A Cross-stack Approach Towards Defending
Against Cryptojacking

Nada Lachtar, Member, IEEE, Abdulrahman Abu Elkhail, Anys Bacha

Member, IEEE,

and Hafiz Malik, Member, IEEE

Abstract—Cryptocurrenices are revolutionizing the way we conduct every day business. Unfortunately, cybercriminals have harnessed
this technology for making profit through cryptojacking, the act of maliciously appropriating computational resources for mining
cryptocurrencies. In this work, we explore a general solution for detecting cryptojacking attacks irrespective of the application type. We
propose an end-to-end detection solution that leverages lightweight microarchitectural changes designed to track instructions that are
commonly used in hash algorithms. An evaluation of our implementation shows negligible performance overhead while testing across a

mix of workloads from the SPEC 2006 benchmarks.

Index Terms—Cryptojacking, Cryptocurrency Mining, Malware, Security.

1 INTRODUCTION

YBERCRIMINALS are shifting their efforts towards a less
C risky, yet lucrative practice that is known as cryp-
tojacking. Cryptojacking is the act of stealing execution
cycles from compute resources for the purpose of mining
cryptocurrencies. Several techniques have been reported for
transparently appropriating execution cycles from victims.
Such methods include injecting JavaScript code into high-
traffic websites through common cross-site scripting attacks
(XSS), forking popular projects on Github and augmenting
them with cryptojacking code, and introducing seemingly
benign mobile apps onto Google’s Play Store that are de-
signed to mine cryptocurrencies.

In this paper, we present a new mechanism for dy-
namically detecting cryptojacking attacks. Unlike previous
approaches that are limited to detecting JavaScript-based
cryptojacking activity within web browsers, our solution is
general and can detect such malicious behavior irrespective
of the application type. A key observation made in this work
is that tracking a limited set of native instructions that are
commonly employed in cryptographic hash functions is suf-
ficient to reliably distinguish between benign and malicious
activities with high accuracy. Starting from this observation,
we propose a low overhead, end-to-end cryptojacking detec-
tion solution that spans the microarchitecture and operating
system layers. We introduce lightweight microarchitectural
changes that track the relevant instructions executed within
the processor’s pipeline. We implement OS changes to con-
sume this information and periodically monitor the number
of tagged instructions for each scheduled process through
a counter. We evaluate the robustness of this approach by
extensively testing real user applications and workloads
from the SPEC CPU2006 suite.

Overall, this paper makes the following contributions:

o The authors are with the University of Michigan, Dearborn, MI, 48128.

e Presents a low overhead, cross-stack solution that
effectively detects cryptojacking activity irrespective
of the application type.

e Makes the observation that tracking a limited num-
ber of native instructions commonly employed in
cryptographic hash functions is sufficient for reliably
detecting cryptojacking behavior.

o Characterizes a set of instructions across a variety
of applications and evaluates their suitability for
cryptojacking detection.

2 BACKGROUND AND RELATED WORK

A fundamental technology that governs cryptocurrencies is
known as blockchain. Blockchain is an ordered set of blocks
that are chained together to form a distributed ledger [1].
Each block is identified by a hash and contains multiple
transactions for sending and receiving currency. Transac-
tions are grouped into blocks through peer-to-peer compute
nodes that are known as miners. Miners serve the purpose
of validating incoming transactions and adding them to the
blockchain in return for a reward. However, before a miner
can add a new block, it must compete with other miners on
the network and be the first to solve a complex mathematical
problem that involves a significant amount of hashing. The
solution to this problem is known as proof-of-work (PoW).
Although other mechanisms exist, various cryptocurrencies
including bitcoin rely on this PoW approach. However, a
downside to popular currencies such as bitcoin is that they
do not provide strong privacy guarantees. This limitation
led to the rise of alternate cryptocurrencies that strive to
promote complete anonymity of their transactions.
Unfortunately, the anonymous nature of these curren-
cies has become a major attraction for cybercriminals for
making profit through the process of cryptojacking. Cryp-
tojacking is achieved by having a victim’s machine mine
for cryptocurrencies for the benefit of the attacker. Anony-
mous cryptocurrencies such as Monero and Zcash leverage

https://orcid.org/0000-0001-6711-1280

cryptographic hash algorithms that are composed of logical
functions that use a combination of fundamental operations
that include n-bit right rotation (R"), n-bit right shift (S™),
exclusive or (), and (A), or (V), and addition (+). These
operations are prevalent in the SHA-3 and SHA?2 algorithms
that are core to both Monero and Zcash, respectively.

