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ABSTRACT
This monograph develops a comprehensive statistical learning
framework that is robust to (distributional) perturbations in
the data using Distributionally Robust Optimization (DRO) un-
der the Wasserstein metric. Beginning with fundamental prop-
erties of the Wasserstein metric and the DRO formulation, we
explore duality to arrive at tractable formulations and develop
finite-sample, as well as asymptotic, performance guarantees. We
consider a series of learning problems, including (i) distribution-
ally robust linear regression; (ii) distributionally robust regression
with group structure in the predictors; (iii) distributionally ro-
bust multi-output regression and multiclass classification, (iv)
optimal decision making that combines distributionally robust
regression with nearest-neighbor estimation; (v) distributionally
robust semi-supervised learning, and (vi) distributionally robust
reinforcement learning. A tractable DRO relaxation for each prob-
lem is being derived, establishing a connection between robustness
and regularization, and obtaining bounds on the prediction and
estimation errors of the solution. Beyond theory, we include nu-
merical experiments and case studies using synthetic and real
data. The real data experiments are all associated with various
health informatics problems, an application area which provided
the initial impetus for this work.
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1
Introduction

A central problem in machine learning is to learn from data (“big” or
“small”) how to predict outcomes of interest. Outcomes can be binary or
discrete, such as an event or a category, or continuous, e.g., a real value.
In either case, we have access to a number N of examples from which we
can learn; each example is associated with a potentially large number
p of predictor variables and the “ground truth” discrete or continuous
outcome. This form of learning is called supervised, because it relies on
the existence of known examples associating predictor variables with
the outcome. In the case of a binary/discrete outcome the problem is
referred to as classification, while for continuous outcomes we use the
term regression.

There are many methods to solve such supervised learning problems,
from ordinary (linear) least squares regression, to logistic regression,
Classification And Regression Trees (CART) [1], ensembles of decision
trees [2], [3], to modern deep learning models [4]. Whereas the nonlinear
models (random forests, gradient boosted trees, and deep learning)
perform very well in many specific applications, they have two key
drawbacks: (i) they produce predictive models that lack interpretability
and (ii) they are hard to analyze and do not give rise to rigorous
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3

mathematical results characterizing their performance and important
properties. In this monograph, we will mainly focus on the more classical
linear models, allowing for some nonlinear extensions.

Clearly, there is a plethora of application areas where such models
have been developed and used. A common thread throughout this
monograph is formed by applications in medicine and health care,
broadly characterized by the term predictive health analytics. While in
principle these applications are not substantially different from other
domains, they have important salient features that need to be considered.
These include:

1. Presence of outliers. Medical data often contain outliers, which
may be caused by medical errors, erroneous or missing data,
equipment and lab configuration errors, or even different inter-
pretation/use of a variable by different physicians who enter the
data.

2. Risk of “overfitting” from too many variables. For any individual
and any outcome we wish to predict, using all predictor variables
may lead to overfitting and large generalization errors (out-of-
sample). The common practice is to seek sparse models, using
the fewest variables possible without significantly compromising
accuracy. In some settings, especially when genetic information is
included in the predictors, the number of predictors can exceed
the training sample size, further stressing the need for sparsity.
Sparse regression models originated in the seminar work on the
Least Absolute Shrinkage and Selection Operator, better known
under the acronym LASSO [5].

3. Lack of linearity. In some applications, the linearity of regression or
logistic regression may not fully capture the relationship between
predictors and outcome. While kernel methods [6] can be used
to employ linear models in developing nonlinear predictors, other
choices include combining linear models with nearest neighbor
ideas to essentially develop piecewise linear models.

To formulate the learning problems of interest more concretely, let
x = (x1, . . . , xp) ∈ Rp denote a column vector with the predictors and
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4 Introduction

let y ∈ R be the outcome or response. In the classification problem, we
have y ∈ {−1,+1}. We are given training data (xi, yi), i ∈ JNK, where
JNK 4= 1, . . . , N , from which we want to “learn” a function f(·) so that
f(xi) = yi for most i. Further, we want f(·) to generalize well to new
samples (i.e., to have good out-of-sample performance).

In the regression problem, we view the xi’s as independent variables
(predictor vectors) and yi as the real-valued dependent variable. We still
want to determine a function f(x) that predicts y. In linear regression,
f(x) = β′x, where β is a coefficient vector, prime denotes transpose, and
we assume one of the elements of x is equal to one with the corresponding
coefficient being the intercept (of the regression function at zero). Both
classification and regression problems can be formulated as:

min
β

EP∗ [hβ(x, y)], (1.1)

where P∗ is the probability distribution of (x, y), EP∗ stands for the
expectation under P∗, and hβ(x, y) is a loss function penalizing dif-
ferences between f(x) and y. This formulation is known as expected
risk minimization. Ordinary Least Squares (OLS) uses a squared loss
hβ(x, y) = (f(x)− y)2 while logistic regression uses the logloss function
hβ(x, y) = log(1 + exp{−yf(x)}). Since P∗ is typically unknown, a
common practice is to approximate it using the empirical distribution
P̂N which assigns equal probability to each training sample, leading to
the following empirical risk minimization formulation:

min
β

1
N

N∑
i=1

hβ(xi, yi).

One of the well known issues of OLS regression is that the regression
function can be particularly sensitive to outliers. To illustrate this with
a simple example, consider a case of regression with a single predictor;
see Figure 1.1. Points in the training set are shown as blue dots. Suppose
we include in the training set some outliers depicted as magenta stars.
OLS regression results in the black line. Notice how much the slope
of this line has shifted away from the blue dots to accommodate the
outliers. This skews future predictions but also our ability to identify
new outlying observations. Several approaches have been introduced to
address this issue [7], [8] and we discuss them in more detail in Section 4.
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Figure 1.1: Regression example.

The main focus of this monograph is to develop robust learning
methods for a variety of learning problems. To introduce robustness into
the generic problem, we will use ideas from robust optimization and for-
mulate a robust version of the expected risk minimization Problem (1.1).
We will further focus on distributional robustness. The problems we will
formulate are min-max versions of Problem (1.1) where one minimizes a
worst case estimate of the loss over some appropriately defined ambiguity
set. Such min-max formulations have a long history, going back to the
origins of game theory [9], where one can view the problem as a game
between an adversary who may affect the training set and the optimizer
who responds to the worst-case selection by the adversary. They also
have strong connections with H∞ and robust control theory [10], [11].

To avoid being overly broad, we will restrict our attention to the
intersection of statistical learning and Distributionally Robust Optimiza-
tion (DRO) under the Wasserstein metric [12]–[14]. Even this more
narrow area has generated a lot of interest and recent work. While
we will cover several aspects, we will not cover a number of topics,
including:

• the integration of DRO with different optimization schemes, e.g.,
inverse optimization [15], polynomial optimization [16], multi-
stage optimization [17], [18], and chance-constrained optimiza-
tion [19], [20];
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6 Introduction

• the application of DRO to stochastic control problems, see, e.g.,
[21]–[23], and statistical hypothesis testing [24];

• the combination of DRO with general estimation techniques, see,
e.g., [25] for distributionally robust Minimum Mean Square Er-
ror Estimation, and [26] for distributionally robust Maximum
Likelihood Estimation.

Most of the learning problems we consider, except for Section 8.2,
are static single-period problems where the data are assumed to be
independently and identically distributed. For extensions of DRO to
a dynamic setting where the data come in a sequential manner, we
refer to [27] for a distributionally robust Kalman filter model [23], [28],
and [29] for robust dynamic programming, and [30] for a distributionally
robust online adaptive algorithm.

In this monograph, we focus mainly on linear predictive models, with
the exception of Section 7, where the non-linearity is captured by a non-
parametric K-Nearest Neighbors (K-NN) model. For extensions of robust
optimization to non-linear settings, we refer to [31] for robust kernel
methods, [32] for distributionally robust graphical models, and [33] for
distributionally robust deep neural networks.

In the remainder of this Introduction, we will present a brief out-
line of robust optimization in Section 1.1 and distributionally robust
optimization in Section 1.2. In Section 1.3 we provide an outline of the
topics covered in the rest of the monograph. Section 1.4 summarizes
our notational conventions and Section 1.5 collects all abbreviations we
will use.

1.1 Robust Optimization

Robust optimization [34], [35] provides a way of modeling uncertainty in
the data without the use of probability distributions. It restricts data
perturbations to be within a deterministic uncertainty set, and seeks a
solution that is optimal for the worst-case realization of this uncertainty.
Consider a general optimization problem:

min
β

hβ(z), (1.2)

The version of record is available at: http://dx.doi.org/10.1561/2400000026



1.1. Robust Optimization 7

where β is a vector of decision variables, z is a vector of given parameters,
and h is a real-valued function. Assuming that the values of z lie within
some uncertainty set Z, a robust counterpart of Problem (1.2) can be
written in the following form:

min
β

max
z∈Z

hβ(z). (1.3)

Problem (1.3) is computationally tractable for many classes of uncer-
tainty sets Z. For a detailed overview of robust optimization we refer
to [34]–[36].

There has been an increasing interest in using robust optimization
to develop machine learning algorithms that are immunized against
data perturbations; see, for example, [37]–[44] for classification methods.
[41] considered both feature uncertainties:

Zx , {∆X ∈ RN×p: ‖∆xi‖q ≤ ρ, i ∈ JNK},

where ∆X can be viewed as a feature perturbation matrix on N samples
with p features, ‖ · ‖q is the `q norm, and ∆xi ∈ Rp, i ∈ JNK, are the
rows of ∆X, as well as label uncertainties:

Zy ,

{
∆y ∈ {0, 1}N :

N∑
i=1

∆yi ≤ Γ
}
,

where ∆yi ∈ {0, 1}, with 1 indicating that the label was incorrect and
has in fact been flipped, and 0 otherwise, and Γ is an integer-valued
parameter controlling the number of data points that are allowed to be
mislabeled. They solved various robust classification models under these
uncertainty sets. As an example, the robust Support Vector Machine
(SVM) [45] problem was formulated as:

min
w,b

max
∆y∈Zy

max
∆X∈Zx

N∑
i=1

max{1− yi(1− 2∆yi)(w′(xi + ∆xi)− b), 0}.

[39] studied a robust linear regression problem with feature-wise distur-
bance:

min
β

max
∆X∈Zx

‖y− (X + ∆X)β‖2,

where β is the vector of regression coefficients, and the uncertainty set

Zx , {∆X ∈ RN×p: ‖∆x̃i‖2 ≤ ci, i ∈ JpK},
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8 Introduction

where ∆x̃i ∈ RN , i ∈ JpK, are the columns of ∆X. They showed that
such a robust regression problem is equivalent to the following `1-norm
regularized regression problem:

min
β
‖y−Xβ‖2 +

p∑
i=1

ci|βi|.

1.2 Distributionally Robust Optimization

Different from robust optimization, Distributionally Robust Optimization
(DRO) treats the data uncertainty in a probabilistic way. It minimizes a
worst-case expected loss function over a probabilistic ambiguity set that
is constructed from the observed samples and characterized by certain
known properties of the true data-generating distribution. DRO has
been an active area of research in recent years, due to its probabilistic
interpretation of the uncertain data, tractability when assembled with
certain metrics, and extraordinary performance observed on numerical
examples, see, for example, [12]–[14], [46], [47]. DRO can be interpreted
in two related ways: it refers to (i) a robust optimization problem where
a worst-case loss function is being hedged against; or, alternatively, (ii)
a stochastic optimization problem where the expectation of the loss
function with respect to the probabilistic uncertainty of the data is
being minimized. Figure 1.2 provides a schematic comparison of various
optimization frameworks.

To formulate a DRO version of the expected risk minimization
problem (1.1), consider the stochastic optimization problem:

inf
β

EP∗ [hβ(z)], (1.4)

where we set z = (x, y) ∈ Z ⊆ Rd in (1.1), β ∈ Rp is a vector of
coefficients to be learned, hβ(z): Z × Rp → R is the loss function of
applying β on a sample z ∈ Z, and P∗ is the underlying true probability
distribution of z. The DRO formulation for (1.4) minimizes the worst-
case expected loss over a probabilistic ambiguity set Ω:

inf
β

sup
Q∈Ω

EQ[hβ(z)]. (1.5)
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1.2. Distributionally Robust Optimization 9

Figure 1.2: Comparison of robust optimization with distributionally robust opti-
mization.

The existing literature on DRO can be split into two main branches,
depending on the way in which Ω is defined. One is through a moment
ambiguity set, which contains all distributions that satisfy certain
moment constraints [48]–[53]. In many cases it leads to a tractable
DRO problem but has been criticized for yielding overly conservative
solutions [54]. The other is to define Ω as a ball of distributions:

Ω , {Q ∈ P(Z): D(Q, P0) ≤ ε},

where Z is the set of possible values for z; P(Z) is the space of all
probability distributions supported on Z; ε is a pre-specified radius
of the set Ω; and D(Q,P0) is a probabilistic distance function that
measures the distance between Q and a nominal distribution P0.

The nominal distribution P0 is typically chosen as the empirical
distribution on the observed samples {z1, . . . , zN}:

P0 = P̂N ,
1
N

N∑
i=1

δzi(z),

where δzi(·) is the Dirac density assigning probability mass equal to
1 at zi; see [12], [13], and [55]. There are also works employing a
nonparametric kernel density estimation method to obtain a continuous
density function for the nominal distribution, when the underlying true
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10 Introduction

distribution is continuous, see [56], [57]. The kernel density estimator is
defined as:

f0(z) = 1
N |H|1/2

N∑
i=1

K(H−1/2(z− zi)),

where f0 represents the density function of the nominal distribution
P0, i.e., f0 = dP0/dz, H ∈ Rd×d represents a symmetric and positive
definite bandwidth matrix, and K(·): Rd → R+ is a symmetric kernel
function satisfying K(·) ≥ 0,

∫
Rd K(z)dz = 1, and

∫
Rd K(z)zdz = 0.

An example of the probabilistic distance function D(·, ·) is the
φ-divergence [58]:

D(Q,P0) = EP0

[
φ

(
dQ
dP0

)]
,

where φ(·) is a convex function satisfying φ(1) = 0. For example, if
φ(t) = t log t, we obtain the Kullback–Leibler (KL) divergence [59],
[60]. The definition of the φ-divergence requires that Q is absolutely
continuous with respect to P0. If we take the empirical measure to be
the nominal distribution P0, this implies that the support of Q must be
a subset of the empirical examples. This constraint could potentially
hurt the generalization capability of DRO.

Other choices for D(·, ·) include the Prokhorov metric [61], and the
Wasserstein distance [13], [14], [18], [62], [63]. DRO with the Wasserstein
metric has been extensively studied in the machine learning community;
see, for example, [12] and [64] for robustified regression models, [33]
for adversarial training in neural networks, and [55] for distributionally
robust logistic regression. [46] and [47] provided a comprehensive analysis
of the Wasserstein-based distributionally robust statistical learning
problems with a scalar (as opposed to a vector) response. In recent
work, [65] proposed a DRO formulation for convex regression under an
absolute error loss.

In this monograph we adopt the Wasserstein metric to define a data-
driven DRO problem. Specifically, the ambiguity set Ω is defined as:

Ω , {Q ∈ P(Z): Ws,t(Q, P̂N ) ≤ ε}, (1.6)
where P̂N is the uniform empirical distribution over N training samples
zi, i ∈ JNK, and Ws,t(Q, P̂N ) is the order-t Wasserstein distance (t ≥ 1)
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1.3. Outline 11

between Q and P̂N defined as:

Ws,t(Q, P̂N ) ,
(

min
π∈P(Z×Z)

∫
Z×Z

(s(z1, z2))tdπ
(
z1, z2

))1/t
, (1.7)

where s is a metric on the data space Z, and π is the joint distribution
of z1 and z2 with marginals Q and P̂N , respectively. The Wasserstein
distance between two distributions represents the cost of an optimal
mass transportation plan, where the cost is measured through the
metric s.

We choose the Wasserstein metric for two main reasons. On one
hand, the Wasserstein ambiguity set is rich enough to contain both
continuous and discrete relevant distributions, while other metrics such
as the KL divergence, exclude all continuous distributions if the nominal
distribution is discrete [13], [14]. Furthermore, considering distributions
within a KL distance from the empirical, does not allow for probability
mass outside the support of the empirical distribution.

On the other hand, measure concentration results guarantee that
the Wasserstein set contains the true data-generating distribution with
high confidence for a sufficiently large sample size [66]. Moreover, the
Wasserstein metric takes into account the closeness between support
points while other metrics such as the φ-divergence only consider the
probabilities on these points. An image retrieval example in [14] sug-
gests that the probabilistic ambiguity set constructed based on the KL
divergence prefers the pathological distribution to the true distribution,
whereas the Wasserstein distance does not exhibit such a problem. The
reason lies in that the φ-divergence does not incorporate a notion of
closeness between two points, which in the context of image retrieval
represents the perceptual similarity in color.

1.3 Outline

The goal of this monograph is to develop a comprehensive robust
statistical learning framework using a Wasserstein-based DRO as the
modeling tool. Specifically,

• we provide background knowledge on the basics of DRO and the
Wasserstein metric, and show its robustness inducing property
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12 Introduction

through discussions on the Wasserstein ambiguity set and the
property of the DRO solution;

• we cover a variety of predictive and prescriptive models that can
be posed and solved using the Wasserstein DRO approach, and
show novel problem-tailored theoretical results and real world
applications, strengthening the notion of robustness through these
discussions;

• we consider a variety of synthetic and real world case studies of
the respective models, which validate the theory and the proposed
DRO approach and highlight its advantages compared to several
alternatives. This could potentially (i) ease the understanding
of the model and approach; and (ii) attract practitioners from
various fields to put these models into use.

Robust models can be useful when (i) the training data is contam-
inated with noise, and we want to learn a model that is immunized
against the noise; or (ii) the training data is pure, but the test set is
contaminated with outliers. In both scenarios we require the model to be
insensitive to the data uncertainty/unreliability, which is characterized
through a probability distribution that resides in a set consisting of all
distributions that are within a pre-specified distance from a nominal
distribution. The learning problems that are studied in this monograph
include:

• Distributionally Robust Linear Regression (DRLR), which esti-
mates a robustified linear regression plane by minimizing the
worst-case expected absolute loss over a probabilistic ambiguity
set characterized by the Wasserstein metric.

• Groupwise Wasserstein Grouped LASSO (GWGL), which aims at
inducing sparsity at a group level when there exists a predefined
grouping structure for the predictors, through defining a specially
structured Wasserstein metric for DRO.

• Distributionally Robust Multi-Output Learning, which solves a
DRO problem with a multi-dimensional response/label vector,
generalizing the single-output model addressed in DRLR.
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1.3. Outline 13

• Optimal decision making using DRLR informed K-Nearest Neigh-
bors (K-NN) estimation, which selects among a set of actions
the optimal one through predicting the outcome under each ac-
tion using K-NN with a distance metric weighted by the DRLR
solution.

• Distributionally Robust Semi-Supervised Learning, which estimates
a robust classifier with partially labeled data, through (i) either
restricting the marginal distribution to be consistent with the
unlabeled data, (ii) or modifying the structure of DRO by allowing
the center of the ambiguity set to vary, reflecting the uncertainty
in the labels of the unsupervised data.

• Distributionally Robust Reinforcement Learning, which considers
Markov Decision Processes (MDPs) and seeks to inject robustness
into the probabilistic transition model, deriving a lower bound for
the distributionally robust value function in a regularized form.

The remainder of this monograph is organized as follows. Section 2
presents basics and key properties for the Wasserstein metric. Section 3
discusses how to solve a general Wasserstein DRO problem, the structure
of the worst-case distribution, and the performance guarantees of the
DRO estimator. The rest of the sections are dedicated to specific learning
problems that can be posed as a DRO problem.

In Section 4, we develop the Wasserstein DRO formulation for linear
regression under an absolute error loss. Section 5 discusses distribu-
tionally robust grouped variable selection, and develops the Groupwise
Wasserstein Grouped LASSO (GWGL) formulation under the absolute
error loss and log-loss. In Section 6, we generalize the single-output
model and develop distributionally robust multi-output learning models
under Lipschitz continuous loss functions and the multiclass log-loss.
Section 7 presents an optimal decision making framework which selects
among a set of actions the best one, using predictions from K-Nearest
Neighbors (K-NN) with a metric weighted by the Wasserstein DRO solu-
tion. Section 8 covers a number of active research topics in the domain
of DRO under the Wasserstein metric, including (i) DRO in Semi-
Supervised Learning (SSL) with partially labeled datasets; (ii) DRO in
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Reinforcement Learning (RL) with temporal correlated data. We close
the monograph by discussing further potential research directions in
Section 9.

1.4 Notational Conventions

Vectors

• Boldfaced lowercase letters denote vectors, ordinary lowercase
letters denote scalars, boldfaced uppercase letters denote matrices,
and calligraphic capital letters denote sets.

• ei denotes the i-th unit vector, e or 1 the vector of ones, and 0 a
vector of zeros.

• All vectors are column vectors. For space saving reasons, we write
x = (x1, . . . , xdim(x)) to denote the column vector x, where dim(x)
is the dimension of x.

Sets and functions

• We use R to denote the set of real numbers, and R+ the set of
non-negative real numbers.

• For a set X , we use |X | to denote its cardinality.

• We write cone{v ∈ V} for a cone that is generated from the set
of vectors v ∈ V .

• 1A(x) denotes the indicator function, i.e., 1A(x) = 1 if x ∈ A,
and 0 otherwise.

• For z , (x, y) ∈ X × Y and a function h, the notations h(z) and
h(x, y) are used interchangeably, and Z , X × Y .

• B(Z) denotes the set of Borel measures supported on Z, and P(Z)
denotes the set of Borel probability measures supported on Z.

• For any integer n we write JnK for the set {1, . . . , n}. Hence, P(JnK)
denotes the n-th dimensional probability simplex.
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1.4. Notational Conventions 15

Matrices

• I denotes the identity matrix.

• Prime denotes transpose. Specifically, A′ denotes the transpose
of a matrix A.

• For a matrix A ∈ Rm×n, we will denote by A = (aij)j∈JnK
i∈JmK the

elements of A, by a1, . . . , am the rows of A, and, with some abuse
of our notation which denotes vectors by lowercase letters, we will
denote by A1, . . . ,An the columns of A.

• For a symmetric matrix A, we write A � 0 to denote a positive
definite matrix, and A < 0 a positive semi-definite matrix.

• diag(x) denotes a diagonal matrix whose main diagonal consists
of the elements of x and all off-diagonal elements are zero.

• tr(A) denotes the trace (i.e., sum of the diagonal elements) of a
square matrix A ∈ Rn×n.

• |A| denotes the determinant of a square matrix A ∈ Rn×n.

Norms

• ‖x‖p , (∑i |xi|p)1/p denotes the `p norm with p ≥ 1, and ‖ · ‖ the
general vector norm that satisfies the following properties:

1. ‖x‖ = 0 implies x = 0;
2. ‖ax‖ = |a|‖x‖, for any scalar a;
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖;
4. ‖x‖ = ‖|x|‖, where |x| = (|x1|, . . . , |xdim(x)|);
5. ‖(x,0)‖ = ‖x‖, for an arbitrarily long vector 0.

• Any W-weighted `p norm defined as

‖x‖Wp , ((|x|p/2)′W|x|p/2)1/p

with a positive definite matrix W satisfies the above conditions,
where |x|p/2 = (|x1|p/2, . . . , |xdim(x)|p/2).
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• For a matrix A ∈ Rm×n, we use ‖A‖p to denote its induced `p
norm that is defined as ‖A‖p , supx6=0 ‖Ax‖p/‖x‖p.

Random variables

• For two random variables w1 and w2, we say that w1 is stochas-
tically dominated by w2, denoted by w1

D

≤ w2, if P(w1 ≥ x) ≤
P(w2 ≥ x) for all x ∈ R.

• For a dataset D , {z1, . . . , zN}, we use P̂N to denote the empirical
measure supported on D, i.e., P̂N , 1

N

∑N
i=1 δzi(z), where δzi(z)

denotes the Dirac delta function at point zi ∈ Z.

• The N -fold product of a distribution P on Z is denoted by PN ,
which represents a distribution on the Cartesian product space
ZN . We write P∞ to denote the limit of PN as N →∞.

• EP denotes the expectation under a probability distribution P.

• For a random vector x, cov(x) will denote its covariance.

• Np(0,Σ) denotes the p-dimensional Gaussian distribution with
mean 0 and covariance matrix Σ.

• For a distribution P ∈ P(X×Y), PX (·) ,
∑
y∈Y P(·, y) denotes the

marginal distribution over X , and P|x ∈ PX (Y) is the conditional
distribution over Y given x ∈ X , where PX (Y) denotes the set of
all conditional distributions supported on Y , given features in X .

• Ws,t(P,Q) denotes the order-t Wasserstein distance between mea-
sures P,Q under a cost metric s. For ease of notation and when the
cost metric is clear from the context we will be writing Wt(P,Q).

• Ωs,t
ε (P) denotes the set of probability distributions whose order-t

Wasserstein distance under a cost metric s from the distribution
P is less than or equal to ε, i.e.,

Ωs,t
ε (P) , {Q ∈ P(Z): Ws,t(Q, P) ≤ ε}.

For ease of notation, when the cost metric is clear from the context
and t = 1, we will be writing Ωε(P), or simply Ω when the center
distribution P is clear from the context.
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1.5 Abbreviations

ACE . . . . . . Angiotensin-Converting Enzyme
ACS . . . . . . American College of Surgeons
AD . . . . . . Absolute Deviation
ARB . . . . . . Angiotensin Receptor Blockers
a.s. . . . . . . almost surely
AUC . . . . . . Area Under the ROC Curve
BMI . . . . . . Body Mass Index
CART . . . . . . Classification And Regression Trees
CCA . . . . . . Canonical Correlation Analysis
CCR . . . . . . Correct Classification Rate
CI . . . . . . Confidence Interval
CT . . . . . . Computed Tomography
CTDI . . . . . . CT Dose Index
CVaR . . . . . . Conditional Value at Risk
C&W . . . . . . The Curds and Whey procedure
DRLR . . . . . . Distributionally Robust Linear

Regression
DRO . . . . . . Distributionally Robust Optimization
EHRs . . . . . . Electronic Health Records
EN . . . . . . Elastic Net
FA . . . . . . False Association
FD . . . . . . False Disassociation
FES . . . . . . Factor Estimation and Selection
GLASSO . . . . . . Grouped LASSO
GSRL . . . . . . Grouped Square Root LASSO
GWGL . . . . . . Groupwise Wasserstein Grouped

LASSO
HbA1c . . . . . . hemoglobin A1c
HIPAA . . . . . . Health Insurance Portability and

Accountability Act
ICD-9 . . . . . . International Classification of

Diseases, Ninth Revision
i.i.d. . . . . . . independently and identically

distributed
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IRB . . . . . . Institutional Review Board
IRLS . . . . . . Iteratively Reweighted Least Squares
KL . . . . . . Kullback–Leibler
K-NN . . . . . . K-Nearest Neighbors
LAD . . . . . . Least Absolute Deviation
LASSO . . . . . . Least Absolute Shrinkage and

Selection Operator
LG . . . . . . Logistic Regression
LHS . . . . . . Left Hand Side
LMS . . . . . . Least Median of Squares
LOESS . . . . . . LOcally Estimated Scatterplot

Smoothing
LTS . . . . . . Least Trimmed Squares
MAD . . . . . . Median Absolute Deviation
MCC . . . . . . MultiClass Classification
MDP . . . . . . Markov Decision Process
MeanAE . . . . . . Mean Absolute Error
min-max . . . . . . minimization-maximization
MLE . . . . . . Maximum Likelihood Estimator
MLG . . . . . . Multiclass Logistic Regression
MLR . . . . . . Multi-output Linear Regression
MPD . . . . . . Minimal Perturbation Distance
MPI . . . . . . Maximum Percentage Improvement
MPMs . . . . . . Minimax Probability Machines
MSE . . . . . . Mean Squared Error
NPV . . . . . . Negative Predictive Value
NSQIP . . . . . . National Surgical Quality

Improvement Program
OLS . . . . . . Ordinary Least Squares
PCR . . . . . . Principal Components Regression
PPV . . . . . . Positive Predictive Value
PVE . . . . . . Proportion of Variance Explained
RBA . . . . . . Robust Bias-Aware
RHS . . . . . . Right Hand Side
RL . . . . . . Reinforcement Learning
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ROC . . . . . . Receiver Operating Characteristic
RR . . . . . . Relative Risk
RRR . . . . . . Reduced Rank Regression
RTE . . . . . . Relative Test Error
SNR . . . . . . Signal to Noise Ratio
SR . . . . . . Squared Residuals
SSL . . . . . . Semi-Supervised Learning
std . . . . . . standard deviation
SVM . . . . . . Support Vector Machine
TA . . . . . . True Association
TD . . . . . . True Disassociation
TAR . . . . . . True Association Rate
TDR . . . . . . True Disassociation Rate
WGD . . . . . . Within Group Difference
w.h.p. . . . . . . with high probability
WMSE . . . . . . Weighed Mean Squared Error
w.p.1 . . . . . . with probability 1
w.r.t. . . . . . . with respect to
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2
The Wasserstein Metric

In this section, we outline basic properties of the Wasserstein distance.
A definition in the case of discrete measures is provided in Section 2.1.
Section 2.2 establishes that it is a proper distance metric. A dual
formulation and a generalization to arbitrary measures are presented
in Section 2.3. Special cases are described in Section 2.4. A discussion
on how to set the Wasserstein underlying transport cost function in
the context of robust learning is in Section 2.5. A related robustness-
inducing property of the Wasserstein metric is shown in Section 2.6 and
a discussion on how to set the radius of the Wasserstein ambiguity set
is included in Section 2.7.

2.1 Basics

We start by reviewing basic properties of the Wasserstein metric defined
in Section 1 (cf. Equation (1.7)). We will define the metric and estab-
lish key results, first using discrete probability distributions, and then
state how the definitions and results generalize to arbitrary probability
measures.

Consider two discrete probability distributions P = {p1, . . . , pm} and
Q = {q1, . . . , qn}, where pi, qj ≥ 0, for all i, j, and ∑m

i=1 pi = ∑n
j=1 qj

= 1. For convenience, let us write p = (p1, . . . , pm) and q = (q1, . . . , qn)

20
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2.1. Basics 21

for the corresponding column vectors. Define a metric (cost) between
points in the support of P and Q by s(i, j), i ∈ JmK, j ∈ JnK, and collect
all these quantities in an m×n matrix S = (s(i, j)) whose (i, j) element
is s(i, j). Consider the Linear Programming (LP) problem:

WS,1(P,Q) = min
π

m∑
i=1

n∑
j=1

π(i, j)s(i, j)

s.t.
m∑
i=1

π(i, j) = qj , j ∈ JnK,

n∑
j=1

π(i, j) = pi, i ∈ JmK,

π(i, j) ≥ 0, ∀i, j,

(2.1)

where π = (π(i, j); ∀i, j) is the decision vector. Notice that according
to the definition in Equation (1.7), the objective value is the order-1
Wasserstein distance between distributions P and Q. In WS,1(P,Q) we
have inserted the subscript S to explicitly denote the dependence on the
cost matrix. Similarly, by defining a cost matrix St = ((s(i, j))t), the
order-t Wasserstein distance, denoted by WS,t(·, ·), can be obtained as
the t-th root of the optimal value of the same LP with cost matrix St;
namely,

WS,t(P,Q) = (WSt,1(P,Q))1/t. (2.2)
The LP formulation in (2.1) is equivalent to the well-known trans-

portation problem [67] and can be interpreted as the cost of transporting
probability mass from the support points of P to those of Q. Specifi-
cally, the problem corresponds to the bipartite graph in Figure 2.1 with
nodes {u1, . . . , um} representing the support of P, nodes {v1, . . . , vn}
representing the support of Q, pi being the supply at node ui, qj the
demand at node vj , and π(i, j) the flow of material (probability mass)
from node ui to node vj incurring a transportation cost of s(i, j) per
unit of material.

