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ABSTRACT
Differential privacy has been widely adopted to release continuous-
and scalar-valued information on a database without compromising
the privacy of individual data records in it. The problem of querying
binary- and matrix-valued information on a database in a differ-
entially private manner has rarely been studied. However, binary-
and matrix-valued data are ubiquitous in real-world applications,
whose privacy concerns may arise under a variety of circumstances.
In this paper, we devise an exclusive or (XOR) mechanism that per-
turbs binary- and matrix-valued query result by conducting an XOR
operation on the query result with calibrated noises attributed to a
matrix-valued Bernoulli distribution. We first rigorously analyze
the privacy and utility guarantee of the proposed XOR mechanism.
Then, to generate the parameters in the matrix-valued Bernoulli dis-
tribution, we develop a heuristic approach to minimize the expected
square query error rate under 𝜖-differential privacy constraint. Ad-
ditionally, to address the intractability of calculating the probability
density function (PDF) of this distribution and efficiently gener-
ate samples from it, we adapt an Exact Hamiltonian Monte Carlo
based sampling scheme. Finally, we experimentally demonstrate
the efficacy of the XOR mechanism by considering binary data clas-
sification and social network analysis, all in a differentially private
manner. Experiment results show that the XOR mechanism notably
outperforms other state-of-the-art differentially private methods in
terms of utility (such as classification accuracy and 𝐹1 score), and
even achieves comparable utility to the non-private mechanisms.
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1 INTRODUCTION
Data sharing and releasing are undoubtedly critical for building
a data-driven future. However, data sovereignty, regulations, and
privacy concerns may prevent data holders from sharing their data,
and hence hinder the development of data-driven applications. To
handle this problem, differential privacy [13, 15] has been employed
as a de facto standard for releasing privacy-preserving statistical
information queries of databases. By applying differentially pri-
vate mechanisms, a trusted database curator can answer queries
requested by data consumers, like companies and research organi-
zations, and guarantee that the released results are independent of
the presence or absence of an individual data record.

In the literature, quite a few mechanisms have been proposed
to conduct continuous- and scalar-valued queries in a differen-
tially private manner [13–15, 40]. By treating vectors or matrices
as collections of scalar values, these mechanisms can also be ex-
tended to perturb continuous- and vector-/matrix-valued queries
by adding independent and identically distributed (i.i.d.) noises to
each element of the query results [13, 15]. However, this approach
usually results in suboptimal solutions or utility degradation, be-
cause it overlooks the underlying structural information like data
correlation and dependency in the query results. Some mechanisms
exploiting the data correlations are proposed in [8, 18–21, 23, 31, 37–
39, 49, 57, 62, 66, 68], such as Bayesian differential privacy, pufferfish
privacy, and the MVG mechanism, yet the structural information
of the query results is still largely underinvestigated.

Moreover, all of the aforementioned mechanisms can hardly be
applied when the query results are in the form of a binary matrix.
In fact, binary- and matrix-valued query results are ubiquitous in
real-world applications, whose privacy concerns may arise under
a variety of circumstances. One example is social network anal-
ysis, which usually requires access to the networks’ topologies
characterized by binary adjacency matrices containing sensitive
social relationship information [28, 55]. The leakage of social re-
lationship information can lead to severe problems. For instance,
it has been shown that social network users’ relationships can
be used to discover their identities and geo-locations and even
track them [39, 43]. Some other application examples involving
binary- and matrix-valued data include the coarse quantization for
data compression and storage [6, 17, 65], and the recently emerged
XNOR-Nets [54] (where the queried data is the binarized training
images). As a result, designing a differentially private mechanism
for binary- and matrix-valued queries is in dire need.
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The fundamental challenges of this problem are twofold. First,
the designed differentially private mechanism must maintain the
binary property of the data. Second, it needs to take into account
the structural information of the original query results so as to
avoid potential utility degradation. To address these challenges,
we develop a novel output perturbation mechanism, which con-
ducts an exclusive or (XOR) operation on the query result with
carefully designed binary- and matrix-valued noises. Specifically,
our proposed XOR mechanism takes the structural information of
the binary- and matrix-valued query results into account when
perturbing them under differential privacy guarantee. We consider
that all pairs of elements in the query result could be correlated
(modeled by log-linear association parameters). Therefore, the per-
turbation noise in our mechanism is attributed to a matrix-valued
Bernoulli distribution with a quadratic exponential dependence
structure [41]. We first present a sufficient condition for the XOR
mechanism to achieve 𝜖-differential privacy and rigorously analyze
its utility guarantee by investigating the expected square query
error rate. Second, since designing the perturbation noises is in fact
very challenging, we develop a heuristic approach to minimize the
expected square query error rate by optimizing the eigenvalues of
the parametric matrices under 𝜖-differential privacy constraint, and
then synthesize those parametric matrices based on the eigenvalues.
Third, we adapt an Exact Hamiltonian Monte Carlo based sampling
scheme to address the intractability of calculating the normalizing
constant of the matrix-valued Bernoulli distribution and efficiently
generate samples (i.e., noises) from it.

We summarize the main contributions of this paper as follows:

• We propose the XOR mechanism to protect the 𝜖-differential
privacy of binary- and matrix-valued queries.
• We derive a sufficient condition for the proposed XOR mech-
anism to achieve 𝜖-differential privacy.
• We analyze the utility of the XOR mechanism through the
lens of expected square query error rate of a given query.
• We devise a heuristic approach to generate the parameters
in the matrix-valued Bernoulli distribution so as to mini-
mize the expected square query error rate while satisfying
𝜖-differential privacy constraint. We also adapt an Exact
Hamiltonian Monte Carlo based scheme to generate samples
from the desired distribution.
• We discuss the application of the XOR mechanism on special
binary matrices, i.e., adjacency matrices of undirected and
unweighted graphs, and investigate the privacy leakage of
an arbitrary edge in graphs under edge-differential privacy.
• We evaluate the XOR mechanism on real-world applications.
Experiment results show that the XOR mechanism outper-
forms state-of-the-art methods and achieves utility (e.g., clas-
sification accuracy and 𝐹1 score) that is close to the casewhen
the non-private query result is used.

The rest of the paper is organized as follows. In Section 2, we
review the related works, which is followed by some preliminaries
for this study in Section 3. After that, we introduce the proposed
XOR mechanism, and theoretically analyze its privacy and utility
guarantees in Section 4. We devise a heuristic approach to generate
the parametric matrices in the matrix-valued Bernoulli distribution,
provide the Exact Hamiltonian Monte Carlo sampling procedure

to generate noise samples from the distribution, and present a toy
example in Section 5. In Section 6, we discuss how to use the XOR
mechanism to query the adjacency matrix of a graph. In Section 7
and 8, we investigate case studies on binary data classification and
social network analysis. Finally, Section 9 concludes the paper.

2 RELATED WORK
We first review related works on differential privacy, and then
discuss its application on graph analysis.

Mechanisms with Data Correlation. We discuss some repre-
sentative differentially private mechanisms that handle data corre-
lation, and elaborate their main differences with ours.

Bayesian Differential Privacy (BDP) [62] extends the original
definition of differential privacy in a Bayesian way; it proposes to
upper bound the ratio between two posterior probabilities of a ran-
domized algorithm returning identical outcomes. Our mechanism
differs with BDP in that BDP models correlated data with Gaussian
Markov random field, whereas we consider a log-linear model that
can better capture the correlation among binary entries [10].

Dependent Perturbation Mechanism (DPM) [39] accounts for the
probabilistic dependence between tuples in a database. It achieves
dependent differential privacy guarantee by augmenting the Laplace
mechanism with a dependence coefficient, which computes the
query sensitivity of dependent data. The main difference between
our mechanism and DPM is that DPM considers a fixed dependence
size 𝐿, i.e., any entry in the dataset is dependent on 𝐿 − 1 other
entries. We relax this assumption and allow more flexibility in de-
pendency size, i.e., all pairwise binary data records can potentially
be correlated, and the correlations are modeled using the log-linear
association parameters in the matrix-valued Bernoulli distribution.

Wasserstein Mechanism (WM) [57] calibrates Laplace noise by
exploiting the Wasserstein distance between distributions of ran-
domized output given neighboring input datasets. A special case of
WM is Markov Quilt Mechanism (MQM), which models correlation
between data entries by a Bayesian network. Although WM is gen-
eral, it is impractical to apply it to real-world problems due to high
computational complexity. MQM, while computationally light, may
be also limited, as the Bayesian network describes correlated data
as a directed acyclic graph, where parent and child nodes are corre-
lated, and sibling nodes are not. In contrast, the XOR mechanism
considers all pairwise correlations among the data entries.

Matrix-Variate Gaussian Mechanism (MVGM)[8] conducts differ-
entially privatematrix-valued queries by perturbing the output with
noises drawn from a matrix-variate Gaussian distribution. MVGM
only considers row-wise and column-wise data correlation in the
matrix query result. In contrast, by exploiting the matrix-valued
Bernoulli distribution with a quadratic exponential dependence
structure, our proposed mechanism considers data correlation with
finer granularity, i.e., the log-linear association at the element level.

Other differentially private mechanisms considering data corre-
lation include zero-knowledge privacy [18, 19], Pufferfish privacy
[31], Blowfish privacy [23], PrivBayes [66], membership privacy
[37], correlated iteration mechanism [68]. However, none of them
can directly protect data in a binary- and matrix-format. The pro-
posed XOR mechanism is developed to bridge the gap between
differential privacy and dichotomous correlated data.
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Mechanisms without Data Correlation. To protect the pri-
vacy of matrix-valued data, one can also add i.i.d. noises to each
element of the matrix using the traditional Laplace, Gaussian, or
Exponential mechanism [15]. Binomial Mechanisms [1, 13] perturb
discrete values in a differentially private manner using i.i.d. noises
drawn from the binomial distribution. All these mechanisms usu-
ally result in utility degradation in real-world applications, because
the overlook of data correlation makes the additive noises have
large magnitudes and compromise their utility.

Differentially Private Graph Analysis. Quite a few works
have investigated the problem of querying specific graph statistics
under differential privacy [4, 5, 12, 26, 27, 30, 53, 59, 60]. In particu-
lar, Blocki et al. [5] propose restricted sensitivity as an alternative
to global and smooth sensitivity to improve subgraph counting ac-
curacy. Day et al. [12] develop (𝜃, 𝜔)-Histogram and 𝜃 -Cumulative-
Histogram using graph projection to publish graph degree distri-
bution with node differential privacy. Karwa et al. [30] study the
problem of releasing the number of isomorphic copies of subgraphs,
e.g., a triangle, 𝑘-star or 𝑘-triangle, under edge-differential privacy.
Iftikhar et al. [26] develop a dK-Microaggregation framework which
anonymizes graphs by perturbing the dK-distributions (probability
distribution defined on connected subgraphs of size 𝑑 [42]) of the
original graphs. However, all of the aforementioned works focus on
specific queries, such as degree distribution, and subgraph number.
Thus, they are not directly applicable to other graph based tasks,
such as community detection and spectral analysis.

Releasing the entire graph under differential privacy also draws
attention. Pygmalion [55] releases graph topology under 𝜖-differential
privacy guarantee by first extracting a given graph’s detailed struc-
ture into degree correlation statistics, then injecting Laplace noises
into the resulting statistics, and finally generating a synthetic graph
by using the 𝑑𝐾-graph model [42]. Most recently, Wang et al. [61]
propose a probabilisitic generative model (called privateSBM) to
synthesize and release weighted social network. However, pri-
vateSBM is based on Variational Bayesian Expectation and Max-
imization (EM), and the differential privacy guarantee can only
be achieved when the EM algorithm arrives at the global optimal,
which makes their models impractical in real world applications.
In [25], Huang et al. develop an approach called PBCN (which is a
combination of nodes clustering via K-means, graph reconstruction
after degree sequence perturbation, and noise nodes generation)
to release a noisy graph. Whereas, their approach is biased by the
predetermined number of clusters, and may have unstable utilities.
A generative adversarial network (GAN) based differentially private
graph synthesizing framework is proposed in [16], yet the sensi-
tivity of their framework scales with the maximum node degree,
which may lead to unbounded sensitivity and degrade the utility
of the synthesized graph. Ahmed et al. [2] propose to release a dif-
ferentially private low dimensional approximation of the original
adjacency matrix by first projecting it to a low dimension via the
multiplication with a randommatrix and then perturb the projected
matrix using Gaussian noise. However, it is not clear how to obtain
a valid adjacencymatrix (graph structure) from the low dimensional
noisy matrix. Qin et al. [52] propose the LDPGen framework, which
incrementally clusters nodes based on their connections to different
partitions of the whole population in a differentially private manner.