Prior work [2], [3] explored detection mechanisms for
mitigating the effects of cryptojacking. Hong et al. [2] pro-
posed a solution that tracks commonly used hash libraries
offered by browsers. Other work [3] proposed the use of web
assembly and machine learning to detect hashing activity
within a browser. All of this work focused on detecting cryp-
tojacking activity within the browser. Our work, is generic
and application agnostic. Work by Demme et al. [4] explored
the feasibility of using standard performance counters for
malware detection. However, unlike our work, [4] lacks the
ability to accurately capture counter events for individual
processes which can lead to false negatives as programs are
context switched on the system. In addition, such solutions
are vulnerable to code obfuscation attacks [5] and generally
offer low detection rates for individual classes of malware.
Thus, underscoring the need for designs that can reliably
fingerprint and detect non-traditional malware. Other work
[6] investigated a microarchitecture driven approach with
ensemble learning. However, in addition to the hardware
complexity and overhead, the solution lacks the ability to
detect multi-threaded malware, an evasion technique com-
monly employed by cryptojacking programs on multi-core
systems. This is because [6] relies on core-level detectors that
make their classification decisions independently. Unlike
prior work, we propose a simple and low overhead ap-
proach that accurately detects cryptojacking activity while
maintaining a low false positive rate. Furthermore, our
design is resilient to multi-threaded, code obfuscation, and
throttling attacks. Finally, this study evaluates an emerging
and important class of malware that to our knowledge
hasn’t been explored in prior hardware-based solutions.

3 THE CRYPTOJACKING DEFENSE SYSTEM
3.1 Hardware Layer

The design leverages lightweight microarchitectural
changes that enable cores to track a set of instructions that
are commonly present in cryptographic hash algorithms as
they are executed. This requires augmenting the front-end
and the out-of-order execution modules. An overview of
our cryptojacking detection system is outlined in Figure 1.

Front-end Module. The first module within our design
entails the front-end. This entity serves the role of tagging
a select set of instructions. To this end, we augment the
decode stage with logic that tags the fetched instructions
that are relevant to cryprojacking detection. Because of
the hash-focused nature of cryptojacking programs, such
instructions primarily span rotation, shift, and exclusive or
operations. We refer to this group as RSX instructions. Our
design tags these instructions during the decode stage of the
pipeline. To facilitate in-field updates, our design allows for
a programmable set of instructions to be tagged through the
use of microcode that can be upgraded via firmware. Once
instructions have been tagged, they are sent to the out-of-

et) (e) ws [e)

User Space

task_struct{ [Blocked Queue @@
Ready Queue IN O-— ((©
Running Queue (O — O ouT)

Sample Counter

pid_t pid;
pid_t tgid;

tgid_rsx_t *rsx_ptr;

%

Update struct
Check Threshold
Select Next Task

Scheduler

N ()| @
Decoder } { Retire }

Operating System

BPU Fetch } { } Exec.
Units
ITLB “ Scheduler

Front End

Hardware Out-of-Order Engine

Fig. 1: Overview of the cryptojacking defense system.

order execution engine. This transition is illustrated as step
0 in Figure 1.

Out-of-order Execution Engine. The next phase of our de-
tection process involves the out-of-order execution engine.
Once an instruction is received from the front-end module,
a new entry is created for it within the re-order buffer
(ROB) to preserve its sequence within the original program
order. Our design makes use of an additional RSX bit that is
added to each ROB entry. This bit is used to track any hash-
related instructions that were previously tagged during the
decode stage in step @9. Completed instructions continue
to progress through the ROB until they reach the commit
point. If an entry that has both its RSX and completion bits
set reaches the commit point in the ROB, the retirement logic
updates the performance counter to reflect that a newly RSX
instruction has been retired. At this point, the architectural
state is made visible. This step is illustrated as step e in
Figure 1.