The formulation in (2.1) has a long history, starting with Monge [68]
who formulated a problem of optimally transferring material extracted
from a mining site to various construction sites; hence, the terms optimal
mass transport and earth mover’s distance. In Monge’s formulation, all
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22 The Wasserstein Metric

Figure 2.1: The transportation problem for computing the Wasserstein distance
WS,1(P,Q).

material from a source node ui gets “assigned” to a destination node vj .
Kantorovich [69], [70] relaxed the problem by allowing sources to split
their material to several destination nodes. For Kantorovich, this was
an application of an LP he had earlier defined for production planning
problems ([71], later translated in English in [72]) and a method (and a
duality theorem) he had developed for these problems [73]. Definitive
references on optimal mass transport are [74], and, focusing more on
computational aspects, [75]. In presenting some of the key properties
and duality we will follow the approach of [75] which presents the theory
for discrete probability distributions.

2.2 A Distance Metric

In this section we establish that the Wasserstein distance WS,t(P,Q) is
a distance metric, assuming that the underlying cost s(i, j) is a proper
distance metric.

Assumption A. Let n = m and assume

1. s(i, j) ≥ 0, with s(i, j) = 0 if and only if i = j.

2. s(i, j) = s(j, i) for i 6= j.

3. For any triplet i, j, k ∈ JnK, s(i, k) ≤ s(i, j) + s(j, k).

Theorem 2.2.1. Under Assumption A, the order-tWasserstein distance
(t ≥ 1) is a metric, i.e.,
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1. WS,t(P,Q) ≥ 0 for any P,Q ∈ P(JnK), with WS,t(P,Q) = 0 if and
only if P = Q.

2. WS,t(P,Q) = WS,t(Q,P) for any P,Q ∈ P(JnK).

3. For any triplet P,Q,V ∈ P(JnK), WS,t(P,V) ≤ WS,t(P,Q) +
WS,t(Q,V).

Proof. Recall Equation (2.2) that relatesWS,t(P,Q) toWSt,1(P,Q). The
latter quantity can be obtained as the optimal value of the LP in (2.1)
using the cost metric St.

1. The non-negativity follows directly from the formulation in (2.1)
since s(i, j) ≥ 0 (by Assumption A), hence (s(i, j))t ≥ 0, and any
feasible solution satisfies π(i, j) ≥ 0. In addition, WS,t(P,P) = 0,
because, in this case, the optimal solution in formulation (2.1)
satisfies π(i, j) = 0, if i 6= j, and π(i, i) = pi, for all i. Since
(s(i, i))t = 0 (due to Assumption A), the optimal value of the
LP in (2.1) is zero. Further, if P 6= Q, there should be flow
π(i, j) > 0 for some i 6= j, and since s(i, j) > 0 for those i, j (due
to Assumption A), the optimal value of the LP is positive.

2. To establish symmetry, consider WS,t(P,Q) and compare it with
WS,t(Q,P). It suffices to compare WSt,1(P,Q) with WSt,1(Q,P).
To that end, notice that given an optimal solution πf (i, j), for all
i, j, for WSt,1(P,Q) computed from the LP in (2.1), we can obtain
an optimal solution πb(i, j) for WSt,1(Q,P) simply by reversing
the flows, i.e., πb(j, i) = πf (i, j), for all i, j. Given the symmetry
of the cost s(i, j) due to Assumption A, the result follows.

3. To establish the triangle inequality, fix P,Q,V ∈ P(JnK) and
consider WS,t(P,Q) and WS,t(Q,V). Let Π1 = (π1(i, j))i,j∈JnK
and Π2 = (π2(i, j))i,j∈JnK be the optimal solutions of the LPs
corresponding toWSt,1(P,Q) andWSt,1(Q,V), respectively. Define
a Q̃ such that q̃i = qi, if qi > 0, and q̃i = 1, otherwise. Let q̃ be the
corresponding column vector. Define D = diag(1/q̃1, . . . , 1/q̃n).
Consider nextWS,t(P,V) and the LP corresponding toWSt,1(P,V).
We will first argue that Π1,2

4= Π1DΠ2 forms a feasible solution
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24 The Wasserstein Metric

to that LP. Specifically, recalling that e is the vector of all ones,

Π1,2e = Π1DΠ2e = Π1Dq = Π1eQ = p,

where we used the feasibility of Π1,Π2, and eQ is a vector whose
ith element is set to 1 if qi > 0, and to zero, otherwise. Similarly,
we can also show e′Π1,2 = v′, where v is the column vector
corresponding to V.
Letting Π1,2 = (π1,2(i, j))i,j∈JnK, we have

WS,t(P,V) = (WSt,1(P,V))1/t

≤
(∑

i,j

(s(i, j))tπ1,2(i, j)
)1/t

(2.3)

=
(∑

i,j

(s(i, j))t
∑
k

π1(i, k)π2(k, j)
q̃k

)1/t

≤
(∑
i,j,k

(s(i, k) + s(k, j))tπ1(i, k)π2(k, j)
q̃k

)1/t
(2.4)

=
(∑
i,j,k

[
s(i, k)

(
π1(i, k)π2(k, j)

q̃k

)1/t

+ s(k, j)
(
π1(i, k)π2(k, j)

q̃k

)1/t]t)1/t

≤
(∑
i,j,k

(s(i, k))tπ1(i, k)π2(k, j)
q̃k

)1/t

+
(∑
i,j,k

(s(k, j))tπ1(i, k)π2(k, j)
q̃k

)1/t
(2.5)

=
(∑

i,k

(s(i, k))tπ1(i, k)
∑
j

π2(k, j)
q̃k

)1/t

+
(∑

j,k

(s(k, j))tπ2(k, j)
∑
i

π1(i, k)
q̃k

)1/t
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=
(∑

i,k

(s(i, k))tπ1(i, k)
)1/t

+
(∑

j,k

(s(k, j))tπ2(k, j)
)1/t

(2.6)

= WS,t(P,Q) +WS,t(Q,V),

where (2.3) follows from the feasibility (and potential subopti-
mality) of π1,2(i, j), (2.4) follows from the triangle inequality for
s(i, j), (2.5) is due to the Minkowski inequality, and (2.6) uses
the feasibility of Π1,Π2.

As a final comment in this section, we note that the order-1 Wasser-
stein distance WS,1(P,Q), viewed as a function of the vectors p and q
corresponding to P and Q, is a convex function. This follows from the
LP formulation (2.1), where the optimal value is a convex function of
the RHS of the constraints [67, Section 5.2].

2.3 The Dual Problem

In this section, we derive the dual of the mass transportation problem in
(2.1). Let fj be the dual variable corresponding to the flow conservation
constraint for qj and gi the dual variable corresponding to the flow
conservation constraint for pi. We write f ∈ Rn and g ∈ Rm for the
corresponding dual vectors. Using LP duality, the dual of (2.1) takes
the form:

WS,1(P,Q) = max
f ,g

m∑
i=1

gipi +
n∑
j=1

fjqj

s.t. fj + gi ≤ s(i, j), i ∈ JmK, j ∈ JnK.
(2.7)

The optimal value is equal to the primal optimal value due to the LP
strong duality. The complementary slackness conditions suggest that

if π(i, j) > 0 then fj + gi = s(i, j). (2.8)

Necessary and sufficient conditions for a primal solution Π to be primal
optimal and dual solutions f and g to be dual optimal are: (i) primal
feasibility, (ii) dual feasibility, and (iii) the complementary slackness
condition in (2.8).
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26 The Wasserstein Metric

The primal and dual problems can be interpreted as follows. The
primal problem is the problem of minimizing transportation cost for
a transporter of mass across the bipartite graph in Figure 2.1. The
transporter faces a cost of s(i, j) per unit of mass transported on link
(i, j). Suppose now that the transporter, instead of carrying out the
transportation plan, hires another shipping company (e.g., a company
like UPS, DHL, or Fedex). This shipping company charges a price of gi
for picking one unit of mass from node ui and a price of fj for delivering
one unit of mass to node vj . The dual problem is then the problem
solved by the shipping company to maximize its revenue by carrying
out the transportation of mass. Strong duality simply states that there
should not be an “arbitrage” opportunity and the transportation cost
must be the same irrespective of whether the transporter of mass hires
a shipping company or not. In other words, if the price offered by the
shipping company was strictly less than the transportation cost, then
the mass transporter would be able to make money just by outsourcing
shipping. Furthermore, the market conditions would be ripe for another
middleperson to come into the market, offer the shipping company
higher prices, while still making it profitable for the transporter to
use the middleperson’s services. More specifically, the complementary
slackness conditions (2.8) suggest that if there is mass transported
along link (i, j), the cost of transporting the mass through the shipping
company must equal the transportation cost faced by the transporter
across that link.

A different interpretation of the primal and the dual can be obtained
through an analogy with electrical circuits. Let us treat pi as current
flowing into node ui. Similarly, qj is current flowing out of node vj , or,
equivalently, the inflow into vj is equal to q̂j = −qj . Rewriting the dual
problem (2.7) using the q̂i’s and changing variables from fj to f̂j = −fj
yields:

WS,1(P,Q) = max
f̂ ,g

m∑
i=1

gipi +
n∑
j=1

f̂j q̂j

s.t. gi − f̂j ≤ s(i, j), i ∈ JmK, j ∈ JnK.
(2.9)

In this context, the constraints of the primal can be viewed as Kirchoff’s
current law and the dual variables (gi at nodes ui and f̂j at nodes vj)
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can be interpreted as electric potentials (voltages with respect to the
ground) at the nodes. The complementary slackness conditions state
that if there is current flowing from node ui to vj , the voltage, or
potential difference among these nodes, must equal s(i, j). More simply
put, for one unit of flow (current), the voltage must be equal to the
“resistor” s(i, j), which corresponds to Ohm’s law. These node potentials
are known as Kantorovich potentials [75].

2.3.1 Arbitrary Measures and Kantorovich Duality

The primal problem we defined in (2.1) can be generalized to arbitrary
measures as defined in Equation (1.7). Consider two Polish (i.e., com-
plete, separable, metric) probability spaces (Z1,P) and (Z2,Q) and a
lower semicontinuous cost function s: Z1 ×Z2 → R∪ {+∞}. Then, the
order-1 Wasserstein distance can be defined as the optimal value of the
primal problem:

Ws,1(P,Q) = min
π

∫
Z1×Z2

s(z1, z2)dπ(z1, z2), (2.10)

where π ∈ P(Z1 ×Z2) is a joint probability distribution of z1, z2 with
marginals P and Q. The order-tWasserstein distance can be obtained as:

Ws,t(P,Q) = (Wst,1(P,Q))1/t, (2.11)
where st(z1, z2) = (s(z1, z2))t.

The dual problem, known as the Kantorovich dual [74, Theorem 5.10],
analogously to Problem (2.7) can be written as:

Ws,1(P,Q) = sup
f,g

∫
Z1
g(z1)dP(z1) +

∫
Z2
f(z2)dQ(z2)

s.t. f(z2) + g(z1) ≤ s(z1, z2), z1 ∈ Z1, z2 ∈ Z2,
(2.12)

where f and g are absolutely integrable under Q and P, respectively. By
the Kantorovich-Rubinstein Theorem [74], when s(z1, z2) is a distance
metric on a Polish space Z1, (2.12) can be simplified to

Ws,1(P,Q) = sup
g

∫
Z1
g(z1)dP(z1)−

∫
Z2
g(z2)dQ(z2)

s.t. |g(z1)− g(z2)| ≤ s(z1, z2), z1 ∈ Z1, z2 ∈ Z2.
(2.13)
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2.4 Some Special Cases

2.4.1 One-Dimensional Cases

Suppose P and Q are discrete distributions on R. Let P have mass of
1/n at each of the points xi ∈ R, i ∈ JnK, where x1 ≤ x2 ≤ · · · ≤ xn.
Similarly, Q assigns mass of 1/n at each of the points yi ∈ R, i ∈ JnK,
where y1 ≤ y2 ≤ · · · ≤ yn. Then, with s(x, y) = |x − y|, the order-t
Wasserstein distance can be obtained as:

Ws,t(P,Q) =
(

1
n

n∑
i=1
|xi − yi|t

)1/t

. (2.14)

This can be easily obtained by solving the corresponding formulation
in (2.1).

For continuous one-dimensional distributions on R, let FP denote
the Cumulative Distribution Function (CDF) of P, namely,

FP(x) =
∫ x

−∞
dP, x ∈ R.

Define the inverse CDF or quantile function F−1
P (p) as

F−1
P (p) = min{x ∈ R ∪ {−∞}: FP(x) ≥ p}, p ∈ [0, 1].

Let FQ and F−1
Q be the corresponding quantities for Q. Then, using

again the metric s(x, y) = |x− y|, for x, y ∈ R, the order-t Wasserstein
distance can be computed as [75]:

Ws,t(P,Q) =
(∫ 1

0

∣∣∣∣F−1
P (p)− F−1

Q (p)
∣∣∣∣tdp

)1/t

. (2.15)

2.4.2 Sliced Wasserstein Distance

The fact that Wasserstein distances can be easily computed for one-
dimensional distributions on R has led to the following approximation
of the Wasserstein distance between distributions P and Q on Rd.
Specifically, for any direction θ on the ball Sd = {θ ∈ Rd: ‖θ‖2 = 1},
let Tθ: x ∈ Rd → R be the projection from Rd to R. Let Tθ,#P be the
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so-called push-forward measure satisfying

Tθ,#P(A) = P({x ∈ Rd: Tθ(x) ∈ A}), A ⊆ R.

Define Tθ,#Q similarly. Then, the so-called sliced Wasserstein dis-
tance [76], [77] can be defined as:

SWs,2 =
∫
Sd
Ws,2(Tθ,#P, Tθ,#Q)dθ, (2.16)

where s(x, y) = |x− y|, for x, y ∈ R. Such an integral can be approxi-
mated using Monte-Carlo integration, giving rise to a computational
method for computing Wasserstein distances between distributions
in Rd.

2.4.3 Gaussian Distributions

We next consider the case of two Gaussian distributions. Let P ∼
N (µ1,Σ1) be a d-dimensional Gaussian distribution with mean µ1
and covariance Σ1. Similarly, let Q ∼ N (µ2,Σ2). Define the metric
s(x1,x2) = ‖x1−x2‖2. Then, the order-2 Wasserstein distance between
P and Q is given in closed-form in [78] and [79]:

Ws,2(P,Q) = ‖µ1 − µ2‖22 + tr(Σ1 + Σ2 − 2(Σ1/2
1 Σ2Σ1/2

1 )1/2).

2.5 The Transport Cost Function

In this monograph, we are focusing on the use of the Wasserstein metric
in the context of robust learning, specifically the DRO problem we
defined in Equation (1.5). As a result, the cost function s used in
defining the Wasserstein metric should reflect any implicit knowledge
we have on the nature of the data z = (x, y). Without loss of generality,
suppose that the data have already been standardized, specifically, for all
data points zi = (xi, yi), i ∈ JNK, in the training set, we have normalized
every variable (coordinate) in xi by subtracting the empirical mean
and dividing by the sample standard deviation. Then, an element of xi
will have a large absolute value if the corresponding variable deviates
substantially from the empirical mean. Below, we discuss a number of
different scenarios on what may be known regarding the data and the
implied appropriate corresponding cost function.
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1. Suppose we know that the model we are seeking is sparse, i.e., there
are few variables, and in the extreme case one, that determine the
output y. In this case, an appropriate cost function is an `∞ norm
in the z = (x, y) space. In particular, given two data points z1 =
(x1, y1) and z2 = (x2, y2), if y1 6= y2 and ‖x1 − x2‖∞ < |y1 − y2|,
the distance between z1 and z2 is equal to |y1 − y2|. If, however,
y1 ≈ y2, then the distance between z1 and z2 is determined by
the absolute difference in the most deviating variable, that is,
‖x1 − x2‖∞.

2. Suppose now that we believe the model to be dense, implying that
almost all variables are relevant and predictive of the output y.
Then, an appropriate distance metric between two points z1 =
(x1, y1) and z2 = (x2, y2) is the `2 norm ‖z1 − z2‖2, where all
x coordinates and y are weighted equally. More generally, one
can introduce weights and use a W-weighted `p norm defined
as ‖z‖Wp = ((|z|p/2)′W|z|p/2)1/p with a positive definite weight
matrix W.

3. As one more example, suppose that the data z are organized into
a set of (overlapping or non-overlapping) groups according to
z = (z1, . . . , zL). To reflect this group structure, we can define a
(q, t)-norm, with q, t ≥ 1, as:

‖z‖q,t =
(

L∑
l=1

(‖zl‖q)t
)1/t

.

Notice that the (q, t)-norm of z is actually the `t-norm of the
vector (‖z1‖q, . . . , ‖zL‖q), which represents each group vector zl
in a concise way via the `q-norm. A special case is the (2,∞)-norm
on the weighted predictor-response vector

zw ,

(
1
√
p1

x1, . . . ,
1
√
pL

xL,My

)
,

where the weight vector is

w =
(

1
√
p1
, . . . ,

1
√
pL
,M

)
,
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and M is a positive weight assigned to the response. Specifically,

‖zw‖2,∞ = max
{

1
√
p1
‖x1‖2, . . . ,

1
√
pL
‖xL‖2,M |y|

}
,

where different groups are scaled by the number of variables they
contain. The `2 norm at the individual group level reflects the
intuition that all variables in a group are relevant, whereas the `∞
norm among groups reflects the intuition that there is a dominant
group predictive of the response, just like the situation we outlined
in Item 1 above. As we will see later, such a norm imposes a group
sparsity structure.

2.5.1 Transport Cost Function via Metric Learning

We now discuss a metric learning approach for determining the weighted
transport cost function we outlined in Item 2 above, following the line
of work in [80]. The intuition is to calibrate a cost function s(·) which
assigns a high transportation cost to a pair of data points (z1, z2) if
transporting mass between these locations significantly impacts the
performance.

Consider a classification problem where we observe N (predictor,
label) pairs {(x1, y1), . . . , (xN , yN )}, and yi ∈ {−1,+1}. Suppose we use
a weighted `2 norm as the distance metric on the space of predictors:

sW(x1,x2) =
√

(x1 − x2)′W(x1 − x2),

where the weight matrix W is symmetric and positive semi-definite.
The goal is to inform the selection of W through recognizing the pairs
of samples that are similar/dissimilar to each other. In a classification
setting, the labels form a natural separation plane for the observed
samples. We define two sets:

M , {(i, j): xi and xj are close to each other and yi = yj},
N , {(i, j): xi and xj are far away from each other},

where the closeness between x can be evaluated using an appropriate
norm, e.g., the `2 norm. xi and xj are considered to be close if one
is among the k nearest neighbors of the other, in the sense of the `2
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norm, with k being pre-specified. We aim to automatically determine
the weight W in a data-driven fashion through minimizing the distances
on the set M and maximizing the distances on N , which yields the
following Absolute Metric Learning formulation:

min
W<0

∑
(i,j)∈M

s2
W(xi,xj)

s.t. ∑
(i,j)∈N

s2
W(xi,xj) ≥ 1. (2.17)

A slightly different formulation considers the relative distance be-
tween predictors. Define a set

T , {(i, j, k): sW(xi,xj) should be smaller than sW(xi,xk)},

where sW(xi,xj) is considered to be smaller than sW(xi,xk) if any of
the following holds:

1. yi = yj and yi 6= yk;

2. yi = yj = yk and ‖xi − xj‖2 < ‖xi − xk‖2;

3. yi 6= yj and yi 6= yk and ‖xi − xj‖2 < ‖xi − xk‖2.

The Relative Metric Learning formulation minimizes the difference of
distances on these triplets:

min
W<0

∑
(i,j,k)∈T

max(s2
W(xi,xj)− s2

W(xi,xk) + 1, 0). (2.18)

To hedge against potential noise in the predictors, [80] proposed to
robustify (2.17) and (2.18) using robust optimization, and learn a robust
data-driven transport cost function. Specifically, for the absolute metric
learning formulation, suppose the setsM and N are noisy or inaccurate
at level α, i.e., α · 100% of their elements are incorrectly assigned. We
construct robust uncertainty sets W(α) and V(α) as follows:

W(α) =
{
η = (ηi,j ; (i, j) ∈M): 0 ≤ ηi,j ≤ 1,

∑
(i,j)∈M

ηi,j ≤ (1− α)|M|
}
,

V(α) =
{
ξ = (ξi,j ; (i, j) ∈ N ): 0 ≤ ξi,j ≤ 1,

∑
(i,j)∈N

ξi,j ≥ (1− α)|N |
}
.
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We then formulate the robust counterpart of the Absolute Metric Learn-
ing formulation (2.17) as:

min
W<0

max
λ≥0

max
η∈W(α)
ξ∈V(α)

[ ∑
(i,j)∈M

ηi,js
2
W(xi,xj)

+λ
(

1− ∑
(i,j)∈N

ξi,js
2
W(xi,xj)

)]
,

(2.19)

where we robustify the Lagrangian dual problem of (2.17), which is
formed by bringing the constraint into the objective function via a dual
variable λ, using uncertain parameters η and ξ. Similarly, for the relative
metric learning formulation, suppose the set T is inaccurate at level
α, the robust counterpart of the Relative Metric Learning formulation
(2.18) can be formulated as:

min
W<0

max
q∈Q(α)

∑
(i,j,k)∈T

qi,j,k max(s2
W(xi,xj)− s2

W(xi,xk) + 1, 0), (2.20)

where the uncertainty set Q(α) is defined as:

Q(α) =
{

q = (qi,j,k; (i, j, k) ∈ T ): 0 ≤ qi,j,k ≤ 1,

∑
(i,j,k)∈T

qi,j,k ≤ (1− α)|T |
}
.

For solving the robust optimization problems (2.19) and (2.20), we
refer the reader to [80] for a sequential iterative algorithm that alter-
nates between optimizing over the weight matrix W and the uncertain
parameters η, ξ (or q).

2.6 Robustness of the Wasserstein Ambiguity Set

The ultimate goal of using DRO is to eliminate the effect of perturbed
samples and produce an estimator that is consistent with the underlying
true (clean) distribution. When the data z = (x, y) are corrupted
by outliers, the observed samples are not representative enough to
encode the true underlying uncertainty of the data. Instead of equally
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weighting all the samples as in the empirical distribution, we may
wish to include more informative distributions that “drive out” the
corrupted samples. DRO realizes this through hedging the expected loss
against a family of distributions that include the true data-generating
mechanism with a high confidence. In this section, we will provide
evidence on the robustness of DRO under the Wasserstein metric, by
showing that the ambiguity set defined via the Wasserstein metric
is able to retain the good (clean) distribution while excluding the
bad (outlying) one; thus, producing an estimator that is robust to
outliers.

We make the assumption that the training data (x, y) are drawn
from a mixture of two distributions, with probability q from the outlying
distribution Pout and with probability 1− q from the true (clean) distri-
bution P. All the N training samples (xi, yi), i ∈ JNK, are independent
and identical realizations of (x, y). Recall that P̂N is the discrete uniform
distribution over the N samples. We claim that when q is small, if the
Wasserstein ball radius ε is chosen judiciously, the true distribution P
will be included in the ε-Wasserstein ball Ω (cf. (1.6))

Ω = {Q ∈ P(Z): Ws,1(Q, P̂N ) ≤ ε},

while the outlying distribution Pout will be excluded. Theorem 2.6.1
proves this claim.

Theorem 2.6.1. Suppose we are given two probability distributions P
and Pout, and the mixture distribution Pmix is a convex combination of
the two: Pmix = qPout + (1− q)P. Then, for any cost function s,

Ws,1(Pout,Pmix)
Ws,1(P,Pmix) = 1− q

q
.

Proof. As we indicated in Section 1, and for ease of notation, we will
suppress the dependence of Ws,1 on the cost metric s. In addition,
without loss of generality, we will assume that the probability distri-
butions P, Pout, Pmix, and any joint distributions have densities. From
the definition of the Wasserstein distance, W1(Pout,Pmix) is the optimal
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value of the following optimization problem:

min
π∈P(Z×Z)

∫
Z×Z

s(z1, z2) dπ
(
z1, z2

)
s.t.

∫
Z
π
(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z,∫

Z
π
(
z1, z2

)
dz1 = qPout(z2) + (1− q)P(z2), ∀z2 ∈ Z.

(2.21)
Similarly, W1(P,Pmix) is the optimal value of the following optimization
problem:

min
π∈P(Z×Z)

∫
Z×Z

s(z1, z2) dπ
(
z1, z2

)
s.t.

∫
Z
π
(
z1, z2

)
dz2 = P(z1), ∀z1 ∈ Z,∫

Z
π
(
z1, z2

)
dz1 = qPout(z2) + (1− q)P(z2), ∀z2 ∈ Z.

(2.22)
We propose a decomposition strategy. For Problem (2.21), decom-

pose the joint distribution π as π = (1− q)π1 + qπ2, where π1 and π2
are two joint distributions of z1 and z2. The first set of constraints in
Problem (2.21) can be equivalently expressed as:

(1− q)
∫
Z
π1
(
z1, z2

)
dz2 + q

∫
Z
π2
(
z1, z2

)
dz2

= (1− q)Pout(z1) + qPout(z1), ∀z1 ∈ Z,

which is satisfied if∫
Z
π1
(
z1, z2

)
dz2 = Pout(z1),

∫
Z
π2
(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z.

The second set of constraints can be expressed as:

(1− q)
∫
Z
π1
(
z1, z2

)
dz1 + q

∫
Z
π2
(
z1, z2

)
dz1

= qPout(z2) + (1− q)P(z2), ∀z2 ∈ Z,

which is satisfied if∫
Z
π1
(
z1, z2

)
dz1 = P(z2),

∫
Z
π2
(
z1, z2

)
dz1 = Pout(z2), ∀z2 ∈ Z.
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The objective function can be decomposed as:∫
Z×Z

s(z1, z2) dπ
(
z1, z2

)
= (1− q)

∫
Z×Z

s(z1, z2) dπ1
(
z1, z2

)
+ q

∫
Z×Z

s(z1, z2)dπ2
(
z1, z2

)
.

Therefore, Problem (2.21) can be decomposed into the following two
subproblems.

Subproblem 1:

min
π1∈P(Z×Z)

∫
Z×Z

s(z1, z2) dπ1
(
z1, z2

)
s.t.

∫
Z
π1
(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z,∫

Z
π1
(
z1, z2

)
dz1 = P(z2), ∀z2 ∈ Z.

Subproblem 2:

min
π2∈P(Z×Z)

∫
Z×Z

s(z1, z2) dπ2
(
z1, z2

)
s.t.

∫
Z
π2
(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z,∫

Z
π2
(
z1, z2

)
dz1 = Pout(z2), ∀z2 ∈ Z.

Assume that the optimal solutions to the two subproblems are π∗1 and
π∗2 , respectively. We know π0 = (1− q)π∗1 + qπ∗2 is a feasible solution to
Problem (2.21). Therefore,

W1(Pout,Pmix) ≤
∫
Z×Z

s(z1, z2) dπ0
(
z1, z2

)
= (1− q)W1(Pout,P) + qW1(Pout,Pout)
= (1− q)W1(Pout,P). (2.23)

Similarly,
W1(P,Pmix) ≤ qW1(Pout,P). (2.24)

(2.23) and (2.24) imply that

W1(Pout,Pmix) +W1(P,Pmix) ≤W1(Pout,P).

On the other hand, using the triangle inequality for the Wasserstein
metric, we have,

W1(Pout,Pmix) +W1(P,Pmix) ≥W1(Pout,P).
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We thus conclude that

W1(Pout,Pmix) +W1(P,Pmix) = W1(Pout,P). (2.25)

To achieve the equality in (2.25), (2.23) and (2.24) must be equalities,
i.e.,

W1(Pout,Pmix) = (1− q)W1(Pout,P),

and,
W1(P,Pmix) = qW1(Pout,P). (2.26)

Thus,
W1(Pout,Pmix)
W1(P,Pmix) = (1− q)W1(Pout,P)

qW1(Pout,P) = 1− q
q

.

2.7 Setting the Radius of the Wasserstein Ball

Theorem 2.6.1 provides some guidance on setting the radius ε of the
Wasserstein ball Ω. Figure 2.2 (Left) provides a graphical interpretation.
As seen in the figure, the ball Ω is centered at Pmix because we assume
that the training set is drawn from this distribution. According to
Theorem 2.6.1, when q < 0.5 we haveW1(P,Pmix) ≤ ε < W1(Pout,Pmix).
Thus, for a large enough sample size (so that P̂N is a good approximation
of Pmix), the set Ω will include the true distribution and exclude the
outlying one, which provides protection against these outliers.

Figure 2.2: Left: Training with a contaminated training set drawn from Pmix. Right:
Training with a pure training set drawn from P.
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Figure 2.3: The order-1 Wasserstein distances from the empirical distribution.

To provide numerical evidence, consider a simple example where
P is a discrete distribution that assigns equal probability to 10 data
points equally spaced between 0.1 and 1, and Pout assigns probability
0.5 to two data points 1 and 2. We generate 100 samples and plot the
order-1 Wasserstein distances from P̂N for both P and Pout, under the
distance metric s(z1, z2) = |z1−z2|. From Figure 2.3 we observe that for
q below 0.5, the true distribution P is closer to P̂N whereas the outlying
distribution Pout is further away. If the radius ε is chosen between the
red (∗−) and blue (◦−) lines, the Wasserstein ball that we are hedging
against will exclude the outlying distribution and the resulting estimator
will be robust to the perturbations. Moreover, as q becomes smaller,
the gap between the red and blue lines becomes larger. One implication
from this observation is that as the data becomes purer, the radius
of the Wasserstein ball tends to be smaller, and the confidence in the
observed samples is higher. For large q values, the DRO formulation
seems to fail. However, as outliers are defined to be the data points that
do not conform to the majority of data, if q > 0.5 then Pout becomes the
distribution of the majority and data generated from P can be treated
as outliers. Thus, without loss of generality, we can safely treat Pout as
the distribution of the minority and assume q is always below 0.5.

An alternative use of the DRO learning approach can be seen in
Figure 2.2 (Right). Here, we assume that the training set is pure, thus,
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given enough samples, the empirical distribution on which the ball Ω is
centered is close to P. Consider applying the model to a test set which
is contaminated with outliers. Notice from the proof of Theorem 2.6.1
that W1(P,Pmix) = qW1(Pout,P) (cf. Equation (2.26)). This implies
that the smaller q is, and for a properly selected ε, the distribution
from which the test set is drawn (Pmix) is within the ball Ω and the
model has the potential to generalize well in the test set, tolerating some
outliers. In contrast, the outlying distribution Pout lies outside the set Ω,
which suggests that the model does not “adjust” to samples generated
from Pout. According to this reasoning, and based on Equation (2.26),
ε should be set so that qW1(Pout,P) < ε < W1(Pout,P).

The above discussions provide some insights on the optimal selection
of the radius, but could be hard to implement due to the unknown P
and Pout. In practice cross-validation is usually adopted, but could be
computationally expensive. In the next two subsections we discuss two
practical radius selection approaches that produce the smallest Wasser-
stein ball which contains the true distribution with high confidence.

2.7.1 Measure Concentration

In this subsection we study an optimal radius selection method that
originates from the measure concentration theory. As will be seen in
Section 3.4, it leads to an asymptotic consistent DRO estimator that
generalizes well out-of-sample.

Suppose zi, i ∈ JNK, are N realizations of z which follows an un-
known distribution P∗. One of the prerequisites for ensuring a good
generalization performance of Wasserstein DRO requires that the ambi-
guity set Ωε(P̂N ) includes the true data distribution P∗. This implies
that the radius ε should be chosen so that

Ws,1(P∗, P̂N ) ≤ ε. (2.27)

A measure concentration result developed in [66], which characterizes
the rate at which the empirical distribution P̂N converges to the true
distribution P∗ in the sense of the Wasserstein metric, can be used as
a guidance on the optimal selection of the radius for the Wasserstein
ambiguity set. In the following discussion we assume s is a norm, and
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the true data distribution P∗ satisfies the light tail condition stated in
Assumption B.

Assumption B (Light-Tailed Distribution). There exists an exponent
a > 1 such that

A , EP∗ [exp (‖z‖a)] =
∫
Z

exp (‖z‖a)dP∗(z) <∞. (2.28)

Theorem 2.7.1 (Measure Concentration; [66], Theorem 2). Suppose the
Wasserstein metric is induced by some norm ‖ · ‖, i.e., s(z1, z2) =
‖z1 − z2‖. Under Assumption B, we have

PN (Ws,1(P∗, P̂N ) ≥ ε) ≤

c1 exp (−c2Nε
max(d,2)), if ε ≤ 1,

c1 exp (−c2Nε
a), if ε > 1,

(2.29)

for all N ≥ 1, d 6= 2, and ε > 0, where N is the size of the observed
training set, d is the dimension of z, a is defined in (2.28), and c1, c2
are positive constants that only depend on a,A, and d.