Then, LDPGen synthesizes the sanitized graph by calculating the
probability of two nodes being connected given the clusters.

3 PRELIMINARIES
Throughout this paper, B and B are used to denote matrix-valued
Bernoulli random variable and its corresponding instance, respec-
tively. We also denote B𝑘 as a binary matrix of {0, 1}𝑁×𝑃 . Similarly,
we let b𝑘 = vec(B𝑇

𝑘
) ∈ T = {0, 1}𝑁𝑃 , |T | = 2𝑁𝑃 , and b = vec(B𝑇 )

for notation simplicity, where vec(·) is the vectorization operator
that stacks columns of a matrix into a vector. We denote by 𝐷 a
database. Table 1 lists the frequently used notations in the paper.

Table 1: Frequently used notations in the paper.

Notions Descriptions
B matrix-valued Bernoulli random variable
B, 𝒃 an instance of B, vectorization of vec(B)

B𝑘 , 𝒃𝑘 a matrix in {0, 1}𝑁×𝑃 , vectorization of vec(B𝑘 )
Θ feature association parametric matrix
Λ𝑖, 𝑗 association parametric matrix of object 𝑖 and 𝑗
Π parameter in the multivariate Bernoulli distribution
J𝑖 𝑗 single-entry matrix with 1 at the (𝑖, 𝑗)-th position

𝐷 and 𝐷 ′ a pair of neighboring datasets
𝑠𝑓 sensitivity of binary- and matrix-valued query
A binary adjacency matrix

3.1 Differential Privacy
Definition 1. (𝜖-differential privacy [13, 15]). A randomized

algorithm M with domain D satisfies 𝜖-differential privacy if for
any two neighboring datasets 𝐷, 𝐷 ′ ∈ D (differ in only one data
record), and for any Ω ⊆ Range(M), it holds that Pr[M(D) ∈ Ω] ≤
e𝜖Pr[M(D′) ∈ Ω].

Definition 2. (Binary- andmatrix-valued query). Given a dataset
𝐷 ∈ D, a binary- and matrix-valued query is to query the result of
𝑓 (𝐷) ∈ {0, 1}𝑁×𝑃 , which contains 𝑃 binary features of 𝑁 objects,
where 𝑓 (·) : 𝐷 → {0, 1}𝑁×𝑃 is a query function.

Definition 3. (Sensitivity of binary- and matrix-valued query).
Given a pair of neighboring datasets 𝐷 and 𝐷 ′, and a binary- and
matrix-valued query function 𝑓 (·), the sensitivity (𝑠𝑓 ) of the query
function is defined as 𝑠𝑓 = sup𝑓 (𝐷),𝑓 (𝐷′) | |𝑓 (𝐷) ⊕ 𝑓 (𝐷 ′) | |2𝐹 .

3.2 Background on Statistics
Definition 4. [41] A random matrix B ∈ {0, 1}𝑁×𝑃 is said to

have a matrix-valued Bernoulli distribution with quadratic exponen-
tial dependence structure, i.e., B ∼ Ber𝑁,𝑃 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 ),1 if
its probability density function (PDF) can be written as

𝑓B (B) = 𝐶 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 ) exp
{︁
Tr[BΘB𝑇 ] +∑︁𝑁𝑖=1∑︁𝑁𝑗≠𝑖 Tr[J𝑖 𝑗 BΛ𝑖, 𝑗 B𝑇 ]

}︁
.

1Θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝜃 1 𝜃 1,2 · · · 𝜃 1,𝑃

𝜃 2,1 𝜃 2 · · · 𝜃 2,𝑃

.

.

.

.

.

.
. . .

.

.

.

𝜃𝑃,1 𝜃𝑃,2 · · · 𝜃𝑃

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Λ𝑖,𝑗 = Λ𝑇

𝑗,𝑖
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝜆1𝑖,𝑗 𝜙

1,2
𝑖,𝑗

· · · 𝜙
1,𝑃
𝑖,𝑗

𝜙
2,1
𝑖,𝑗

𝜆2𝑖,𝑗 · · · 𝜙
2,𝑃
𝑖,𝑗

.

.

.

.

.

.
. . .

.

.

.

𝜙
𝑃,1
𝑖,𝑗

𝜙
𝑃,2
𝑖,𝑗

· · · 𝜆𝑃
𝑖,𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Θ ∈ R𝑃×𝑃 , and Λ𝑖,𝑗 ∈ R𝑃×𝑃 .
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The normalization constant is
𝐶 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 )

=

[︂∑︂
B𝑘

exp
{︂
Tr[B𝑘 ΘB𝑇

𝑘
] +∑︁𝑁𝑖=1∑︁𝑁𝑗≠𝑖 Tr[J𝑖 𝑗 B𝑘 Λ𝑖, 𝑗 B𝑇𝑘 ]}︂]︂−1,

(1)
where B𝑘 ∈ {0, 1}𝑁×𝑃 , and J𝑖 𝑗 is the single-entry matrix of order
𝑁 × 𝑁 with 1 at the (𝑖, 𝑗)-th position and 0 elsewhere.

In the PDF of the matrix-valued Bernoulli distribution, there are
three types of parameters, i.e., 𝜃 , 𝜆, and 𝜙 , that are interpreted as:2

• “pure feature-association" parameters, i.e., 𝜃𝑝 and 𝜃𝑝,𝑞 (𝑝, 𝑞 ∈
[1, 𝑃]). They are log-linear parameters describing the associ-
ation structure of the features, and they are symmetric and
usually assumed to be common for all objects, i.e., 𝜃𝑝

𝑖
= 𝜃𝑝 ,

𝜃
𝑝,𝑞

𝑖
= 𝜃

𝑞,𝑝

𝑖
= 𝜃𝑝,𝑞 = 𝜃𝑞,𝑝 , ∀𝑖 ∈ [1, 𝑁 ].

• “pure object-association" parameters, i.e., 𝜆𝑝
𝑖,𝑗

(𝑖, 𝑗 ∈ [1, 𝑁 ],
𝑝 ∈ [1, 𝑃]). They describe the intra-objects dependence with
respect to (w.r.t.) each feature. They also satisfy the symme-
try constraints, i.e., 𝜆𝑝

𝑖,𝑗
= 𝜆

𝑝

𝑗,𝑖
, ∀𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑝 ∈ [1, 𝑃].

• “mixed features/objects-association" parameters, i.e.,𝜙𝑝,𝑞
𝑖, 𝑗

(𝑖, 𝑗 ∈
[1, 𝑁 ], 𝑝, 𝑞 ∈ [1, 𝑃]). They describe the intra-objects depen-
dence w.r.t. a particular combination of two features, and
also satisfy the symmetry constraints, i.e., 𝜙𝑝,𝑞

𝑖, 𝑗
= 𝜙

𝑞,𝑝

𝑖, 𝑗
.

The following Lemma connects the matrix-valued Bernoulli dis-
tribution with the multivariate Bernoulli distribution.

Lemma 1. [41] IfB ∼ Ber𝑁,𝑃 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 ), then vec(B𝑇 )
has a multivariate Bernoulli distribution with parameter Π, i.e.,
vec(B𝑇 ) ∼ Ber𝑁𝑃 (Π), and the PDF is

𝑓vec(B𝑇 ) (vec(B
𝑇 ) = b) = 𝐶 (Π) exp{b𝑇 Πb}, (2)

where the parameter Π and the normalization constant 𝐶 (Π) are

Π = I𝑁 ⊗ Θ+∑︁𝑁𝑖=1∑︁𝑁𝑗≠𝑖 J𝑖 𝑗 ⊗ Λ𝑖, 𝑗 , 𝐶 (Π) = [︂ ∑︁
b𝑘 ∈T exp{b

𝑇
𝑘
Πb𝑘 }

]︂−1
. (3)

4 THE EXCLUSIVE OR MECHANISM
Now, we formally introduce the proposed XOR mechanism, prove
its privacy guarantee, and investigate its utility guarantee.

Definition 5. (XOR Mechanism). Given a binary- and matrix-
valued query 𝑓 (𝐷) ∈ {0, 1}𝑁×𝑃 , the XOR mechanism is defined as

XOR(𝑓 (𝐷),B) = 𝑓 (𝐷) ⊕ B,
where ⊕ is the XOR operator,3 andB ∼ Ber𝑁,𝑃 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 ).
2Pure feature-association parameters are defined as

𝜃
𝑝

𝑖
= log

{︂ Pr(B𝑖𝑝 = 1 |𝑟𝑒𝑠𝑡 = 0)
Pr(B𝑖𝑝 = 0 |𝑟𝑒𝑠𝑡 = 0)

}︂
,

𝜃
𝑝,𝑞

𝑖
= log

{︂ Pr(B𝑖𝑝 = 1,B𝑖𝑞 = 1 |𝑟𝑒𝑠𝑡 = 0)
Pr(B𝑖𝑝 = 0,B𝑖𝑞 = 1 |𝑟𝑒𝑠𝑡 = 0)

Pr(B𝑖𝑝 = 0,B𝑖𝑞 = 0 |𝑟𝑒𝑠𝑡 = 0)
Pr(B𝑖𝑝 = 1,B𝑖𝑞 = 0 |𝑟𝑒𝑠𝑡 = 0)

}︂
.

Pure object-association parameters are defined as

𝜆
𝑝

𝑖,𝑗
= log

{︂ Pr(B𝑖𝑝 = 1,B𝑗𝑝 = 1 |𝑟𝑒𝑠𝑡 = 0)
Pr(B𝑖𝑝 = 0,B𝑗𝑝 = 1 |𝑟𝑒𝑠𝑡 = 0)

Pr(B𝑖𝑝 = 0,B𝑗𝑝 = 0 |𝑟𝑒𝑠𝑡 = 0)
Pr(B𝑖𝑝 = 1,B𝑗𝑝 = 0 |𝑟𝑒𝑠𝑡 = 0)

}︂
.

Mixed features/objects-association parameters are defined as

𝜙
𝑝,𝑞

𝑖,𝑗
= log

{︂ Pr(B𝑖𝑝 = 1,B𝑗𝑞 = 1 |𝑟𝑒𝑠𝑡 = 0)
Pr(B𝑖𝑝 = 0,B𝑗𝑞 = 1 |𝑟𝑒𝑠𝑡 = 0)

Pr(B𝑖𝑝 = 0,B𝑗𝑞 = 0 |𝑟𝑒𝑠𝑡 = 0)
Pr(B𝑖𝑝 = 1,B𝑗𝑞 = 0 |𝑟𝑒𝑠𝑡 = 0)

}︂
.

3For any binary numbers 𝑢, 𝑣, we have 𝑢 ⊕ 𝑣 = 𝑢 × 𝑣 +𝑢 × 𝑣.

4.1 Privacy Guarantee
We give the privacy guarantee of the XOR mechanism in the fol-
lowing theorem, which not only provides a sufficient condition for
it to achieve 𝜖-differential privacy, but also presents a constraint
on choosing the parameters in Ber𝑁,𝑃 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 ).

Theorem 1. The XOR mechanism achieves 𝜖-differential privacy
of a matrix-valued binary query if Θ and Λ𝑖, 𝑗 satisfy

𝑠𝑓

(︂
| |𝝀(Θ) | |2 +

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗=𝑖+1 | |𝝀(Λ𝑖, 𝑗 ) | |2

)︂
≤ 𝜖, (4)

where 𝑠𝑓 is the sensitivity of the binary- and matrix-valued query
in Definition 3, and | |𝝀(Θ) | |2 and | |𝝀(Λ𝑖, 𝑗 ) | |2 are the 𝑙2 norm of the
vectors composed of eigenvalues of Θ and Λ𝑖, 𝑗 , respectively.