3.2 Operating System Layer

Our design leverages the OS scheduler to collect informa-
tion from the hardware and make the necessary decisions
on cryptojacking activity. To this end, the scheduler is tasked
with performing a set of routine checks upon every context
switch of a running process including the sampling of
counters that track the number of retired RSX instructions.
This step is shown in Figure 1 as step @)). To reduce the
complexity of the hardware, we employ a single counter
that aggregates number of executed RSX instructions. The
scheduler logs the aggregated value into an rsx_count
field that is shown in Listing 1. The rsx_count is in turn
accessible from the task_struct of the running process
through the rsx_ptr field outlined in Figure 1. Once the
aforementioned information is recorded, the scheduler pro-
ceeds to run the next queued task. We monitor each process

over a predefined period to ensure that it has executed a
sustained rate of RSX instructions before a decision is made.
An alert is sent to the user in the event that the threshold
is exceeded. This is illustrated as step in Figure 1. The
threshold and the monitoring period are controlled through
a set of kernel tunables that can be updated at runtime
through the /proc virtual file system.

Our system supports the detection of multi-threaded
cryptojacking services. This is achieved by aggregating the
overall count of RSX instructions across threads that belong
to the same group based on their thread group ID (tgid).
These threads share a common structure (tgid_rsx_t)
that contains the RSX count (rsx_count) and the number
of threads referencing the structure (tcount). Whenever
tcount is reduced to zero, the structure is deallocated
implying that all of the threads have been terminated.

struct tgid_rsx_t {
refcount_t rsx_count;
refcount_t tcount;

|7

Listing 1: Structure for tracking RSX instructions.

4 THREAT MODEL

We assume no privilege escalations have occurred on the
system and that an attacker can distribute mining activity
using multiple threads to avoid detection. We focus on
tracking instructions that can lead to profitable cryptojack-
ing attacks. Therefore, we assume an attacker limits obfusca-
tion attacks to instruction substitutions that yield relatively
high throughput. For instance, an attacker could substitute
rotation instructions with different shift operations to evade
detection and vice versa while still being able to attain
relatively high hash rates. On the other hand, substituting an
XOR instruction with ADD instructions and a series of bitwise
operations would be considered uneconomical for cryp-
tojacking purposes because of the impact to throughput.
While our solution could be programmed to track various
instruction types, we do not focus on substitution attacks
that can render obfuscated malware ineffective at mining.

5 EVALUATION
5.1 Methodology

We conducted experiments using a 4-core, out-of-order x86
processor that we modeled using the gem5 simulator. The
parameters of the modeled hardware are summarized in
Table 1. In addition, we used the Ubuntu 16.04 OS with
modifications to the Linux v4.19.91 kernel to support our
solution. We characterized the frequency of x86 instructions
across the SPEC CPU2006 benchmark suite, SHA-2, SHA-3,
and AES workloads over a period of 1-billion instructions.
Furthermore, we tested 125 real user applications that span
productivity programs such as Office suite, Google Chrome,
and Eclipse that were all configured to run on Linux.
We ran common web services such as YouTube, Amazon,
and ESPN while using the Google Chrome browser. To
efficiently utilize the user interfaces of the applications
while tracking the instructions they execute, we used Intel’s

Hardware Configuration
Cores 4 (out-of-order)
ISA x86
Frequency 2.0GHz
IL1/DL1 Size 32KB
IL1/DL1 Block Size 64B
IL1/DL1 Associativity | 8-way
IL1/DL1 Latency 2 cycles
Coherence Protocol MESI
L2 Size 2MB
L2 Block Size 64B
L2 Associativity 16-way
L2 Latency 20 cycles
Memory Type DDR4-2400 SDRAM
Memory Size 3GB

TABLE 1: Summary of hardware configurations.

Software Development Emulator (SDE) [7]. Each application
was used interactively through SDE. In addition to the
aforementioned user applications, we tested Monero and
Zcash by having them mine cryptocurrencies on live testnets
as we recorded their instructions.

5.2 Analysis

We characterized the RSX instructions present in SPEC2K6,
SHA-2, SHA-3, and AES in order to determine the feasibility
of our design tracking such instructions. Instruction counts
were recorded after the execution of 1 billion instructions.