From Theorem 2.7.1 we can derive the smallest possible ε so that
the true distribution is contained in the Wasserstein ambiguity set with
high confidence. Given some prescribed α ∈ (0, 1), it is desired that

PN (Ws,1(P∗, P̂N ) ≤ ε) ≥ 1− α.

Equating the RHS of (2.29) to α and solving for ε yields

εN (α) =



( log(c1α
−1)

c2N

)1/max(d,2)
, if N ≥ log(c1α

−1)
c2

,

( log(c1α
−1)

c2N

)1/a
, if N <

log(c1α
−1)

c2
.

(2.30)

Notice that Equation (2.30) depends on the unknown constants c1 and c2,
and does not make use of the available training data, which could
potentially result in a conservative estimation of the radius and is not
of practical use [13]. By recognizing these issues, some researchers have
proposed to choose the radius without relying on exogenous constants,
see [57] and [81].

By using an extension of Sanov’s theorem which identifies the rate
function, in the form of the KL divergence, for large deviations of the
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empirical measure from the true measure, [82], [81] derived a closed-
form expression for computing the size of the Wasserstein ambiguity set,
when the support of z is finite and bounded, and the true distribution
is discrete. The reason for restricting to a discrete true distribution lies
in that the convergence rate of the empirical measure (in the sense of
the Wasserstein distance) is characterized by the KL divergence [83],
which diverges when the true distribution P∗ is continuous, and the
empirical distribution P̂N is discrete.

Theorem 2.7.2 ([81], Theorem 2). Suppose the random vector z is
supported on a finite Polish space (Z, s), and is distributed according
to a discrete true distribution P∗. Assume there exists some z0 ∈ Z
such that the following condition holds:

log
∫
Z

exp (as(z, z0))dP∗(z) <∞, ∀a > 0. (2.31)

Define B as the diameter of the d-dimensional compact set Z:

B , sup{s(z1, z2): z1, z2 ∈ Z}. (2.32)

Construct an empirical distribution P̂N based on N i.i.d. samples of z.
A lower bound on the probability that the Wasserstein distance between
the empirical distribution P̂N and the true distribution P∗ does not
exceed ε is given by:

PN (Ws,1(P∗, P̂N ) ≤ ε)

≥ 1− exp
(
−N

(√4ε(4B + 3) + (4B + 3)2

4B + 3 − 1
)2)

.

Furthermore, if

ε ≥
(
B + 3

4

)(
− 1
N

log(α) + 2
√
− 1
N

log(α)
)
,

then
PN (Ws,1(P∗, P̂N ) ≤ ε) ≥ 1− α.

[57] derived a more general formula for computing the Wasserstein set
radius, without imposing the exponential integrability condition (2.31),
resulting in a slower convergence rate for the radius, ε = O(

√
1/N).
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Theorem 2.7.3 ([57], Proposition 3). Assume the support Z is bounded
and finite, and the true distribution P∗ is discrete. We have,

PN (Ws,1(P∗, P̂N ) ≤ ε) ≥ 1− exp
(
− Nε2

2B2

)
,

where B is as in (2.32). Moreover, if we set

ε ≥ B

√
2 log(1/α)

N
,

then
PN (Ws,1(P∗, P̂N ) ≤ ε) ≥ 1− α.

2.7.2 Robust Wasserstein Profile Inference

In this subsection we introduce a different approach proposed by [64]
for optimally selecting the size of the Wasserstein ambiguity set. This
method combines the information of the structure of the ambiguity
set and the loss function that is being minimized. Unlike Section 2.7.1
where large deviation theory is adopted to describe the closeness between
the empirical measure and the true measure, here the true measure is
characterized indirectly via the first-order optimality condition of the
loss function.

Recall the Wasserstein DRO formulation:

inf
β

sup
Q∈Ω

EQ[hβ(z)], (2.33)

where the ambiguity set is defined as:

Ω = Ωs,t
ε (P̂N ) , {Q ∈ P(Z): Ws,t(Q, P̂N ) ≤ ε}.

We will suppress the dependence of Ω on s, t, ε, P̂N for ease of notation.
For every Q ∈ Ω, there is an optimal choice β = β(Q) which minimizes
the risk EQ[hβ(z)], i.e.,

β(Q) = arg min
β

EQ[hβ(z)].

We define Sβ(Ω) , {β(Q): Q ∈ Ω} to be the set of plausible selections of
the parameter β. If the true measure P∗ ∈ Ω, then β∗ = β(P∗) ∈ Sβ(Ω).
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We say that β∗ is plausible with (1− α) confidence if β∗ ∈ Sβ(Ω)
with probability at least 1 − α. We want to choose ε > 0 as small as
possible so that the underlying true parameter β∗ is plausible with
(1− α) confidence.

For any given Q, the optimal solution β(Q) is characterized by the
following first-order condition:

EQ[∇βhβ(Q)(z)] = 0, (2.34)

where ∇βhβ(Q)(z) is the partial derivative of hβ(z) w.r.t. β evaluated
at β = β(Q). Define the Robust Wasserstein Profile (RWP) function
associated with the estimation Equation (2.34) as:

R(β) = infQ{(Ws,t(Q, P̂N ))t: EQ[∇βhβ(z)] = 0}.

R(β) evaluates the minimal distance to the empirical distribution, for
all distributions such that β is the minimizer of the expected loss. Note
that R(β) is a random quantity due to the randomness in the observed
samples, which is reflected in P̂N . For β∗ ∈ Sβ(Ω) to hold, it is required
that there exists at least one

Q ∈ {Q: EQ[∇βhβ∗(z)] = 0},

such that Q ∈ Ω. This equivalently translates into the condition that

R(β∗) ≤ εt.

Therefore, β∗ is plausible with (1− α) confidence if and only if

P(R(β∗) ≤ εt) ≥ 1− α.

The optimal choice of ε is thus χ1/t
1−α, where χ1−α is the 1− α quantile

of R(β∗). Moreover,

P(β∗ ∈ Sβ(χ1−α)) = P(R(β∗) ≤ χ1−α) = 1− α,

where Sβ(χ1−α) , {β: R(β) ≤ χ1−α}. Therefore, Sβ(χ1−α) is a (1− α)
confidence region for β∗.

The problem of optimal radius selection now reduces to finding the
quantile of R(β∗). Since β∗ is unknown, we need to come up with a way
of estimating the distribution of the RWP function R(β∗). [64] developed
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an asymptotic analysis of the RWP function, and established that as
N →∞,

N t/2R(β∗) d−−→ R̄(t),

for a suitably defined random variable R̄(t), where d−−→ means conver-
gence in distribution. We first state a number of assumptions that are
needed to establish this convergence in distribution.

Assumption C. The cost function is the `r norm: s(z1, z2) = ‖z1−z2‖r,
where r ≥ 1. Let s be such that 1/r + 1/s = 1.

Assumption D. The true parameter β∗ satisfies EP∗ [∇βhβ∗(z)] = 0,
and EP∗‖∇βhβ∗(z)‖22 <∞, where P∗ is the underlying true distribution
of z.

Assumption E. The function ∇βhβ∗(z) is continuously differentiable
w.r.t. z with gradient ∇β,zhβ∗(z).

Assumption F.

EP∗ [∇β,zhβ∗(z)∇β,zhβ∗(z)′] � 0.

Assumption G. There exists κ > 0 such that for ‖z‖r ≥ 1,

‖∇β,zhβ∗(z)‖s ≤ κ‖z‖t−1
r ,

where the LHS denotes the induced `s norm of the matrix ∇β,zhβ∗(z).

Assumption H. There exists a function c: Rd → [0,∞) such that,

‖∇β,zhβ∗(z + δ)−∇β,zhβ∗(z)‖s ≤ c(z)‖δ‖r,

for ‖δ‖r ≤ 1, EP∗ [c(z)a] <∞, and a ≤ max(2, t/(t− 1)).

Theorem 2.7.4 ([64], Theorem 3). When t > 1, under Assumptions
C–H, as N →∞,

N t/2R(β∗) d−−→ R̄(t),

where

R̄(t) = max
ζ
{tζ′r− (t− 1)EP∗‖ζ′∇β,zhβ∗(z)‖t/(t−1)

s }.
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When t = 1, suppose that z has a positive density almost everywhere
w.r.t. the Lebesgue measure. Then, under Assumptions C–F,

N1/2R(β∗) d−−→ R̄(1),

where
R̄(1) = max

ζ
ζ′r

s.t. P∗(‖ζ ′∇β,zhβ∗(z)‖s > 1) = 0,
with r ∼ N (0,E[∇βhβ∗(z)∇βhβ∗(z)′]).

The proof of Theorem 2.7.4 uses the dual representation of the RWP
function, and proceeds by showing that R̄(t) is both an asymptotic
stochastic upper bound and a lower bound of N t/2R(β∗) (refer to [64]
for details). Notice that the limiting random variable R̄(t) still depends
on the unknown parameter β∗ and the unobservable true distribution
P∗. When using Theorem 2.7.4 in practice, some further relaxations
for R̄(t) are needed to get rid of the unknown parameters. We next
illustrate this idea using an example of distributionally robust logistic
regression.

Example: Optimal Radius Selection for Wasserstein Distributionally Robust
Logistic Regression Using RWP Inference

In this example we show how to use the RWP function and its limiting
variable R̄(t) to select the optimal radius for the Wasserstein ambiguity
set in a distributionally robust logistic regression problem.

Let x ∈ Rd denote the predictor and y ∈ {−1,+1} the associated
binary label to be predicted. In logistic regression, the conditional
distribution of y given x is modeled as

P(y|x) = (1 + exp(−yβ′x))−1,

where β is the unknown coefficient vector (classifier) to be estimated.
The Maximum Likelihood Estimator (MLE) of β is found by minimizing
the negative log-likelihood (logloss)

hβ(x, y) = log(1 + exp(−yβ′x)).
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We define the distance metric on the predictor-response space as follows.

s((x1, y1), (x2, y2)) ,

‖x1 − x2‖r, if y1 = y2,
∞, otherwise.

(2.35)

The distributionally robust logistic regression problem is formulated as:

inf
β

sup
Q∈Ω

EQ[log(1 + exp(−yβ′x))], (2.36)

where the order-1 Wasserstein metric is used to define the set Ω:

Ω , {Q ∈ P(Z): Ws,1(Q, P̂N ) ≤ ε}.

We apply Theorem 2.7.4 with t = 1 to derive the optimal radius ε. Note
that

∇βhβ(x, y) = −yx
1 + exp(yβ′x) .

Then, for t = 1, as N →∞,
√
NR(β∗) d−−→ R̄(1),

where
R̄(1) = supζ∈A ζ′r,

and
r ∼ N

(
0,EP∗

[ xx′
(1 + exp(yx′β∗))2

])
,

A ,
{
ζ ∈ Rd: sup

(x,y)
‖ζ′∇β,xhβ∗(x, y)‖s ≤ 1

}
,

where s satisfies 1/r + 1/s = 1.
Note that R̄(1) still depends on β∗ and P∗ which are both unknown.

We need to find a stochastic upper bound of R̄(1) (for a conservative
selection of the radius) that is independent of the unknown quantities.
By noting that A is a subset of

{ζ ∈ Rd: ‖ζ‖s ≤ 1},

and that
EP∗X [xx′]− EP∗

[ xx′
(1 + exp(yx′β∗))2

]
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is positive definite, where P∗X denotes the marginal distribution of x
under P∗, we have:

R̄(1)
D

≤ ‖r̃‖r,

where r̃ ∼ N (0,EP∗X [xx′]), and
D

≤ denotes stochastic dominance.
The size of the Wasserstein ambiguity set for distributionally robust

logistic regression can thus be chosen by the following procedure.

1. Estimate the (1− α) quantile of ‖r̃‖r, where r̃ ∼ N (0,EP∗X [xx′]).
Denote the estimated quantile by χ̂1−α.

2. Choose the radius ε to be ε = χ̂1−α/
√
N .
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3
Solving the Wasserstein DRO Problem

In this section we discuss how to solve the Wasserstein DRO problem,
as well as the performance of the DRO estimator. A Lagrangian dual
method is presented in Section 3.1, for a DRO model with an ambiguity
set centered at a general nominal distribution. Section 3.2 discusses the
existence and the structure of the extreme distribution that achieves the
optimal value of the inner maximization problem of DRO. In Section 3.3,
we apply the dual method to DROmodels with an ambiguity set centered
at the discrete empirical distribution. Sections 3.4 and 3.5 study the finite
sample and asymptotic performance of the DRO estimator, respectively.

3.1 Dual Method

The main obstacle to solving the DRO problem (1.5) lies in the inner
infinite dimensional maximization problem

sup
Q∈Ω

EQ[h(z)], (3.1)

where we suppress the dependence of h on β for ease of notation, and
the ambiguity set is defined as:

Ω = Ωs,t
ε (P0) , {Q ∈ P(Z): Ws,t(Q, P0) ≤ ε}.

48
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3.1. Dual Method 49

We will suppress the dependence of Ω on s, t, ε,P0 for notational conve-
nience. To transform Problem (3.1) into a finite dimensional problem,
researchers have resorted to Lagrangian duality, see [13], [14]. Write
Problem (3.1) in the following form:

Primal: vP = sup
Q∈P(Z)

{∫
Z
h(z)dQ(z): Ws,t(Q,P0) ≤ ε

}
. (3.2)

[14] derived the Lagrangian dual of (3.2) as follows:

Dual: vD = inf
λ≥0

{
λεt −

∫
Z

inf
z∈Z

[λst(z, z0)− h(z)]dP0(z0)
}
, (3.3)

when the growth rate of the loss function h(z), which, given an un-
bounded set Z and a fixed z0 ∈ Z, is defined as:

GRh , lim sup
s(z,z0)→∞

h(z)− h(z0)
st(z, z0) , (3.4)

is finite. Note that if Z is bounded, by convention we set GRh = 0. The
value of GRh does not depend on the choice of z0 [14].

Remark: Define a function

φ(λ, z0) , inf
z∈Z

[λst(z, z0)− h(z)].

The dual objective function

vD(λ) , λεt −
∫
Z
φ(λ, z0)dP0(z0), λ ≥ 0,

is the sum of a linear function and an extended real-valued convex
function −

∫
Z φ(λ, z0)dP0(z0). The convexity comes from the concavity

of φ(λ, z0) w.r.t. λ. To see this, for q ∈ [0, 1], and a fixed z0 ∈ Z,

φ(qλ1 + (1− q)λ2, z0)
= inf

z∈Z
[(qλ1 + (1− q)λ2)st(z, z0)− h(z)]

= (qλ1 + (1− q)λ2)st(z∗, z0)− h(z∗)
= q[λ1s

t(z∗, z0)− h(z∗)] + (1− q)[λ2s
t(z∗, z0)− h(z∗)]

≥ qφ(λ1, z0) + (1− q)φ(λ2, z0),
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where the first step uses the definition of φ, z∗ = arg minz∈Z [(qλ1 +(1−
q)λ2)st(z, z0)− h(z)], and the last step is due to the fact that z∗ ∈ Z.

Thus, vD(λ) is a convex function on [0,∞). Moreover, as λ → ∞,
vD(λ)→∞, since vD(λ) ≥ λεt +

∫
z0∈Z h(z0)dP0(z0), where the RHS is

obtained through taking z = z0 in the definition of φ.
To see the necessity of having a finite growth rate, note that to

ensure Problem (3.1) has a finite optimal value, it is required that

EQ[h(z)] <∞, ∀Q ∈ Ω.

This can be equivalently expressed as

|EQ[h(z)]− EP0 [h(z)]| <∞, ∀Q ∈ Ω. (3.5)

The following Theorem 3.1.1 implies that, if the growth rate of h is
infinite, (3.5) will be violated. Moreover, as we will see later, when
the growth rate of the loss function is infinite, strong duality for Prob-
lem (3.2) fails to hold, in which case the DRO problem becomes in-
tractable. In the sequel, we assume h is upper semi-continuous and
GRh <∞.

Theorem 3.1.1. Suppose a function h: Z → R defined on two metric
spaces (Z, s) and (R, | · |), has a finite growth rate:

|h(z1)− h(z2)|
st(z1, z2) ≤ L, ∀z1, z2 ∈ Z.

Then, for any two distributions Q1 and Q2 supported on Z,

|EQ1 [h(z)]− EQ2 [h(z)]| ≤ LW t
s,t(Q1,Q2).

Proof.

|EQ1 [h(z)]− EQ2 [h(z)]|

=
∣∣∣∣ ∫
Z
h(z1)dQ1(z1)−

∫
Z
h(z2)dQ2(z2)

∣∣∣∣
=
∣∣∣∣ ∫
Z
h(z1)

∫
z2∈Z

dπ0(z1, z2)−
∫
Z
h(z2)

∫
z1∈Z

dπ0(z1, z2)
∣∣∣∣

≤
∫
Z×Z

|h(z1)− h(z2)|dπ0(z1, z2)
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=
∫
Z×Z

|h(z1)− h(z2)|
st(z1, z2) st(z1, z2)dπ0(z1, z2)

≤
∫
Z×Z

Lst(z1, z2)dπ0(z1, z2)

= LW t
s,t(Q1,Q2),

where π0 is the joint distribution of z1 and z2 with marginals Q1 and
Q2 that achieves the optimal value of (1.7).

3.1.1 Weak Duality

The following Theorem 3.1.2 establishes weak duality for Problem (3.2).
Later we will show that strong duality also holds, i.e., vP = vD.

Theorem 3.1.2 ([14], Proposition 1). Suppose the loss function h has
a finite growth rate: GRh < ∞. Then vP ≤ vD, where vP and vD are
defined in (3.2) and (3.3), respectively.

Proof. By weak duality, we have that:

vP ≤ inf
λ≥0

{
λεt + sup

Q∈P(Z)

{∫
Z
h(z)dQ(z)− λW t

s,t(Q,P0)
}}

, (3.6)

where the RHS is the Lagrangian dual of (3.2). Using Kantorovich
duality (2.12), we obtain

sup
Q∈P(Z)

{∫
Z
h(z)dQ(z)− λW t

s,t(Q,P0)
}

= sup
Q∈P(Z)

{∫
Z
h(z)dQ(z)

− λ sup
f,g

{∫
Z
f(z)dQ(z) +

∫
Z
g(z0)dP0(z0):

g(z0) ≤ inf
z∈Z

[st(z, z0)− f(z)], ∀z0 ∈ Z
}}

≤ −
∫
Z

inf
z∈Z

[λst(z, z0)− h(z)]dP0(z0),

where the second inequality is obtained through setting f(z) = h(z)/λ,
for λ > 0, which is absolutely integrable due to GRh <∞, and is thus
a feasible solution to the inner supremum of the second line. For λ = 0,
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the inequality also holds since,

sup
Q∈P(Z)

{∫
Z
h(z)dQ(z)

}
≤ sup

z∈Z
h(z) = −

∫
Z

inf
z∈Z

[−h(z)]dP0(z0).

Combining with (3.6) we arrive at the conclusion that vP ≤ vD.

3.1.2 Strong Duality

We next show that vP = vD, through constructing a feasible solution
to the primal problem (3.2) whose objective function value coincides
with the dual objective. We first define the push-forward measure that
will be used to construct a primal feasible distribution Q∗.

Definition 1 (Push-Forward Measure). Given measurable spaces Z
and Z ′, a measurable function T : Z → Z ′, and a measure P ∈ B(Z),
define the push-forward measure of P through T , denoted by T#P ∈
B(Z ′), as

T#P(A) , P(T−1(A)) = P{z ∈ Z: T (z) ∈ A}, A ⊆ Z ′.

Construct a distribution Q∗ as a convex combination of two distri-
butions, each of which is a perturbation of the nominal distribution P0:

Q∗ = qT#P0 + (1− q)T#P0 , (3.7)
where the functions T , T : Z → Z produce the minimizer to φ(λ∗, z0),
where λ∗ is the optimal solution to the dual problem (3.3), i.e.,

T (z0), T (z0) ∈ {z ∈ Z: λ∗st(z, z0)− h(z) = φ(λ∗, z0)}, (3.8)

and q ∈ [0, 1] is chosen such that

q

∫
Z
st(T (z0), z0)dP0(z0) + (1− q)

∫
Z
st(T (z0), z0)dP0(z0) = εt. (3.9)

We choose T , T to satisfy the following conditions∫
Z
st(T (z0), z0)dP0(z0) ≤ εt,∫

Z
st(T (z0), z0)dP0(z0) ≥ εt,

in order to ensure the existence of such a q.
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We first show that Q∗ is primal feasible. Notice that

W t
s,t(Q∗,P0)

= sup
f,g

{∫
Z
f(z)dQ∗(z) +

∫
Z
g(z0)dP0(z0):

f(z) ≤ inf
z0∈Z

[st(z, z0)− g(z0)], ∀z ∈ Z
}

= sup
f,g

{
q

∫
Z
f(z)dP0(T−1(z)) + (1− q)

∫
Z
f(z)dP0(T−1(z))

+
∫
Z
g(z0)dP0(z0): f(z) ≤ inf

z0∈Z
[st(z, z0)− g(z0)], ∀z ∈ Z

}
≤ sup

g

{
q

∫
Z

(st(T (z0), z0)− g(z0))dP0(z0)

+ (1− q)
∫
Z

(st(T (z0), z0)− g(z0))dP0(z0) +
∫
Z
g(z0)dP0(z0)

}
= q

∫
Z
st(T (z0), z0)dP0(z0) + (1− q)

∫
Z
st(T (z0), z0)dP0(z0)

= εt,

where the first step uses the Kantorovich duality (2.12), the second step
uses the structure of Q∗ in (3.7), the third step replaces f(z) by its
upper bound st(z, z0)− g(z0), and the last step uses the definition of q
in (3.9).

Now that the feasibility of Q∗ has been established, we next prove
that Q∗ is the primal optimal solution by showing that its objective
function value matches the optimal dual value.∫
Z
h(z)dQ∗(z) = q

∫
Z
h(z)dP0(T−1(z)) + (1− q)

∫
Z
h(z)dP0(T−1(z))

= q

∫
Z

(λ∗st(T (z0), z0)− φ(λ∗, z0))dP0(z0)

+ (1− q)
∫
Z

(λ∗st(T (z0), z0)− φ(λ∗, z0))dP0(z0)

= qλ∗
∫
Z
st(T (z0), z0)dP0(z0)−

∫
Z
φ(λ∗, z0)dP0(z0)

+ (1− q)λ∗
∫
Z
st(T (z0), z0)dP0(z0)
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= λ∗εt −
∫
Z
φ(λ∗, z0)dP0(z0)

= vD,

where the first step uses the structure of Q∗ in (3.7), the second step
uses the definition of T , T in (3.8), the fourth step uses the definition
of q in (3.9), and the last step results from the optimality of λ∗. We are
now ready to state the strong duality result.

Theorem 3.1.3 ([14], Theorem 1). Suppose that GRh <∞. The dual
problem (3.3) always admits a minimizer λ∗, and strong duality holds:
vP = vD <∞.

Remark: The dual problem (3.3) admits a minimizer

λ∗ ∈ [max(0,GRh),∞).

To see this, notice that for all λ < GRh, φ(λ, z0) = −∞, since

lim sup
s(z,z0)→∞

[λst(z, z0)− h(z)]

= lim sup
s(z,z0)→∞

(
λ− h(z)− h(z0)

st(z, z0)

)
st(z, z0)− h(z0)

= −∞,

in which case vD(λ) =∞. We conclude that λ∗ ≥ GRh.
By using duality, [13], [14], and [18] proposed tractable convex

reformulations for the DRO problem (1.5). For Lipschitz continuous loss
functions, the duality result leads to an equivalent formulation for the
Wasserstein DRO as a regularized empirical loss minimization problem,
where the regularizer is related to the Lipschitz constant of the loss,
see [46], [47]. This connection between robustness and regularization
has also been established in [12] and [55]. We will discuss it in further
details in Section 4.

3.2 The Extreme Distribution

Section 3.1 reveals the structure of the primal optimal solution Q∗ (the
extreme distribution) in (3.7). We summarize the discussions on the
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existence and the form of the extreme distribution in the following
theorem.

Theorem 3.2.1 ([14], Corollary 1). Suppose Z = Rd. The worst-case
distribution exists if there exists a dual minimizer λ∗, and the set {z ∈
Z: λ∗st(z, z0)− h(z) = φ(λ∗, z0)} is non-empty P0-almost everywhere,
and ∫

Z
st(λ∗, z0)dP0(z0) ≤ εt,∫

Z
st(λ∗, z0)dP0(z0) ≥ εt,

where

s(λ, z0) , min
z∈Z
{s(z, z0): λst(z, z0)− h(z) = φ(λ, z0)},

and,

s(λ, z0) , max
z∈Z
{s(z, z0): λst(z, z0)− h(z) = φ(λ, z0)}.

Whenever the worst-case distribution exists, there exists one which can
be represented as a convex combination of two distributions, each of
which is a perturbation of the nominal distribution:

Q = qT#P0 + (1− q)T#P0 ,

where q ∈ [0, 1], and T , T : Z → Z satisfy

T (z0), T (z0) ∈ {z ∈ Z: λ∗st(z, z0)− h(z) = φ(λ∗, z0)}.

3.3 A Discrete Empirical Nominal Distribution

In this section we apply the strong duality result developed in previous
sections to the scenario where the discrete empirical distribution P̂N is
used as the center of the ambiguity set.

Corollary 3.3.1 ([14], Corollary 2). Suppose we use the empirical distri-
bution

P̂N ,
1
N

N∑
i=1

δzi(z)

as the center of the ambiguity set, i.e., P0 = P̂N , where zi, i ∈ JNK, are
the observed realizations of z. Assume GRh <∞. Then,
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(i) The primal problem (3.2) has a strong dual problem

vP = vD = min
λ≥0

{
λεt + 1

N

N∑
i=1

sup
z∈Z

[h(z)− λst(z, zi)]
}
. (3.10)

Moreover, vP , vD are also equal to

sup
zi,zi,q1,q2

{ 1
N

N∑
i=1

[q1h(zi) + q2h(zi)]
}

s.t. 1
N

N∑
i=1

[q1s
t(zi, zi) + q2s

t(zi, zi)] ≤ εt,

q1 + q2 ≤ 1,
q1, q2 ≥ 0.

(3.11)

(ii) When Z is convex and h is concave, (3.10) could be reduced to

sup
z̃i∈Z

1
N

N∑
i=1

h(z̃i)

s.t. 1
N

N∑
i=1

st(zi, z̃i) ≤ εt.
(3.12)

(iii) Whenever the worst-case distribution exists, there exists one which
is supported on at most N + 1 points and has the form

Q∗ = 1
N

∑
i6=i0

δz∗i (z) + q

N
δz∗i0

(z) + 1− q
N

δz∗i0
(z),

where 1 ≤ i0 ≤ N , q ∈ [0, 1], z∗i0 , z
∗
i0 ∈ arg minz∈Z{λ∗st(z, zi0) −

h(z)}, and z∗i ∈ arg minz∈Z{λ∗st(z, zi)− h(z)} for all i 6= i0.

Proof. (3.10) comes directly from (3.3). For (3.11), recall that the worst-
case distribution can be expressed as a convex combination of two
perturbed versions of the empirical distribution, see (3.7) and (3.8).
Thus, Q∗ is supported on 2N points zi, zi, i ∈ JNK, with probabilities
q/N and (1− q)/N , respectively. Problem (3.11) finds the worst-case
expected loss by imposing such a structure on the distribution Q.

Part (ii) can be proved by noticing that Problem (3.10) is the
Lagrangian dual of (3.12), which is a convex problem due to the concavity
of h.
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To prove (iii), consider problem (3.11) by replacing q1 with qi and
q2 with 1− qi, i.e., we allow q to vary over samples. (3.11) is a linear
program in qi and has an optimal solution which has at most one
fractional point (i.e., ∃ i0, s.t. qi0 > 0; qi = 0, ∀i 6= i0). Therefore, there
exists a worst-case distribution which is supported on at most N + 1
points.

3.3.1 A Special Case

We study a special case where the loss function h(z) is convex in z. We
will show that Problem (3.1) can be relaxed to the summation of the
empirical loss and a regularizer, where the regularization strength is
equal to the size of the ambiguity set, and the regularizer is defined by
the dual norm.

Before we present this result, we start with two definitions and a
well-known property.

Definition 2 (Dual Norm). Given a norm ‖ · ‖ on Rd, the dual norm
‖ · ‖∗ is defined as:

‖θ‖∗ , sup
‖z‖≤1

θ′z. (3.13)

It can be shown from (3.13) that for any vectors θ, z, the following
Hölder’s inequality holds.

Theorem 3.3.2 (Hölder’s Inequality). Suppose we have two scalars r, s >
1 and 1/r + 1/s = 1. For any two vectors θ = (θ1, . . . , θn) and z =
(z1, . . . , zn), the following holds:

n∑
i=1
|θizi| ≤ ‖θ‖r‖z‖s.

Definition 3 (Conjugate Function). For a function h(z), its convex con-
jugate h∗(·) is defined as:

h∗(θ) , sup
z∈dom h

{θ′z− h(z)}, (3.14)

where dom h denotes the domain of the function h.
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If h is convex, then the convex conjugate of h∗ is h, and h and h∗
are called convex duals [84]. In particular,

h(z) = sup
θ∈Θ

[θ′z− h∗(θ)], (3.15)

where Θ , {θ: h∗(θ) <∞} denotes the effective domain of the conju-
gate function h∗.

Theorem 3.3.3 ([13], Theorem 6.3). Suppose the loss function h(z) is
convex in z ∈ Z ⊆ Rd, and the set Z is closed and convex. Define an
ambiguity set around the empirical distribution which is supported on
N samples zi, i ∈ JNK, i.e.,

Ω = {Q ∈ P(Z): W‖·‖,1(Q, P̂N ) ≤ ε},

where the order-1 Wasserstein metric (1.7) is induced by some norm
‖ · ‖. Problem (3.1) can be relaxed to:

sup
Q∈Ω

EQ[h(z)] ≤ κε+ 1
N

N∑
i=1

h(zi), (3.16)

where
κ = sup{‖θ‖∗: h∗(θ) <∞},

where ‖ · ‖∗ stands for the dual norm as defined in (3.13), and h∗(·) is
the convex conjugate function of h(z) as defined in (3.14). Furthermore,
(3.16) becomes an equality when Z = Rd.

Proof. Corollary 3.3.1 suggests that

sup
Q∈Ω

EQ[h(z)] = min
λ≥0

{
λε+ 1

N

N∑
i=1

sup
z∈Z

[h(z)− λ‖z− zi‖]
}
. (3.17)

Using (3.15), we may write the inner maximization in (3.17) as:
sup
z∈Z

[h(z)− λ‖z− zi‖] = sup
z∈Z

sup
θ∈Θ

[θ′z− h∗(θ)− λ‖z− zi‖]

= sup
z∈Z

sup
θ∈Θ

inf
‖r‖∗≤λ

[θ′z− h∗(θ) + r′(z− zi)]

= sup
θ∈Θ

inf
‖r‖∗≤λ

sup
z∈Z

[(θ + r)′z− h∗(θ)− r′zi]

≤ sup
θ∈Θ

inf
‖r‖∗≤λ

sup
z∈Rd

[(θ + r)′z− h∗(θ)− r′zi],

(3.18)
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where the second equality follows from the definition of the dual norm
and the third equality uses duality. The inner maximization over z ∈ Rd

achieves ∞ unless r = −θ.
Note that if sup{‖θ‖∗: θ ∈ Θ} > λ, then one can pick some θ ∈ Θ

such that ‖θ‖∗ > λ, in which case the inner maximization over z ∈ Rd

in (3.18) achieves ∞ since r 6= −θ.
When sup{‖θ‖∗: θ ∈ Θ} ≤ λ, by taking r = −θ, we have:

sup
z∈Z

[h(z)− λ‖z− zi‖] ≤ sup
θ∈Θ

[−h∗(θ) + θ′zi]

= h(zi).
(3.19)

Plugging (3.19) into (3.17), we obtain

sup
Q∈Ω

EQ[h(z)] ≤ 1
N

N∑
i=1

h(zi) + κε,

where κ = sup{‖θ‖∗: h∗(θ) <∞}.