Proof. Please refer to Appendix A for the detailed proof. Here,
we only provide the sketch of the proof:

1. Let 𝐷 and 𝐷 ′ be a pair neighboring datasets, and B𝐷 (or B𝐷′ )
be the matrix-valued Bernoulli distributed noise used to perturb
𝑓 (𝐷) (or 𝑓 (𝐷 ′)). To achieve 𝜖-differential privacy, we need to have
Pr(𝑓 (𝐷) ⊕B𝐷 ∈ S) ≤ Pr(𝑓 (𝐷 ′) ⊕B𝐷′ ∈ S), where S is the range
ofXOR(𝑓 (𝐷),B). This inequality can be shown to be equivalent as
Tr[B𝐷 ΘB𝑇

𝐷
−B𝐷′ ΘB𝑇

𝐷′] +
∑︁𝑁
𝑖=1

∑︁𝑁
𝑗≠𝑖 Tr[J𝑖 𝑗 (B𝐷 Λ𝑖, 𝑗 B𝑇𝐷 −B𝐷′ Λ𝑖, 𝑗 B

𝑇
𝐷′)] ≤ 𝜖,

which is a sufficient condition for the XOR mechanism to achieve
𝜖-differential privacy.

2. Bounding each trace term in the derived sufficient condition
using the eigenvalues of the parametric matrices. □

Remark 1. The condition developed in (4) can be intuitively in-
terpreted as follows. Since Θ and Λ𝑖, 𝑗 are symmetric matrices, we
have | |𝝀(Θ) | |2 = | |Θ| |𝐹 and | |𝝀(Λ𝑖, 𝑗 ) | |2 = | |Λ𝑖, 𝑗 | |𝐹 . Thus, given the
sensitivity 𝑠𝑓 , a small value of 𝜖 will make the log-linear parameters
𝜃
𝑝

𝑖
, 𝜃𝑝,𝑞
𝑖

, 𝜆𝑝
𝑖,𝑗
, and 𝜙𝑝,𝑞

𝑖, 𝑗
close to 0, which means the ratio of the corre-

sponding probabilities is close to 1. Take 𝜃𝑝
𝑖
as an example, if 𝜃𝑝

𝑖
is

close to 0, then,
Pr(B𝑖𝑝=1 |𝑟𝑒𝑠𝑡=0)
Pr(B𝑖𝑝=0 |𝑟𝑒𝑠𝑡=0) will be close to 1, which suggests that

the probability of a single noise element being 1 or 0 given the rest are
0’s is approximately the same. Thus, 𝑓 (𝐷) will be XORed by a nearly
random binary matrix, which results in low utility but high privacy of
the released query result. If 𝜖 = 0, then,Θ = Λ1,2 = · · · = Λ𝑁−1,𝑁 = 0,
which means all elements in B are mutually independent, and an
instance of B is a random binary matrix, whose elements equal to 1
with probability 1

2 . This leads to the highest privacy guarantee but the
lowest utility, because it completely ignores all the potential structure
dependency among data entries.

Given a privacy budget 𝜖 > 0, we need to select the matrix
parameters satisfying (4) to guarantee that the perturbed 𝑓 (𝐷) is 𝜖-
differentially private. In Section 5, we develop a heuristic approach
to construct appropriate parameters, which satisfies (4) and mini-
mizes the expected square query error rate of the XOR mechanism.

4.2 Utility Guarantee
Considering that the XOR mechanism achieves 𝜖-differential pri-
vacy by perturbing the query with noises that affect the accuracy
of the results, we define the square query error rate as follows.

Definition 6. The square query error rate of the XOR mechanism
given a query function and a dataset, i.e., 𝑓 (·) and𝐷 , is 𝑟 (𝑓 (𝐷),B) =
| |𝑓 (𝐷) ⊕ B −𝑓 (𝐷) | |2

𝐹

/︁
| |𝑓 (𝐷) | |2

𝐹
.
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To analyze the utility guarantee of the XOR mechanism, we
explore the expected value of the square query error rate, i.e,
E[𝑟 (𝑓 (𝐷),B)]. In particular, we have the following theorem.

Theorem 2. Let Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 be the matrix parameters
satisfying the sufficient condition to achieve 𝜖-differentially private
𝑓 (𝐷) in Theorem 1, then the expected square query error rate is

E
B∼Ber𝑁,𝑃 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 )

[︁
𝑟 (𝑓 (𝐷),B)

]︁
=

1
| |𝑓 (𝐷) | |2

𝐹

∑︁
b𝑘 ∈T exp(b

𝑇
𝑘
Πb𝑘 ) | | b𝑘 | |22∑︁

b𝑘 ∈T exp(b
𝑇
𝑘
Πb𝑘 )

.

Proof. This theorem is proved by first showing the multivariate
Bernoulli distribution is an exponential family distribution, then ap-
plying Lemma 1, and finally replacing integration by differentiation
to calculate the expected value of exponential family distributed
random variable. Please refer to Appendix B for details. □

Remark 2. In Theorem 2, the parameters of the matrix-value
Bernoulli distribution are embedded in Π given in (3). The result can
be interpreted as a scaled weighted average of all possible | | b𝑘 | |22’s

(| | b𝑘 | |22 = 𝑘), the weight is 𝜔𝑘 =
exp(b𝑇

𝑘
Πb𝑘 )∑︁

b𝑘 ∈T exp(b
𝑇
𝑘
Πb𝑘 )

(
∑︁
𝜔𝑘
𝜔𝑘 = 1),

and the scale factor is 1
| |𝑓 (𝐷) | |2

𝐹

. If the privacy budget is low, then

according to (4), | |𝝀(Θ) | |2 = | |Θ | |𝐹 , | |𝝀(Λ𝑖, 𝑗 ) | |2 = | | Λ𝑖, 𝑗 | |𝐹 will
be small, which make elements in Π close to 0, thus, lead to a high
expected square query error rate. Particularly, when 𝜖 = 0, we have the
largest expected square query error rate, i.e., 1

| |𝑓 (𝐷) | |2
𝐹

1
2𝑁𝑃

(︂ ∑︁𝑁𝑃
𝑡=0

(︁𝑁𝑃
𝑡

)︁
𝑡

)︂
= 𝑁𝑃2𝑁𝑃−1

2𝑁𝑃 | |𝑓 (𝐷) | |2
𝐹

= 𝑁𝑃

2 | |𝑓 (𝐷) | |2
𝐹

. It suggests that high privacy and high

utility are conflicting objectives need to be balanced.

5 GENERATION OF THE MATRIX-VALUED
BERNOULLI DISTRIBUTED NOISE

Recall that in Theorem 1, the sufficient condition for the XOR mech-
anism to achieve 𝜖-differential privacy only depends on the eigen-
values of the parametric matrices in the matrix-valued Bernoulli
distribution. Thus, as long as (4) holds, there are infinite numbers
of Θ and Λ𝑖, 𝑗 ’s in the design space of the perturbation noises. In
this section, we first propose a heuristic approach to generate the
parametric matrices. Then, we adapt an Exact Hamiltonian Monte
Carlo based sampling scheme to generate samples (noises). Finally,
we visualize the effect of the XOR mechanism using a toy example.

5.1 Generating Parameters in the Distribution:
a Heuristic Approach

We generate the parametric matrices of the matrix-valued Bernoulli
distribution from a utility boosting perspective. In other words, we
propose to minimize the expected square error rate of the XOR
mechanism by optimizing the eigenvalues of Θ and Λ𝑖, 𝑗 while
satisfying the 𝜖-differential privacy guarantee. Once having the
eigenvalues, Θ and Λ𝑖, 𝑗 can be synthesized via Udiag(𝝀(Θ))U−1
and Udiag(𝝀(Λ𝑖, 𝑗 ))U−1, where diag(·) represents the diagonal ma-
trix generated from a vector, and U is any orthonormal basis in R𝑃 .
We consider Θ and Λ𝑖, 𝑗 are all positive definite (PD) matrices with
positive entries, i.e., Θ,Λ𝑖, 𝑗 ∈ PD𝑃×𝑃 and Θ > 0,Λ𝑖, 𝑗 > 0, and

formulate the following optimization problem
min

Θ>0,Λ𝑖,𝑗>0,Θ,Λ𝑖,𝑗 ∈PD𝑃×𝑃 ,
𝑖, 𝑗 ∈[1,𝑁 ],𝑖≠𝑗

E
B∼Ber𝑁,𝑃 (Θ,Λ𝑖,𝑗 , · · · ,Λ𝑁−1,𝑁 )

[︁
𝑟 (𝑓 (𝐷),B)

]︁
s. t. 𝜖-differential privacy condition in (4) .

(5)

Since E[𝑟 (𝑓 (𝐷),B)
]︁
∝ 𝑔(Π) =

∑︁
b𝑘 ∈T exp(b

𝑇
𝑘
Πb𝑘 ) | | b𝑘 | |22∑︁

b𝑘 ∈T exp(b
𝑇
𝑘
Πb𝑘 )

, and

minimizing the ratio of two summations is generally an NP hard
problem [46], we instead consider an upper bound of 𝑔(Π), which
is provided in the following proposition.

Proposition 1. 𝑔(Π) is upper bounded by 𝑈 (Π)
𝐿 (Π) , i.e., 𝑔(Π) ≤

𝑈 (Π)
𝐿 (Π) =

∑︁
b𝑘 ∈T exp

(︁
(𝜆max (Θ)+2

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗>𝑖 𝜆max (Λi,j)) | | b𝑘 | |22

)︁
| | b𝑘 | |22

2𝑁𝑃−1
(︁
2+𝑁 | |𝝀 (Θ) | |2+

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗>𝑖 | |𝝀 (Λ𝑖,𝑗 ) | |2

)︁ ,when

Θ > 0,Λ𝑖, 𝑗 > 0,Θ,Λ𝑖, 𝑗 ∈ PD𝑃×𝑃 , 𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑖 ≠ 𝑗 .

Proof. This upper bound can be obtained by first upper bound-
ing the numerator of 𝑔(Π) using eigenvalues of the parametric
matrices, and then, lower bounding the denominator of 𝑔(Π) via
Taylor approximation. Please refer to Appendix C for the proof. □

As a consequence, we can reformulate (5) as
min

Θ>0,Λ𝑖,𝑗>0,Θ,Λ𝑖,𝑗 ∈PD𝑃×𝑃 ,𝑖, 𝑗 ∈[1,𝑁 ],𝑖≠𝑗
𝑈 (Π)/𝐿(Π)

s. t. 𝜖-differential privacy condition in (4) .
(6)

We develop a heuristic solution to (6) based on the following
observation: to reduce𝑈 (Π)/𝐿(Π), we need to decrease 𝜆max (Θ)
and 𝜆max (Λ𝑖, 𝑗 ) and increase | |𝝀(Θ) | |2 and | |𝝀(Λ𝑖, 𝑗 ) | |2 under the
𝜖-differential privacy constraint in (4). Since Θ,Λ𝑖, 𝑗 ∈ PD𝑃×𝑃 , the
smallest 𝜆max (Θ) and 𝜆max (Λ𝑖, 𝑗 ) are 𝜆max (Θ) = | |𝝀(Θ) | |2/

√
𝑝 and

𝜆max (Λ𝑖, 𝑗 ) = | |𝝀(Λ𝑖, 𝑗 ) | |2/
√
𝑝 , respectively. As a result, the heuristic

solution to (6), which is also a feasible solution to (5), is obtained
by letting Θ and Λ𝑖, 𝑗 all have 1 eigenvalue with multiplicities 𝑃 , i.e.,
𝜆1 (Θ) = · · · 𝜆𝑃 (Θ) = | |𝝀(Θ) | |2/

√
𝑝 and 𝜆1 (Λ𝑖, 𝑗 ) = · · · 𝜆𝑃 (Λ𝑖, 𝑗 ) =

| |𝝀(Λ𝑖, 𝑗 ) | |2/
√
𝑝, 𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑖 ≠ 𝑗 . The privacy budget allocated to

| |𝝀(Θ) | |2 and | |𝝀(Λ𝑖, 𝑗 ) | |2’s is controlled by a parameter 𝛼 ∈ (0, 1).
We present the procedure to generate Θ and Λ𝑖, 𝑗 in Algorithm 1.

Algorithm 1: Parametric matrices generation procedure
Input :Privacy budget 𝜖 provided by the data consumer, the

privacy budget allocation parameter 0 < 𝛼 < 1.
Output :Θ and Λ𝑖,𝑗 , 𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑖 ≠ 𝑗 .

1 Allocate budget 𝛼 𝜖
𝑠𝑓

to | |𝝀 (Θ) | |2.
2 Let 𝜆1 (Θ) = · · · = 𝜆𝑃 (Θ) = 𝛼𝜖

𝑠𝑓
√
𝑝
.

