 125, e2020JA028139 (2020).
- <sup>38</sup>I. A. Biloiu and E. E. Scime, Physics of Plasmas **17**, 113508 (2010).
- 604 39X. Sun, A. M. Keesee, C. Biloiu, E. E. Scime, A. Meige, C. Charles, and R. W. Boswell, Physical Review Letters 95, 25004 (2005).
- <sup>40</sup>N. F. Cramer and I. J. Donnelly, Plasma Physics and Controlled Fusion 26, 1285 (1984).
- <sup>41</sup>V. M. Nakariakov, V. Pilipenko, B. Heilig, P. Jelínek, M. Karlický, D. Y. Klimushkin, D. Y. Kolotkov, D.-H. Lee, G. Nisticò, T. Van Doorsselaere, G. Verth, and I. V. Zimovets, Space Science Reviews 200, 75 (2016).
- <sup>42</sup>M. Zuin, R. Cavazzana, E. Martines, G. Serianni, V. Antoni, M. Bagatin, M. Andrenucci, F. Paganucci, and P. Rossetti, Physical Review Letters 92, 225003 (2004).
- <sup>43</sup>E. D. Fredrickson and P. M. Bellan, The Physics of Fluids 28, 1866 (1985).
- <sup>44</sup>C. Biloiu, X. Sun, E. Choueiri, F. Doss, E. Scime, J. Heard, R. Spektor, and D. Ventura, Plasma Sources Science & Technology 14, 766 (2005).
- <sup>45</sup>E. Scime, C. Biloiu, C. Compton, F. Doss, D. Venture, J. Heard, 617 E. Choueiri, and R. Spektor, Review of Scientific Instruments 76, 026107 (2005).