Figure 2a shows the count for the rotation instructions
ROR and ROL. Although the SHA-2 and SHA-3 algorithms
employ right rotation operations, the compiler utilizes in-
structions in both directions. We observe that the count
of ROR instructions is 89M (million) and 33M for SHA-2
and SHA-3, respectively. On the other hand, the remaining
workloads have zero ROR instructions with the exception of
the following workloads which have very low occurrences:
perlbench (15 instructions), omnetpp (3 instructions), and AES
(3 instructions). We observe a similar trend with ROL. We
find that the count of the ROL instruction is 85M and 63M
for SHA-2 and SHA-3, respectively. However, the remaining
workloads have an average of 85 ROR occurrences ranging
between 4 to 2K instructions. This data suggests that ob-
serving a large number of ROR and ROL instructions during
execution is a strong indicator for cryptojacking activity.

Figure 2b shows that although SHA-3 doesn’t directly
consume right shift instructions (SRL), SRL is central to
SHA-2. On average, SHA-2 exhibits 28M SRL instructions.
This is 10x the instruction count relative to the benchmarks
in SPEC2K6. On the other hand, the AES algorithm shows
a significantly higher count (76M) which is 2.7x higher rela-
tive to the SRL instructions observed in SHA-2. We also find
that the left shift instruction (SLL) count is relatively low
in cryptographic functions. For instance, we observe that
libquantum has 124M SLL operations. This is 3x and 9x the
count relative to AES and SHA-2, respectively. In general,
shift instructions on their own are not a good feature.

We observe higher counts for the XOR instruction relative
to the rest of the workloads. This is summarized in Figure
2¢c. We find 170M and 337M XOR instructions in SHA-2 and
SHAZ3, respectively. On the other hand, XOR instructions in
the SPEC2K6 benchmarks range between 0.1M (libquantum)
and 43M (povray). In comparison, the count in SHA-2 and

Inst. Count (Millions)

ROL == ROR === SLL == SRL Ez=@ XOR Instruction =1
T T T T T T T T T

150

100

50 ‘_‘ al
LM

povray sha2 sha3 aes

(c) Exclusive OR

100 |-

Inst. Count (Millions)
2
3

Inst. Count (Millions)

1v5x‘1 0 30‘)(1 0

perlb. sha2 shad aes

(a) Rotate

libgtm. sha2 sha3 aes

(b) Shift

Fig. 2: Breakdown of (a) rotate, (b) shift, and (c) exclusive
or instructions in SHA-2, SHA-3, AES, and SPEC2K6 bench-
mark with highest count over a 1B instruction window.

SHA-3 is 12x and 23x higher relative to the average work-
load in SPEC2K6, and 2x and 4x relative to AES.

Our results show that rotation instructions are sufficient
to detect cryptojacking activity. However, an attacker could
subvert a rotation-based detection by using a combination
of shift instructions and still maintain a reasonably high
hash rate. For instance, an n-bit rotation in the left direction
(R}") could be replaced by a series of n-bit left shift (S7*),
m-bit right shift (5]"*), and or (V) instructions. Therefore, in
addition to keeping the design simple, our solution tracks
the cumulative count of all RSX instructions to mitigate
code obfuscation attacks. Figure 3 shows the cumulative
number of RSX instructions after executing the benchmarks
for 1 billion instructions. We observe that SHA-2 and SHA-
3 have 3x and 3.5x the amount of instructions compared
to the libquantum benchmark. Although libquantum has the
highest number of RSX instructions in the SPEC2K6 suite
due to 124M SLL operations, the count is significantly less
than that of SHA-2 and SHA-3.