3 Θ← Udiag(𝝀 (Θ))U−1. // U is any orthonormal basis in R𝑃 .
4 for 𝑖 ∈ [1, 𝑁 − 1] do
5 for 𝑗 ∈ [𝑖 + 1, 𝑁 ] do
6 Allocate budget 1−𝛼

𝑁 (𝑁−1)/2
𝜖
𝑠𝑓

to | |𝝀 (Λ𝑖,𝑗 ) | |2.

7 Let 𝜆1 (Λ𝑖,𝑗 ) = · · · = 𝜆𝑃 (Λ𝑖,𝑗 ) = (1−𝛼 )𝜖
𝑠𝑓
√
𝑝𝑁 (𝑁−1)/2 .

8 Λ𝑖,𝑗 ← Udiag(𝝀 (Λ𝑖,𝑗 ))U−1.
9 Λ𝑗,𝑖 ← Λ𝑇

𝑖,𝑗
.

10 end
11 end
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5.2 Generating Samples in the Distribution:
Exact Hamiltonian Monte Carlo

It is computationally prohibitive to calculate the normalization
constants in both (1) and (3), as they require the summation of 2𝑁𝑃
items. Besides, there is no available toolbox to generate samples
from the matrix-valued Bernoulli distribution, which hinders the
success of applying our proposed mechanism. To solve this problem,
we propose to generate samples of thematrix-valued Bernoulli noise
using the Exact Hamiltonian Monte Carlo (EHMC) approach [50],
which efficiently samples generic distributions in the support of
{−1, +1}𝑑 , where 𝑑 is the dimension of interest.

To map random variable from {0, 1}𝑁𝑃 to {−1, +1}𝑁𝑃 , we per-
form variable transformation on b, i.e., s = 𝑔(b) = 2 b−1. Thus,
we have s ∈ {−1, +1}𝑁𝑃 with PDF 𝑓S (s) =

∑︁
b∈𝑔−1 (s) 𝑓vec(B𝑇 ) (b) =

1
𝑍
𝑓vec(B𝑇 ) (

s+1
2 ) ∝ 𝑒

{s𝑇 Πs+2 s𝑇 Π1}, where 𝑓vec(B𝑇 ) (b) is defined
in (2), and 𝑍 is a normalization factor, whose value is not required
in practice, and 1 is an all-ones vector.

According to [50], EHMC generates samples from 𝑓S (s) by first
sampling y from 𝑓Y (y) = 𝑓S (s) 𝑓Y |S (y | s) using the standard HMC
procedure, where 𝑓Y |S (y | s) is a truncated Gaussian distribution, i.e.,
𝑓Y |S (y | s) = ( 2𝜋 )

𝑁𝑃/2 exp(− y𝑇 y
2 ), if sign(y) = s, and 𝑓Y |S (y | s) =

0, otherwise. Then, s is obtained by s = sign(y), where sign(·) is
an element-wise sign function, and y ∈ R𝑁𝑃 . We summarize the
steps to generate samples (noises) of the matrix-valued Bernoulli
distribution in Algorithm 2. Specifically, we first generate samples
of the multivariate Bernoulli distribution via EMHC (line 2-3), then
resize it according to Lemma 1 to obtain noises with the desired
matrix-valued Bernoulli distribution (line 4).

Algorithm 2: EHMC based noise samples generation
Input :

• Θ and Λ𝑖,𝑗 , 𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑖 ≠ 𝑗 generated by Algorithm 1.
• Π← I𝑁 ⊗ Θ+∑︁𝑁

𝑖=1
∑︁𝑁

𝑗≠𝑖 J𝑖 𝑗 ⊗ Λ𝑖,𝑗 .
• The potential energy function, i.e.,
𝑈 (y) = − log 𝑓Y|S (y | s) − log exp(s𝑇 Πs+2 s𝑇 Π1) .
• The momentum variable q ∈ R𝑁𝑃 , and the kinetic energy function
𝐾 (q) = q𝑇 q

2 .
• The continuous Hamiltonian 𝐻 (y, q) = 𝑈 (y) +𝐾 (q) .
• Particle moving duration𝑇 , and starting position y(0) ∼ N(0, I) .

Output :An instance of B ∼ Ber𝑁,𝑃 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 ) .
1 Sample the momentum variable q(0) ∼ N(0, I) .
2 Let the particle move according to the equations of motion

y(𝑡 )̇ = 𝜕𝐻
𝜕 q(𝑡 ) , q(𝑡 )̇ = − 𝜕𝐻

𝜕 y(𝑡 ) , i.e.,
𝑦𝑖 (𝑡 ) = 𝑦𝑖 (0)𝑐𝑜𝑠 (𝑡 ) + 𝑞𝑖 (0)𝑠𝑖𝑛 (𝑡 ) ,
𝑞𝑖 (𝑡 ) = −𝑦𝑖 (0)𝑠𝑖𝑛 (𝑡 ) + 𝑞𝑖 (0)𝑐𝑜𝑠 (𝑡 ) , ∀𝑖 ∈ {1, 2, · · · , 𝑁𝑃 }.

3 Set s = sign(y(𝑇 )) , and b = s+1
2 .

4 Set B =
(︁
Resize(b, 𝑃, 𝑁 )

)︁𝑇 , and return B.

One of the most important property of EHMC based binary
distribution sampling scheme is that it can draw samples from the
exactly same binary distribution without approximation [50, 51].
The reason that it is tuning parameter-free and solves the two-
state differential equations in the defined Hamiltonian dynamics
exactly (i.e., line 2 of Algorithm 2), instead of using numerical
integrators (such as the Leapfrog integrator) to approximate the

Hamiltonian systems of equations. In contrast, traditional HMC
sampling approaches will have numerical integrator’s error on the
order of 𝜏3 per iteration step and 𝜏2 globally, where 𝜏 is the step-size
tuning parameter in HMC [34]. As a result, Algorithm 2 generates
samples from the desired matrix-valued Bernoulli distribution and
guarantees the 𝜖-differential privacy of the XOR mechanism.

In practice, it is generally time consuming to use HMC based
sampling. Algorithm 2 may cause memory overflow on ordinary
devices if 𝑁 and 𝑃 are very large, as it requires the maintaining of
Π which is of size 𝑁𝑃 ×𝑁𝑃 . To solve these issues, we can partition
the matrix-valued query 𝑓 (𝐷) into smaller non-overlapping blocks,
assign each block some fraction of the privacy budget (proportional
to the size of the block), and then generate the binary noise patches
for all the blocks. Thus, we can protect the differential privacy of
each block of 𝑓 (𝐷) separately.4 In this case, it may lead to some
utility loss since the correlation between entries in different blocks
are ignored and each block only has reduced privacy budget, but
as will be shown in the case studies, the proposed XOR mechanism
can still achieve high utilities in real world applications.

5.3 A Toy Example on Grayscale Image
To demonstrate the effect of noises introduced by the XOR mecha-
nism, we take a greyscale image as an example, i.e., the non-private
character “C” image shown in Fig. 1 (a). We consider two choices of
both privacy budget 𝜖 and allocation parameter 𝛼 when releasing
the image. Specifically, Fig. 1 (b)-(d) show the perturbed images
by setting 𝜖 as 0.3, 0.5, and 0.7, respectively, when 𝛼 = 0.3. Fig. 1
(f)-(h) show the perturbed images by setting 𝜖 as 0.3, 0.5, and 0.7,
respectively, when 𝛼 = 0.7. We observe that under the same 𝜖 , the
noisy images are closer to the non-private one if 𝛼 is higher (i.e.,
the privacy budget allocated to Θ is higher). In particular, when
𝜖 = 0.7 and 𝛼 = 0.7, the perturbed image is the same as the non-
private image. Thus, in the case studies in Section 8, we will choose
0.5 < 𝛼 < 1 to preserve more feature-associations while still make
all Λ𝑖, 𝑗 to be PD. Besides, we also show the perturbed image when
𝜖 = 0 in Fig. 1 (e), which is a random matrix and has the lowest
utility. It corroborates the analysis in Remark 2.

(a) non-pvt (b) 𝜖 = 0.3 (c) 𝜖 = 0.5 (d) 𝜖 = 0.7
𝛼 = 0.3 𝛼 = 0.3 𝛼 = 0.3

(e) 𝜖 = 0 (f) 𝜖 = 0.3 (g) 𝜖 = 0.5 (h) 𝜖 = 0.7
𝛼 = 0.7 𝛼 = 0.7 𝛼 = 0.7

Figure 1: Visualization of a greyscale image perturbed by
the proposed XOR mechansim.

4It is remarkable that the new arisen of quantum computing can be applied to efficiently
generate desired binary noises in our study. The reason is that the calculation of
normalization constant in (1) and (3) is essentially related to the computation of the
permanent of matrix, which is intractable to classical computers, but has recently
shown can be finished within seconds using photonic quantum computer [67].

854



6 APPLYING XOR MECHANISM ON GRAPHS
A special case of a binary- and matrix-valued query is the adja-
cency matrix which is symmetric and has zero diagonal entries. It
represents the topology of an undirected graph, and its element
indicates whether a particular pair of vertices are connected or
not in the graph. Thus, a data consumer who is interested in the
structure of a graph will conduct the query 𝑓 (A) = XOR(A,B) =
A ⊕ B ∈ {0, 1}𝑁×𝑁 , where 𝑁 is the number of nodes (here the
dataset is the edge list of a graph, which is usually represented as a
adjacency matrix). However, directly applying the XOR mechanism
may not result in a valid adjacency matrix, as the generated matrix-
valued Bernoulli distributed noise matrix may not be symmetric
and its diagonal can also have nonzero entries. Thus, we need to
perform post process to obtain a valid one. We summarize the pro-
cedure to query the adjacency matrix of an undirected graph with
𝜖-differential privacy guarantee in Algorithm 3.

Specifically, at line 2, we use the proposed XOR mechanism to
first get an intermediate result denoted asA𝑡𝑒𝑚𝑝 , which may not be
a valid adjacency matrix. Then, at line 3, we post process A𝑡𝑒𝑚𝑝 by
first performing the element-wise logical conjunction (logical and)
operation between A𝑡𝑒𝑚𝑝 and its transpose, and then subtracting
the diagonal entries from the result of the logical conjunction. We
can immediate have the following theorem to guarantee the 𝜖-
differential privacy of Algorithm 3.

Algorithm 3: Query adjacency matrix with 𝜖-differential
privacy guarantee using the proposed XOR mechanism
Input :Privacy budget 𝜖 and allocation parameter 𝛼 provided by

the data consumer, the original adjacency matrix A.
Output :˜︁A, 𝜖-differentially private adjacency matrix.

1 Set the parameters in the matrix-valued Bernoulli distribution and
generate a sample, i.e., B, from the distribution using Algorithm 1
and 2, respectively.

2 Set A𝑡𝑒𝑚𝑝 = A ⊕ B.
3 Set ˜︁A = A𝑡𝑒𝑚𝑝 ∧ A𝑇

𝑡𝑒𝑚𝑝 − diag
(︁
A𝑡𝑒𝑚𝑝 ∧ A𝑇

𝑡𝑒𝑚𝑝

)︁
.

4 Release ˜︁A to the data consumer.

Theorem 3. ˜︁A obtained via Algorithm 3 is 𝜖-differentially private.

Proof. The post processing step (line 3 in Algorithm 3) is a
deterministic mapping function 𝑔 : {0, 1}𝑁×𝑁 → {0, 1}𝑁×𝑁 . Thus,
Algorithm 3 is a composition of the XOR mechanism and 𝑔, i.e.,
𝑔(XOR(A)). Let A,A′ be the adjacency matrices of a pair of neigh-
boring graphs that differ in only one edge. For any fixed eventH ⊂
V , where V is the set of valid adjacency matrices of undirected
graph with 𝑁 nodes, define the event S = {𝑆 ∈ {0, 1}𝑁×𝑁 : 𝑔(𝑆) ∈
H}. Then, we have Pr[𝑔(XOR(𝑓 (A))) ∈ H] = Pr[XOR(𝑓 (A)) ∈
S] ≤ 𝑒𝜖 Pr[XOR(𝑓 (A′)) ∈ S] = 𝑒𝜖 Pr[𝑔(XOR(𝑓 (A′))) ∈ H],
which satisfies the definition of 𝜖-differential privacy. □

Adjacency matrices carry sensitive information of social actors’
relationship, and Theorem 3 protects any edge in the graph from
disclosure. Thus, Algorithm 3 is an 𝜖-edge-differentially private
mechanism [22, 55] even considering a powerful attacker [39, 62],

who has access to not only the noisy query O (e.g., graph topol-
ogy, community detection results, degree distribution) but also the
auxiliary social connection excluding just one pair of users (i.e.,
A/{𝑖, 𝑗 }). Particularly, we can arrive at the following conclusion.