3.4 Finite Sample Performance

In this section we discuss the finite sample out-of-sample performance of
the DRO estimator. Recall the stochastic optimization problem defined
in (1.4):

J∗ , inf
β

EP∗ [hβ(z)] = inf
β

∫
Z
hβ(z)dP∗(z). (3.20)

Since the true measure P∗ is unknown, Problem (3.20) is not directly
solvable. We solve its DRO counterpart (1.5) using the available training
data zi, i ∈ JNK, with an effort to implicitly optimize over the true
measure that is included in the ambiguity set with high confidence.
Suppose ĴN and β̂N are respectively the optimal value and optimal
solution to the DRO problem (1.5), i.e.,

ĴN , inf
β

sup
Q∈Ω

EQ[hβ(z)] = sup
Q∈Ω

EQ[hβ̂N (z)], (3.21)

where the ambiguity set is defined as

Ω = Ωε(P̂N ) , {Q ∈ P(Z): W‖·‖,1(Q, P̂N ) ≤ ε}. (3.22)
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To evaluate the quality of the DRO estimator β̂N , we study its out-of-
sample performance on a new sample z drawn from P∗,

EP∗ [hβ̂N (z)]. (3.23)

We want to investigate whether the out-of-sample loss (3.23) can be
meaningfully bounded from above by some certificate. Specifically, if
we can show that with a high probability, the out-of-sample loss (3.23)
does not exceed the training loss ĴN ,

PN{EP∗ [hβ̂N (z)] ≤ ĴN} ≥ 1− α,

where α ∈ (0, 1) is a significance parameter w.r.t. the distribution PN ,
which governs both β̂N and ĴN , then we can claim that β̂N generalizes
well out-of-sample. The following theorem, which follows directly from
the measure concentration Theorem 2.7.1, establishes the result.

Theorem 3.4.1 ([13], Theorem 3.5). Suppose Assumption B holds, and
ĴN and β̂N are respectively the optimal value and optimal solution to
the DRO problem (1.5) with an ambiguity set specified in (3.22). Set
the radius ε = εN (α) as defined in (2.30), where α ∈ (0, 1). Then we
have

PN{EP∗ [hβ̂N (z)] ≤ ĴN} ≥ 1− α.

Proof. The claim follows immediately from the measure concentration
result presented in Theorem 2.7.1, which establishes that

PN (W‖·‖,1(P∗, P̂N ) ≥ εN (α)) ≤ α,

and therefore,

PN{EP∗ [hβ̂N (z)] ≤ ĴN} ≥ PN{P∗ ∈ ΩεN (α)(P̂N )} ≥ 1− α.

Note that Theorem 3.4.1 establishes the out-of-sample performance
of the DRO estimator for an order-1 Wasserstein ambiguity set. For a
general Wasserstein metric with order t > 1, please refer to [66] for a
general measure concentration result.
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3.5 Asymptotic Consistency

In addition to the finite sample result established in Section 3.4, we are
also interested in the asymptotic behavior of ĴN and β̂N , as the sample
size N goes to infinity. We want to establish that, if the significance
level α = αN converges to zero at a carefully chosen rate, then the
optimal value and solution of the DRO problem (1.5) with an ambiguity
set of size ε = εN (αN ), converge to the optimal value and solution of
the original stochastic optimization problem (3.20), respectively. The
following Theorem 3.5.1 formalizes this statement.

Theorem 3.5.1 ([13], Theorem 3.6). Suppose Assumption B holds and
the significance parameter αN ∈ (0, 1) satisfies

•
∑∞
N=1 αN <∞;

• limN→∞ εN (αN ) = 0.

Assume the loss function hβ(z) is Lipschitz continuous in z with a Lips-
chitz constant Lβ. Denote by ĴN and β̂N the optimal value and optimal
solution to the DRO problem (1.5), respectively, with an ambiguity
set specified in (3.22) with ε = εN (αN ), where εN (αN ) is defined in
(2.30), and J∗ is the optimal value of the original stochastic optimization
problem (3.20). Then,

(i) ĴN converges to J∗ a.s.,

P∞
{

lim sup
N→∞

ĴN = J∗
}

= 1.

(ii) If hβ(z) is lower semicontinuous in β for every z ∈ Z, and
limN→∞ β̂N = β0, then β0 is P∞-almost surely an optimal solu-
tion to (3.20).

Proof. (i) Theorem 3.4.1 implies that

PN{J∗ ≤ EP∗ [hβ̂N (z)] ≤ ĴN} ≥ PN{P∗ ∈ ΩεN (αN )(P̂N )} ≥ 1− αN .
(3.24)
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As ∑∞N=1 αN <∞, the Borel–Cantelli Lemma [85], [86] implies that,

P∞
{

lim sup
N→∞

ĴN ≥ J∗
}

= 1.

It remains to show that

P∞
{

lim sup
N→∞

ĴN ≤ J∗
}

= 1. (3.25)

Let Q̂N ∈ ΩεN (αN )(P̂N ) be the optimal solution to the inner supremum
(3.1) corresponding to β = β∗, where β∗ is the optimal solution to
(3.20). Then,

EQ̂N [hβ∗(z)] = sup
Q∈ΩεN (αN )(P̂N )

EQ[hβ∗(z)].

According to Theorem 3.1.1, and due to the Lipschitz continuity of
hβ(z), we know that

|EQ1 [hβ(z)]− EQ2 [hβ(z)]| ≤ LβW‖·‖,1(Q1,Q2).

Then,
ĴN ≤ sup

Q∈ΩεN (αN )(P̂N )
EQ[hβ∗(z)]

= EQ̂N [hβ∗(z)]
≤ EP∗ [hβ∗(z)] + Lβ∗W‖·‖,1(P∗, Q̂N )
= J∗ + Lβ∗W‖·‖,1(P∗, Q̂N ),

where the first step is due to the feasibility of β∗ to (3.21), and the
third step is due to Theorem 3.1.1. In order to prove (3.25), we only
need to show that

P∞
{

lim sup
N→∞

W‖·‖,1(P∗, Q̂N ) = 0
}

= 1. (3.26)

The triangle inequality of the Wasserstein metric (cf. Theorem 2.2.1)
ensures that

W‖·‖,1(P∗, Q̂N ) ≤W‖·‖,1(P∗, P̂N ) +W‖·‖,1(P̂N , Q̂N )
≤W‖·‖,1(P∗, P̂N ) + εN (αN ).
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From Theorem 2.7.1 we know that

PN (W‖·‖,1(P∗, P̂N ) ≤ εN (αN )) ≥ 1− αN .

Therefore, by the Borel–Cantelli Lemma [86],

P∞
(

lim sup
N→∞

{W‖·‖,1(P∗, P̂N ) ≤ εN (αN )}
)

= 1.

Since limN→∞ εN (αN ) = 0, (3.26) follows.
(ii) We need to show that β0 achieves the optimal value of (3.20), i.e.,

EP∗ [hβ0(z)] = J∗.

Note that,
J∗ ≤ EP∗ [hβ0(z)]
≤ EP∗ [lim inf

N→∞
hβ̂N

(z)]

≤ lim inf
N→∞

EP∗ [hβ̂N (z)]

≤ lim sup
N→∞

EP∗ [hβ̂N (z)]

≤ lim sup
N→∞

ĴN

= J∗,

where the first inequality is due to the feasibility of β0 to (3.20), the
second inequality follows from the lower semicontinuity of h in β, the
third inequality is due to Fatou’s Lemma, and the fifth inequality holds
P∞-almost surely due to (3.24). We thus conclude that β̂N converges
to the optimal solution of (3.20) a.s.
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4
Distributionally Robust Linear Regression

In this section, we introduce the Wasserstein DRO formulation for
linear regression. The focus is to estimate a robustified linear regression
plane that is immunized against potential outliers in the data. Classical
approaches, such as robust regression [7], [8], remedy this problem by
fitting a weighted least squares that downweights the contribution of
atypical data points. By contrast, the DRO approach mitigates the
impact of outliers through hedging against a family of distributions on
the observed data, some of which assign very low probabilities to the
outliers.

4.1 The Problem and Related Work

Consider a linear regression model with response y ∈ R, predictor vector
x ∈ Rp, regression coefficient β∗ ∈ Rp, and error η ∈ R:

y = x′β∗ + η.

64
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Given potentially corrupted samples (xi, yi), i ∈ JNK, we are interested
in obtaining an estimator of β∗ that is robust with respect to the
perturbations in the data. Popular robust estimators include:

• Least Absolute Deviation (LAD), which minimizes the sum of
absolute residuals ∑N

i=1 |yi − x′iβ|, and

• M-estimation [7], [8], which minimizes a symmetric loss function
ρ(·) of the residuals in the form ∑N

i=1 ρ(yi − x′iβ), downweighting
the influence of samples with large absolute residuals.

Several choices for ρ(·) include the Huber function [7], [8], the Tukey’s
Biweight function [87], the logistic function [88], the Talwar function [89],
and the Fair function [90].

Both LAD and M-estimation are not resistant to large deviations
in the predictors. For contamination present in the predictor space,
high breakdown value methods are required. The breakdown value is
the smallest proportion of observations in the dataset that need to
be replaced to carry the estimate arbitrarily far away. Examples of
high breakdown value methods include the Least Median of Squares
(LMS) [91], which minimizes the median of the absolute residuals,
the Least Trimmed Squares (LTS) [92], which minimizes the sum of
the q smallest squared residuals, and S-estimation [93], which has a
higher statistical efficiency than LTS with the same breakdown value.
A combination of the high breakdown value method and M-estimation
is the MM-estimation [94]. It has a higher statistical efficiency than
S-estimation. We refer the reader to the book [87] for an elaborate
description of these robust regression methods.

The aforementioned robust estimation procedures focus on modifying
the objective function in a heuristic way with the intent of minimizing
the effect of outliers. A more rigorous line of research explores the
underlying stochastic optimization problem that leads to the sample-
based estimation procedures. For example, the OLS objective can be
viewed as minimizing the expected squared residual under the uniform
empirical distribution over the samples. It has been well recognized that
optimizing under the empirical distribution yields estimators that are
sensitive to perturbations in the data and suffer from overfitting. Instead
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of equally weighting all the samples as in the empirical distribution, one
may wish to include more informative distributions that “drive out” the
corrupted samples. DRO realizes this through hedging the expected loss
against a family of distributions that includes the true data-generating
mechanism with high confidence (cf. Theorem 2.7.1). Compared to the
single distribution-based stochastic optimization, DRO often results in
better out-of-sample performance due to its distributional robustness.

We consider a DRO problem with an ambiguity set containing distri-
butions that are close to the discrete empirical distribution in the sense
of Wasserstein distance. We adopt the absolute residual loss |y−x′β| for
the purpose of enhancing robustness. By exploiting duality, we relax the
Wasserstein DRO formulation to a convex optimization problem which
encompasses a class of regularized regression models, providing new
insights into the regularizer, and establishing the connection between
the amount of ambiguity allowed and a regularization penalty term. We
provide justifications for the `1-loss based DRO learning by establishing
novel performance guarantees on both the out-of-sample loss (prediction
bias) and the discrepancy between the estimated and the true regression
coefficients (estimation bias). Extensive numerical results demonstrate
the superiority of the DRO model to a host of regression models, in
terms of the prediction and estimation accuracies. We also consider
the application of the DRO model to outlier detection, and show that
it achieves a much higher AUC (Area Under the ROC Curve) than
M-estimation [7], [8].

The rest of this section is organized as follows. In Section 4.2, we
introduce the Wasserstein DRO formulation in a linear regression setting.
Section 4.3 establishes performance guarantees for the solution to DRO
relaxation. The numerical results on the performance of DRO regression
are presented in Section 4.4. An application of DRO regression to outlier
detection is discussed in Section 4.5. We conclude in Section 4.6.

4.2 The Wasserstein DRO Formulation for Linear Regression

We consider an `1-loss function hβ(x, y) , |y−x′β|, motivated by the ob-
servation that the absolute loss function is more forgiving (hence, robust)
to large residuals than the squared loss (see Figure 4.1). The Wasserstein
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Figure 4.1: The comparison between `1 and `2 loss functions.

DRO problem using the `1-loss function is formulated as:

inf
β

sup
Q∈Ω

EQ[|y − x′β|], (4.1)

where Ω is defined as:

Ω = Ωs,t
ε (P̂N ) , {Q ∈ P(Z): Ws,t(Q, P̂N ) ≤ ε},

and Ws,t(Q, P̂N ) is the order-t Wasserstein distance between Q and
P̂N under a distance metric s (see definition in (1.7)), with P̂N the
uniform empirical distribution over N samples. The formulation in (4.1)
is robust since it minimizes over the regression coefficients the worst case
expected loss, that is, the expected loss maximized over all probability
distributions in the ambiguity set Ω.

We first decide an appropriate order t for the Wasserstein metric.
Based on the discussion in Section 3.1, it is required that the loss
function h has a finite growth rate. Assuming that the metric s is
induced by some norm ‖ · ‖, the bounded growth rate requirement is
expressed as follows:

lim sup
‖(x1,y1)−(x2,y2)‖→∞

|hβ(x1, y1)− hβ(x2, y2)|
‖(x1, y1)− (x2, y2)‖t

≤ lim sup
‖(x1,y1)−(x2,y2)‖→∞

|y1 − x′1β − (y2 − x′2β)|
‖(x1, y1)− (x2, y2)‖t
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≤ lim sup
‖(x1,y1)−(x2,y2)‖→∞

‖(x1, y1)− (x2, y2)‖‖(−β, 1)‖∗
‖(x1, y1)− (x2, y2)‖t (4.2)

<∞,

where ‖ · ‖∗ is the dual norm of ‖ · ‖, and the second inequality is due
to Hölder’s inequality (cf. Theorem 3.3.2). Notice that by taking t = 1,
(4.2) is equivalently translated into the condition that ‖(−β, 1)‖∗ <∞,
which, as we will see in Section 4.3, is an essential requirement to
guarantee a good generalization performance for the Wasserstein DRO
estimator. The growth rate essentially reveals the underlying metric
space used by the Wasserstein distance. Taking t > 1 leads to zero
growth rate in the limit of (4.2), which is not desirable since it removes
the Wasserstein ball structure from the formulation and renders it an
optimization problem over a singleton distribution. We thus choose the
order-1 Wasserstein metric with s being induced by some norm ‖ · ‖ to
define our DRO problem.

Next, we will discuss how to convert (4.1) into a tractable formu-
lation. Suppose we have N independently and identically distributed
realizations of (x, y), denoted by (xi, yi), i ∈ JNK. Since the loss function
is convex in (x, y), using the result in Section 3.3.1, the inner supremum
of (4.1) can be relaxed to the right hand side of (3.16). In Theorem 4.2.1,
we compute the value of κ in (3.16) for the specific `1 loss function we
use.

Theorem 4.2.1. Define κ(β) = sup{‖θ‖∗: h∗β(θ) <∞}, where ‖ · ‖∗ is
the dual norm of ‖·‖, and h∗β(·) is the conjugate function of hβ(·). When
the loss function is hβ(x, y) = |y − x′β|, we have κ(β) = ‖(−β, 1)‖∗.

Proof. We will adopt the notation z , (x, y), β̃ , (−β, 1) for ease of
analysis. First rewrite κ(β) as:

κ(β) = sup
{
‖θ‖∗: sup

z: z′β̃≥0
{(θ − β̃)′z} <∞, sup

z: z′β̃≤0
{(θ + β̃)′z} <∞

}
.

Consider now the two linear optimization problems A and B:

Problem A: max (θ − β̃)′z
s.t. z′β̃ ≥ 0.
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Problem B:
max (θ + β̃)′z
s.t. z′β̃ ≤ 0.

Form the dual problems using dual variables rA and rB, respectively:

Dual-A:
min 0 · rA
s.t. β̃rA = θ − β̃,

rA ≤ 0,

Dual-B:
min 0 · rB
s.t. β̃rB = θ + β̃,

rB ≥ 0.

We want to find the set of θ such that the optimal values of problems
A and B are finite. Then, Dual-A and Dual-B need to have non-empty
feasible sets, which implies the following two conditions:

∃ rA ≤ 0, s.t. β̃rA = θ − β̃, (4.3)

∃ rB ≥ 0, s.t. β̃rB = θ + β̃. (4.4)

For all i with β̃i ≤ 0, (4.3) implies θi − β̃i ≥ 0 and (4.4) implies
θi ≤ −β̃i. On the other hand, for all j with β̃j ≥ 0, (4.3) and (4.4) imply
−β̃j ≤ θj ≤ β̃j . It is not hard to conclude that:

|θi| ≤ |β̃i|, ∀ i.

It follows,

κ(β) = sup{‖θ‖∗: |θi| ≤ |β̃i|, ∀i} = ‖β̃‖∗.

Due to Theorem 4.2.1 and (3.16), (4.1) could be formulated as the
following optimization problem:

inf
β

1
N

N∑
i=1
|yi − x′iβ|+ ε‖(−β, 1)‖∗. (4.5)
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Notice that (4.5) coincides with the regularized LAD models [95], [96],
except that it regularizes a variant of the regression coefficient. The reg-
ularization term of (4.5) is the product of the growth rate of the loss and
the Wasserstein ball radius. A zero growth rate diminishes the effect
of the Wasserstein distributional uncertainty set, and the resulting
formulation would simply be an empirical loss minimization problem.
The parameter ε controls the conservativeness of the formulation, whose
selection was discussed in Section 2.7.

The connection between robustness and regularization has been
established in several works. The earliest one may be credited to [38],
which shows that minimizing the worst-case squared residual within a
Frobenius norm-based perturbation set is equivalent to Tikhonov reg-
ularization. In more recent works, using properly selected uncertainty
sets, [39] has shown the equivalence between robust linear regression
and the Least Absolute Shrinkage and Selection Operator (LASSO).
[40] extends this to more general LASSO-like procedures, including
versions of the grouped LASSO. [37] gives a comprehensive characteri-
zation of the conditions under which robustification and regularization
are equivalent for regression models. For classification problems, [97]
shows the equivalence between the regularized support vector machines
(SVMs) and a robust optimization formulation, by allowing potentially
correlated disturbances in the covariates. [55] considers a robust version
of logistic regression under the assumption that the probability distri-
butions under consideration lie in a Wasserstein ball. Recently, [46],
[47] have provided a unified framework for connecting the Wasserstein
DRO with regularized learning procedures, for various regression and
classification models.

Formulation (4.5) incorporates a class of models whose specific form
depends on the norm space we choose, which could be application-
dependent and practically useful. For example, when the Wasserstein
metric s is induced by ‖ · ‖2, (4.5) is a convex quadratic problem which
can be solved to optimality very efficiently. Specifically, it could be
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converted to:

min
a,b1,...,bN ,β

aε+ 1
N

N∑
i=1

bi

s.t. ‖β‖22 + 1 ≤ a2,

yi − x′iβ ≤ bi, i ∈ JNK,

− (yi − x′iβ) ≤ bi, i ∈ JNK,

a, bi ≥ 0, i ∈ JNK.

(4.6)

When the Wasserstein metric is defined using ‖ · ‖1, (4.5) is a linear
programming problem:

min
a,b1,...,bN , β

aε+ 1
N

N∑
i=1

bi

s.t. a ≥ β′ei, i ∈ JpK,

a ≥ −β′ei, i ∈ JpK,

yi − x′iβ ≤ bi, i ∈ JNK,

− (yi − x′iβ) ≤ bi, i ∈ JNK,

a ≥ 1,
bi ≥ 0, i ∈ JNK.

(4.7)

More generally, when the coordinates of (x, y) differ from each other
substantially, a properly chosen, positive definite weight matrix M ∈
R(p+1)×(p+1) could scale correspondingly different coordinates of (x, y)
by using the M-weighted norm:

‖(x, y)‖M =
√

(x, y)′M(x, y).

It can be shown that (4.5) in this case becomes:

inf
β

1
N

N∑
i=1
|yi − x′iβ|+ ε

√
(−β, 1)′M−1(−β, 1). (4.8)

We would like to highlight several novel viewpoints that are brought
by the Wasserstein DRO framework and justify the value and novelty
of (4.5). First, (4.5) is obtained as an outcome of a fundamental DRO
formulation, which enables new interpretations of the regularizer from
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the standpoint of distributional robustness, and provides rigorous theo-
retical foundation on why the `2-regularizer prevents overfitting to the
training data. The regularizer could be seen as a control over the amount
of ambiguity in the data and reveals the reliability of the contaminated
samples. Second, the geometry of the Wasserstein ball is embedded in
the regularization term, which penalizes the regression coefficient on the
dual Wasserstein space, with the magnitude of penalty being the radius
of the ball. This offers an intuitive interpretation and provides guidance
on how to set the regularization coefficient. Moreover, different from the
traditional regularized LAD models that directly penalize the regression
coefficient β, (4.5) regularizes the vector (−β, 1), where the 1 takes into
account the transportation cost along the y direction. Penalizing only
β corresponds to an infinite transportation cost along y. (4.5) is more
general in this sense, and establishes the connection between the metric
space on the data and the form of the regularizer.

4.3 Performance Guarantees for the DRO Estimator

Having obtained a tractable reformulation for the Wasserstein DRO
problem, we next establish guarantees on the predictive power and
estimation quality for the solution to (4.5). Two types of results will be
presented in this section, one of which bounds the prediction bias of
the estimator on new, future data (given in Section 4.3.1). The other
one bounds the discrepancy between the estimated and true regression
planes (estimation bias), and is given in Section 4.3.2.

4.3.1 Out-of-Sample Performance

In this subsection, we investigate generalization characteristics of the
solution to (4.5), which involves measuring the error generated by
the DRO estimator on a new random sample (x, y). We would like
to obtain estimates that not only explain the observed samples well,
but, more importantly, possess strong generalization abilities. The
derivation is mainly based on Rademacher complexity (see [98]), which
is a measurement of the complexity of a class of functions. We would
like to emphasize the applicability of such a proof technique to general
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loss functions, as long as their empirical Rademacher complexity could
be bounded. The bound we derive for the prediction bias depends on
both the sample average loss (the training error) and the dual norm
of the regression coefficient (the regularizer), which corroborates the
validity and necessity of the regularized formulation. Moreover, the
generalization result also builds a connection between the loss function
and the form of the regularizer via the Rademacher complexity, which
enables new insights into the regularization term and explains the
commonly observed good out-of-sample performance of regularized
regression in a rigorous way.

Suppose the data (x, y) is drawn from the probability distribu-
tion P∗. We first make several mild assumptions that are needed for the
generalization result.

Assumption I. ‖(x, y)‖ ≤ R, a.s. under P∗.

Assumption J. supβ ‖(−β, 1)‖∗ = B̄.

Under these two assumptions, the absolute loss could be bounded
via Hölder’s inequality.

Lemma 4.3.1. For every feasible β, it follows that,

|y − x′β| ≤ B̄R, a.s. under P∗.

With the above result, the idea is to bound the generalization error
using the empirical Rademacher complexity of the following class of loss
functions:

H = {(x, y)→ hβ(x, y): hβ(x, y) = |y − x′β|}.

We need to show that the empirical Rademacher complexity of H,
denoted by RN (H) and defined as:

RN (H) , E
[

sup
h∈H

2
N

∣∣∣∣ N∑
i=1

σihβ(xi, yi)
∣∣∣∣
∣∣∣∣∣(x1, y1), . . . , (xN , yN )

]
,

is upper bounded, where σ1, . . . , σN are i.i.d. uniform random variables
on {1,−1}, and (xi, yi), i ∈ JNK, are N observed realizations of (x, y).
The following result, similar to Lemma 3 in [99], provides a bound that
is inversely proportional to the square root of the sample size.
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Lemma 4.3.2.
RN (H) ≤ 2B̄R√

N
.

Proof. Suppose that σ1, . . . , σN are i.i.d. uniform random variables on
{1,−1}. Then, by the definition of the Rademacher complexity and
Lemma 4.3.1,

RN (H) = E
[

sup
h∈H

2
N

∣∣∣∣ N∑
i=1

σihβ(xi, yi)
∣∣∣∣
∣∣∣∣∣(x1, y1), . . . , (xN , yN )

]

≤ E
[

2
N

∣∣∣∣ N∑
i=1

σiB̄R

∣∣∣∣
]

= E
[

2B̄R
N

∣∣∣∣ N∑
i=1

σi

∣∣∣∣
]

= 2B̄R
N

E
[∣∣∣∣∣

N∑
i=1

σi

∣∣∣∣∣
]

≤ 2B̄R
N

E
[√√√√ N∑

i=1
σ2
i

]

= 2B̄R√
N
.

Let β̂ be an optimal solution to (4.5), obtained using the sam-
ples (xi, yi), i ∈ JNK. Suppose we draw a new i.i.d. sample (x, y). In
Theorem 4.3.3 we establish bounds on the error |y − x′β̂|.

Theorem 4.3.3. Under Assumptions I and J, for any 0 < δ < 1, with
probability at least 1− δ with respect to the sampling,

EP∗ [|y − x′β̂|] ≤ 1
N

N∑
i=1
|yi − x′iβ̂|+

2B̄R√
N

+ B̄R

√
8 log(2/δ)

N
, (4.9)
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and for any ζ > 2B̄R√
N

+ B̄R
√

8 log(2/δ)
N ,

P
(
|y − x′β̂| ≥ 1

N

N∑
i=1
|yi − x′iβ̂|+ ζ

)

≤
1
N

∑N
i=1 |yi − x′iβ̂|+ 2B̄R√

N
+ B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ ζ

. (4.10)

Proof. We use Theorem 8 in [98], which we state for convenience as
follows.

Theorem 4.3.4 (Theorem 8 in [98]). Consider a loss function L: Y×A →
[0, 1] and a dominating cost function φ: Y ×A → [0, 1]. Let F be a class
of functions mapping from X to A and let (xi, yi)Ni=1 be independently
selected according to the probability measure P∗. Then, for any integer
N and any 0 < δ < 1, with probability at least 1− δ over samples of
length N , every f in F satisfies

EP∗ [L(y, f(x))] ≤ 1
N

N∑
i=1

φ(yi, f(xi)) +RN (φ̃ ◦ F) +

√
8 log(2/δ)

N
,

where φ̃ ◦ F = {(x, y)→ φ(y, f(x))− φ(y, 0) : f ∈ F}.

We set the following correspondences with the notation used in
Theorem 4.3.4: f(x) = x′β, and L(y, f(x)) = φ(y, f(x)) = |y − f(x)|.
This yields the bound (4.9) on the expected loss. For Equation (4.10),
we apply Markov’s inequality to obtain:

P
(
|y − x′β̂| ≥ 1

N

N∑
i=1
|yi − x′iβ̂|+ ζ

)
≤ E[|y − x′β̂|]

1
N

∑N
i=1 |yi − x′iβ̂|+ ζ

≤
1
N

∑N
i=1 |yi − x′iβ̂|+ 2B̄R√

N
+ B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ ζ

.

There are two probability measures in the statement of Theo-
rem 4.3.3. One is related to the new data (x, y), while the other is
related to the samples (xi, yi), i ∈ JNK. The expectation in (4.9) (and
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the probability in (4.10)) is taken w.r.t. the new data (x, y). For a given
set of samples, (4.9) (and (4.10)) holds with probability at least 1− δ
w.r.t. the measure of samples. Theorem 4.3.3 essentially says that given
typical samples, the expected loss on new data using the Wasserstein
DRO estimator could be bounded above by the average sample loss
plus extra terms that depend on the supremum of ‖(−β, 1)‖∗ (the reg-
ularizer), and are proportional to 1/

√
N . This result validates the dual

norm-based regularized regression from the perspective of generalization
ability, and could be generalized to any bounded loss function. It also
provides implications on the form of the regularizer. For example, if
given an `2-loss function, the dependency on B̄ for the generalization
error bound will be of the form B̄2, which suggests using ‖(−β, 1)‖2∗
as a regularizer, reducing to a variant of ridge regression [100] for the
`2-norm-induced Wasserstein metric.

We also note that the upper bounds in (4.9) and (4.10) do not depend
on the dimension of (x, y). This dimensionality-free characteristic implies
direct applicability of the Wasserstein approach to high-dimensional
settings and is particularly useful in many real applications where,
potentially, hundreds of features may be present. Theorem 4.3.3 also
provides guidance on the number of samples that are needed to achieve
satisfactory out-of-sample performance.

Corollary 4.3.5. Suppose β̂ is the optimal solution to (4.5). For a fixed
confidence level δ and some threshold parameter τ ≥ 0, if the sample
size N satisfies

N ≥
[2(1 +

√
2 log(2/δ) )
τ

]2
, (4.11)

then the percentage difference between the expected absolute loss on
new data and the sample average loss is less than τ , that is,

E[|y − x′β̂|]− 1
N

∑N
i=1 |yi − x′iβ̂|

B̄R
≤ τ.

Proof. The percentage difference requirement can be translated into:

2√
N

+

√
8 log(2/δ)

N
≤ τ,

from which (4.11) can be easily derived.
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Corollary 4.3.6. Suppose β̂ is the optimal solution to (4.5). For a fixed
confidence level δ, some τ ∈ (0, 1) and γ ≥ 0 such that τγ + τ − 1 > 0,
if the sample size N satisfies

N ≥
[2(1 +

√
2 log(2/δ) )

τγ + τ − 1

]2
, (4.12)

then,

P
( |y − x′β̂| − 1

N

∑N
i=1 |yi − x′iβ̂|

B̄R
≥ γ

)
≤ τ.

Proof. Based on Theorem 4.3.3, we just need the following inequality
to hold:

1
N

∑N
i=1 |yi − x′iβ̂|+ 2B̄R√

N
+ B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ γB̄R

≤ τ,

which is equivalent to:

γB̄R− 2B̄R√
N
− B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ γB̄R

≥ 1− τ. (4.13)

We cannot obtain a lower bound for N by directly solving (4.13) since
N appears in a summation operator. A proper relaxation to (4.13) is:

γ − 2√
N
−
√

8 log(2/δ)
N

1 + γ
≥ 1− τ, (4.14)

due to the fact that 1
N

∑N
i=1 |yi − x′iβ̂| ≤ B̄R. By solving (4.14), we

obtain (4.12).

In Corollaries 4.3.5 and 4.3.6, the sample size is inversely proportional
to both δ and τ , which is reasonable since the more confident we want
to be, the more samples we need. Moreover, the smaller τ is, the stricter
a requirement we impose on the performance, and thus more samples
are needed.

4.3.2 Discrepancy Between Estimated and True Regression Planes

In addition to the generalization performance, we are also interested
in the accuracy of the estimator. In this subsection, we seek to bound
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the difference between the estimated and true regression coefficients,
under a certain distributional assumption on (x, y). Throughout this
subsection we will use β̂ to denote the estimated regression coefficients,
obtained as an optimal solution to (4.15), and β∗ for the true (unknown)
regression coefficients. The bound we will derive turns out to be related
to the uncertainty in the data (x, y), and the geometric structure of the
true regression coefficients.

To facilitate the analysis, we will use the following equivalent form
of Problem (4.5):

min
β

‖(−β, 1)‖∗

s.t. ‖(−β, 1)′Z‖1 ≤ γN ,
(4.15)

where Z = [(x1, y1), . . . , (xN , yN )] is the matrix with columns (xi, yi),
i ∈ JNK, and γN is some exogenous parameter related to ε. One can
show that for properly chosen γN , (4.15) produces the same solution
with (4.5) [101]. (4.15) is similar to (11) in [102], with the difference
lying in that we impose a constraint on the error instead of the gradient,
and we consider a more general notion of norm on the coefficient. On the
other hand, due to their similarity, we will follow the line of development
in [102]. Still, our analysis is self-contained and the bound we obtain is
in a different form, which provides meaningful insights into our specific
problem. We list below the relevant definitions and assumptions that
are needed to bound the estimation error.

Definition 4 (Sub-Gaussian Random Variable). A random variable z is
sub-Gaussian if the ψ2-norm defined below is finite, i.e.,

|||z|||ψ2
, sup

q≥1

(E|z|q)1/q
√
q

< +∞.