Figure 4 shows the RSX count across real applications
that we tested over a period of one hour. On average,
workloads have 0.9B RSX instructions with Ramme having
the highest count. Ramme, a social media app equivalent to
Instagram, had a total of 5.3B RSX instructions. A closer look
into Ramme reveals that over 77% of the RSX instructions
were shift operations and 20% of the remaining RSX instruc-
tions were XOR. To understand the effectiveness of using
RSX instructions for cryptojacking detection, we compared
Ramme to Monero and Zcash over the same one hour exe-
cution period. Overall, Monero and Zcash had significantly
higher RSX counts relative to the user applications shown in
Figure 4. Monero had 342B RSX instructions which is more
than 65x the RSX count relative to Ramme. Zcash had a far
greater RSX count of 3 x 10°B compared to Ramme. Figure 5
shows the cumulative RSX count over a one minute period.
We find that Monero’s RSX count is at least two orders of
magnitude higher than that of Ramme. After testing several
applications, we determined that using a threshold of 2.5B
RSX inst./min allows us to detect the Monero and Zcash
workloads with true and false positive rates of 100% and un-
der 2%, respectively. We observe that the false positives only
occur when continuously running the core cryptographic
functions SHA-2, SHA-3, and AES. Furthermore, an attacker
may throttle the execution of cryptojacking malware. Our
solution can sustain the aforementioned rates even when an
attacker throttles execution by more than 50%.

[Total Rotate/Shift/XOR Inst. =

S0 s s e e e s e oo e e, e e e e e e v e e . s v e e, e s v e s

Inst. Count (Millions)
n
a
o

Fig. 3: Cumulative number of Rotate, Shift, and Exclusive
OR (RSX) instructions after executing 1 billion instructions.

[Total Rotate/Shift/XOR (RSX) Inst. === |

—_ T T r r r T T T+ T 1T T T T T T T T T T°°°T
0 5
=4
o
= 4f
s3]
Z3F
c
32f M s
o
g1r i}
L=gy Y . ﬂ|ﬁ4;‘**ﬁ* . PRI L
Q S, & Q5 G QRS L .2 !
O,"%zéo;%) ‘5‘6% O,(\ée‘/,f’égz X 8. % % 60 $/6)" OO”V?Q'OOA
B F %t O R & DK DR %, T I ey % 20 G
% ® Q, "% % D © %, % % YT,
%, % G Y Zex
F % $

Fig. 4: Cumulative number of RSX instructions in real user
applications after executing for one hour.

Ramme RSX Inst. [Monero RSX Inst.

- 80 ————— R
(%)
s 50 g5 //
s L J a 4
2 g [2 3
2 / S /
= 20 g 2
B k<
g 10 J g 4
a3 3
O 0 T L ! L n 0 L L ! L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Timeline (s) Timeline (s)
(a) Ramme (b) Monero

Fig. 5: Cumulative RSX instructions as a function of time
over a one minute period for (a) Ramme and (b) Monero.

5.3 Performance Overhead

Our solution incurs insignificant overhead. All of the
SPEC2K6 workloads exhibit less than 1% overhead.

6 CONCLUSION

In this work, we present a cross-stack solution for defending
against cryptojacking. We evaluate a simple, yet effective ap-
proach that adds minimal overhead to the overall platform.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grant CNS-1947580.

REFERENCES

[1] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. ” O'Reilly Media, Inc.”, 2014.

[2] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang,
Y. Zhang, Z. Qian, and H. Duan, “How you get shot in the back:
A systematical study about cryptojacking in the real world,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1701-1713, 2018.

(3]

(4]

(5]

6]

(7]

A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller,
N. Borisov, M. Antonakakis, and M. Bailey, “Outguard: Detecting
in-browser covert cryptocurrency mining in the wild,” in The World
Wide Web Conference, pp. 840-852, 2019.

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 3, pp. 559-570, 2013.

B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hard-
ware performance counters can detect malware: Myth or fact?,” in
Proceedings of the 2018 on Asia Conference on Computer and Communi-
cations Security (Asia CCS), pp. 457-468, ACM, 2018.

K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh,
and D. Ponomarev, “Ensemble learning for low-level hardware-
supported malware detection,” in International Symposium on Recent
Advances in Intrusion Detection, pp. 3-25, Springer, 2015.

A. Tal, “Intel software development emulator,” 2020.

	Introduction
	Background and Related Work
	The Cryptojacking Defense System
	Hardware Layer
	Operating System Layer

	Threat Model
	Evaluation
	Methodology
	Analysis
	Performance Overhead

	Conclusion
	References