Theorem 4. Define the privacy leakage of an arbitrary edge in a
graph as PrvcLkg = max𝑎∈{0,1} Pr(ˆ︃A𝑖, 𝑗 = 𝑎 |O,A/{𝑖, 𝑗 }), which is the
maximal posterior probability of the relationship (ˆ︃A𝑖, 𝑗 = 𝑎) inferred
by the powerful attacker. If O is the query result from an 𝜖-edge-
differentially privatemechanism, then PrvcLkg = max{ 1

𝜁𝑒𝜖+1 ,
𝜁𝑒𝜖

𝜁𝑒𝜖+1 },

where 𝜁 =
Pr(ˆ︃A𝑖,𝑗=𝑎 |A/{𝑖,𝑗 })
Pr(ˆ︃A𝑖,𝑗=𝑎 |A/{𝑖,𝑗 })

is the ratio between prior probabilities of

that relationship, and is independent of the adopted mechanism.

Proof. Please refer to Appendix D for the proof. □

7 CASE STUDY I: DIFFERENTIALLY PRIVATE
BINARY DATA CLASSIFICATION

In case study I, we consider generic binary- and matrix-valued data
query, and investigate the problem of binary data classification in
a differentially private manner. We consider two datasets. The first
is the congressional voting records dataset (Votings) [56], which
contains votes on 16 issues from 435 representatives either from
the democratic or the republican party. We binarize the categorical
voting records to obtain binary data entries.5 The second dataset
is the Breast Cancer Wisconsin Diagnostic dataset (Cancer) [58],
which contains 569 medical records that are labeled as either malig-
nant or benign. Each record has 30 features extracted from the cell
nucleus of breast cancer sample, and the feature are also binarized.6

We adopt logistic regression to distinguish the two classes in each
of the considered dataset, and the binary- andmatrix-valued queries
are the training dataset. In particular, for Voting, by leaving out
45% voting records for testing, we have 𝑓 (𝐷Voting) = {0, 1}240×16.
For Cancer, by leaving out 25% instances for testing, we have
𝑓 (𝐷Cancer) = {0, 1}426×30. According to Definition 3, the sensitivity
𝑠𝑓 for 𝑓 (𝐷Voting) and 𝑓 (𝐷Cancer) are 16 and 30, respectively.

Note that the data objects (i.e., records) in each dataset are mu-
tually independent (e.g., the statistics of the breast cancer cell nu-
cleus of an individual are independent from the others), which
suggests that the query result satisfy object-independence and leads
to Λ𝑖, 𝑗 = 0,∀𝑖, 𝑗 ∈ [1, 𝑁 ], 𝑖 ≠ 𝑗 . This is consistent with the com-
mon assumption adopted by many learning algorithms that data
samples are i.i.d. w.r.t. a certain underlying probability distribu-
tion. Hence, the sufficient condition for the XOR mechanism to be
𝜖-differentially private (i.e., Theorem 1) becomes 𝑠𝑓 | |𝝀(Θ) | |2 ≤ 𝜖 .

Since there is no existing work that can directly protect the differ-
ential privacy of binary- and matrix-valued query, we compare XOR
mechanism with the non-private baseline, i.e., the logistic regres-
sion classifier obtained by using the original non-private training
data, and the classifier obtained from privacy-preserving logistic
regression (PPLR) [9], which conducts objective perturbation on the
objective function of logistic regression with 𝜖-differential privacy

5Voted for, paired for, and announced for are represented as “yes” (i.e., 1), and voted
against, paired against, announced against, voted present, voted present to avoid
conflict of interest, and did not vote are represented as “no” (i.e., 0).
6For example, if the radius of a cell nucleus (mean of distances from center to points
on the perimeter) exceeds a certain threshold, then radius is set as 1, otherwise it is 0.
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guarantee.7 We use classification accuracy on the testing dataset as
the evaluation metric.

We vary the privacy budget from 0.1 to 1 and show the classi-
fication accuracy on Voting and Cancer against the left y-axis in
Figure 2 (a) and (b), respectively. Specifically, red and green dotted
curves are the results using differentially private training dataset
released by XOR mechanism, and 𝛼 = 1 corresponds to the object-
independence assumption. Blue curves are the results obtained by
PPLR. Black lines are the classification accuracy (97.44% for Voting
and 97.9% for Cancer) obtained from the non-private baselines. Ad-
ditionally, we also plot the empirical square query error rate (in red
and green dashed curves) under different 𝜖 against the right y-axis.
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(a) Classification accuracy and square query error rate on Voting Dataset
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(b) Classification accuracy and square query error rate on Cancer Dataset

Figure 2: Classification accuracy and empirical square query
error rate on (a) Voting and (b) Cancer.

From Figure 2 (a), we see that the XOR mechanism achieves
higher accuracy than PPLR on the Voting dataset when 𝜖 ≥ 0.3 con-
sidering object-independence (𝛼 = 1), but it can only slightly outper-
form PPLR when 𝜖 ≥ 0.9 without considering object-independence
(𝛼 = 0.75). This is because when data objects are independent, we
do not need to preserve the object-associations in the matrix-valued
query result. As a result, we can set 𝛼 = 1 in Algorithm 1 to allocate
all the privacy budget to Θ and preserve feature-associations only.
Although we have the same privacy guarantee when 𝛼 = 0.75 and
𝛼 = 1, the prior knowledge on the structural property of the query
result helps us obtain higher utility by achieving lower empirical
7Specifically, the classifiers from the non-private baseline, PPLR, and our proposed XOR
mechanism are, respectively, obtained by solving the following optimization problems
𝜼∗Baseline = argmin𝜼 −1/𝑁

∑︁𝑁
𝑖=1 𝑦𝑖 log(ℎ (𝑓 (𝐷)𝑖 )) + (1 − 𝑦𝑖 ) log(1 − ℎ (𝑓 (𝐷)𝑖 )) ,

𝜼∗PPLR = argmin𝜼 −1/𝑁
∑︁𝑁

𝑖=1 𝑦𝑖 log(ℎ (𝑓 (𝐷)𝑖 )) + (1 − 𝑦𝑖 ) log(1 − ℎ (𝑓 (𝐷)𝑖 )) +
1/𝑁𝒏𝑇𝜼, and 𝜼∗

XOR
= argmin𝜼 −1/𝑁

∑︁𝑁
𝑖=1 𝑦𝑖 log(ℎ (XOR(𝑓 (𝐷))𝑖 )) + (1 −

𝑦𝑖 ) log(1 − ℎ (XOR(𝑓 (𝐷))𝑖 )) , where 𝑁 is the number of samples in the training
dataset, 𝑓 (𝐷)𝑖 is the 𝑖th data sample, XOR(𝑓 (𝐷))𝑖 is the 𝑖th perturbed data sample,
ℎ (x) = 1/1 + exp(−𝜼𝑇 x) is the sigmoid function, and 𝒏 is the noise used to perturb
the objective function. The norm of 𝒏 is sampled from the Γ (𝑃, 2/𝜖) distribution, 𝑃 is
the dimension of data sample, and the direction of 𝒏 is selected uniformly at random.

square query error rate on the training dataset. Hence, when 𝜖 is
high, only a small fraction of entries in 𝑓 (𝐷Voting) will be perturbed,
e.g., the empirical square query error rate is around 0.04 when
𝜖 = 0.5. As a result, 𝜼∗

XOR
will be closer to 𝜼∗Baseline. In contrast,

PPLR protects the privacy of training data by injecting i.i.d. noise
into logistic regression, and makes 𝜼∗PPLR deviated from 𝜼∗Baseline
even under large 𝜖 . This pattern is more clear in Figure 2 (b), where
the proposed XOR mechanism considering object-independence
outperforms PPLR given all 𝜖 , and is closer to the non-private base-
line. For both datasets, the square query error rate decreases as 𝜖
increases, which validates our discussion in Remark 2.

8 CASE STUDY II: DIFFERENTIALLY PRIVATE
SOCIAL NETWORK ANALYSIS

Now, we evaluate the performance of the proposed XORmechanism
through differentially private social network analysis.

8.1 Dataset and Tasks
We consider two social networks, i.e., (i) the Facebook friendship
network [36], which has 4039 users and 10 ground-truth commu-
nities, and is constructed by merging the ego networks of 10 focal
users (“ego”), and (ii) the email interaction network [35], which
has 986 users and 42 ground-truth communities, and is constructed
from the email interactions among institution members in 42 de-
partments. In the experiment, we denote the pristine Facebook
network (resp. email network) as 𝐺FB (resp. 𝐺EM), and the differ-
ential privately released Facebook network (resp. email network)
using privacy budget 𝜖 as𝐺FB

𝜖 (resp.𝐺EM
𝜖 ). We analyze the topology

of the two social networks in a differentially private manner. In
particular, we consider querying their topology (i.e., adjacency ma-
trices) with differential privacy guarantees, based on which some
network statistics are calculate, and tasks of degree distribution
estimation and community detection are conducted. Note that in
this case study, the dataset is considered as the edge list of a graph,
which can be represented as the adjacency matrix, i.e., 𝐷 = A, thus,
the query is 𝑓 (A). Since the addition or removing an edge will
change two entries in A, we have sensitivity 𝑠𝑓 = 2.

8.2 The Comparing Mechanisms
We compare the XOR mechanism with ApproxDeg [28], DPCD
[28], Pygmalion [55], LDPGen [52], and PBCN [25]. Specifically,
ApproxDeg and DPCD are developed specially for degree distribu-
tion estimation and community detection under differential privacy
guarantee.8 Pygmalion, LDPGen, and PBCN are the state-of-the-
art differentially private mechanism on graph topology releasing
(discussed in Section 2). We also compare with the non-private
baselines, that use the original adjacency matrices for all tasks.

8.3 Evaluation Metrics
Since all considered mechanisms in case study II can be categorized
as 𝜖-edge-differentially private mechanisms, according to Theorem
4, they all result in the same privacy leakage on an arbitrary edge.
Thus, for a given 𝜖 value, it is sufficient to just compare the utilities
8ApproxDeg is a combination of constrained global sensitivity control [14] and post-
processing. DPCD performs objective perturbation on the objective function of com-
munity detection with differential privacy guarantees [9].
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achieved by different mechanisms. Now, we formally define the
utility metrics for the 2 social network analysis tasks.

Degree Distribution.We use the Kullback-Leibler (KL) diver-
gence [32] to evaluate the utility of the obtained degree distri-
butions. It is defined as DKL (𝑃 | |𝑄) =

∑︁
𝑥 ∈X 𝑃 (𝑥) log(𝑃 (𝑥)/𝑄 (𝑥)),

where 𝑃 (𝑥) and𝑄 (𝑥) are two probability distributions. Particularly,
we let 𝑃 (𝑥) be the degree distributions achieved from the differ-
entially private mechanisms, and 𝑄 (𝑥) be that from the original
social network. The smaller the KL divergence is, the higher utility
the obtained degree distribution has.

CommunityDetection.Weuse average 𝐹1 score [28, 29, 63, 64]
as the utility metric for community detection. Given the detected
communities, each community is matchedwith themost similar one
of the ground-truth communities. 𝐹1 score of two matched sets 𝑐1
and 𝑐2 is 𝐹1 (𝑐1, 𝑐2) = 2 prec(𝑐1,𝑐2)×recall(𝑐1,𝑐2)prec(𝑐1,𝑐2)+recall(𝑐1,𝑐2) , where prec(𝑐1, 𝑐2) =
|𝑐1∩𝑐2 |
|𝑐1 | and recall(𝑐1, 𝑐2) = |𝑐1∩𝑐2 |

|𝑐2 | . Average 𝐹1 score of two sets
of communities 𝐶 and 𝐶∗ is 𝐹1̄ (𝐶,𝐶∗) = 1

2 |𝐶 |
∑︁
𝑐𝑖 ∈𝐶 𝐹1 (𝑐𝑖 ,𝐶

∗) +
1

2 |𝐶∗ |
∑︁
𝑐∗
𝑖
∈𝐶∗ 𝐹1 (𝑐∗𝑖 ,𝐶), where 𝐹1 (𝑐𝑖 ,𝐶

∗) = max𝑐 𝑗 ∈𝐶∗ 𝐹1 (𝑐𝑖 , 𝑐 𝑗 ). The
higher the average 𝐹1 score, the higher the utility.