We do not require sub-Gaussian variables to have zero mean values.
It is though worth noting that the ψ2-norm |||z|||ψ2

depends on the mean
E(z). An equivalent property for sub-Gaussian random variables is that
their tail distribution decays as fast as a Gaussian, namely,

P(|z − E(z)| ≥ t) ≤ 2 exp{−t2/C2}, ∀t ≥ 0,

for some constant C.
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A random vector z ∈ Rp+1 is sub-Gaussian if z′u is sub-Gaussian
for any u ∈ Rp+1. The ψ2-norm of a vector z is defined as:

|||z|||ψ2
, sup

u∈Sp+1

∣∣∣∣∣∣z′u∣∣∣∣∣∣ψ2
,

where Sp+1 denotes the unit sphere in the (p+1)-dimensional Euclidean
space. For the properties of sub-Gaussian random variables/vectors,
please refer to [103].

Definition 5 (Gaussian Width). For any set A ⊆ Rp+1, its Gaussian
width is defined as:

w(A) , E
[

sup
u∈A

u′g
]
, (4.16)

where g ∼ N (0, I) is a (p+ 1)-dimensional standard Gaussian random
vector.

Assumption K (Restricted Eigenvalue Condition). For some set A(β∗) =
cone{v: ‖(−β∗, 1)+v‖∗ ≤ ‖(−β∗, 1)‖∗}∩Sp+1 and some positive scalar
α, where Sp+1 is the unit sphere in the (p+ 1)-dimensional Euclidean
space,

inf
v∈A(β∗)

v′ZZ′v ≥ α.

Assumption L. The true coefficient β∗ is a feasible solution to (4.15),
i.e.,

‖Z′(−β∗, 1)‖1 ≤ γN .

Assumption M. (x, y) is a centered sub-Gaussian random vector, i.e.,
it has zero mean and satisfies the following condition:

|||(x, y)|||ψ2
= sup

u∈Sp+1

∣∣∣∣∣∣(x, y)′u
∣∣∣∣∣∣
ψ2
≤ µ.

Assumption N. The covariance matrix of (x, y) has bounded positive
eigenvalues. Set Γ = E[(x, y)(x, y)′]; then,

0 < λmin , λmin(Γ) ≤ λmax(Γ) , λmax <∞.
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Notice that both α in Assumption K and γN in Assumption L are
related to the random observation matrix Z. A probabilistic description
for these two quantities will be provided later. We next present a
preliminary result, similar to Lemma 2 in [102], that bounds the `2-
norm of the estimation bias in terms of a quantity that is related to the
geometric structure of the true coefficients. This result gives a rough
idea on the factors that affect the estimation error. The bound derived
in Theorem 4.3.7 is crude in the sense that it is a function of several
random parameters that are related to the random observation matrix
Z. This randomness will be described in a probabilistic way in the
subsequent analysis.

Theorem 4.3.7. Suppose the true regression coefficient vector is β∗
and the solution to (4.15) is β̂. For the set A(β∗) = cone{v: ‖(−β∗, 1) +
v‖∗ ≤ ‖(−β∗, 1)‖∗} ∩ Sp+1, under Assumptions I, K, and L, we
have:

‖β̂ − β∗‖2 ≤
2RγN
α

Ψ(β∗), (4.17)

where Ψ(β∗) = supv∈A(β∗) ‖v‖∗.

Proof. For ease of exposition, we will adopt the notation z , (x, y), zi ,
(xi, yi), β̃ , (−β, 1), β̃est , (−β̂, 1), β̃true , (−β∗, 1).

Since both β̂ and β∗ are feasible (the latter due to Assumption L),
we have:

‖Z′β̃est‖1 ≤ γN ,
‖Z′β̃true‖1 ≤ γN ,

from which we derive that ‖Z′(β̃est − β̃true)‖1 ≤ 2γN . Since β̂ is an
optimal solution to (4.15) and β∗ a feasible solution, it follows that
‖β̃est‖∗ ≤ ‖β̃true‖∗. This implies that ν = β̃est − β̃true satisfies the
condition ‖β̃true + v‖∗ ≤ ‖β̃true‖∗ included in the definition of A(β∗)
and, furthermore, (β̃est− β̃true)/‖β̃est− β̃true‖2 ∈ A(β∗). Together with
Assumption K, this yields

(β̃est − β̃true)′ZZ′(β̃est − β̃true) ≥ α‖β̃est − β̃true‖22. (4.18)
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On the other hand, from Hölder’s inequality:

(β̃est − β̃true)′ZZ′(β̃est − β̃true)
≤ ‖Z′(β̃est − β̃true)‖1‖Z′(β̃est − β̃true)‖∞
≤ 2γN max

i
|z′i(β̃est − β̃true)| (4.19)

≤ 2γN max
i
‖β̃est − β̃true‖∗‖zi‖

≤ 2RγN‖β̃est − β̃true‖∗.

Combining (4.18) and (4.19), we have:

‖β̂ − β∗‖2 = ‖β̃est − β̃true‖2

≤ 2RγN
α

‖β̃est − β̃true‖∗
‖β̃est − β̃true‖2

≤ 2RγN
α

Ψ(β∗),

where the last step follows from the fact that (β̃est − β̃true)/‖β̃est −
β̃true‖2 ∈ A(β∗).

As mentioned earlier, (4.17) provides a random upper bound, re-
vealed in α and γN , that depends on the randomness in Z. We therefore
would like to replace these two parameters by non-random quantities.
The quantity α acts as the minimum eigenvalue of the matrix ZZ′
restricted to a subspace of Rp+1, and thus a proper substitute should
be related to the minimum eigenvalue of the covariance matrix of (x, y),
i.e., the Γ matrix (cf. Assumption N), given that (x, y) is zero mean.
See Lemmata 4.3.8, 4.3.9 and 4.3.10 for the derivation.

Lemma 4.3.8. Consider AΓ = {w ∈ Sp+1: Γ−1/2w ∈ cone(A(β∗))},
where A(β∗) is defined as in Theorem 4.3.7, and Γ = E[(x, y)(x, y)′].
Under Assumptions M and N, when the sample size N ≥ C1µ̄

4(w(AΓ))2,
where µ̄ = µ

√
1

λmin
, and w(AΓ) is the Gaussian width of AΓ, with

probability at least 1− exp(−C2N/µ̄
4), we have

v′ZZ′v ≥ N

2 v′Γv, ∀v ∈ A(β∗),

where C1 and C2 are positive constants.
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Proof. Define Γ̂ = 1
N

∑N
i=1 ziz′i. Consider the set of functions F =

{fw(z) = z′Γ−1/2w, w ∈ AΓ}. Then, for any fw ∈ F ,

E[f2
w] = E[w′Γ−1/2zz′Γ−1/2w]

= w′Γ−1/2E[zz′]Γ−1/2w
= w′w
= 1,

where we used Γ = E[zz′] and the fact that w ∈ AΓ.
For any fw ∈ F we have

|||fw|||ψ2
=
∣∣∣∣∣∣∣∣∣z′Γ−1/2w

∣∣∣∣∣∣∣∣∣
ψ2

=
∣∣∣∣∣∣∣∣∣z′Γ−1/2w

∣∣∣∣∣∣∣∣∣
ψ2

‖Γ−1/2w‖2
‖Γ−1/2w‖2

=
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣z′ Γ−1/2w
‖Γ−1/2w‖2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

‖Γ−1/2w‖2

≤ µ
√

w′Γ−1w

≤ µ
√

1
λmin

‖w‖22

= µ

√
1

λmin
= µ̄,

where the first inequality used Assumption M and the second inequality
used Assumption N.

Applying Theorem D from [104], for any θ > 0 and when

C̃1µ̄γ2(F , |||·|||ψ2
) ≤ θ

√
N,

with probability at least 1− exp(−C̃2θ
2N/µ̄4) we have

sup
fw∈F

∣∣∣∣ 1
N

N∑
i=1

f2
w(zi)− E[f2

w]
∣∣∣∣ = sup

fw∈F

∣∣∣∣ 1
N

N∑
i=1

w′Γ−1/2ziz′iΓ−1/2w− 1
∣∣∣∣

= sup
w∈AΓ

|w′Γ−1/2Γ̂Γ−1/2w− 1|

≤ θ, (4.20)
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where C̃1 is some positive constant and γ2(F , |||·|||ψ2
) is defined in [104]

as a measure of the size of the set F with respect to the metric |||·|||ψ2
.

Using θ = 1/2, and properties of γ2(F , |||·|||ψ2
) outlined in [102], we can

set N to satisfy

C̃1µ̄γ2(F , |||·|||ψ2
) ≤ C̃1µ̄

2γ2(AΓ, ‖ · ‖2)
≤ C̃1µ̄

2C0w(AΓ)

≤ 1
2
√
N,

for some positive constant C0, where we used Equation (44) in [102].
This implies

N ≥ C1µ̄
4(w(AΓ))2

for some positive constant C1. Thus, for such N and with probability
at least 1− exp(−C2N/µ̄

4), for some positive constant C2, (4.20) holds
with θ = 1/2. This implies that for all w ∈ AΓ,

|w′Γ−1/2Γ̂Γ−1/2w− 1| ≤ 1
2

or
w′Γ−1/2Γ̂Γ−1/2w ≥ 1

2 = 1
2w′Γ−1/2ΓΓ−1/2w.

By the definition of AΓ, for any v ∈ A(β∗),

v′Γ̂v ≥ 1
2v′Γv.

Noting that Γ̂ = (1/N)ZZ′ yields the desired result.

Note that the sample size requirement stated in Lemma 4.3.8 depends
on the Gaussian width of AΓ, where AΓ relates to A(β∗). The following
lemma shows that their Gaussian widths are also related. This relation
is built upon the square root of the eigenvalues of Γ, which measures
the extent to which AΓ expands A(β∗).

Lemma 4.3.9 (Lemma 4 in [102]). Let µ0 be the ψ2-norm of a standard
Gaussian random vector g ∈ Rp+1, and AΓ, A(β∗) be defined as in
Lemma 4.3.8. Then, under Assumption N,

w(AΓ) ≤ C3µ0

√
λmax
λmin

(w(A(β∗)) + 3),

for some positive constant C3.
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Proof. We follow the proof of Lemma 4 in [102], adapted to our setting.
We include all key steps for completeness.

Recall the definition of the Gaussian width w(AΓ) (cf. (4.16)):

w(AΓ) = E
[

sup
u∈AΓ

u′g
]
,

where g ∼ N (0, I). We have:

sup
w∈AΓ

w′g = sup
w∈AΓ

w′Γ−1/2Γ1/2g

= sup
w∈AΓ

‖Γ−1/2w‖2
w′Γ−1/2

‖Γ−1/2w‖2
Γ1/2g

≤
√

1
λmin

sup
v∈cone(A(β∗))∩Bp+1

v′Γ1/2g,

where Bp+1 is the unit ball in the (p+ 1)-dimensional Euclidean space
and the inequality used Assumption N and the fact that

w′Γ−1/2/‖Γ−1/2w‖2 ∈ Bp+1, w ∈ AΓ.

Define T = cone(A(β∗))∩Bp+1, and consider the stochastic process
{Sv = v′Γ1/2g}v∈T . For any v1,v2 ∈ T ,

|||Sv1 − Sv2 |||ψ2
=
∣∣∣∣∣∣∣∣∣(v1 − v2)′Γ1/2g

∣∣∣∣∣∣∣∣∣
ψ2

= ‖Γ1/2(v1 − v2)‖2
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ (v1 − v2)′Γ1/2g
‖Γ1/2(v1 − v2)‖2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤ ‖Γ1/2(v1 − v2)‖2 sup
u∈Sp+1

∣∣∣∣∣∣u′g∣∣∣∣∣∣ψ2

= µ0‖Γ1/2(v1 − v2)‖2
≤ µ0

√
λmax‖v1 − v2‖2,

where the last step used Assumption N.
Then, by the tail behavior of sub-Gaussian random variables (see

Hoeffding bound, Theorem 2.6.2 in [103]), we have:

P(|Sv1 − Sv2 | ≥ δ) ≤ 2 exp
(
− C01δ

2

µ2
0λmax‖v1 − v2‖22

)
,

for some positive constant C01.

The version of record is available at: http://dx.doi.org/10.1561/2400000026



4.3. Performance Guarantees for the DRO Estimator 85

To bound the supremum of Sv, we define the metric s(v1,v2) =
µ0
√
λmax‖v1 − v2‖2. Then, by Lemma B in [102],

E
[
sup
v∈T

v′Γ1/2g
]
≤ C02γ2(T , s)

= C02µ0
√
λmaxγ2(T , ‖ · ‖2)

≤ C3µ0
√
λmaxw(T ),

for positive constants C02, C3, where γ2(T , s) is the γ2-functional we
referred to in the proof of Lemma 4.3.8. Since T = cone(A(β∗))∩Bp+1 ⊆
conv(A(β∗) ∪ {0}), by Lemma 2 in [105],

w(T ) ≤ w(conv(A(β∗) ∪ {0}))
= w(A(β∗) ∪ {0})
≤ max{w(A(β∗)), w({0})}+ 2

√
ln 4

≤ w(A(β∗)) + 3.

Thus,

w(AΓ) = E
[

sup
w∈AΓ

w′g
]

≤
√

1
λmin

E
[
sup
v∈T

v′Γ1/2g
]

≤ C3

√
1

λmin
µ0
√
λmaxw(T )

≤ C3µ0

√
λmax
λmin

(w(A(β∗)) + 3).

Combining Lemmata 4.3.8 and 4.3.9, and expressing the covariance
matrix Γ using its eigenvalues, we arrive at the following result.

Corollary 4.3.10. Under Assumptions M and N, and the conditions in
Lemmata 4.3.8 and 4.3.9, when

N ≥ C̄1µ̄
4µ2

0 ·
λmax
λmin

(w(A(β∗)) + 3)2,
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with probability at least 1− exp(−C2N/µ̄
4),

v′ZZ′v ≥ Nλmin
2 , ∀v ∈ A(β∗),

where C̄1 and C2 are positive constants.

Proof. Combining Lemmata 4.3.8 and 4.3.9, and using the fact that for
any v ∈ A(β∗),

N

2 v′Γv ≥ Nλmin
2 ,

we can derive the desired result.

Next we derive the smallest possible value of γN such that β∗ is
feasible.

Lemma 4.3.11. Under Assumptions I and J, for any feasible β,

‖(−β, 1)′Z‖1 ≤ NB̄R, a.s. under P∗.

Combining Theorem 4.3.7, Corollary 4.3.10 and Lemma 4.3.11, we
have the following main performance guarantee result that bounds the
estimation bias of the solution to (4.15).

Theorem 4.3.12. Under Assumptions I–N, and the conditions of Theo-
rem 4.3.7, Corollary 4.3.10 and Lemma 4.3.11, when

N ≥ C̄1µ̄
4µ2

0 ·
λmax
λmin

(w(A(β∗)) + 3)2,

with probability at least 1− exp(−C2N/µ̄
4),

‖β̂ − β∗‖2 ≤
4R2B̄

λmin
Ψ(β∗). (4.21)

The estimation error bound in (4.21) depends on the variance of
(x, y), and the geometrical structure of the true regression coefficient.
It does not decay to zero as N goes to infinity. The reason is that the
absolute residual |y−β′x| has a nonzero mean, which will be propagated
into the estimation bias.
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4.4 Experiments on the Performance of Wasserstein DRO

In this section, we will explore the robustness of the Wasserstein for-
mulation in terms of its Absolute Deviation (AD) loss function and the
dual norm regularizer on the extended regression coefficient (−β, 1).
Recall that the Wasserstein formulation is in the following form:

inf
β

1
N

N∑
i=1
|yi − x′iβ|+ ε‖(−β, 1)‖∗. (4.22)

We will focus on the following three aspects of this formulation.

1. How to choose a proper norm ‖ · ‖ for the Wasserstein metric?

2. Why do we penalize the extended regression coefficient (−β, 1)
rather than β?

3. What is the advantage of the AD loss compared to the Squared
Residuals (SR) loss?

To answer Question 1, we will connect the choice of ‖ · ‖ for the Wasser-
stein metric with the characteristics/structures of the data (x, y). Specif-
ically, we will design two sets of experiments, one with a dense regression
coefficient β∗, where all coordinates of x play a role in determining
the value of the response y, and another with a sparse β∗ implying
that only a few predictors are relevant in predicting y. Two Wasserstein
formulations will be tested and compared, one induced by the ‖ · ‖2
(Wasserstein `2), which leads to an `2-regularizer in (4.22), and the
other one induced by the ‖ · ‖∞ (Wasserstein `∞) and resulting in an
`1-regularizer in (4.22).

The problem of feature selection can be formulated as an `0-norm
regularized regression problem, which is NP-hard and is usually relaxed
to an `1-norm regularized formulation, known as the Least Absolute
Shrinkage and Selection Operator (LASSO). LASSO enjoys several
attractive statistical properties under various conditions on the model
matrix [6], [106]. Here, in our context, we try to offer an explanation of
the sparsity-inducing property of LASSO from the perspective of the
Wasserstein DRO formulation, through projecting the sparsity of β∗
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onto the (x, y) space and establishing a sparse distance metric that only
extracts a subset of coordinates from (x, y) to measure the closeness
between samples.

For the second question, we first note that if the Wasserstein metric
is induced by the following metric sc:

sc(x, y) = ‖(x, cy)‖2,

for a positive constant c; then as c → ∞, the resulting Wasserstein
DRO formulation becomes:

inf
β

1
N

N∑
i=1
|yi − x′iβ|+ ε‖β‖2,

which is the `2-regularized LAD. This can be proved by recognizing
that sc(x, y) = ‖(x, y)‖M, with M ∈ R(p+1)×(p+1) a diagonal matrix
whose diagonal elements are (1, . . . , 1, c2), and then applying (4.8).
Alternatively, if we let sc(x, y) = ‖(x, cy)‖∞, Corollary 4.4.1 shows that
as c → ∞, the corresponding Wasserstein formulation becomes the
`1-regularized LAD.

Corollary 4.4.1. If the Wasserstein metric is induced by the following
metric s:

sc(x, y) = ‖(x, cy)‖∞,
with c some positive constant. Then as c→∞, the Wasserstein DRO
formulation (4.22) reduces to:

inf
β

1
N

N∑
i=1
|yi − x′iβ|+ ε‖β‖1,

which is the `1-regularized LAD.

Proof. We first define a new notion of norm on (x, y) where x =
(x1, . . . , xp):

‖(x, y)‖w,r , ‖(x1w1, . . . , xpwp, ywp+1)‖r,

for some (p+ 1)-dimensional weighting vector w = (w1, . . . , wp+1), and
r ≥ 1. Then, sc(x, y) = ‖(x, y)‖w,∞ with w = (1, . . . , 1, c). To obtain
the Wasserstein DRO formulation, the key is to derive the dual norm
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of ‖ · ‖w,∞. Hölder’s inequality [107] will be used for the derivation.
We will use the notation z , (x, y). Based on the definition of dual
norm, we are interested in solving the following optimization problem
for β̃ ∈ Rp+1:

max
z

z′β̃

s.t. ‖z‖w,∞ ≤ 1.
(4.23)

The optimal value of Problem (4.23), which is a function of β̃, gives the
dual norm evaluated at β̃. Using Hölder’s inequality, we can write

z′β̃ =
p+1∑
i=1

(wizi)
( 1
wi
β̃i

)
≤ ‖z‖w,∞‖β̃‖w−1,1

≤ ‖β̃‖w−1,1,

where w−1 , ( 1
w1
, . . . , 1

wp+1
). The last inequality is due to the constraint

‖z‖w,∞ ≤ 1. It follows that the dual norm of ‖ · ‖w,∞ is just ‖ · ‖w−1,1.
Back to our problem setting, using w = (1, . . . , 1, c), and evaluating
the dual norm at (−β, 1), we have the following Wasserstein DRO
formulation as c→∞:

inf
β

1
N

N∑
i=1
|yi − x′iβ|+ ε‖(−β, 1)‖w−1,1 = inf

β

1
N

N∑
i=1
|yi − x′iβ|+ ε‖β‖1.

It follows that regularizing over β implies an infinite transportation
cost along y. By contrast, the Wasserstein formulation, which regularizes
over the extended regression coefficient (−β, 1), stems from a finite cost
along y that is equally weighted with x. We will see the disadvantages
of penalizing only β in the analysis of the experimental results.

To answer Question 3, we will compare with several commonly used
regression models that employ the SR loss function, e.g., ridge regres-
sion [100], LASSO [5], and Elastic Net (EN) [108]. We will also compare
against M-estimation [7], [8], which uses a variant of the SR loss and is
equivalent to solving a weighted least squares problem. These models
will be compared under two different experimental setups, one involving
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perturbations in both x and y, and the other with perturbations only
in x. The purpose is to investigate the behavior of these approaches
when the noise in y is substantially reduced.

We next describe the data generation process. Each training sample
has a probability q of being drawn from the outlying distribution, and
a probability 1− q of being drawn from the true (clean) distribution.
Given the true regression coefficient β∗, we generate the training data
as follows:

• Generate a uniform random variable on [0, 1]. If it is no larger
than 1− q, generate a clean sample as follows:

1. Draw the predictor x ∈ Rp from the normal distribution
N (0,Σ), where Σ is the covariance matrix of x, which is
just the top left block of the matrix Γ in Assumption N.
Specifically, Γ = E[(x, y)(x, y)′] is equal to

Γ =
[

Σ Σβ∗
(β∗)′Σ (β∗)′Σβ∗ + σ2

]
,

with σ2 being the variance of the noise term. In our imple-
mentation, Σ has diagonal elements equal to 1 (unit variance)
and off-diagonal elements equal to ρ, with ρ the correlation
between predictors.

2. Draw the response variable y from N (x′β∗, σ2).

• Otherwise, depending on the experimental setup, generate an
outlier that is either:

– Abnormal in both x and y, with outlying distribution:
1. x ∼ N (0,Σ) +N (5e, I), or x ∼ N (0,Σ) +N (0, 0.25I);
2. y ∼ N (x′β∗, σ2) + 5σ.

– Abnormal only in x:
1. x ∼ N (0,Σ) +N (5e, I);
2. y ∼ N (x′β∗, σ2).

• Repeat the above procedure for N times, where N is the size of
the training set.
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To test the generalization ability of various formulations, we generate
a test dataset containing M samples from the clean distribution. We
are interested in studying the performance of various methods as the
following factors are varied.

• Signal to Noise Ratio (SNR), defined as:

SNR = (β∗)′Σβ∗
σ2 ,

which is equally spaced between 0.05 and 2 on a log scale.

• The correlation between predictors: ρ, which takes values in
(0.1, 0.2, . . . , 0.9).

The performance metrics we use include:

• Mean Squared Error (MSE) on the test dataset, which is defined to
be ∑M

i=1(yi− x′iβ̂)2/M , with β̂ being the estimate of β∗ obtained
from the training set, and (xi, yi), i ∈ JMK, being the observations
from the test dataset;

• Relative Risk (RR) of β̂ defined as:

RR(β̂) ,
(β̂ − β∗)′Σ(β̂ − β∗)

(β∗)′Σβ∗ .

• Relative Test Error (RTE) of β̂ defined as:

RTE(β̂) ,
(β̂ − β∗)′Σ(β̂ − β∗) + σ2

σ2 .

• Proportion of Variance Explained (PVE) of β̂ defined as:

PVE(β̂) , 1− (β̂ − β∗)′Σ(β̂ − β∗) + σ2

(β∗)′Σβ∗ + σ2 .

For the metrics that evaluate the accuracy of the estimator, i.e., the
RR, RTE and PVE, we list below two types of scores, one achieved by
the best possible estimator β̂ = β∗, called the perfect score, and the
other one achieved by the null estimator β̂ = 0, called the null score.
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• RR: a perfect score is 0 and the null score is 1.

• RTE: a perfect score is 1 and the null score is SNR+1.

• PVE: a perfect score is SNR
SNR+1 , and the null score is 0.

All the regularization parameters are tuned on a separate validation
dataset using the Median Absolute Deviation (MAD) as a selection
criterion, to hedge against the potentially large noise in the validation
samples. As to the range of values for the tuned parameters, we borrow
ideas from [109], where the LASSO was tuned over 50 values ranging
from λmax = ‖X′y‖∞ to a small fraction of λmax on a log scale, with
X ∈ RN×p the design matrix whose i-th row is x′i, and y = (y1, . . . , yN )
the response vector. In our experiments, this range is properly adjusted
for procedures that use the AD loss. Specifically, for Wasserstein `2 and
`∞, `1- and `2-regularized LAD, the range of values for the regularization
parameter is:√

exp(lin(log(0.005 ∗ ‖X′y‖∞), log(‖X′y‖∞), 50)),

where lin(a, b, n) is a function that takes in scalars a, b and n (integer)
and outputs a set of n values equally spaced between a and b; the exp
function is applied elementwise to a vector. The square root operator is
in consideration of the AD loss that is the square root of the SR loss if
evaluated on a single sample.

4.4.1 Dense β∗, Outliers in Both x and y

In this subsection, we choose a dense regression coefficient β∗, set the
intercept to β∗0 = 0.3, and the coefficient for each predictor xi to be
β∗i = 0.5, i ∈ J20K. The perturbations are present in both x and y.
Specifically, the outlying distribution is described by:

1. x ∼ N (0,Σ) +N (5e, I);

2. y ∼ N (x′β∗, σ2) + 5σ.

We generate 10 datasets consisting of N = 100,M = 60 observations.
The probability of a training sample being drawn from the outlying
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distribution is q = 30%. The mean values of the performance metrics
(averaged over the 10 datasets), as we vary the SNR and the correlation
between predictors, are shown in Figures 4.2 and 4.3. Note that when
SNR is varied, the correlation between predictors is set to 0.8 times a
random noise uniformly distributed on the interval [0.2, 0.4]. When the
correlation ρ is varied, the SNR is fixed to 0.5.

It can be seen that as the SNR decreases or the correlation between
the predictors increases, the estimation problem becomes harder, and
the performance of all approaches gets worse. In general the Wasserstein
formulation with an `2-norm transportation cost achieves the best
performance in terms of all four metrics. Specifically,

• it is better than the `2-regularized LAD, which assumes an infinite
transportation cost along y;

• it is better than the Wasserstein `∞ and `1-regularized LAD which
use the `1-regularizer;

• it is better than the approaches that use the SR loss function.

Empirically we have found that in most cases, the approaches that
use the AD loss, including the `1- and `2-regularized LAD, and the
Wasserstein `∞ formulation, drive all the coordinates of β to zero,
due to the relatively small magnitude of the AD loss compared to the
norm of the coefficient. The approaches that use the SR loss, e.g., ridge
regression and EN, do not exhibit such a problem, since the squared
residuals weaken the dominance of the regularization term.

Overall the `2-regularizer outperforms the `1-regularizer, since the
true regression coefficient is dense, which implies that a proper distance
metric on the (x, y) space should take into account all the coordi-
nates. From the perspective of the Wasserstein DRO framework, the
`1-regularizer corresponds to an ‖ · ‖∞-based distance metric on the
(x, y) space that only picks out the most influential coordinate to de-
termine the closeness between data points, which in our case is not
reasonable since every coordinate plays a role (reflected in the dense
β∗). In contrast, if β∗ is sparse, using the ‖ · ‖∞ as a distance metric
on (x, y) is more appropriate. A more detailed discussion of this will be
presented in Sections 4.4.3 and 4.4.4.
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Figure 4.2: The impact of SNR on the performance metrics: Dense β∗, outliers in
both x and y.
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Figure 4.3: The impact of predictor correlation on the performance metrics: Dense
β∗, outliers in both x and y.

4.4.2 Dense β∗, Outliers Only in x

In this subsection, we will experiment with the same β∗ as in Sec-
tion 4.4.1, but with perturbations only in x. Our goal is to investigate
the performance of the Wasserstein formulation when the response y is
not subjected to large perturbations.

Interestingly, we observe that although the `1- and `2-regularized
LAD, as well as the Wasserstein `∞ formulation, exhibit unsatisfactory
performance, the Wasserstein `2, which shares the same loss function
with them, is able to achieve a comparable performance with the best
among all – EN and ridge regression (see Figures 4.4 and 4.5). Notably,
the `2-regularized LAD, which is just slightly different from the Wasser-
stein `2 formulation, shows a much worse performance. This is because
the `2-regularized LAD implicitly assumes an infinite transportation
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Figure 4.4: The impact of SNR on the performance metrics: Dense β∗, outliers
only in x.

cost along y, which gives zero tolerance to the variation in the response.
Therefore, a reasonable amount of fluctuation, caused by the intrinsic
randomness of y, would be overly exaggerated by the underlying metric
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Figure 4.5: The impact of predictor correlation on the performance metrics: Dense
β∗, outliers only in x.

used by the `2-regularized LAD. In contrast, the Wasserstein approach
uses a proper notion of norm to evaluate the distance in the (x, y) space
and is able to effectively distinguish abnormally high variations from
moderate, acceptable noise.

It is also worth noting that the formulations with the AD loss, e.g.,
`2- and `1-regularized LAD, and the Wasserstein `∞, perform worse
than the approaches with the SR loss. One reasonable explanation
is that the AD loss, introduced primarily for hedging against large
perturbations in y, is less useful when the noise in y is moderate, in
which case the sensitivity to response noise is needed. Although the
AD loss is not a wise choice, penalizing the extended coefficient vector
(−β, 1) seems to make up, making the Wasserstein `2 a competitive
method even when the perturbations appear only in x.
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4.4.3 Sparse β∗, Outliers in both x and y

In this subsection, we will experiment with a sparse β∗. The intercept
is set to β∗0 = 3, and the coefficients for the 20 predictors are set to
β∗ = (0.05, 0, 0.006, 0,−0.007, 0, 0.008, 0, . . . , 0). The perturbations are
present in both x and y. Specifically, the distribution of outliers is
characterized by:

1. x ∼ N (0,Σ) +N (0, 0.25I);

2. y ∼ N (x′β∗, σ2) + 5σ.

Our goal is to study the impact of the sparsity of β∗ on the choice
of the norm space for the Wasserstein metric. An intuitively appealing
interpretation for the sparsity inducing property of the `1-regularizer is
made available by the Wasserstein DRO framework, which we explain
as follows. The sparse regression coefficient β∗ implies that only a few
predictors are relevant to the regression model, and thus when measuring
the distance in the (x, y) space, we need a metric that only extracts
the subset of relevant predictors. The ‖ · ‖∞, which takes only the
most influential coordinate of its argument, roughly serves this purpose.
Compared to the ‖·‖2 which takes into account all the coordinates, most
of which are redundant due to the sparsity assumption, ‖ · ‖∞ results in
a better performance, and hence, the Wasserstein `∞ formulation that
induces the `1-regularizer is expected to outperform others.

The results are summarized in Figures 4.6 and 4.7. We note that the
`1-regularized LAD achieves a similar performance, since replacing ‖β‖1
by ‖(−β, 1)‖1 only adds a constant term to the objective function. The
generalization performance (mean MSE) of the AD loss-based formu-
lations is consistently better than those with the SR loss, since the AD
loss is less affected by large perturbations in y. Also note that choosing
a wrong norm for the Wasserstein metric, e.g., the Wasserstein `2, could
lead to an enormous estimation error, whereas with a right norm space,
the Wasserstein formulation is guaranteed to outperform all others.

4.4.4 Sparse β∗, Outliers Only in x

In this subsection, we will use the same sparse coefficient as in Sec-
tion 4.4.3, but the perturbations are present only in x. Specifically, for
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Figure 4.6: The impact of SNR on the performance metrics: Sparse β∗, outliers in
both x and y.

outliers, their predictors and responses are drawn from the following
distributions:

1. x ∼ N (0,Σ) +N (5e, I);

2. y ∼ N (x′β∗, σ2).
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Figure 4.7: The impact of predictor correlation on the performance metrics:
Sparse β∗, outliers in both x and y.

The results are summarized in Figures 4.8 and 4.9. Not surprisingly,
the Wasserstein `∞ and the `1-regularized LAD achieve the best perfor-
mance. Notice that in Section 4.4.3, where perturbations appear in both
x and y, the AD loss-based formulations have smaller generalization and
estimation errors than the SR loss-based formulations. When we reduce
the variation in y, the SR loss seems superior to the AD loss, if we restrict
attention to the improperly regularized (`2-regularizer) formulations
(see Figure 4.8). For the `1-regularized formulations, the Wasserstein
`∞ formulation, as well as the `1-regularized LAD, is comparable with
the EN and LASSO.