8.4 Results
We first show the effect of privacy budget on the network statistics,
and then present the experiment results on the 2 tasks.

Network Statistics. In Table 2, we show the number of edges
(|E |), network diameter, network density, and average path length
(Avg. PL) of𝐺FB and𝐺EM, and those obtained by applying the XOR
mechanism, Pygmalion, LDPGen, and PBCN, when the privacy
budgets are 1, 0.6, and 0.2.

We observe that, as the privacy budget decreases, except for
PBCN, the released social networks from the XOR mechanism,
Pygmalion, and LDPGen become denser, i.e., the edge number in-
creases, average distance shortens, and the nodes tend to cluster
together. This transformation is known as graph densification [35].
From Table 2, it is clear that Pygmalion and LDPGen have higher
densification speed. For example, when 𝜖 = 0.2, 𝐺FB

0.2 released by
Pygmalion and LDPGen have Avg. PL. of 2.04 and 1.99, which
are smaller than the theoretical mean-shortest path length of a
scale-free social graph, i.e., ln ln(𝑁 ) ≈ 2.12 [47]. The reason is that
Pygmalion extracts graph structural information into 𝑑𝐾-2-series,
which has sensitivity 4𝑑max + 1 (c.f. Lemma 1 in [55], 𝑑max is the
largest node degree). Pygmalion also assumes the edges are mutu-
ally independent and injects i.i.d. noise to perturb the 𝑑𝐾-2-series.
As a result, the introduced noises have large magnitude and compro-
mise the utility. As for LDPGen, it heavily depends on an accurate
estimation of the number of optimal groups (c.f. Section 4.2 in [52]).
Specifically, LDPGen applies the Chung-Lu model [3] to calculate
the probability of connecting two nodes in the synthesized graph
using the group affiliation vectors. Thus, LDPGen may have good
performance on preserving the clustering structure of the original
graph, but its utility on other network statistics is not guaranteed.
The proposed XOR mechanism outperforms Pygmalion and LDP-
Gen, because it characterizes the dependency of edges using the
log-linear association parametric matrices, which are optimized
to reduce the expected square query error rate on the adjacency
matrices. Although PBCN can achieve edge number and density

close to the original graphs, it has no utility on distance based sta-
tistics (e.g., diameter and Avg. PL), because PBCN depends on the
the Havel Theorem (c.f. Theorem 5 in [25]) to generate sanitized
graphs from the perturbed degree distributions. However, not every
degree sequence has a connected realization [24]. Consequently,
the released social networks from PBCN may contains several dis-
connected components, which gives infinity path length between
nodes in different components.

DegreeDistribution Estimation. For the proposed XORmech-
anism, the decreasing 𝜖 will reduce the Frobenius norms of Θ and
Λ𝑖, 𝑗 ’s, which further weakens the structural information in the re-
leased topology. According to Remark 2, when 𝜖 is close or equal to
0, the released the social networks from the XOR mechanism will
be similar to the Erdős-Rényi graph (random graph, where nodes
are connected with a given probability).

In order to corroborate the transformation to Erdős-Rényi graph
as 𝜖 decreases, we take 𝐺FB as an example and plot the degree
distributions of 𝐺FB, 𝐺FB

0.8, 𝐺
FB
0.3, and 𝐺

FB
0.01 in Figure 3. In particular,

we show in blue the degree distribution of 𝐺FB, 𝐺FB
0.8, 𝐺

FB
0.3, 𝐺

FB
0.01,

and also in red, the degree distribution of the simulated Erdős-Rényi
graphs whose mean degrees equal to that of𝐺FB,𝐺FB

0.8,𝐺
FB
0.3,𝐺

FB
0.01.
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Figure 3: Degree distribution (𝑝 (𝑘)) of 𝐺FB, and 𝐺FB
0.8, 𝐺

FB
0.3,

𝐺FB
0.01 released by the XOR mechanism compared with sim-

ulated Erdős-Rényi graphs. 𝑝 (𝑘) is the probability of a node
having degree 𝑘 .

From Figure 3, we observe that as 𝜖 decreases, 𝐺FB
𝜖 transforms

to Erdős-Rényi graphs, since the degree distributions change from
monotonic to non-monotonic. The reason is that due to the prefer-
ential attachment phenomenon [44, 48], real-world social networks
are scale-free graphs, whose degree distributions follow the power-
law [11, 45, 47], i.e., 𝑝 (𝑘) ∝ 𝑘−𝛾 , where 𝑘 is a given degree, 𝑝 (·)
indicates the probability mass function, and 𝛾 ≥ 1 is the parameter
of the power-law distribution. Specifically,𝐺FB is a scale-free graph,
whose degree distribution shows two power law regimes (separated
by a critical degree 𝑘𝑐𝑟𝑖𝑡 ≈ 15), i.e., 𝑝 (𝑘) ∝ 𝑘−1.0, if 𝑘 < 𝑘𝑐𝑟𝑖𝑡 , and
𝑝 (𝑘) ∝ 𝑘−3.3, if 𝑘 > 𝑘𝑐𝑟𝑖𝑡 . In contrast, the degrees of Erdős-Rényi
graphs follow the Poisson distributions [47]. Besides, the degree
distribution of 𝐺FB deviates the most from the degree distribution
of the corresponding simulated Erdős-Rényi graph. As 𝜖 decreases,

857



Table 2: Network statistics of the original and differentially private social networks. The statistics in bold indicate that they
are the closest to the original value under a specific privacy budget.

non-pvt XOR Pygmalion PBCN LDPGen
statistics 𝐺FB 𝐺FB

1 𝐺FB
0.6 𝐺FB

0.2 𝐺FB
1 𝐺FB

0.6 𝐺FB
0.2 𝐺FB

1 𝐺FB
0.6 𝐺FB

0.2 𝐺FB
1 𝐺FB

0.6 𝐺FB
0.2

|E |(×105) 0.88 1.13 1.48 2.73 1.64 2.18 3.91 0.88 0.89 0.90 1.22 1.74 2.87
Diameter 8 5 4 4 4 4 3 N/A N/A N/A 5 4 3
Density 0.011 0.014 0.018 0.034 0.020 0.027 0.048 0.011 0.012 0.013 0.015 0.021 0.035
Avg. PL 3.691 2.70 2.44 2.12 2.34 2.28 2.04 N/A N/A N/A 2.61 2.34 1.99

non-pvt XOR Pygmalion PBCN LDPGen
statistics 𝐺EM 𝐺EM

1 𝐺EM
0.6 𝐺EM

0.2 𝐺EM
1 𝐺EM

0.6 𝐺EM
0.2 𝐺EM

1 𝐺EM
0.6 𝐺EM

0.2 𝐺EM
1 𝐺EM

0.6 𝐺EM
0.2

|E |(×104) 1.606 1.572 1.679 3.911 3.677 4.554 7.008 1.633 1.647 1.693 3.167 4.720 12.642
Diameter 7 5 3 2 3 3 2 N/A N/A N/A 3 3 2
Density 0.0331 0.0329 0.0348 0.0814 0.076 0.094 0.194 0.0337 0.0334 0.0347 0.065 0.097 0.261
Avg. PL 2.584 2.565 2.421 1.922 1.922 1.877 1.803 N/A N/A N/A 2.058 1.930 1.738

the divergence between the degree distributions of 𝐺FB
𝜖 ’s and that

of the corresponding simulated Erdős-Rényi graphs also decreases.
We evaluate the KL divergence of the two degree distributions in
Figure 3 (a), (b), (c) and (d) as 1.74, 1.44, 1.12 and 0.02, respectively.

In Figure 4, we compare the degree distributions obtained using
the proposed XOR mechanism with that of ApproxDeg, Pygmalion,
PBCN, and LDPGen by varying 𝜖 from 0.1 to 1. We observe that the
degree distributions obtained from the XOR mechanism have the
least KL divergence with the original social networks when 𝜖 > 0.3.
Although PBCN achieves lower KL divergence when 𝜖 ≤ 0.2, its
performance can hardly be improved with higher privacy budgets.
It is because PBCN results in sanitized graphs with disconnected
components, which have good matches with nodes with low de-
grees, yet bad matches with nodes with high degrees, e.g., hubs in
the social networks. Pygmalion and LDPGen have the worst perfor-
mance on both Facebook and Email networks. The reason is that
Pygmalion generates and releases synthetic graphs using the noisy
𝑑𝐾-2-series, which is essentially 2-node subgraphs with different
combinations of node degrees, and uses injected Laplace noises
proportional to the maximum node degree. In fact, for Pygmalion
to achieve decent performance on degree-based metrics, it requires
moderate to high privacy budget, e.g., 𝜖 ≥ 5 (c.f. page 90 [55]).
Whereas, LDPGen perturbs the original graph while preserving the
strong clustering structures, thus, it introduces large number of
extra edges within the same cluster and destroys the power law
degree distributions of the original social networks. Although Ap-
proxDeg has similar performance with the XOR mechanism when
𝜖 is high, its utility degrades fast when 𝜖 is reduced from 0.4 to 0.1.

Community Detection.We apply BIGCLAM (Cluster Affilia-
tion Model for Big Networks) [63] to detect communities given a
network topology, i.e., the released adjacency matrix. BIGCLAM
can efficiently detect communities in social networks by factor-
izing the adjacency matrix into nonnegative affiliation matrices.
The ground-truth communities are the 10 ego-nets in the Facebook
network, and the 42 departments affiliation in the Email network.

We compare the community detection results obtained using
the XOR mechanism with that of DPCD and other mechanisms in
Figure 5 (a) and (b). The privacy budget varies from 0.1 to 1. We
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(b) KL divergence comparison on Email network

Figure 4: KL divergence between degree distributions of
differentially private released social networks and the non-
private ones.

see that the XOR mechanism can always achieve a higher average
𝐹1 score when 𝜖 ≥ 0.3. If 𝜖 ≥ 0.7, the XOR mechanism can have
utilities that are close to the non-private baselines which use the
original adjacencymatrix to detect communities. Themain reason is
that the injected noises in the XOR mechanism retain the structural
information in the social network, and the parametric matrices used
to generate the noises are also optimized to achieve high query
accuracy given the 𝜖-differential privacy constraint. Whereas, the
elements in the perturbation noises used in DPCD are i.i.d. from
Laplace distributions, which ignore such information. Although
LDPGen outperforms Pygmalion and PBCN, it inevitably introduces
extra edges between communities in the graph synthesizing process
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Figure 5: Average 𝐹1 scores on the 10 ego-nets and 42 depart-
ments. The black dash lines indicate the non-private base-
lines, which are 0.53 and 0.504 for𝐺FB and𝐺EM, respectively.

(c.f. Section 4.4 [52]), which generates overlapping communities
that are not exist in the original graphs.

9 CONCLUSIONS
In this paper, we have investigated the problem of querying binary-
and matrix-valued data from a database in a differentially private
manner. To this end, we have proposed a novel output perturbation
mechanism, called XOR mechanism, which perturbs the queried
results using binary- and matrix-valued noise drawn from a matrix-
valued Bernoulli distribution. We have theoretically proved the
privacy and utility guarantee for the XOR mechanism. We have
also devised a heuristic approach to generate the parameters in the
desired distribution so as to minimize the expected square query
error rate while satisfying 𝜖-differential privacy constraint. Further-
more, we adapted an EHMC based procedure to efficiently generate
the perturbation noises attributed to the matrix-valued Bernoulli
distribution. Finally, we have evaluated the proposed XOR mech-
anism experimentally by conducting 2 study cases. Experiment
results show that our mechanism provides significantly higher util-
ity compared to the state-of-the-art mechanisms and even achieves
comparable utilities to the non-private cases where the original
query results are considered.

A PROOF OF THEOREM 1
Before the proof of Theorem 1, we first recall the following Lemma.