We summarize below our main findings from all sets of experiments
we have presented.

1. When a proper norm space is selected for the Wasserstein metric,
the Wasserstein DRO formulation outperforms all others in terms
of the generalization and estimation qualities.
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Figure 4.8: The impact of SNR on the performance metrics: Sparse β∗, outliers
only in x.

2. Penalizing the extended regression coefficient (−β, 1) implicitly
assumes a more reasonable distance metric on (x, y) and thus
leads to a better performance.

3. The AD loss is remarkably superior to the SR loss when there is
large variation in the response y.
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Figure 4.9: The impact of predictor correlation on the performance metrics: Sparse
β∗, outliers only in x.

4. The Wasserstein DRO formulation shows a more stable estimation
performance than others when the correlation between predictors
is varied.

4.5 An Application of Wasserstein DRO to Outlier Detection

As an application, we consider an unlabeled two-class classification
problem, where the goal is to identify the abnormal class of data
points based on the predictor and response information using the
Wasserstein formulation. We do not know a priori whether the samples
are normal or abnormal, and thus classification models do not apply.
The commonly used regression model for this type of problem is the
M-estimation [7], [8], against which we will compare in terms of the
outlier detection capability.
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4.5.1 Experiments on Synthetic Data

We first report results on synthetic datasets that consist of a mixture
of clean and outlying examples. For clean samples, all predictors xi, i ∈
J30K, come from a normal distribution with mean 7.5 and standard
deviation 4.0. The response is a linear function of the predictors with
β∗0 = 0.3, β∗1 = · · · = β∗30 = 0.5, plus a Gaussian distributed noise term
with zero mean and standard deviation σ. The outliers concentrate in a
cloud that is randomly placed in the interior of the x-space. Specifically,
their predictors are uniformly distributed on (u − 0.125, u + 0.125),
where u is a uniform random variable on (7.5− 3× 4, 7.5 + 3× 4). The
response values of the outliers are at a δR distance off the regression
plane

y = β∗0 + β∗1x1 + · · ·+ β∗30x30 + δR.

We will compare the performance of the Wasserstein `2 formulation
(4.5) with the `1-regularized LAD and M-estimation with three cost
functions – Huber [7] and [8], Talwar [89], and Fair [90]. The performance
metrics include the Receiver Operating Characteristic (ROC) curve
which plots the true positive rate against the false positive rate, and
the related Area Under Curve (AUC).

Notice that all the regression methods under consideration only
generate an estimated regression coefficient. The identification of outliers
is based on the residual and estimated standard deviation of the noise.
Specifically,

Outlier =

YES, if |residual| > threshold× σ̂,
NO, otherwise,

where σ̂ is the standard deviation of residuals in the entire training set.
ROC curves are obtained through adjusting the threshold value.

The regularization parameters for Wasserstein DRO and regularized
LAD are tuned using a separate validation set as done in previous
sections. We would like to highlight a salient advantage of the Wasser-
stein DRO model reflected in its robustness w.r.t. the choice of ε. In
Figure 4.10 we plot the out-of-sample AUC as the radius ε (regulariza-
tion parameter) varies, for the `2-induced Wasserstein DRO and the
`1-regularized LAD. For the Wasserstein DRO curve, when ε is small,
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Figure 4.10: Out-of-sample AUC vs. Wasserstein ball radius (regularization
coefficient).

the Wasserstein ball contains the true distribution with low confidence
and thus AUC is low. On the other hand, too large ε makes the solution
overly conservative. Note that the robustness of the Wasserstein DRO,
indicated by the flatness of the curve, constitutes another advantage,
whereas the performance of LAD dramatically deteriorates once the reg-
ularizer deviates from the optimum. Moreover, the maximal achievable
AUC for Wasserstein DRO is significantly higher than LAD.

In Figure 4.11 we show the ROC curves for different approaches,
where q represents the percentage of outliers, and δR the outlying dis-
tance along y. We see that the Wasserstein DRO formulation consistently
outperforms all other approaches, with its ROC curve lying well above
others. The approaches that use the AD loss function (e.g., Wasser-
stein DRO and regularized LAD) tend to outperform those that adopt
the SR loss (e.g., M-estimation which uses a variant of the SR loss).
M-estimation adopts an Iteratively Reweighted Least Squares (IRLS)
procedure which assigns weights to data points based on the residuals
from previous iterations. With such an approach, there is a chance of
exaggerating the influence of outliers while downplaying the importance
of clean observations, especially when the initial residuals are obtained
through OLS.
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Figure 4.11: ROC curves for outliers in a randomly placed cloud, N = 60, σ = 0.5.

4.5.2 CT Radiation Overdose Detection

In this section we consider an application of Wasserstein DRO regression
to CT radiation overdose detection [110]. The goal is to identify all
CT scans with an unanticipated high radiation exposure, given the
characteristics of the patient and the type of the exam. This could be
cast as an outlier detection problem; specifically, estimating a robustified
regression plane that is immunized against outliers and learns the
underlying true relationship between radiation dose and the relevant
predictors. Given such a regression plane, abnormal CT scans can be
identified by the residuals of the regression.

The data was obtained from a HIPAA-compliant, Institutional
Review Board (IRB)-approved retrospective cohort study that was
conducted at an academic medical system including a 793-bed quater-
nary care hospital, and two outpatient imaging facilities. The original
de-identified dataset contained 28 fields for 189,959 CT exams, and the
per acquisition CT Dose Index (CTDI), which measures the amount
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of exposure to CT radiation. Mean patient age was 60.6± 17.1 years;
54.7% were females.

The data was pre-processed as follows: (i) patient visits with more
than half of the corresponding variables missing, or a missing value
for CTDI, were discarded; (ii) categorical variables were encoded using
indicator variables, and categories present only in a small number
of exams were deleted; (iii) variables that have low correlation with
CTDI were removed from further consideration; (iv) missing values were
imputed by the mean (for numerical predictors) or mode (for categorical
predictors); (v) all predictors were standardized by subtracting the mean
and dividing by the standard deviation.

After pre-processing, we were left with 606 numerically encoded
predictors for 88,566 CT exams. We first applied the variable selection
method LASSO to select important variables for predicting CTDI, and
then employed the Wasserstein DRO regression approach (induced by
the `2 norm) to learn a predictive model of CT radiation doses given
important variables identified by LASSO. Patient visits whose predicted
radiation dose was statistically different from the radiation dose actually
received were identified as outliers.

To assess the accuracy of the outlier cohort discovery process, we
conducted a manual validation in which the results of a human-expert
classification were compared to those extracted by the algorithm. A vali-
dation sample size of 200 cases were reviewed, yielding specificity of 0.85
[95% CI 0.78–0.92] and sensitivity of 0.91 [95% CI 0.85–0.97] (Positive
Predictive Value PPV = 0.84, Negative Predictive Value NPV = 0.92).

We compared against two alternatives on the same validation set
of 200 samples that were reviewed by the human expert. The first
alternative method is what we call a “cutoff” method. We computed
the average and standard deviation of CTDI over a training set and
identified as outlying exams where the CTDI was larger than the average
plus 3 times the standard deviation. The second alternative method
used OLS in lieu of the Wasserstein DRO regression, and the regression
residuals (this time from OLS) were used to detect outliers. The results
are reported in Table 4.1, showing an improvement of 72.5% brought
by the Wasserstein DRO method in terms of the F1 score, which is
defined as the harmonic mean of sensitivity and PPV. For an additional
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Table 4.1: Comparison of Wasserstein DRO regression against OLS and the cutoff
method on CT radiation data

Sensitivity Specificity PPV NPV F1 Score

Wasserstein `2 0.91 0.85 0.84 0.92 0.88
OLS 0.36 0.95 0.87 0.64 0.51
Cutoff 0.37 0.94 0.83 0.64 0.51

point of comparison, we considered the top-40 outliers identified by each
method. Among these outliers, 7 of the top-40 OLS outliers (17.5%)
were considered to be “false positives”; while all the top-40 outliers
detected by Wasserstein DRO were real outliers.

4.6 Summary

In this section, we presented a novel `1-loss based robust learning
procedure using Distributionally Robust Optimization (DRO) under the
Wasserstein metric in a linear regression setting, through which a delicate
connection between the metric space on data and the regularization
term has been established. The Wasserstein formulation incorporates
a class of models whose specific form depends on the norm space
that the Wasserstein metric is defined on. We provide out-of-sample
generalization guarantees, and bound the estimation bias of the general
formulation. Extensive numerical examples demonstrate the superiority
of the Wasserstein formulation and shed light on the advantages of
the `1-loss, the implication of the regularizer, and the selection of the
norm space for the Wasserstein metric. We also presented an outlier
detection example as an application of this robust learning procedure.
A remarkable advantage of this approach rests in its flexibility to adjust
the form of the regularizer based on the characteristics of the data.
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5
Distributionally Robust Grouped Variable

Selection

In this section, we will discuss a special case of the general formulation
(4.5) tailored for selecting grouped variables that are relevant to the
response when there exists a predefined grouping structure for the pre-
dictors. An example of this is the encoding of a categorical predictor
using a group of indicator variables. Jointly selecting/dropping all vari-
ables in a group gives rise to more interpretable models. To perform
variable selection at a group level, the Grouped LASSO (GLASSO)
proposed by [111] and [112], imposes a block-wise `2-normed penalty
for the grouped coefficient vectors. We will show that by using a special
norm (‖ · ‖2,∞) on the data space, the Wasserstein DRO formulation re-
covers the GLASSO penalty under the absolute residual loss (regression)
and the log-loss (classification). The resulting model offers robustness
explanations for GLASSO algorithms and highlights the connection
between robustification and regularization.

5.1 The Problem and Related Work

The Grouped LASSO (GLASSO) was first proposed by [111], [112] to
induce sparsity at a group level, when there exists a predefined grouping
structure for the predictors. Suppose the predictor x = (x1, . . . ,xL), and

108
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the regression coefficient β = (β1, . . . ,βL), where xl,βl ∈ Rpl , l ∈ JLK,
respectively represent the predictor and coefficient for group l which
contains pl predictors. GLASSO minimizes:

inf
β

1
N

N∑
i=1

(yi − x′iβ)2 + ε
L∑
l=1

√
pl‖βl‖2,

where (xi, yi), i ∈ JNK, are N observed samples of (x, y). Several ex-
tensions have been explored. In particular, [113] and [114] considered
grouped variable selection in nonparametric models. [115] and [116]
explored GLASSO for overlapping groups. The group sparsity in general
regression/classification models has also been investigated in several
works, see, for example, [117]–[119] for GLASSO in logistic regression,
and [120] for GLASSO in generalized linear models.

Most of the existing works endeavor to modify the GLASSO for-
mulation heuristically to achieve various goals. As an example, [121]
considers a convex combination of the GLASSO and LASSO penalties,
called Sparse Grouped LASSO, to induce both group-wise and within
group sparsity. [122] modified the residual sum of squares to its square
root and proposed the Grouped Square Root LASSO (GSRL). How-
ever, few of those works were able to provide a rigorous explanation or
theoretical justification for the form of the penalty term.

In this section, we attempt to fill this gap by casting the problem of
grouped variable selection into the Wasserstein DRO framework. We
show that in Least Absolute Deviation (LAD) and Logistic Regression
(LG), for a specific norm-induced Wasserstein metric, the DRO model
can be reformulated as a regularized empirical loss minimization prob-
lem, where the regularizer coincides with the GLASSO penalty, and
its magnitude is equal to the radius of the distributional ambiguity
set. Through such a reformulation we establish a connection between
regularization and robustness and offer new insights into the GLASSO
penalty term.

We note that such a connection between robustification and reg-
ularization has been explored in several works (see Section 4.2), but
none of them considered grouped variable selection. This section sheds
new light on the significance of exploring the group-wise DRO problem.
It is worth noting that [123] has studied the group-wise regularization

The version of record is available at: http://dx.doi.org/10.1561/2400000026



110 Distributionally Robust Grouped Variable Selection

estimator with the square root of the expected loss under the Wasser-
stein DRO framework and recovered the GSRL. Here, we present a
more general framework that includes both the LAD and the negative
log-likelihood loss functions, and recover the GLASSO penalty in both
cases. Moreover, we point out the potential of generalizing such results
to a class of loss functions with a finite growth rate.

The remainder of this section is organized as follows. Section 5.2
introduces the Wasserstein GLASSO formulations for LAD and LG.
Section 5.3 establishes a desirable grouping effect, showing that the
difference between coefficients within the same group converges to zero
as O(

√
1− ρ), where ρ is their sample correlation. In light of this result,

we use the spectral clustering algorithm to divide the predictors into a
pre-specified number of groups. This renders the GLASSO algorithm
completely data-driven, in the sense that no more information other
than the data itself is needed. Section 5.4 presents numerical results on
both synthetic data and a real very large dataset with surgery-related
medical records. Conclusions are in Section 5.5.

5.2 The Groupwise Wasserstein Grouped LASSO

In this section we describe the model setup and derive what we call the
Groupwise Wasserstein Grouped LASSO (GWGL) formulation. We will
consider a LAD regression model for continuous responses and an LG
model for binary categorical responses. In Section 5.2.3, we present a
GWGL formulation for overlapping groups.

5.2.1 GWGL for Continuous Response Variables

We assume that the predictors belong to L prescribed groups with
group size pl, l ∈ JLK, i.e., x = (x1, . . . ,xL), where xl ∈ Rpl and∑L
l=1 pl = p (no overlap among groups). The regression coefficient is

β = (β1, . . . ,βL), where βl ∈ Rpl denotes the regression coefficient for
group l. Similar to Section 4, we assume

y = x′β∗ + η.

The main assumption we make regarding β∗ is that it is group sparse,
i.e., βl = 0 for l in some subset of JLK. Our goal is to obtain an accurate
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estimate of β∗ under perturbations on the data, when the predictors
have a predefined grouping structure. We model stochastic disturbances
on the data via distributional uncertainty, and apply a Wasserstein
DRO framework to inject robustness into the solution. The learning
problem is formulated as:

inf
β

sup
Q∈Ω

EQ[|y − x′β|],

where Q is the probability distribution of z = (x, y), belonging to some
set Ω defined as:

Ω = Ωs,1
ε (P̂N ) , {Q ∈ P(Z): Ws,1(Q, P̂N ) ≤ ε}, (5.1)

and the order-one Wasserstein distance Ws,1(Q, P̂N ) is defined on
the metric space (Z, s) associated with the data points z. To reflect
the group structure of the predictors and to take into account the
group sparsity requirement, we adopt a specific notion of norm to
define the metric s. Specifically, for a vector z with a group structure
z = (z1, . . . , zL), define its (q, t)-norm, with q, t ≥ 1, as:

‖z‖q,t =
( L∑
l=1

(‖zl‖q)t
)1/t

.

Notice that the (q, t)-norm of z is actually the `t-norm of the vector
(‖z1‖q, . . . , ‖zL‖q), which represents each group vector zl in a concise
way via the `q-norm.

Inspired by the LASSO where the `1-regularizer is used to induce
sparsity on the individual level, we wish to deduce an `1-norm penalty on
the group level from (4.5) to induce group sparsity on β∗. This motivates
the use of the (2,∞)-norm on the weighted predictor-response vector

zw ,
( 1
√
p1

x1, . . . ,
1
√
pL

xL,My

)
,

where the weight vector is

w =
( 1
√
p1
, . . . ,

1
√
pL
,M

)
,

and M is a positive weight assigned to the response. Specifically,

‖zw‖2,∞ = max
{

1
√
p1
‖x1‖2, . . . ,

1
√
pL
‖xL‖2,M |y|

}
. (5.2)
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In (5.2) we normalize each group by the number of predictors, to
prevent large groups from having a large impact on the distance metric.
The ‖ · ‖2,∞ operator computes the maximum of the `2 norms of the
(weighted) grouped predictors and the response. It essentially selects
the most influential group when determining the closeness between
two points in the predictor-response space, which is consistent with
our group sparsity assumption in that not all groups of predictors
contribute to the determination of y, and thus a metric that ignores the
unimportant groups (e.g., ‖ · ‖2,∞) is desired.

Based on (4.5), in order to obtain the GWGL formulation, we need
to derive the dual norm of ‖ · ‖2,∞. A general result that applies to any
(q, t)-norm is presented in the following theorem. The dual norm of the
(2,∞)-norm is a direct application of Theorem 5.2.1.

Theorem 5.2.1. Consider a vector x = (x1, . . . ,xL), where each
xl ∈ Rpl , and ∑l pl = p. Define the weighted (r, s)-norm of x with
the weight vector w = (w1, . . . , wL) to be:

‖xw‖r,s =
( L∑
l=1

(‖wlxl‖r)s
)1/s

,

where xw = (w1x1, . . . , wLxL), wl > 0, ∀l, and r, s ≥ 1. Then, the
dual norm of the weighted (r, s)-norm with weight w is the (q, t)-
norm with weight w−1, where 1/r + 1/q = 1, 1/s + 1/t = 1, and
w−1 = (1/w1, . . . , 1/wL).

Proof. The dual norm of ‖ · ‖r,s evaluated at some vector β is the
optimal value of Problem (5.3):

max
x

x′β

s.t. ‖xw‖r,s ≤ 1.
(5.3)

We assume that β has the same group structure with x, i.e., β =
(β1, . . . ,βL). Using Hölder’s inequality, we can write

x′β =
L∑
l=1

(wlxl)′
( 1
wl
βl
)

≤
L∑
l=1
‖wlxl‖r

∥∥∥∥ 1
wl
βl
∥∥∥∥
q
.
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Define two new vectors in RL

xnew = (‖w1x1‖r, . . . , ‖wLxL‖r),

βnew =
(∥∥∥∥ 1

w1
β1
∥∥∥∥
q
, . . . ,

∥∥∥∥ 1
wL
βL
∥∥∥∥
q

)
.

Applying Hölder’s inequality again to xnew and βnew, we obtain:
x′β ≤ x′newβnew

≤ ‖xnew‖s‖βnew‖t

=
( L∑
l=1

(‖wlxl‖r)s
)1/s( L∑

l=1

(∥∥∥∥ 1
wl
βl
∥∥∥∥
q

)t)1/t
.

Therefore,
x′β ≤ ‖xw‖r,s‖βw−1‖q,t
≤ ‖βw−1‖q,t,

due to the constraint ‖xw‖r,s ≤ 1. The result then follows.

Now, let us go back to (5.2), which is the weighted (2,∞)-norm of
z = (x1, . . . ,xL, y) with the weight w = ( 1√

p1
, . . . , 1√

pL
,M). According

to Theorem 5.2.1, the dual norm of the weighted (2,∞)-norm with
weight w evaluated at some β̃ = (−β1, . . . ,−βL, 1) is:

‖β̃w−1‖2,1 =
L∑
l=1

√
pl‖βl‖2 + 1

M
,

where w−1 = (√p1, . . . ,
√
pL, 1/M). Therefore, with N i.i.d. samples

(xi, yi), i ∈ JNK, the GWGL formulation for Linear Regression (GWGL-
LR) takes the following form:

inf
β

1
N

N∑
i=1
|yi − x′iβ|+ ε

L∑
l=1

√
pl‖βl‖2, (5.4)

where the constant term 1/M has been removed. We see that by using
the weighted (2,∞)-norm in the predictor-response space, we are able
to recover the commonly used penalty term for GLASSO [111], [112].
The Wasserstein DRO framework offers new interpretations for the
GLASSO penalty from the standpoint of the distance metric on the
predictor-response space and establishes the connection between group
sparsity and distributional robustness.
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5.2.2 GWGL for Binary Response Variables

In this subsection we will explore the GWGL formulation for binary
classification problems. Let x ∈ Rp denote the predictor and y ∈
{−1,+1} the associated binary response/label to be predicted. In LG,
the conditional distribution of y given x is modeled as

P(y|x) = (1 + exp(−yβ′x))−1,

where β ∈ Rp is the unknown coefficient vector (classifier) to be esti-
mated. The Maximum Likelihood Estimator (MLE) of β is found by
minimizing the negative log-likelihood (logloss):

hβ(x, y) = log(1 + exp(−yβ′x)).

To apply the Wasserstein DRO framework, we define the distance metric
on the predictor-response space as follows.

s((x1, y1), (x2, y2)) , ‖x1 − x2‖+M |y1 − y2|, ∀(x1, y1), (x2, y2) ∈ Z,
(5.5)

where M is an infinitely large positive number (different from Sec-
tion 5.2.1 where M could be any positive number), and Z = Rp ×
{−1,+1}. We use a very large weight on y to emphasize its role in
determining the distance between data points, i.e., for a pair (xi, yi)
and (xj , yj), if yi 6= yj , they are considered to be infinitely far away
from each other; otherwise their distance is determined solely by the
predictors. The robust LG problem is modeled as:

inf
β

sup
Q∈Ω

EQ[log(1 + exp(−yβ′x))], (5.6)

where Ω is defined in (5.1) with s specified in (5.5). Based on the
discussion in Section 3.1, in order to derive a tractable reformulation
for (5.6), we need to bound the growth rate of hβ(x, y):∣∣hβ(x1, y1)− hβ(x2, y2)

∣∣
s((x1, y1), (x2, y2)) , ∀(x1, y1), (x2, y2).

To this end, we define a continuous and differentiable univariate function
l(a) , log(1 + exp(−a)), and apply the mean value theorem to it, which
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yields that for any a, b ∈ R, ∃c ∈ (a, b) such that:∣∣∣∣ l(b)− l(a)
b− a

∣∣∣∣ =
∣∣∇l(c)∣∣ = e−c

1 + e−c
≤ 1.

By noting that hβ(x, y) = l(yβ′x), we immediately have:∣∣hβ(x1, y1)− hβ(x2, y2)
∣∣ ≤ ∣∣y1β

′x1 − y2β
′x2
∣∣

≤ ‖y1x1 − y2x2‖‖β‖∗
≤ s((x1, y1), (x2, y2))‖β‖∗, (5.7)

where the second step uses Hölder’s inequality, and the last step is
due to the definition of the metric s and the fact that M is infinitely
large. Equation (5.7) shows that the loss function hβ(x, y) is Lipschitz
continuous in (x, y) with a Lipschitz constant ‖β‖∗. Using Theorem 3.1.1
with t = 1, we obtain that for any Q ∈ Ω,

|EQ[hβ(x, y)]− EP̂N [hβ(x, y)]| ≤ ‖β‖∗Ws,1(Q, P̂N ) ≤ ε‖β‖∗.

Therefore, Problem (5.6) can be reformulated as:

inf
β

EP̂N [hβ(x, y)] + ε‖β‖∗ = inf
β

1
N

N∑
i=1

log
(
1 + exp(−yiβ′xi)

)
+ ε‖β‖∗.

(5.8)
We note that [46], [47], [55] arrive at a similar formulation to (5.8) by

other means of derivation. Different from these existing works, we will
consider specifically the application of (5.8) to grouped predictors where
the goal is to induce group level sparsity on the coefficients/classifier.
As in Section 5.2.1, we assume that the predictor vector x can be
decomposed into L groups, i.e., x = (x1, . . . ,xL), each xl containing
pl predictors of group l, and

∑L
l=1 pl = p. To reflect the group sparse

structure, we adopt the (2,∞)-norm of the weighted predictor vector

xw ,
( 1
√
p1

x1, . . . ,
1
√
pL

xL
)
,

to define the metric s in (5.5), where the weight vector is:

w =
( 1
√
p1
, . . . ,

1
√
pL

)
.
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According to Theorem 5.2.1, the dual norm of the weighted (2,∞)-norm
with weight w = (1/√p1, . . . , 1/

√
pL) evaluated at β is:

‖βw−1‖2,1 =
L∑
l=1

√
pl‖βl‖2,

where w−1 = (√p1, . . . ,
√
pL), and βl denotes the vector of coefficients

corresponding to group l. Therefore, the GWGL formulation for LG
(GWGL-LG) takes the form:

inf
β

1
N

N∑
i=1

log
(
1 + exp(−yiβ′xi)

)
+ ε

L∑
l=1

√
pl‖βl‖2. (5.9)

The above derivation techniques also apply to other loss functions whose
growth rate is finite, e.g., the hinge loss used by SVM, and therefore,
the GWGL SVM model can be developed in a similar fashion.

5.2.3 GLASSO with Overlapping Groups

In this subsection we will explore the GLASSO formulation with over-
lapping groups, and show that the Wasserstein DRO framework recovers
a latent GLASSO approach that is proposed by [124] to induce a solu-
tion with support being the union of predefined overlapping groups of
variables.

When the groups overlap with each other, the penalty term used by
(5.4) and (5.9) leads to a solution whose support is almost surely the
complement of a union of groups, see [125]. That is to say, setting one
group to zero shrinks its covariates to zero even if they belong to other
groups, in which case these other groups will not be entirely selected.
[124] proposed a latent GLASSO approach where they introduce a set
of latent variables that induce a solution vector whose support is a
union of groups, so that the estimator would select entire groups of
covariates. Specifically, define the latent variables vl ∈ Rp such that
supp(vl) ⊂ gl, l ∈ JLK, where supp(vl) ⊂ JpK denotes the support of vl,
i.e., the set of predictors i ∈ JpK such that vli 6= 0, and gl denotes the set
of predictors that are in group l. Our assumption is that ∃ l1, l2 such
that gl1 ∩ gl2 6= ∅. The latent GLASSO formulation is in the following
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form:

inf
β,v1,...,vL

1
N

N∑
i=1

hβ(xi, yi) + ε
L∑
l=1

dl‖vl‖2,

s.t. β =
L∑
l=1

vl,
(5.10)

where dl is a user-specified penalty strength of group l. Notice that (5.4)
and (5.9) are special cases of (5.10) where they require the latent vectors
to have the same value at the intersecting covariates. By using the latent
vectors vl, Formulation (5.10) has the flexibility of implicitly adjusting
the support of the latent vectors such that for any i ∈ supp(v̂l) where
v̂l = 0, it does not belong to the support of any non-shrunk latent
vectors, i.e., i /∈ supp(v̂k) where v̂k 6= 0. As a result, the covariates that
belong to both shrunk and non-shrunk groups would not be mistakenly
driven to zero. Formulation (5.10) favors solutions which shrink some
vl to zero, while the non-shrunk components satisfy supp(vl) = gl,
therefore leading to estimators whose support is the union of a set of
groups.

To show that (5.10) can be obtained from the Wasserstein DRO
framework, we consider the following weighted (2,∞)-norm on the
predictor space:

s(x) = max
l
d−1
l ‖x

l‖2. (5.11)

For simplicity we treat the response y as a deterministic quantity so
that the Wasserstein metric is defined only on the predictor space. The
scenario with stochastic responses can be treated in a similar fashion as
in Sections 5.2.1 and 5.2.2 by introducing some constant. [124] showed
that the dual norm of (5.11) is:

Ω(β) ,
L∑
l=1

dl‖vl‖2,

with β = ∑L
l=1 vl, and β → Ω(β) is a valid norm. By noting that (5.10)

can be reformulated as:

inf
β

1
N

N∑
i=1

lβ(xi, yi) + εΩ(β), (5.12)
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with

Ω(β) = min
v1,...,vL,∑L

l=1 vl=β

L∑
l=1

dl‖vl‖2,

we have shown that (5.10) can be derived as a consequence of the
Wasserstein DRO formulation with the Wasserstein metric induced
by (5.11). In fact, [124] pointed out that (5.12) is equivalent to a
regular GLASSO in a covariate space of higher dimension obtained by
duplication of the covariates belonging to several groups. For simplicity
our subsequent analysis assumes non-overlapping groups.

5.3 Performance Guarantees to the DRO Groupwise Estimator

In this section we establish several performance guarantees for the
solutions to GWGL-LR and GWGL-LG. We are interested in two types
of performance metrics.

(1) Prediction quality, which measures the predictive power of the
GWGL solutions on new, unseen samples.

(2) Grouping effect, which measures the similarity of the estimated
coefficients in the same group as a function of the sample corre-
lation between their corresponding predictors. Ideally, for highly
correlated predictors in the same group, it is desired that their
coefficients are close so that they can be jointly selected/dropped
(group sparsity).

We note that GWGL-LR is a special case of the general Wasser-
stein DRO formulation (4.5), and thus the two types of performance
guarantees derived in Section 4.3, one for generalization ability (Theo-
rem 4.3.3), and the other for the estimation accuracy (Theorem 4.3.12),
still apply to the GWGL-LR formulation. For GWGL-LG, we will derive
its prediction performance result using similar techniques.

5.3.1 Performance Guarantees for GWGL-LR

The prediction and estimation performance of the GWGL-LR model
can be described by Theorems 4.3.3 and 4.3.12, where the Wasserstein
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metric is defined using the weighted (2,∞)-norm with weight w =
(1/√p1, . . . , 1/

√
pL,M). We thus omit the statement of these two results.

With Theorem 4.3.12, we are able to provide bounds for the Relative
Risk (RR), Relative Test Error (RTE), and Proportion of Variance
Explained (PVE) that are introduced in Section 4.4. All these metrics
evaluate the accuracy of the regression coefficient estimates on a new
test sample drawn from the same probability distribution as the training
samples.

Using Theorem 4.3.12, we can bound the term (β̂ − β∗)′Σ(β̂ − β∗)
as follows:

(β̂ − β∗)′Σ(β̂ − β∗) ≤ λmax(Σ)‖β̂ − β∗‖22

≤ λmax(Σ)
(4R2B̄

λmin
Ψ(β∗)

)2
, (5.13)

where λmax(Σ) is the maximum eigenvalue of Σ. Using (5.13), bounds
for RR, RTE, and PVE can be readily obtained and are summarized in
the following corollary.

Corollary 5.3.1. Under the specifications in Theorem 4.3.12, when the
sample size

N ≥ C̄1µ̄
4µ2

0
λmax
λmin

(w(A(β∗)) + 3)2,

with probability at least 1− exp(−C2N/µ̄
4),

RR(β̂) ≤
λmax(Σ)

(4R2B̄
λmin

Ψ(β∗)
)2

(β∗)′Σβ∗ ,

RTE(β̂) ≤
λmax(Σ)

(4R2B̄
λmin

Ψ(β∗)
)2 + σ2

σ2 ,

and,

PVE(β̂) ≥ 1−
λmax(Σ)

(4R2B̄
λmin

Ψ(β∗)
)2 + σ2

(β∗)′Σβ∗ + σ2 ,

where all parameters are defined in the same way as in Theorem 4.3.12.

We next proceed to investigate the grouping effect of the GWGL-
LR estimator. The next theorem provides a bound on the absolute
(weighted) difference between coefficient estimates as a function of the
sample correlation between their corresponding predictors.
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Theorem 5.3.2. Suppose the predictors are standardized (columns of X
have zero mean and unit variance). Let β̂ ∈ Rp be the optimal solution
to (5.4). If x,i is in group l1 and x,j is in group l2, and ‖β̂

l1‖2 6= 0,
‖β̂l2‖2 6= 0, define:

D(i, j) =
∣∣∣∣∣
√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

∣∣∣∣∣.
Then,

D(i, j) ≤
√

2(1− ρ)√
Nε

,

where ρ = x′,ix,j is the sample correlation, and pl1 , pl2 are the number
of predictors in groups l1 and l2, respectively.

Proof. By the optimality condition associated with formulation (5.4),
β̂ satisfies:

x′,isgn(y−Xβ̂) = Nε
√
pl1

β̂i

‖β̂l1‖2
, (5.14)

x′,jsgn(y−Xβ̂) = Nε
√
pl2

β̂j

‖β̂l2‖2
, (5.15)

where the sgn(·) function is applied to a vector elementwise. Subtracting
(5.15) from (5.14), we obtain:

(x,i − x,j)′sgn(y−Xβ̂) = Nε

(√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

)
.

Using the Cauchy–Schwarz inequality and ‖x,i − x,j‖22 = 2(1− ρ), we
obtain

D(i, j) =
∣∣∣∣∣
√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

∣∣∣∣∣
≤ 1
Nε
‖x,i − x,j‖2‖sgn(y−Xβ̂)‖2

≤
√

2(1− ρ)√
Nε

.
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When x,i and x,j are in the same group l and ‖β̂l‖2 6= 0, Theo-
rem 5.3.2 yields

|β̂i − β̂j | ≤
√

2(1− ρ)‖β̂l‖2
ε
√
Npl

. (5.16)

From (5.16) we see that as the within group correlation ρ increases,
the difference between β̂i and β̂j becomes smaller. In the extreme case
where x,i and x,j are perfectly correlated, i.e., ρ = 1, β̂i = β̂j . This
grouping effect enables recovery of sparsity on a group level when
the correlation between predictors in the same group is high, and
implies the use of predictors’ correlation as a grouping criterion. One
of the popular clustering algorithms, called spectral clustering [126]–
[129], performs grouping based on the eigenvalues/eigenvectors of the
Laplacian matrix of the similarity graph that is constructed using the
similarity matrix of data (predictors). The similarity matrix measures
the pairwise similarities between data points, which in our case could
be the pairwise correlations between predictors.

5.3.2 Performance Guarantees for GWGL-LG

In this subsection we establish bounds on the prediction error of the
GWGL-LG solution, and explore its grouping effect. We will use the
Rademacher complexity of the class of logloss (negative log-likelihood)
functions to bound the generalization error. Suppose (x, y) is drawn from
the probability measure P∗. Two assumptions that impose conditions
on the magnitude of the regularizer and the uncertainty level of the
predictor are needed.

Assumption O. The weighted (2,∞)-norm of x is bounded above, i.e.,
‖xw‖2,∞ ≤ Rx a.s. under P∗X ,, where w = (1/√p1, . . . , 1/

√
pL).

Assumption P. The weighted (2, 1)-norm of β with weight w−1 =
(√p1, . . . ,

√
pL) is bounded above, namely, supβ ‖βw−1‖2,1 = B̄1.

Under these two assumptions, the logloss could be bounded via the
definition of dual norm.

The version of record is available at: http://dx.doi.org/10.1561/2400000026



122 Distributionally Robust Grouped Variable Selection

Lemma 5.3.3. Under Assumptions O and P, it follows that under the
probability measure P∗,

log(1 + exp(−yβ′x)) ≤ log(1 + exp(RxB̄1)), a.s.

Now consider the following class of loss functions:

H = {(x, y)→ hβ(x, y): hβ(x, y) = log(1 + exp(−yβ′x)),
∀β s.t. ‖βw−1‖2,1 ≤ B̄1}.

It follows from Lemma 4.3.2 that the empirical Rademacher complexity
of H, denoted by RN (H), can be upper bounded by:

RN (H) ≤ 2 log(1 + exp(RxB̄1))√
N

.

Then, applying Theorem 4.3.4 (Theorem 8 in [98]), we have the following
result on the prediction error of the GWGL-LG estimator.

Theorem 5.3.4. Let β̂ be an optimal solution to (5.9), obtained using
N training samples (xi, yi), i ∈ JNK. Suppose we draw a new i.i.d.
sample (x, y). Under Assumptions O and P, for any 0 < δ < 1, with
probability at least 1− δ with respect to the sampling,

EP∗ [log(1 + exp(−yx′β̂))] ≤ 1
N

N∑
i=1

log(1 + exp(−yix′iβ̂))

+ 2 log(1 + exp(RxB̄1))√
N

+ log(1 + exp(RxB̄1))

√
8 log(2/δ)

N
,

and for any ζ > 2 log(1+exp(RxB̄1))√
N

+ log(1 + exp(RxB̄1))
√

8 log(2/δ)
N ,

P
(

log(1 + exp(−yx′β̂)) ≥ 1
N

N∑
i=1

log(1 + exp(−yix′iβ̂)) + ζ

)

≤
1
N

∑N
i=1 log(1 + exp(−yix′iβ̂)) + 2 log(1+exp(RxB̄1))√

N
1
N

∑N
i=1 log(1 + exp(−yix′iβ̂)) + ζ

+
log(1 + exp(RxB̄1))

√
8 log(2/δ)

N
1
N

∑N
i=1 log(1 + exp(−yix′iβ̂)) + ζ

.
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The next result, similar to Theorem 5.3.2, establishes the grouping
effect of the GWGL-LG estimator.

Theorem 5.3.5. Suppose the predictors are standardized (columns of X
have zero mean and unit variance). Let β̂ ∈ Rp be the optimal solution
to (5.9). If x,i is in group l1 and x,j is in group l2, and ‖β̂

l1‖2 6= 0,
‖β̂l2‖2 6= 0, define:

D(i, j) =
∣∣∣∣∣
√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

∣∣∣∣∣.
Then,

D(i, j) ≤
√

2(1− ρ)√
Nε

,

where ρ = x′,ix,j is the sample correlation between predictors i and j,
and pl1 , pl2 are the number of predictors in groups l1 and l2, respectively.

Proof. By the optimality condition associated with formulation (5.9),
β̂ satisfies:

N∑
k=1

exp(−ykx′kβ̂)
1 + exp(−ykx′kβ̂)

ykxk,i = Nε
√
pl1

β̂i

‖β̂l1‖2
, (5.17)

N∑
k=1

exp(−ykx′kβ̂)
1 + exp(−ykx′kβ̂)

ykxk,j = Nε
√
pl2

β̂j

‖β̂l2‖2
, (5.18)

where xk,i and xk,j denote the i-th and j-th elements of xk, respectively.
Subtracting (5.18) from (5.17), we obtain:

N∑
k=1

exp(−ykx′kβ̂)
1 + exp(−ykx′kβ̂)

(ykxk,i − ykxk,j) = Nε

(√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

)
.

(5.19)
Note that the LHS of (5.19) can be written as v′1v2, where

v1 =
( exp(−y1x′1β̂)

1 + exp(−y1x′1β̂)
, . . . ,

exp(−yNx′N β̂)
1 + exp(−yNx′N β̂)

)
,
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and,
v2 = (y1(x1,i − x1,j), . . . , yN (xN,i − xN,j)).

Using the Cauchy–Schwarz inequality and ‖x,i − x,j‖22 = 2(1− ρ), we
obtain

D(i, j) =
∣∣∣∣∣
√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

∣∣∣∣∣
≤ 1
Nε
‖v1‖2‖v2‖2

≤ 1
Nε

√
N‖x,i − x,j‖2

=
√

2(1− ρ)√
Nε

.

We see that Theorem 5.3.5 yields the same bound with Theo-
rem 5.3.2, and for predictors in the same group, their coefficients con-
verge to the same value as O(

√
1− ρ). This encourages group level

sparsity if predictor correlation is used as a grouping criterion.

5.4 Numerical Experiments

In this section we compare the GWGL formulations with other com-
monly used predictive models. In the linear regression setting, we
compare GWGL-LR with models that either (i) use a different loss
function, e.g., the traditional GLASSO with an `2-loss [112], and the
Group Square-Root LASSO (GSRL) [122] that minimizes the square
root of the `2-loss; or (ii) do not make use of the grouping structure
of the predictors, e.g., the Elastic Net (EN) [108], and the LASSO [5].
For classification problems, we consider alternatives that minimize the
empirical logloss plus penalty terms that do not utilize the grouping
structure of the predictors, e.g., the `1-regularizer (LG-LASSO), `2-
regularizer (LG-Ridge), and their combination (LG-EN). The results
on several synthetic datasets and a real large dataset of surgery-related
medical records are shown in the subsequent sections.
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5.4.1 GWGL-LR on Synthetic Datasets

In this subsection, we will compare GWGL-LR with the aforementioned
models on several synthetic datasets. The data generation process is
described as follows:

1. Generate β∗ based on the following rule:

(β∗)l =

0.5 · epl , if l is even;
0, otherwise,

where epl is the pl-dimensional vector with all ones.

2. Generate the predictor x ∈ Rp from the Gaussian distribution
Np(0,Σ), where Σ = (σi,j)pi,j=1 has diagonal elements equal to 1,
and off-diagonal elements specified as:

σi,j =

ρw, if predictors i and j are in the same group;
0, otherwise.

Here ρw is the correlation between predictors in the same group,
which we call within group correlation. The correlation between
different groups is set to zero.

3. Generate the response y as follows:

y ∼

N (x′β∗, σ2), if r ≤ 1− q;
N (x′β∗, σ2) + 5σ, otherwise,

where σ2 is the intrinsic variance of y, r is a uniform random
variable on [0, 1], and q is the probability (proportion) of abnormal
samples (outliers).

We generate 10 datasets consisting of N = 100,Mt = 60 observations
and 4 groups of predictors, where N is the size of the training set and
Mt is the size of the test set. The number of predictors in each group
is: p1 = 1, p2 = 3, p3 = 5, p4 = 7, and p = ∑4

i=1 pi = 16. We are
interested in studying the impact of (i) Signal to Noise Ratio (SNR),
and (ii) the correlation among predictors in the same group (within
group correlation): ρw. The performance metrics we use are:
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• Median Absolute Deviation (MAD) on the test dataset, which
is defined to be the median value of |yi − x′iβ̂|, i ∈ JMK, with
β̂ being the estimate of β∗ obtained from the training set, and
(xi, yi), i ∈ JMK, being the observations from the test dataset;

• Relative Risk (RR) of β̂;

• Relative Test Error (RTE) of β̂;

• Proportion of Variance Explained (PVE) of β̂.

All the regularization parameters are tuned using a separate vali-
dation dataset. As to the range of values for the tuned parameters, we
adopt the idea from Section 4.4 and adjust properly for the GLASSO
estimators. Specifically,

• For GWGL and GSRL, the range of values for ε or λ is:√
exp(lin(log(0.005 · ‖X′y‖∞), log(‖X′y‖∞), 50))/max

l∈JLK
pl,

where lin(a, b, n) is a function that takes in scalars a, b and n

(integer) and outputs a set of n values equally spaced between
a and b; the exp function is applied elementwise to a vector.
Compared to LASSO [109], the values are scaled by maxl∈JLK pl,
and the square root operation is due to the `1-loss function, or
the square root of the `2-loss used in these formulations.

• For the GLASSO with `2-loss, the range of values for λ is:

exp(lin(log(0.005 · ‖X′y‖∞), log(‖X′y‖∞), 50))/√max
l∈JLK

pl.

We note that before solving for the regression coefficients using
various GLASSO formulations, the grouping of predictors needs to
be determined. Unlike most of the existing works where the grouping
structure is assumed to be known or can be obtained from expert
knowledge [112], [122], [130], we propose to use a data-driven clustering
algorithm to group the predictors based on their sample correlations,
as suggested by Theorem 5.3.2. Specifically, we consider the spectral
clustering [126]–[128] algorithm with the following Gaussian similarity

The version of record is available at: http://dx.doi.org/10.1561/2400000026



5.4. Numerical Experiments 127

function
Gs(x,i,x,j) , exp(−‖x,i − x,j‖22/(2σ2

s)), (5.20)
where σs is some scale parameter whose selection will be explained later.
Notice that for standardized predictors, (5.20) captures the sample
pairwise correlations between predictors, since ‖x,i − x,j‖22 = 2(1 −
cor(x,i,x,j)), where cor(x,i,x,j) , x′,ix,j . Using (5.20), we can transform
the set of predictors into a similarity graph, whose Laplacian matrix will
be used for spectral clustering. In our implementation, the k-nearest
neighbor similarity graph is constructed, where we connect x,i and x,j
with an undirected edge if x,i is among the k-nearest neighbors of x,j
(in the sense of Euclidean distance) or if x,j is among the k-nearest
neighbors of x,i. The parameter k is chosen such that the resulting
graph is connected. The scale parameter σs in (5.20) is set to the mean
distance of a point to its k-th nearest neighbor [131]. We assume that
the number of clusters is known in order to perform spectral clustering,
but in case it is unknown, the eigengap heuristic [131] can be used,
where the goal is to choose the number of clusters c such that all
eigenvalues λ1, . . . , λc of the graph Laplacian are very small, but λc+1
is relatively large. The implementation of spectral clustering uses the
Matlab package1 developed according to the tutorial [131].

We next present the experimental results. For a percentage of outliers
q = 20%, 30%, we plot two sets of graphs.

• The performance metrics, i.e., out-of-sample MAD, RR, RTE, and
PVE, vs. SNR, where the SNR values are equally spaced between
0.5 and 2 on a log scale. Note that when SNR is varied, the within
group correlation between predictors is set to 0.8 times a random
noise uniformly distributed on the interval [0.2, 0.4].

• The performance metrics vs. within group correlation ρw, where
ρw takes values in (0.1, 0.2, . . . , 0.9). When ρw is varied, SNR is
fixed to 1.

Results for varying the SNR are shown in Figures 5.1 and 5.2. Results for
varying the within group correlation are shown in Figures 5.3 and 5.4.

1https://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-
efficient-spectral-clustering.
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Figure 5.1: The impact of SNR on the performance metrics, q = 20%.

To better highlight the benefits of GWGL-LR, in Tables 5.1 and 5.2
we summarize the Maximum Percentage Improvement (MPI) brought
about by our methods compared to other procedures, when vary-
ing the SNR and ρw, respectively. In all tables, the number out-
side the parentheses is the MPI value corresponding to each metric,
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Figure 5.2: The impact of SNR on the performance metrics, q = 30%.

while the number in the parentheses indicates the value of SNR/ρw at
which the MPI is attained. For each performance metric, the MPI is de-
fined as the maximum percentage difference of the performance between
GWGL-LR and the best among all others.

We summarize below our main findings from the results we have
presented.
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Figure 5.3: The impact of within group correlation on the performance metrics,
q = 20%.

• For all approaches under consideration, MAD and RR decrease
as the data becomes less noisy. PVE increases when the noise is
reduced.

• The GWGL-LR formulation has better prediction and estimation
performances than all other approaches under consideration.

• The relative improvement of GWGL-LR over GLASSO (with an
`2-loss) is more significant for highly noisy data (with low SNR
values or a high percentage of outliers), which can be attributed
to the `1-loss function it uses. Moreover, GWGL-LR generates
more stable estimators than GLASSO.

• When the within group correlation is varied, GWGL-LR shows a
more stable performance than others.
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Figure 5.4: The impact of within group correlation on the performance metrics,
q = 30%.

Table 5.1: Maximum percentage improvement of all metrics when varying the SNR

MAD RR RTE PVE

q = 20% 13.7 (0.5) 41.4 (1.47) 13.1 (1.47) 68.9 (0.79)
q = 30% 14.7 (1.08) 40.9 (1.08) 17 (1.08) 85.7 (0.68)

Table 5.2: Maximum percentage improvement of all metrics when varying the
within group correlation

MAD RR RTE PVE

q = 20% 8.2 (0.1) 80.5 (0.9) 31.8 (0.9) 145.4 (0.9)
q = 30% 10.2 (0.1) 41.9 (0.1) 16.7 (0.1) 162.5 (0.1)
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5.4.2 GWGL-LG on Synthetic Datasets

In this subsection we explore the GWGL-LG formulation on synthetic
datasets. The data generation process is described as follows:

1. Generate β∗ based on the following rule:

β∗k =

U [2.5, 7], if β∗k ∈ (β∗)l where l is even;
0, otherwise,

where U [2.5, 7] stands for a random variable that is uniformly
distributed on the interval [2.5, 7].

2. Generate the predictor x ∈ Rp from the Gaussian distribution
Np(0,Σ), where Σ = (σi,j)pi,j=1 has diagonal elements equal to 1,
and off-diagonal elements specified as:

σi,j =

0.9, if predictors i and j are in the same group;
0, otherwise.

3. Generate the response y as follows:

y ∼

B([1 + e−(x′β∗+N (0,σ2))]−1), if r ≤ 1− q;
B(0.5), otherwise,

where B(p) stands for the Bernoulli distribution with the probabil-
ity of success p; σ2 = (β∗)′Σβ∗; r is a uniform random variable on
[0, 1]; and q is the probability (proportion) of abnormal samples
(outliers).

We generate 10 datasets consisting of 100 observations and 4 groups
of predictors, 80% of which constitute the training dataset, and the
remaining forming the test set. The number of predictors in each group
is: p1 = 3, p2 = 4, p3 = 6, p4 = 7, and p = ∑4

i=1 pi = 20. The follow-
ing performance metrics will be used to evaluate the prediction and
estimation quality of the solutions.

• The Correct Classification Rate (CCR) on the test dataset, which
is defined to be the proportion of test set samples that are correctly
classified by the classifier β̂, with a threshold 0.5 on the predicted
probability of success.
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• The AUC (Area Under the ROC Curve) on the test dataset.

• The average logloss on the test set.

• The Within Group Difference (WGD) of the classifier β̂, defined
as:

WGD(β̂) ,
1

|{l: pl ≥ 2}|
∑
l: pl≥2

1(pl
2
) ∑
xi,xj∈xl

∣∣∣∣ β̂i − β̂jx′,ix,j

∣∣∣∣,
where |{l: pl ≥ 2}| denotes the cardinality of the set {l: pl ≥ 2},
and x′,ix,j measures the sample correlation between predictors
xi and xj (x,i and x,j are standardized). WGD(β̂) essentially
evaluates the ability of β̂ to induce group level sparsity. It is
desired that the coefficients in the same group are close so that
they can be jointly selected/dropped. Theorem 5.3.5 implies that
the higher the correlation, the smaller the difference between
the coefficients, and thus, a smaller WGD value would suggest a
stronger ability of grouped variable selection.

Notice that the first three metrics mentioned above evaluate the predic-
tion quality of the classifier, while the last one evaluates its estimation
quality. If the true coefficient vector β∗ is known, we will also use the fol-
lowing confusion matrix which summarizes the number of zero/nonzero
elements in β̂ that are zero/nonzero in the true coefficient β∗.

Two ratios will be computed using Table 5.3, the True Association
Rate (TAR) defined as:

TAR = TA
TA + FD ,

Table 5.3: Confusion matrix

β∗

β̂ Nonzero Zero

Nonzero True Association (TA) False Association (FA)
Zero False Disassociation (FD) True Disassociation (TD)
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which calculates the proportion of nonzero coefficients that are correctly
discovered by the estimator, and the True Disassociation Rate (TDR)
defined as:

TDR = TD
FA + TD ,

which calculates the proportion of zero coefficients that are correctly
identified as zero by the estimator.

We compare GWGL-LG with four formulations: the vanilla logistic
regression (LG) that minimizes the empirical logloss on the training
samples (without penalty), LG-LASSO that imposes an `1-norm regu-
larizer on β, LG-Ridge that uses an `2-norm regularizer, and LG-EN
that uses both the `1- and `2-regularizers. All the penalty (regular-
ization) parameters are tuned in the same way as Section 5.4.1. The
penalty parameter for GWGL-LG is tuned over 50 values ranging from
λm = maxl∈JLK(‖(Xl)′(y − ȳ1)‖2/

√
pl) to a small fraction of λm on a

log scale [118], where Xl consists of the columns of the design matrix
X corresponding to group l, y is the vector of training set labels, and
ȳ = y′1/N . The maximum penalty parameter λm for LG-LASSO is
computed by recognizing it as a special case of GWGL-LG where each
group contains only one predictor. For LG-Ridge, λm is set to be the
square root of the maximum penalty parameter for LG-LASSO, due
to the fact that we penalize the square of the `2-norm regularizer in
LG-Ridge. The range of penalty parameters for LG-EN is set in a similar
way.

Similar to Section 5.4.1, the spectral clustering algorithm with the
Gaussian similarity function (5.20) is used to perform grouping on the
predictors. We experiment with two scenarios: (i) q = 20%, and (ii)
q = 30%. The results are shown in Tables 5.4 and 5.5, where the number
outside the parentheses is the mean value across 10 repetitions, and the
number in the parentheses is the corresponding standard deviation.

We see that in general, the penalized formulations perform signifi-
cantly better than the vanilla logistic regression. LG-EN has very similar
prediction performance (i.e., CCR, AUC and logloss on the test set)
to GWGL-LG, better than LG-LASSO and LG-Ridge. Regarding the
estimation quality, the penalized formulations achieve much lower WGD
values than LG. LG-Ridge does not induce sparsity, and therefore has
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Table 5.4: The performances of different classification formulations on synthetic
datasets, q = 20%

CCR AUC Logloss WGD TAR TDR

LG 0.62 (0.14) 0.67 (0.13) 0.87 (0.24) 1.71 (0.32) 1.00 (0.00) 0.00 (0.00)
LG-LASSO 0.69 (0.14) 0.77 (0.12) 0.60 (0.13) 0.33 (0.19) 0.54 (0.19) 0.42 (0.23)
LG-Ridge 0.67 (0.12) 0.72 (0.14) 0.69 (0.19) 0.82 (0.42) 1.00 (0.00) 0.01 (0.04)
LG-EN 0.70 (0.15) 0.77 (0.13) 0.59 (0.13) 0.23 (0.08) 0.57 (0.21) 0.42 (0.24)
GWGL-LG 0.68 (0.15) 0.79 (0.12) 0.59 (0.14) 0.13 (0.07) 0.98 (0.04) 0.28 (0.34)

Table 5.5: The performances of different classification formulations on synthetic
datasets, q = 30%

CCR AUC Logloss WGD TAR TDR

LG 0.63 (0.09) 0.68 (0.08) 0.99 (0.21) 2.68 (0.51) 1.00 (0.00) 0.00 (0.00)
LG-LASSO 0.73 (0.08) 0.73 (0.08) 0.65 (0.11) 0.56 (0.37) 0.58 (0.21) 0.43 (0.23)
LG-Ridge 0.72 (0.06) 0.74 (0.06) 0.64 (0.10) 0.78 (0.58) 0.98 (0.04) 0.00 (0.00)
LG-EN 0.74 (0.08) 0.77 (0.06) 0.59 (0.08) 0.24 (0.09) 0.48 (0.14) 0.42 (0.23)
GWGL-LG 0.73 (0.08) 0.78 (0.06) 0.60 (0.09) 0.21 (0.16) 0.99 (0.03) 0.18 (0.09)

the highest WGD among the four regularized models. LG-LASSO shows
a relatively small WGD, due to the sparsity inducing (at the individual
level) property of the `1-regularizer. GWGL-LG achieves the small-
est WGD among all (significantly lower than that of LG-EN), which
provides empirical evidence on its group sparsity inducing property,
and is consistent with our earlier discussion in Theorem 5.3.5 that the
GLASSO penalty tends to drive the coefficients in the same group to the
same value if the within group correlation is high. Moreover, GWGL-LG
successfully drops out all the coefficients in the first group, while other
formulations are not able to drop any of the four groups.

Regarding the TAR and TDR, we notice that GWGL-LG obtains
very high TAR values, and compared to other formulations that achieve
almost perfect TARs (e.g., LG-Ridge and LG), it has a significantly
higher TDR. LG-LASSO and LG-EN achieve the highest TDRs, but
their TARs are significantly worse. Note that a dense estimator would
result in a perfect TAR but a zero TDR, as in LG and LG-Ridge. The
higher the TDR, the more parsimonious the model is, but on the other
hand, a higher TAR is more appreciated as we do not want to leave out
any of the important (effective) predictors. A low TAR means that a
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substantial proportion of the meaningful predictors are dropped, the cost
of which is usually much higher than the cost of wrongly selecting the
unimportant ones. Therefore, taking into account both the parsimony
and effectiveness of the model, GWGL-LG outperforms all others.

We also want to highlight the robustness of GWGL-LG to misspeci-
fied groups. For example, in the scenario with q = 30% outliers, even
though spectral clustering outputs a wrong grouping structure (it divides
the data into four groups with group size being p1 = 2, p2 = 3, p3 =
5, p4 = 10, and the correct group size is p1 = 3, p2 = 4, p3 = 6, p4 = 7),
GWGL-LG is still able to achieve a satisfactory prediction performance
and an almost perfect TAR with a sparse model (nonzero TDR).

5.4.3 An Application to Hospital Readmission

In this section we test the GWGL formulations on a real dataset con-
taining medical records of patients who underwent a general surgical
procedure. In 2005, the American College of Surgeons (ACS) established
the National Surgical Quality Improvement Program (NSQIP), which
collects detailed demographic, laboratory, clinical, procedure and post-
operative occurrence data in several surgical subspecialties. The dataset
includes (i) baseline demographics; (ii) pre-existing comorbidity informa-
tion; (iii) preoperative variables; (iv) index admission-related diagnosis
and procedure information; (v) postoperative events and complications,
and (vi) additional socioeconomic variables.

In our study, patients who underwent a general surgery procedure
over 2011–2014 and were tracked by the NSQIP were identified. We
will focus on two supervised learning models: (i) a linear regression
model whose objective is to predict the post-operative hospital length
of stay using pre- and intra-operative variables, and (ii) an LG model
whose objective is to predict the re-hospitalization of patients within
30 days after discharge using the same set of explanatory variables.
Both models are extremely useful as they allow hospital staff to predict
post-operative bed occupancy and prevent costly 30-day readmissions.

Data were pre-processed as follows: (i) categorical variables (such as
race, discharge destination, insurance type) were numerically encoded
and units homogenized; (ii) missing values were replaced by the mode;
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Table 5.6: The mean and standard deviation of out-of-sample MAD on the surgery
data

Mean Standard Deviation

GLASSO with `2-loss 0.17 0.0007
GWGL-LR 0.16 0.001
EN 0.17 0.0009
LASSO 0.17 0.0009
GSRL 0.17 0.0009

(iii) all variables were normalized by subtracting the mean and divided
by the standard deviation; (iv) patients who died within 30 days of
discharge or had a postoperative length of stay greater than 30 days were
excluded. After pre-processing, we were left with a total of 2,275,452
records.

After encoding the categorical predictors using indicator variables,
we have 131 numerical predictors for the regression model and 132 for the
classification model (the post-operative hospital length of stay is used
as a predictor for the 30-day re-hospitalization prediction). The spectral
clustering algorithm is used to perform grouping on the predictors, with
the number of groups specified as 67 based on a preliminary analysis of
the data. (The eigengap heuristic [131] mentioned in Section 5.4.1 was
used.)

For predicting the post-operative hospital length of stay, we report
the out-of-sample MAD in Table 5.6, i.e., the median of the absolute
difference between the predicted and actual length of stay on the test
set. The mean and standard deviation of the MAD are computed across
5 repetitions, each with a different training set. We see that the GWGL-
LR formulation achieves the lowest mean MAD with a small variation.
Compared to the best among others (GLASSO with `2-loss), it improves
the mean MAD by 7.30%. For longer hospital length of stay, this could
imply 1 or 2 days improvement in prediction accuracy, which is both
clinically and economically meaningful and significant.

For predicting the 30-day re-hospitalization of patients, we notice
that the dataset is highly unbalanced, with only 6% of patients being
re-hospitalized. To obtain a balanced training set, we randomly draw
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20% patients from the positive class (re-hospitalized patients), and
sample the same number of patients from the negative class, resulting
in a training set of size 53, 616. All the remaining patients go to the test
dataset. It turns out that the prediction capabilities of all approaches
are very similar. All formulations achieve an average out-of-sample CCR
around 0.62, an average out-of-sample AUC of 0.83, and an average
logloss on the test set ranging from 0.84 to 0.87. From Table 5.7 we
see that GWGL-LG obtains a significantly smaller WGD than others,
which implies that the GWGL-LG formulation encourages group level
sparsity. This can also be revealed by the number of groups that are
dropped by various formulations (see Table 5.8). Notice that though
LG-EN and LG-LASSO obtain the most parsimonious models in terms
of the number of dropped features (sparsity at an individual level),
GWGL-LG has a stronger ability to induce group level sparsity.

Table 5.7: The Within Group Difference (WGD) of the estimators on the surgery
data

Mean Standard Deviation

LG 23.93 1.28
LG-LASSO 16.28 0.72
LG-Ridge 23.38 1.15
LG-EN 16.26 0.74
GWGL-LG 5.04 0.45

Table 5.8: The number of groups/features dropped by various formulations on the
surgery data

Number of Number of
Dropped Groups Dropped Features

LG 1 2
LG-LASSO 6 24
LG-Ridge 2 2
LG-EN 10 25
GWGL-LG 16 19
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5.5 Summary

In this section we presented a Distributionally Robust Optimization
(DRO) formulation under the Wasserstein metric that recovers the
GLASSO penalty for Least Absolute Deviation (LAD) and LG, through
which we have established a connection between group-sparse regular-
ization and robustness and offered new insights into the group sparsity
penalty term. We provided insights on the grouping effect of the esti-
mators, which suggests the use of spectral clustering with the Gaussian
similarity function to perform grouping on the predictors. We estab-
lished finite-sample bounds on the prediction errors, which justify the
form of the regularizer and provide guidance on the number of training
samples needed in order to achieve specific out-of-sample accuracy.

We reported results from several experiments, using both synthetic
data and a real dataset with surgery-related medical records. It has been
observed that the GWGL formulations (i) achieve more accurate and
stable estimates compared to others, especially when the data are noisy,
or potentially contaminated with outliers; (ii) have a stronger ability of
inducing group-level sparsity, and thus producing more interpretable
models, and (iii) successfully identify most of the effective predictors
with a reasonably parsimonious model.
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Distributionally Robust Multi-Output Learning

In this section, we focus on robust multi-output learning where a multi-
dimensional response/label vector is to be learned. The difference from
previous sections lies in that we need to estimate a coefficient matrix,
rather than a coefficient vector, to explain the dependency of each
response variable on the set of predictors. We develop Distributionally
Robust Optimization (DRO) formulations under the Wasserstein metric
for Multi-output Linear Regression (MLR) and Multiclass Logistic Re-
gression (MLG), when both the covariates and responses/labels may
be contaminated by outliers. Through defining a new notion of matrix
norm, we relax the DRO formulation into a regularized learning problem
whose regularizer is the norm of the coefficient matrix, establishing a
connection between robustness and regularization and generalizing the
single-output results presented in Section 4.

6.1 The Problem and Related Work

We consider the multi-output learning problem under the framework of
Distributionally Robust Optimization (DRO) where the ambiguity set is
defined via the Wasserstein metric [13], [14], [46], [47]. The term multi-
output learning refers to scenarios where multiple correlated responses

140
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are to be predicted – Multi-output Linear Regression (MLR), or one of
multiple classes is to be assigned – MultiClass Classification (MCC),
based on a linear combination of a set of predictors. Both involve
learning a target vector y from a vector of covariates x. MLR has many
applications in econometrics [132], health care [133], [134], and finance
[135], [136], for modeling multiple measurements of a single individual
[137], or evaluating a group of interdependent variables [138]. MCC has
seen wide applications in image segmentation [139], text classification
[140], and bioinformatics [141].

Unlike a single-output learning problem where the response variable
is scalar and a coefficient vector representing the dependency of the
response on the predictors is to be learned, in the multi-output setting
the decision variable is a coefficient matrix B ∈ Rp×K whose k-th
column explains the variation in the k-th coordinate of y ∈ RK that
can be attributed to the predictors x ∈ Rp, for k ∈ JKK. Inspired by
the DRO relaxation derived in Section 4 for the single-output case,
which adds a dual norm regularizer to the empirical loss, we obtain
a novel matrix norm regularizer for the multi-output case through
reformulating the Wasserstein DRO problem. The matrix norm exploits
the geometrical structure of the coefficient matrix, and provides a way
of associating the coefficients for the potentially correlated responses
through the dual norm of the distance metric in the data space.

As the simplest MLR model, the multi-output extension of OLS
regresses each response variable against the predictors independently,
which does not take into account the potential correlation between
the responses, and is vulnerable to high correlations existing among
the predictors. A class of methods that are used in the literature to
overcome this issue is called linear factor regression, where the response
y is regressed against a small number of linearly transformed predictors
(factors). Examples include reduced rank regression [142], [143], principal
components regression [144], and Factor Estimation and Selection (FES)
[145]. Another type of methods applies multivariate shrinkage by either
estimating a linear transformation of the OLS predictions [138], or
solving a regularized MLR problem, e.g., ridge regression [146], [147],
and FES [145], whose regularizer is the coefficient matrix’s Ky Fan
norm defined as the sum of its singular values.
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As for the popular MCC models, [148] provided a thorough sur-
vey on the existing MCC techniques which can be categorized into:
(i) transformation to binary, e.g., one vs. rest and one vs. one; (ii)
extension from binary, e.g., decision trees [1], neural networks [149],
K-Nearest Neighbor [150], Naive Bayes classifiers [151], and Support
Vector Machine (SVM) [45]; and (iii) hierarchical classification [152].