Lemma 2. [33] For any two Hermitian matricesA and B of size𝑁 ×
𝑁 , let {𝜆𝑖 (A)}𝑁1 and {𝜆𝑖 (B)}𝑁1 be the sequences of (real) eigenvalues
of A and B in a non-increasing order. Then,

∑︁𝑁
𝑖 𝜆𝑖 (A)𝜆𝑁−𝑖+1 (B) ≤

Tr[AB] ≤ ∑︁𝑁
𝑖 𝜆𝑖 (A)𝜆𝑖 (B).

Now, we present the proof of Theorem 1.

Proof of Theorem 1. XORmechanism guarantees 𝜖-differential
privacy if Pr[𝑓 (𝐷) ⊕B𝐷 ∈ S] ≤ 𝑒𝜖 Pr[𝑓 (𝐷 ′) ⊕B𝐷′ ∈ S], where𝐷
and𝐷 ′ are an arbitrary pair of neighboring datasets,B𝐷 (resp.B𝐷′ )
is the noise used to perturb the query 𝑓 (𝐷) (resp. 𝑓 (𝐷 ′)) such that
𝑓 (𝐷) ⊕ B𝐷 = 𝑓 (𝐷 ′) ⊕ B𝐷′ = Y ∈ S, and S stands for the range of
XOR(𝑓 (𝐷),B),∀𝐷 ∈ D, B ∼ Ber𝑁,𝑃 (Θ,Λ1,2, · · · ,Λ𝑁−1,𝑁 ). Due
to the property of XOR operation, we have B𝐷 = Y ⊕𝑓 (𝐷) and
B𝐷′ = Y ⊕𝑓 (𝐷 ′). According to Definition 4, we obtain∫
S exp

{︁
Tr[(Y ⊕𝑓 (𝐷))Θ(Y ⊕𝑓 (𝐷))𝑇 ] +∑︁𝑁𝑖=1∑︁𝑁𝑖≠𝑗 Tr[J𝑖 𝑗 (Y ⊕𝑓 (𝐷)) Λ𝑖, 𝑗 (Y ⊕𝑓 (𝐷))𝑇 ]}︁𝑑 Y ≤

𝑒𝜖
∫
S exp

{︁
Tr[(Y ⊕𝑓 (𝐷 ′))Θ(Y ⊕𝑓 (𝐷 ′))𝑇 ] +∑︁𝑁𝑖=1∑︁𝑁𝑖≠𝑗 Tr[J𝑖 𝑗 (Y ⊕𝑓 (𝐷 ′)) Λ𝑖, 𝑗 (Y ⊕𝑓 (𝐷 ′))𝑇 ]}︁𝑑 Y,

which is
∫
S exp

{︁
Tr[B𝐷 ΘB𝑇

𝐷
] +∑︁𝑁𝑖=1∑︁𝑁𝑖≠𝑗 Tr[J𝑖 𝑗 B𝐷 Λ𝑖, 𝑗 B𝑇𝐷 ]

}︁
𝑑 Y ≤

𝑒𝜖
∫
S exp

{︁
Tr[B𝐷′ ΘB𝑇

𝐷′] +
∑︁𝑁
𝑖=1

∑︁𝑁
𝑖≠𝑗 Tr[J𝑖 𝑗 B𝐷′ Λ𝑖, 𝑗 B𝑇𝐷′]

}︁
𝑑 Y .

Inserting exp {Tr[B𝐷′ ΘB𝑇
𝐷′ ]+

∑︁𝑁
𝑖=1

∑︁𝑁
𝑗≠𝑖 Tr[J𝑖 𝑗 B𝐷′ Λ𝑖,𝑗 B𝑇𝐷′ ] }

exp {Tr[B𝐷′ ΘB𝑇
𝐷′ ]+

∑︁𝑁
𝑖=1

∑︁𝑁
𝑗≠𝑖 Tr[J𝑖 𝑗 B𝐷′ Λ𝑖,𝑗 B𝑇𝐷′ ] }

into the in-
tegral on the left hand side of the above inequality, we can arrive at
exp {Tr[B𝐷 ΘB𝑇

𝐷
]+∑︁𝑁

𝑖=1
∑︁𝑁

𝑗≠𝑖 Tr[J𝑖 𝑗 B𝐷 Λ𝑖,𝑗 B𝑇𝐷 ] }
exp {Tr[B𝐷′ ΘB𝑇

𝐷′ ]+
∑︁𝑁

𝑖=1
∑︁𝑁

𝑗≠𝑖 Tr[J𝑖 𝑗 B𝐷′ Λ𝑖,𝑗 B𝑇𝐷′ ] }
≤ 𝑒𝜖 , ∀Y ∈ S. With

further simplifications, we have the sufficient condition for the XOR
mechanism to satisfy 𝜖-differential privacy as
Tr[B𝐷 ΘB𝑇

𝐷
−B𝐷′ ΘB𝑇

𝐷′] +
∑︁𝑁
𝑖=1

∑︁𝑁
𝑗≠𝑖 Tr[J𝑖 𝑗 (B𝐷 Λ𝑖, 𝑗 B𝑇𝐷 −B𝐷′ Λ𝑖, 𝑗 B

𝑇
𝐷′)] ≤ 𝜖, (7)

which needs to hold for all pairs of neighboring datasets 𝐷 and 𝐷 ′
and all Y ∈ S. Next, we analyze the two separated parts in (7).

First, we derive an upper bound of the first part of (7).
Tr[B𝐷 ΘB𝑇

𝐷
−B𝐷′ ΘB𝑇

𝐷′] = Tr[ΘB𝑇
𝐷
B𝐷 −ΘB𝑇

𝐷′ B𝐷′]
(𝑎)
≤ ∑︁𝑃

𝑝=1 𝜆𝑝 (Θ)𝜆𝑝
(︂
B𝑇
𝐷
B𝐷

)︂
−∑︁𝑃𝑝=1 𝜆𝑝 (Θ)𝜆𝑃+1−𝑝 (︂ B𝑇𝐷′ B𝐷′ )︂

(𝑏)
=

∑︁𝑃
𝑝=1 𝜆𝑝 (Θ)

[︂(︂
𝜎𝑝 (B𝐷 )

)︂2
−
(︂
𝜎𝑃+1−𝑝 (B𝐷′)

)︂2]︂
(𝑐)
≤

√︃∑︁𝑃
𝑝=1

(︂
𝜆𝑝 (Θ)

)︂2√︃∑︁𝑃
𝑝=1

[︂(︂
𝜎𝑝 (B𝐷 )

)︂2
−
(︂
𝜎𝑃+1−𝑝 (B𝐷′)

)︂2]︂2
≤ ||𝝀(Θ) | |2

√︃[︂∑︁𝑃
𝑝=1

(︂
𝜎𝑝 (B𝐷 )

)︂2
−
(︂
𝜎𝑃+1−𝑝 (B𝐷′)

)︂2]︂2
= | |𝝀(Θ) | |2

|︁|︁|︁ ∑︁𝑃𝑝=1 (︂𝜎𝑝 (B𝐷 ))︂2 − (︂
𝜎𝑃+1−𝑝 (B𝐷′)

)︂2|︁|︁|︁
(𝑑)
= | |𝝀(Θ) | |2

|︁|︁|︁| | B𝐷 | |2𝐹 − || B′𝐷 | |2𝐹 |︁|︁|︁ ≤ ||𝝀(Θ) | |2 | | B𝐷 −B′𝐷 | |2𝐹 (𝑒)≤ ||𝝀(Θ) | |2𝑠𝑓 ,
where (𝑎) follows fromLemma 2, (𝑏) is because 𝜆𝑝 (X𝑇 X) =

(︁
𝜎𝑝 (X)

)︁2
for any matrix X, (𝑐) is due to the Cauchy–Schwarz inequality, (𝑑)
follows from | |𝝈 (X) | |22 = | |X | |

2
𝐹
, and (𝑒) is because 𝑓 (𝐷) ⊕ B𝐷 =

𝑓 (𝐷 ′) ⊕ B𝐷′ = Y ∈ S, which gives B𝐷 = 𝑓 (𝐷) ⊕ Y and B𝐷′ =
𝑓 (𝐷 ′) ⊕ Y (property of the XOR operator), then, based on Defini-
tion 3, there are also at most 𝑠𝑓 different binary entries between
B𝐷 and B𝐷′ , i.e., | | B𝐷 −B′𝐷 | |

2
𝐹
≤ 𝑠𝑓 . Thus, we arrive at

Tr[B𝐷 ΘB𝑇𝐷 −B𝐷′ ΘB𝑇𝐷′] ≤ 𝑠𝑓 | |𝝀(Θ) | |2 . (8)

Now, we continue to bound the second part of (7). First, since
J𝑖 𝑗 has only one non-zero entry at position (𝑖, 𝑗), we have

Tr[J𝑖 𝑗 (B𝐷 Λ𝑖, 𝑗 B𝑇𝐷 )] = B𝐷 [ 𝑗, :] Λ𝑖, 𝑗
(︂
B𝐷 [𝑖, :]

)︂𝑇
,∀𝑖 ≠ 𝑗, (9)

where B𝐷 [𝑖, :] (B𝐷 [ 𝑗, :]) is a row vector representing the 𝑖th ( 𝑗th)
row of B𝐷 . Since Λ𝑖, 𝑗 is symmetric and Λ𝑖, 𝑗 = Λ𝑇

𝑗,𝑖
, which gives

Λ𝑖, 𝑗 = Λ𝑗,𝑖 (cf. Definition 4). To invoke Lemma 2 (that requires
Hermitian matrices), we consider Λ𝑖, 𝑗 and Λ𝑗,𝑖 jointly and have∑︁𝑁
𝑖=1

∑︁𝑁
𝑗≠𝑖 Tr[J𝑖 𝑗 (B𝐷 Λ𝑖, 𝑗 B𝑇𝐷 −B𝐷′ Λ𝑖, 𝑗 B

𝑇
𝐷′)]

=
∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗=𝑖+1 Tr

[︁
Λ𝑖, 𝑗

(︁
B𝐷 [𝑖, :]𝑇 B𝐷 [ 𝑗, :] + B𝐷 [ 𝑗, :]𝑇 B𝐷 [𝑖, :]

)︁
−
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Λ𝑖, 𝑗
(︁
B𝐷′ [𝑖, :]𝑇 B𝐷′ [ 𝑗, :] + B𝐷′ [ 𝑗, :]𝑇 B𝐷′ [𝑖, :]

)︁ ]︁
(𝑎)
=

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗=𝑖+1 Tr

[︁
Λ𝑖, 𝑗

(︁
(B𝐷 [𝑖, :] + B𝐷 [ 𝑗, :])𝑇 (B𝐷 [𝑖, :] +

B𝐷 [ 𝑗, :])
)︁
− Λ𝑖, 𝑗

(︁
(B𝐷′ [𝑖, :] + B𝐷′ [ 𝑗, :])𝑇 (B𝐷′ [𝑖, :] + B𝐷′ [ 𝑗, :])

)︁ ]︁
(𝑏)
=

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗=𝑖+1 Tr

[︂
Λ𝑖, 𝑗

(︂
(B𝐷 [𝑖, :] + B𝐷 [ 𝑗, :])𝑇 (B𝐷 [𝑖, :] +

B𝐷 [ 𝑗, :]) − (B𝐷′ [𝑖, :] + B𝐷′ [ 𝑗, :])𝑇 (B𝐷′ [𝑖, :] + B𝐷′ [ 𝑗, :])
)︂]︂

(𝑐)
≤ ∑︁𝑁−1

𝑖=1
∑︁𝑁
𝑗=𝑖+1

(︂ ∑︁𝑃
𝑝=1 𝜆𝑝 (Λ𝑖, 𝑗 )

[︂(︂
𝜆𝑝

(︁
B𝐷 [𝑖, :] + B𝐷 [ 𝑗, :]

)︁ )︂2
−
(︂
𝜆𝑃+1−𝑝

(︁
B𝐷′ [𝑖, :] + B𝐷′ [ 𝑗, :]

)︁ )︂2]︂ )︂
(𝑑)
≤ ∑︁𝑁−1

𝑖=1
∑︁𝑁
𝑗=𝑖+1

(︂
| |𝝀(Λ𝑖, 𝑗 ) | |2

|︁|︁|︁|︁|︁|︁B𝐷 [𝑖, :] + B𝐷 [ 𝑗, :] − B𝐷′ [𝑖, :] − B𝐷′ [ 𝑗, :]|︁|︁|︁|︁|︁|︁22)︂
(𝑒)
≤ 𝑠𝑓

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗=𝑖+1 | |𝝀(Λ𝑖, 𝑗 ) | |2,

where (𝑎) is because Tr [︁Λ𝑖, 𝑗 B𝐷 [𝑖, :]𝑇 B𝐷 [𝑖, :]
]︁
= Tr

[︁
Λ𝑖, 𝑗 B𝐷 [ 𝑗, :]𝑇 B𝐷 [ 𝑗, :]

]︁
= Tr

[︁
Λ𝑖, 𝑗 B𝐷′ [𝑖, :]𝑇 B𝐷′ [𝑖, :]

]︁
= Tr

[︁
Λ𝑖, 𝑗 B𝐷′ [ 𝑗, :]𝑇 B𝐷′ [ 𝑗, :]

]︁
= 0,∀𝑖 ≠ 𝑗 ,

and the operands of Tr(·) in (𝑏) is the multiplication of two Hermit-
ian matrices, (𝑐) is due to Lemma 2, and (𝑑) and (𝑒) can be obtained
by following the last 6 steps when bounding the first part of (7) and
we omit them due to space limit. Combing the upper bounds of the
two separate terms in (7), we complete the proof. □

B PROOF OF THEOREM 2
Before the proof of Theorem 2, we first recall the definition of
Exponential family distribution and its property.

Definition 7. (Exponential family [7]). An exponential family
is a set of probability distributions whose PDFs can be expressed as
𝑓 (x|𝜼) = ℎ(x)𝑐 (𝜼) exp

(︁ ∑︁𝑘
𝑖=1 𝜔𝑖 (𝜼)𝑡𝑖 (x)

)︁
, where ℎ(x) ≥ 0, 𝑡𝑖 (x)

and 𝜔𝑖 (𝜼) (𝑖 ∈ {1, 2, · · · , 𝑘}) are real-valued functions only on x and
parameter 𝜼, respectively.

Theorem 5. [7] If X is a random variable with PDF of the form
given in Definition 7, then E[∑︁𝑘𝑖 𝜕𝜔𝑖 (𝜼)

𝜕𝜂 𝑗
𝑡𝑖 (X)] = − 𝜕

𝜕𝜂 𝑗
log 𝑐 (𝜼).

Now, we provide the proof of Theorem 2.

Proof of Theorem 2. First, we show that themultivariate Bernoulli
distribution is an exponential family distribution. This can be done
by rewriting its PDF in (2) as
Pr[vec(B𝑇 ) = b] = 𝐶 (Π) exp{b𝑇 Πb} = 𝐶 (Π) exp{Tr[b𝑇 Πb]}
= 𝐶 (Π) exp{Tr[Πbb𝑇 ]} = 𝐶 (Π) exp

{︁ ∑︁(𝑁𝑃 )2
𝑢=1 {Π𝑇 }𝑢 {b b𝑇 }𝑢

}︁
,

where {Π𝑇 }𝑢 and {b b𝑇 }𝑢 are the 𝑢-th element of Π𝑇 and b b𝑇 ,
respectively. By setting ℎ(b) = 1, 𝑐 (𝜼) = 𝐶 (Π), 𝜔𝑢 (𝜼) = {Π𝑇 }𝑢
and 𝑡𝑢 (b) = {b b𝑇 }𝑢 , we can represent Pr[vec(B𝑇 ) = b] as the
form of the PDF in Definition 7 with 𝑘 = (𝑁𝑃)2, which suggests
that the multivariate Bernoulli distribution is in exponential family.

Next, we can have 𝑟 (𝑓 (𝐷),B) = | |𝑓 (𝐷)◦B +𝑓 (𝐷)◦B−𝑓 (𝐷) | |2
𝐹

| |𝑓 (𝐷) | |2
𝐹

=

| | (1𝑁×𝑃−2𝑓 (𝐷))◦B | |2𝐹
| |𝑓 (𝐷) | |2

𝐹

∗
=

| | B | |2
𝐹

| |𝑓 (𝐷) | |2
𝐹

, where ∗ is because (1𝑁×𝑃 −

2𝑓 (𝐷)) ∈ {+1,−1}𝑁×𝑃 and then theHadamard product only changes
signs of elements of B. As a result, we only need to calculate the
expectation of | | B | |2

𝐹
, i.e., E[| | B ||2

𝐹
].

Since the multivariate Bernoulli distribution is an exponential
family distribution, then, by applying Theorem 5, we have

E

[︄ ∑︁(𝑁𝑃 )2
𝑢=1

𝜕{Π𝑇 }𝑢
𝜕Π {vec(B𝑇 )vec(B𝑇 )𝑇 }𝑢

]︄
= − 𝜕

𝜕Π log(𝐶 (Π)). (10)

For the left-hand-side (LHS) of (10), we have LHS =

E
[︁ ∑︁(𝑁𝑃 )2

𝑢=1 {1𝑇 }𝑢 {vec(B𝑇 )vec(B𝑇 )
𝑇 }𝑢

]︁
= E

[︁
vec(B𝑇 )vec(B𝑇 )𝑇

]︁
,

where 1 is an all-ones matrix of size 𝑁𝑃×𝑁𝑃 , and it is easy to check
that E[| | B ||2

𝐹
] = Tr[LHS]. For the right-hand-side (RHS) of (10),

we have RHS = 𝐶 (Π)
(︁ ∑︁

b𝑘 ∈T 𝑒
{b𝑇

𝑘
Πb𝑘 } b𝑘 b𝑇𝑘

)︁
. Hence, we have

E[| | B ||2
𝐹
] = Tr[LHS] = Tr[RHS] = 𝐶 (Π)

(︁ ∑︁
b𝑘 ∈T 𝑒

{b𝑇
𝑘
Πb𝑘 } | | b𝑘 | |22

)︁
.

According to (3), 𝐶 (Π) = [∑︁b𝑘 ∈T exp{b
𝑇
𝑘
Πb𝑘 }]−1. □

C PROOF OF PROPOSITION 1
Proof of Proposition 1. For the numerator of 𝑔(Π), we have∑︁
b𝑘 ∈T exp(b

𝑇
𝑘
Πb𝑘 ) | | b𝑘 | |22 =

∑︁
b𝑘 ∈T exp(Tr[Πb𝑘 b𝑇𝑘 ]) | | b𝑘 | |

2
2

(𝑎)
≤ ∑︁

b𝑘 ∈T exp
(︂
𝜆max (Π)𝜆max (b𝑘 b𝑇𝑘 )

)︂
| | b𝑘 | |22

=
∑︁
b𝑘 ∈T exp

(︂
𝜆max (Π) | | b𝑘 | |22

)︂
| | b𝑘 | |22

(𝑏)
≤ ∑︁

b𝑘 ∈T exp
(︂ (︁
𝜆max (Θ) + 2

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗>𝑖 𝜆max (Λi,j)

)︁
| | b𝑘 | |22

)︂
| | b𝑘 | |22 = 𝑈 (Π),

where (𝑎) can be obtained by applying Lemma 2 in Appendix A and
using the fact that b𝑘 b𝑇𝑘 is rank 1, and (𝑏) is because 𝜆𝑖 (X+Y) ≤
𝜆𝑖 (X) + 𝜆𝑖 (Y),∀X,Y ∈ PD and 𝜆max (X ⊗ Y) = 𝜆max (X)𝜆max (Y).

For the denominator of 𝑔(Π), we have∑︁
b𝑘 ∈T exp(b

𝑇
𝑘
Πb𝑘 )

(𝑎)
≥ ∑︁

b𝑘 ∈T
(︂
1 + b𝑇

𝑘
Πb𝑘

)︂
= 2𝑁𝑃 +∑︁b𝑘 ∈T Tr[Πb𝑘 b𝑇𝑘 ] = 2𝑁𝑃 + Tr

[︂
Π
∑︁
b𝑘 ∈T (b𝑘 b

𝑇
𝑘
)
]︂

= 2𝑁𝑃 + 2𝑁𝑃−2 Tr[Π] + 2𝑁𝑃−2sum(Π)
= 2𝑁𝑃−2

(︂
4 + 𝑁 Tr[Θ] + 𝑁 sum(Θ) +∑︁𝑁𝑖=1∑︁𝑁𝑗≠𝑖 sum(Λ𝑖, 𝑗 ))︂

(𝑏)
≥ 2𝑁𝑃−2

(︂
4 + 𝑁 Tr[Θ] + 𝑁 Tr[Θ] +∑︁𝑁𝑖=1∑︁𝑁𝑗≠𝑖 Tr[Λ𝑖, 𝑗 ])︂

(𝑐)
≥ 2𝑁𝑃−1

(︂
2 + 𝑁 | |𝝀(Θ) | |2 +

∑︁𝑁−1
𝑖=1

∑︁𝑁
𝑗>𝑖 | |𝝀(Λ𝑖, 𝑗 ) | |2

)︂
= 𝐿(Π),

where (𝑎) follows from the Taylor expansion, sum(·) is the operator
that sums all elements in a matrix, (𝑏) is because Θ > 0,Λ𝑖, 𝑗 > 0,
and (𝑐) is because Θ,Λ𝑖, 𝑗 ∈ PD𝑃×𝑃 . As a result, we have 𝑔(Π) ≤
𝑈 (Π)/𝐿(Π), which completes the proof. □

D PROOF OF THEOREM 4
Proof of Theorem 4. Mathematically, we have
PrvcLkg = max𝑎∈{0,1} Pr(ˆ︃A𝑖, 𝑗 = 𝑎 |O,A/{𝑖, 𝑗 })

= max𝑎∈{0,1}
Pr(O |ˆ︃A𝑖,𝑗=𝑎,A/{𝑖,𝑗 }) Pr(ˆ︃A𝑖,𝑗=𝑎,A/{𝑖,𝑗 })

Pr(O,A/{𝑖,𝑗 })

= max𝑎∈{0,1}
Pr(O |ˆ︃A𝑖,𝑗=𝑎,A/{𝑖,𝑗 })

Pr(O |A/{𝑖,𝑗 }) Pr(ˆ︃A𝑖, 𝑗 = 𝑎 |A/{𝑖, 𝑗 })
= max𝑎∈{0,1}

Pr(O|ˆ︃A𝑖, 𝑗 = 𝑎,A/{𝑖, 𝑗 })
Pr(O|ˆ︃A𝑖, 𝑗 = 𝑎,A/{𝑖, 𝑗 }) Pr(O |ˆ︃A𝑖,𝑗=𝑎,A/{𝑖,𝑗 })

Pr(O |A/{𝑖,𝑗 }) Pr(ˆ︃A𝑖, 𝑗 = 𝑎 |A/{𝑖, 𝑗 })
(∗)
= max𝑎∈{0,1} 𝑒𝜖

Pr(O,ˆ︃A𝑖,𝑗=𝑎,A/{𝑖,𝑗 }) Pr(A/{𝑖,𝑗 }))
Pr(ˆ︃A𝑖,𝑗=𝑎,A/{𝑖,𝑗 }) Pr(O,A/{𝑖,𝑗 })

Pr(ˆ︃A𝑖, 𝑗 = 𝑎 |A/{𝑖, 𝑗 })
= max𝑎∈{0,1} 𝑒𝜖 Pr(ˆ︃A𝑖, 𝑗 = 𝑎 |O,A/{𝑖, 𝑗 }) Pr(ˆ︃A𝑖,𝑗=𝑎 |A/{𝑖,𝑗 })

Pr(ˆ︃A𝑖,𝑗=𝑎 |A/{𝑖,𝑗 })
(#)
= max𝑎∈{0,1} 𝑒𝜖 (1 − PrvcLkg) 𝜁 , which can be further simplified

as PrvcLkg = max{ 1
𝜁𝑒𝜖+1 ,

𝜁𝑒𝜖

𝜁𝑒𝜖+1 }. Note that at line ∗, we apply the

definition of 𝜖-differential privacy. At line #, 𝜁 =
Pr(ˆ︃A𝑖,𝑗=𝑎 |A/{𝑖,𝑗 })
Pr(ˆ︃A𝑖,𝑗=𝑎 |A/{𝑖,𝑗 })

is
the ratio between prior probabilities, which is independent of the
adopted 𝜖-edge-differentially private mechanism. □
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