The research on robust classification has mainly focused on binary
classifiers. For example, to robustify logistic regression, [153] proposed
to optimize a robustified linear correlation between the response y and a
linear function of x; [154] introduced T-logistic regression which replaces
the exponential distribution in LG by the t-exponential distribution
family; [155] introduced a shift parameter for each data point to account
for the label error; and [156] modeled the label error through flipping
probabilities, which can be extended to multiclass LG. Another line
of research uses a modified loss function that gives less influence to
points far from the boundary, e.g., [157] used a tangent loss, and [158]
proposed an M-estimator like loss metric which, however, is not robust
to outliers with high leverage covariates.

None of the aforementioned works, however, explore distributionally
robust learning problems with multiple responses, with the exception of
[159], which considered distributionally robust multiclass classification
models under the φ-divergence metric. We fill this gap by developing
DRO formulations for both MLR and MCC under the Wasserstein
metric. To the best of our knowledge, we are the first to study the robust
multi-output learning problem from the standpoint of distributional
robustness. Our approach is completely optimization-based, without the
need to explicitly model the complicated relationship between different
responses, leading to compact and computationally solvable models. It is
interesting that a purely optimization-based method that is completely
agnostic to the covariate and response correlation structure can be
used as a better-performing alternative to statistical approaches that
explicitly model this correlation structure.

The rest of this section is organized as follows. In Section 6.2, we
develop the DRO-MLR and DRO-MLG formulations and introduce
the matrix norm that is used to define the regularizer. Section 6.3
establishes the out-of-sample performance guarantees for the solutions
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to DRO-MLR and DRO-MLG. The numerical experimental results are
presented in Section 6.4. We conclude in Section 6.5.

6.2 Distributionally Robust Multi-Output Learning Models

In this section we introduce the Wasserstein DRO formulations for MLR
and MLG, and offer a dual norm interpretation for the regularization
terms.

6.2.1 Distributionally Robust Multi-Output Linear Regression

We assume the following model for the MLR problem:

y = B′x + η,

where y = (y1, . . . , yK) is the vector of K responses, potentially cor-
related with each other; x = (x1, . . . , xp) is the vector of p predictors;
B = (Bij)j∈JKK

i∈JpK is the p × K matrix of coefficients, the j-th column
of which describes the dependency of yj on the predictors; and η is
the random error. Suppose we observe N realizations of the data, de-
noted by (xi,yi), i ∈ JNK, where xi = (xi1, . . . , xip),yi = (yi1, . . . , yiK).
The Wasserstein DRO formulation for MLR minimizes the following
worst-case expected loss:

inf
B

sup
Q∈Ω

EQ[hB(x,y)], (6.1)

where hB(x,y) , l(y−B′x), with l: RK → R an L-Lipschitz continuous
function on the metric spaces (D, ‖ · ‖r) and (C, | · |), where D, C are
the domain and codomain of l(·), respectively; and Q is the probability
distribution of the data (x,y), belonging to a set Ω defined as

Ω = Ωs,1
ε (P̂N ) , {Q ∈ P(Z): Ws,1(Q, P̂N ) ≤ ε},

where the order-1 Wasserstein distance Ws,1(Q, P̂N ) is induced by the
metric s(z1, z2) , ‖z1 − z2‖r. Notice that we use the same norm to
define the Wasserstein metric and the metric space on the domain D of
l(·).
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Write the loss function as hB̃(z) , l(B̃z), where z = (x,y), and
B̃ = [−B′, IK ]. From Theorem 3.1.1, we know that to derive a tractable
reformulation for (6.1), the key is to bound the following growth rate of
the loss:

GR(hB̃) , lim sup
‖z1−z2‖r→∞

|hB̃(z1)− hB̃(z2)|
‖z1 − z2‖r

.

Let us first consider the numerator. By the Lipschitz continuity of l(·),
we have:

|hB̃(z1)− hB̃(z2)| = |l(B̃z1)− l(B̃z2)| ≤ L‖B̃(z1 − z2)‖r.

The key is to bound ‖B̃(z1−z2)‖r in terms of ‖z1−z2‖r. The following
lemmata provide three types of bounds whose tightness will be analyzed
in the sequel.

Lemma 6.2.1. For any matrix A ∈ Rm×n and any vector x ∈ Rn, we
have:

‖Ax‖r ≤ ‖x‖r
( m∑
i=1
‖ai‖r1

)1/r
,

for any r ≥ 1, where ai, i ∈ JmK, are the rows of A.

Proof. Suppose A = (aij)j∈JnK
i∈JmK. Then,

‖Ax‖rr =

∥∥∥∥∥∥∥∥

a11x1 + · · ·+ a1nxn

...
am1x1 + · · ·+ amnxn


∥∥∥∥∥∥∥∥
r

r

=
m∑
i=1
|ai1x1 + · · ·+ ainxn|r

≤ ‖x‖rr
( m∑
i=1

(|ai1|+ · · ·+ |ain|)r
)
,

where in the second step we use the fact that |xi| ≤ ‖x‖r.

Lemma 6.2.2. For any matrix A ∈ Rm×n and any vector x ∈ Rn, we
have:

‖Ax‖r ≤ ‖x‖r
( m∑
i=1
‖ai‖rs

)1/r
,

for any r ≥ 1, where ai, i ∈ JmK, are the rows of A, and 1/r + 1/s = 1.
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Proof.

‖Ax‖rr =
m∑
i=1
|a′ix|r

≤
m∑
i=1
‖x‖rr‖ai‖rs

= ‖x‖rr
m∑
i=1
‖ai‖rs,

where r, s ≥ 1, 1/r + 1/s = 1, and the second step uses Hölder’s
inequality.

Lemma 6.2.3. Given an m × n matrix A = (aij)j∈JnK
i∈JmK and a vector

x ∈ Rn, the following holds:
‖Ax‖r ≤ ‖x‖r‖v‖s,

where r, s ≥ 1, and 1/r+1/s = 1; v = (v1, . . . , vn), with vj = ∑m
i=1 |aij |.

Proof. Suppose A = (aij)j∈JnK
i∈JmK. Then,

‖Ax‖r =

∥∥∥∥∥∥∥∥

a11x1 + · · ·+ a1nxn

...
am1x1 + · · ·+ amnxn


∥∥∥∥∥∥∥∥
r

=
( m∑
i=1
|ai1x1 + · · ·+ ainxn|r

)1/r

≤
(( m∑

i=1
|ai1x1 + · · ·+ ainxn|

)r)1/r

=
m∑
i=1
|ai1x1 + · · ·+ ainxn|

≤ |x1|
m∑
i=1
|ai1|+ · · ·+ |xn|

m∑
i=1
|ain|

= |x|′v
≤ ‖x‖r‖v‖s,

where r, s ≥ 1, 1/r+1/s = 1, |x| = (|x1|, . . . , |xn|), and v = (v1, . . . , vn),
with vj = ∑m

i=1 |aij |. The last step uses Hölder’s inequality and the fact
that ‖x‖ = ‖|x|‖.

The version of record is available at: http://dx.doi.org/10.1561/2400000026



146 Distributionally Robust Multi-Output Learning

Note that for any s ≥ 1, we know ‖ai‖s ≤ ‖ai‖1, implying that∑m
i=1 ‖ai‖rs ≤

∑m
i=1 ‖ai‖r1. Therefore, Lemma 6.2.2 provides a tighter

bound than Lemma 6.2.1. The vector v in the statement of Lemma 6.2.3
can be written as v = ∑m

i=1 |ai|, where the | · | is applied element-wise
to ai. We thus have,

‖v‖s =
∥∥∥∥ m∑
i=1
|ai|
∥∥∥∥
s

≤
m∑
i=1
‖ai‖s.

It is clear that when r = 1, Lemma 6.2.3 gives a tighter bound than
Lemma 6.2.2. However, when r ≥ s, we claim that Lemma 6.2.2 yields
a better bound. To see this, notice that

‖v‖rs =
( n∑
j=1

vsj

)r/s

=
( n∑
j=1

(|a1j |+ · · ·+ |amj |)s
)r/s

≥
( n∑
j=1

(|a1j |s + · · ·+ |amj |s)
)r/s

=
( m∑
i=1

(|ai1|s + · · ·+ |ain|s)
)r/s

≥
m∑
i=1

(|ai1|s + · · ·+ |ain|s)r/s

=
m∑
i=1
‖ai‖rs,

where in the derivation we have used Lemma 6.2.4.

Lemma 6.2.4. For any k ≥ 1 and ci ≥ 0, the following holds:(
m∑
i=1

ci

)k
≥

m∑
i=1

cki .

Proof. If all ci = 0, the result obviously holds. Without loss of generality,
we assume not all ci are equal to zero. Let λ = ∑m

i=1 ci; then λ > 0.
Set bi = ci/λ; then bi ∈ [0, 1], and bki ≤ bi. Together with the fact that
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∑
i bi = 1, we have:

m∑
i=1

cki = λk
m∑
i=1

bki

≤ λk
m∑
i=1

bi

= λk

=
( m∑
i=1

ci

)k
,

for any k ≥ 1, ci ≥ 0.

We now proceed to obtain a tractable relaxation to formulation
(6.1). Using Lemma 6.2.2 and Theorem 3.1.1, we have:∣∣EQ[hB̃(z)]− EP̂N [hB̃(z)]

∣∣
≤
∫
Z×Z

|hB̃(z1)− hB̃(z2)|
‖z1 − z2‖r

‖z1 − z2‖rdπ0(z1, z2)

≤
∫
Z×Z

L‖B̃(z1 − z2)‖r
‖z1 − z2‖r

‖z1 − z2‖rdπ0(z1, z2)

≤ L
( K∑
i=1
‖bi‖rs

)1/r ∫
Z×Z

‖z1 − z2‖rdπ0(z1, z2)

= L

( K∑
i=1
‖bi‖rs

)1/r
Ws,1(Q, P̂N )

≤ εL
( K∑
i=1
‖bi‖rs

)1/r
, ∀Q ∈ Ω,

where bi = (−B1i, . . . ,−Bpi, ei) is the i-th row of B̃, with ei the
i-th unit vector in RK . The above derivation implies that when the
Wasserstein metric is induced by ‖ · ‖r,

sup
Q∈Ω

EQ[hB̃(z)] ≤ EP̂N [hB̃(z)] + εL

( K∑
i=1
‖bi‖rs

)1/r
,
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where 1/r + 1/s = 1. This directly yields the following relaxation to
(6.1):

inf
B

1
N

N∑
i=1

hB(xi,yi) + εL

( K∑
i=1
‖bi‖rs

)1/r
, (6.2)

which we call the MLR-SR relaxation. The regularization term in (6.2)
penalizes the aggregate of the dual norm of the regression coefficients
corresponding to each of the K responses. Notice that when r 6= 1, (6.2)
cannot be decomposed into K independent terms. When s = r = 2, the
regularizer is just the Frobenius norm of B̃. Using a similar derivation,
Lemma 6.2.3 yields the following relaxation to (6.1):

inf
B

1
N

N∑
i=1

hB(xi,yi) + εL‖v‖s, (6.3)

where v , (v1, . . . , vp, 1, . . . , 1), with vi = ∑K
j=1 |Bij |, i.e., vi is a con-

densed representation of the coefficients for predictor i through summing
over the K coordinates. We call (6.3) the MLR-1S relaxation (the nam-
ing convention will be more clear after introducing the Lr,s matrix
norm in Section 6.2.2). When s 6= 1, it cannot be decomposed into K
subproblems due to the entangling of coefficients in the regularization
term.

Note that when K = 1, with an 1-Lipschitz continuous loss function,
the two regularizers in MLR-SR and MLR-1S reduce to ε‖(−β, 1)‖s,
which coincides with the Wasserstein DRO formulation derived in
Section 4 with an absolute error loss. In both relaxations for MLR, the
Wasserstein ball radius ε and the Lipschitz constant L determine the
strength of the penalty term. Recall that we assume the loss function
is Lipschitz continuous on the same norm space with the one used by
the Wasserstein metric. This assumption can be relaxed by allowing a
different norm space for the Lipschitz continuous loss function, and the
derivation technique can be easily adapted to obtain relaxations to (6.1).
On the other hand, however, the norm space used by the Wasserstein
metric can provide implications on what loss function to choose. For
example, if we restrict the class of loss functions l(·) to the norms, our
assumption suggests that l(z) = ‖z‖r, which is a reasonable choice since
it reflects the distance metric on the data space.
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6.2.2 A New Perspective on the Formulation

In this subsection we will present a matrix norm interpretation for
the two relaxations (6.2) and (6.3). Different from the commonly used
matrix norm definitions in the literature, e.g., the vector norm-induced
matrix norm ‖A‖ , max‖x‖≤1 ‖Ax‖, the entrywise norm that treats
the matrix as a vector, and the Schatten–von-Neumann norm that
defines the norm on the vector of singular values [160], we adopt the
Lr,s norm, which summarizes each column by its `r norm, and then
computes the `s norm of the aggregate vector. The formal definition is
described as follows.

Definition 6 (Lr,s Matrix Norm). For any m× n matrix A = (aij)j∈JnK
i∈JmK,

define its Lr,s norm as:

‖A‖r,s ,
( n∑
j=1

( m∑
i=1
|aij |r

)s/r)1/s
,

where r, s ≥ 1.

Note that ‖A‖r,s can be viewed as the `s norm of a newly de-
fined vector v = (v1, . . . , vn), where vj = ‖Aj‖r, with Aj the j-th
column of A. When r = s = 2, the Lr,s norm is the Frobenius norm.
Moreover, ‖A‖r,s is a convex function in A, which can be shown as
follows.

Proof. For two matrices A = [A1, . . . ,An], B = [B1, . . . ,Bn], where
Ai,Bi are the columns of A and B, respectively, consider their convex
combination λA + (1 − λ)B, where λ ∈ [0, 1]. Its Lr,s norm can be
expressed as:

‖λA + (1− λ)B‖r,s
= ‖(‖λA1 + (1− λ)B1‖r, . . . , ‖λAn + (1− λ)Bn‖r)‖s
≤ ‖(λ‖A1‖r + (1− λ)‖B1‖r, . . . , λ‖An‖r + (1− λ)‖Bn‖r)‖s
= ‖λ(‖A1‖r, . . . , ‖An‖r) + (1− λ)(‖B1‖r, . . . , ‖Bn‖r)‖s
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≤ λ‖(‖A1‖r, . . . , ‖An‖r)‖s + (1− λ)‖(‖B1‖r, . . . , ‖Bn‖r)‖s
= λ‖A‖r,s + (1− λ)‖B‖r,s.

Therefore, the Lr,s norm is convex.

The Lr,s matrix norm depends on the structure of the matrix, and
transposing a matrix changes its norm. For example, given A ∈ Rn×1,
‖A‖r,s = ‖a‖r, ‖A′‖r,s = ‖a‖s, where a represents the vectorization
of A. To show the validity of the Lr,s norm, we need to verify the
following properties:

1. ‖A‖r,s ≥ 0.

2. ‖A‖r,s = 0 if and only if A = 0.

3. ‖αA‖r,s = |α|‖A‖r,s.

4. ‖A + B‖r,s ≤ ‖A‖r,s + ‖B‖r,s.

The first three properties are straightforward. To show the sub-
additivity property (triangle inequality), assume A = [A1, . . . ,An]
and B = [B1, . . . ,Bn], where Aj ,Bj , j ∈ JnK, are the columns of A
and B, respectively. Define two vectors v , (‖A1‖r, . . . , ‖An‖r), and
t , (‖B1‖r, . . . , ‖Bn‖r), we have:

‖A‖r,s + ‖B‖r,s = ‖v‖s + ‖t‖s
≥ ‖v + t‖s

=
( n∑
i=1

(‖Ai‖r + ‖Bi‖r)s
)1/s

≥
( n∑
i=1
‖Ai + Bi‖sr

)1/s

= ‖A + B‖r,s.

The Lr,s norm also satisfies the following sub-multiplicative property:

‖AB‖r,s ≤ ‖A‖1,u‖B‖t,s, (6.4)

for A ∈ Rm×n,B ∈ Rn×K , and any t, u ≥ 1 satisfying 1/t+ 1/u = 1.
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Proof. Assume A ∈ Rm×n, B ∈ Rn×K , and B = [B1, . . . ,BK ], where
Bj , j ∈ JKK, are the columns of B. Then, AB = [AB1, . . . ,ABK ], and
‖AB‖r,s = ‖w‖s, where w = (w1, . . . , wK) with wj = ‖ABj‖r. From
the proof of Lemma 6.2.3, we immediately have:

wj = ‖ABj‖r ≤ ‖Bj‖t‖A‖1,u,

where 1/t+ 1/u = 1. We thus have,

‖AB‖r,s =
( K∑
j=1

wsj

)1/s

≤
( K∑
j=1
‖Bj‖st‖A‖s1,u

)1/s

= ‖A‖1,u
( K∑
j=1
‖Bj‖st

)1/s

= ‖A‖1,u‖B‖t,s,

for any t, u ≥ 1 satisfying 1/t+ 1/u = 1.

Next we will reformulate the two relaxations (6.2) and (6.3) using
the Lr,s norm. When the Wasserstein metric is defined by ‖ · ‖r, the
MLR-SR relaxation can be written as:

inf
B

1
N

N∑
i=1

hB(xi,yi) + εL‖B̃′‖s,r.

Similarly, the MLR-1S relaxation can be written as:

inf
B

1
N

N∑
i=1

hB(xi,yi) + εL‖B̃‖1,s,

where r, s ≥ 1 and 1/r+ 1/s = 1. When the loss function is convex, e.g.,
hB(x,y) = ‖y−B′x‖, it is obvious that both MLR-SR and MLR-1S
are convex optimization problems. By using the Lr,s matrix norm, we
are able to express the two relaxations in a compact way, which reflects
the role of the norm space induced by the Wasserstein metric on the
regularizer, and demonstrates the impact of the size of the Wasserstein
ambiguity set and the Lipschitz continuity of the loss function on the
regularization strength.
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6.2.3 Distributionally Robust Multiclass Logistic Regression

In this subsection we apply the Wasserstein DRO framework to the
problem of Multiclass Logistic Regression (MLG). Suppose there are
K classes, and we are given a predictor vector x ∈ Rp. Our goal is to
predict its class label, denoted by a K-dimensional binary label vector
y ∈ {0, 1}K , where ∑k yk = 1, and yk = 1 if and only if x belongs to
class k. The conditional distribution of y given x is modeled as

p(y|x) =
K∏
i=1

pyii ,

where pi = ew
′
ix/

∑K
k=1 e

w′kx, and wi, i ∈ JKK, are the coefficient vectors
to be estimated that account for the contribution of x in predicting the
class labels. The log-likelihood can be expressed as:

log p(y|x) =
K∑
i=1

yi log(pi)

=
K∑
i=1

yi log ew
′
ix∑K

k=1 e
w′
k
x

=
K∑
i=1

yiw′ix−
(

log
K∑
k=1

ew
′
kx
) K∑
i=1

yi

=
K∑
i=1

yiw′ix− log
K∑
k=1

ew
′
kx

= y′B′x− log 1′eB′x,

where B , [w1, . . . ,wK ], 1 is the vector of ones, and the exponential
operator is applied element-wise to the exponent vector. The log-loss is
defined to be the negative log-likelihood, i.e., hB(x,y) , log 1′eB′x −
y′B′x. The Wasserstein DRO formulation for MLG minimizes the
following worst-case expected loss:

inf
B

sup
Q∈Ω

EQ[log 1′eB′x − y′B′x], (6.5)

where Ω is defined using the order-1 Wasserstein metric induced by:

s(z1, z2) = ‖x1 − x2‖r +Msy(y1,y2),
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where z1 = (x1,y1), z2 = (x2,y2), sy(·, ·) could be any metric, and M
is a very large positive constant. To make (6.5) tractable, we need to
derive an upper bound for the growth rate of the loss function, which
involves bounding the following difference

|hB(x1,y1)− hB(x2,y2)|

= | log 1′eB′x1 − y′1B′x1 − log 1′eB′x2 + y′2B′x2|

≤ | log 1′eB′x1 − log 1′eB′x2 |+ |y′1B′x1 − y′2B′x2|,

(6.6)

in terms of s(z1, z2). Let us examine the two terms in (6.6) separately.
For the first term, define a function g(a) = log 1′ea, where a ∈ RK .
Using the mean value theorem, we know for any a,b ∈ RK , there exists
some t ∈ (0, 1) such that

|g(b)− g(a)| ≤
∥∥∇g((1− t)a + tb

)∥∥
s
‖b− a‖r ≤ K1/s‖b− a‖r, (6.7)

where r, s ≥ 1, 1/r + 1/s = 1, the first inequality is due to Hölder’s
inequality, and the second inequality is due to the fact that ∇g(a) =
ea/1′ea, which implies that each element of ∇g(a) is smaller than 1.
Based on (6.7) we have:

|log1′eB′x1 − log 1′eB′x2 | ≤ K1/s‖B′(x1 − x2)‖r.

We can use Lemma 6.2.2 or 6.2.3 to bound ‖B′(x1 − x2)‖r, which
respectively leads to the following two results:

|log1′eB′x1 − log 1′eB′x2 | ≤ K1/s‖x1 − x2‖r
( K∑
i=1
‖wi‖rs

)1/r

= K1/s‖x1 − x2‖r‖B‖s,r, (6.8)

and
|log1′eB′x1 − log 1′eB′x2 | ≤ K1/s‖x1 − x2‖r‖B′‖1,s, (6.9)

where r, s ≥ 1 and 1/r+ 1/s = 1. By noting that ‖x1−x2‖r ≤ s(z1, z2),
we obtain the upper bound for the first term in (6.6) in terms of s(z1, z2).
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For the second term, we have,

|y′1B′x1 − y′2B′x2| =
∣∣∣∣ K∑
i=1

w′i(y1ix1 − y2ix2)
∣∣∣∣

≤
K∑
i=1
|w′i(y1ix1 − y2ix2)|

≤
K∑
i=1
‖wi‖s‖y1ix1 − y2ix2‖r

≤ s(z1, z2)
K∑
i=1
‖wi‖s

= s(z1, z2)‖B‖s,1, (6.10)

where y1 = (y11, . . . , y1K),y2 = (y21, . . . , y2K), 1/s+1/r = 1, the second
inequality uses the Hölder’s inequality, and the last inequality can be
proved by noting that if y1i = y2i, ‖y1ix1−y2ix2‖r ≤ s(z1, z2); otherwise
s(z1, z2) goes to infinity. Suppose π0 is the optimal transportation plan
that moves the probability mass from Q to P̂N , combining (6.8) with
(6.10), we have:

|EQ[hB(x,y)]− EP̂N [hB(x,y)]|

≤
∫
Z×Z

|hB(x1,y1)− hB(x2,y2)|dπ0(z1, z2)

=
∫
Z×Z

|hB(x1,y1)− hB(x2,y2)|
s(z1, z2) s(z1, z2)dπ0(z1, z2)

≤
∫
Z×Z

(K1/s‖B‖s,r + ‖B‖s,1)s(z1, z2)dπ0(z1, z2)

≤ ε(K1/s‖B‖s,r + ‖B‖s,1),
which yields the following MLG-SR relaxation to (6.5):

inf
B

1
N

N∑
i=1

(log 1′eB′xi − y′iB′xi) + ε(K1/s‖B‖s,r + ‖B‖s,1).

Similarly, combining (6.9) with (6.10) produces the following MLG-1S
relaxation:

inf
B

1
N

N∑
i=1

(log 1′eB′xi − y′iB′xi) + ε(K1/s‖B′‖1,s + ‖B‖s,1).
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We note that both MLG-SR and MLG-1S are convex optimiza-
tion problems. The convexity of the regularizer has been shown in
Section 6.2.2. The convexity of the log-loss is shown in the following
theorem.

Theorem 6.2.5. The log-loss hB(x,y) , log 1′eB′x − y′B′x is convex
in B.

Proof. Since the linear function is convex, we only need to show the
convexity of log 1′eB′x. The following result will be used.

Corollary 6.2.6. The function f(x) = log(∑n
i=1 e

xi) is a convex function
of x ∈ Rn.

By Corollary 6.2.6, we have for any λ ∈ [0, 1], and any two matrices
B = [B1, . . . ,BK ] and C = [C1, . . . ,CK ],

log 1′e(λB+(1−λ)C)′x = log
( K∑
i=1

eλB′ix+(1−λ)C′ix
)

= f(λv1 + (1− λ)v2)
≤ λf(v1) + (1− λ)f(v2)

= λ log
( K∑
i=1

eB
′
ix
)

+ (1− λ) log
( K∑
i=1

eC
′
ix
)

= λ log 1′eB′x + (1− λ) log 1′eC′x,

where v1 = (B′1x, . . . ,B′Kx), and v2 = (C′1x, . . . ,C′Kx). Therefore the
log-loss is convex.

When K = 2, by taking one of the two classes as a reference, we
can set one column of B to zero, in which case all three regularizers
‖B‖s,r, ‖B‖s,1 and ‖B′‖1,s reduce to ‖β‖s, where B , [β,0], and the
MLG-SR and MLG-1S relaxations coincide with the regularized logistic
regression formulation derived in (5.8).

We also note that the number of classes K, along with the Wasser-
stein set radius ε, determines the regularization magnitude in the two
MLG relaxations. There are two terms in the regularizer, one account-
ing for the predictor/feature uncertainty, and the other accounting for
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the label uncertainty. In the MLG-SR regularizer, we summarize each
column of B by its dual norm, and aggregate them by the `r and `1
norms to reflect the predictor and label uncertainties, respectively.

6.3 The Out-of-Sample Performance Guarantees

In this section we will show the out-of-sample performance guarantees
for the solutions to the MLR and MLG relaxations, i.e., given a new
test sample, what is the expected prediction bias/log-loss. The results
are established using the Rademacher complexity [98], following the
line of proof presented in Section 4.3.1. The resulting bounds shed light
on the role of the regularizer in inducing a low prediction error.

6.3.1 Performance Guarantees for MLR Relaxations

In this subsection we study the out-of-sample predictive performance of
the solutions to (6.2) and (6.3). Suppose the data (x,y) is drawn from
the probability measure P∗. We first make the following assumptions
that are essential for deriving the bounds.

Assumption Q. The `r-norm of the data (x,y) is bounded above a.s.
under the probability measure P∗, i.e., ‖(x,y)‖r ≤ R, a.s.

Assumption R. For any feasible solution to MLR-SR, it holds that
‖B̃′‖s,r ≤ B̄s,r.

Assumption S. For any feasible solution to MLR-1S, it holds that
‖B̃‖1,s ≤ B̄1,s.

Assumption T. The loss resulting from (x,y) = (0,0) is 0, i.e.,
hB̃(0) = 0.

Note that Assumption Q bounds the magnitude of the data in
terms of its `r-norm, and R can be assumed to be reasonably small
with standardized data input. Assumptions R and S impose restrictions
on the norm of the coefficient matrix, which are a result of adding
appropriate regularizers into the formulation as in (6.2) and (6.3).
Assumption T easily holds when the loss function is defined via some
norm, i.e., hB(x,y) , ‖y − B′x‖. Under Assumptions Q, R and T,
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using Lemma 6.2.2 and the Lipschitz continuity of the loss function, we
have

hB̃(z) ≤ L‖B̃z‖r ≤ L‖z‖r‖B̃′‖s,r ≤ LRB̄s,r. (6.11)
Similarly, under Assumptions Q, S and T, Lemma 6.2.3 yields the
following:

hB̃(z) ≤ L‖B̃z‖r ≤ L‖z‖r‖B̃‖1,s ≤ LRB̄1,s. (6.12)

With the above results, the idea is to bound the out-of-sample
prediction error using the empirical Rademacher complexity RN (·) of
the class of loss functions: H = {z→ hB̃(z)}, denoted by RN (H). Using
Lemma 4.3.2 and the upper bounds in (6.11) and (6.12), we arrive at
the following result.

Lemma 6.3.1. Under Assumptions Q, R and T,

RN (H) ≤ 2LRB̄s,r√
N

.

Under Assumptions Q, S and T,

RN (H) ≤ 2LRB̄1,s√
N

.

Using the Rademacher complexity of the class of loss functions, the
out-of-sample prediction bias of the solutions to (6.2) and (6.3) can be
bounded by applying Theorem 8 in [98].

Theorem 6.3.2. Suppose the solution to (6.2) is B̂s,r. Under Assump-
tions Q, R and T, for any 0 < δ < 1, with probability at least 1 − δ
with respect to the sampling,

E[hB̂s,r
(x,y)] ≤ 1

N

N∑
i=1

hB̂s,r
(xi,yi) + 2LRB̄s,r√

N
+ LRB̄s,r

√
8 log(2

δ )
N

,

and for any ζ > 2LRB̄s,r√
N

+ LRB̄s,r

√
8 log(2/δ)

N ,

P
(
hB̂s,r

(x,y) ≥ 1
N

N∑
i=1

hB̂s,r
(xi,yi) + ζ

)

≤
1
N

∑N
i=1 hB̂s,r

(xi,yi) + 2LRB̄s,r√
N

+ LRB̄s,r

√
8 log(2/δ)

N

1
N

∑N
i=1 hB̂s,r

(xi,yi) + ζ
.
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Theorem 6.3.3. Suppose the solution to (6.3) is B̂1,s. Under Assump-
tions Q, S and T, for any 0 < δ < 1, with probability at least 1− δ with
respect to the sampling,

E[hB̂1,s
(x,y)] ≤ 1

N

N∑
i=1

hB̂1,s
(xi,yi) + 2LRB̄1,s√

N
+ LRB̄1,s

√
8 log(2

δ )
N

,

and for any ζ > 2LRB̄1,s√
N

+ LRB̄1,s

√
8 log(2/δ)

N ,

P
(
hB̂1,s

(x,y) ≥ 1
N

N∑
i=1

hB̂1,s
(xi,yi) + ζ

)

≤
1
N

∑N
i=1 hB̂1,s

(xi,yi) + 2LRB̄1,s√
N

+ LRB̄1,s

√
8 log(2/δ)

N

1
N

∑N
i=1 hB̂1,s

(xi,yi) + ζ
.

Theorems 6.3.2 and 6.3.3 present bounds on the out-of-sample pre-
diction errors of the solutions to (6.2) and (6.3), respectively. The
expectations/probabilities are taken w.r.t. the new sample (x,y). The
magnitude of the regularizer plays a role in controlling the bias, and a
smaller upper bound on the matrix norm leads to a smaller prediction
error, suggesting the superiority of MLR-SR for r ≥ 2, and the superi-
ority of MLR-1S for r = 1 (see Section 6.2.1). But on the other hand,
the prediction error also depends on the sample average loss over the
training set, for which there is no guarantee on which model wins out.
In practice we suggest trying both models and selecting the one that
yields a smaller error on a validation set.

6.3.2 Performance Guarantees for MLG Relaxations

In this subsection, we study the out-of-sample log-loss of the solutions
to MLG-SR and MLG-1S. Suppose the data (x,y) is drawn from the
probability measure P∗. We first make several assumptions that are
needed to establish the results.

Assumption U. The `r norm of the predictor x is bounded above a.s.
under the probability measure P∗X , i.e., ‖x‖r ≤ Rx, a.s.
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Assumption V. For any feasible solution to MLG-SR, the following
holds:

K1/s‖B‖s,r + ‖B‖s,1 ≤ C̄s,r.

Assumption W. For any feasible solution to MLG-1S, the following
holds:

K1/s‖B′‖1,s + ‖B‖s,1 ≤ C̄1,s.

With standardized predictors, Rx in Assumption U can be assumed
to be small. The form of the constraints in Assumptions V and W is
consistent with the form of the regularizers in MLG-SR and MLG-1S,
respectively. We will see later that the bounds C̄s,r and C̄1,s respectively
control the out-of-sample log-loss of the solutions to MLG-SR and
MLG-1S, which validates the role of the regularizer in improving the
out-of-sample performance. Under Assumptions U and V, using (6.6),
(6.8) and (6.10), we have,

|hB(x,y)− hB(0,y)| ≤ K1/s‖x‖r‖B‖s,r + ‖x‖r‖B‖s,1 ≤ RxC̄s,r.

By noting that hB(0,y) = logK, we immediately have,

logK −RxC̄s,r ≤ hB(x,y) ≤ RxC̄s,r + logK. (6.13)

Similarly, under Assumptions U and W, using (6.6), (6.9) and (6.10),
we have,

|hB(x,y)− hB(0,y)| ≤ K1/s‖x‖r‖B′‖1,s + ‖x‖r‖B‖s,1 ≤ RxC̄1,s,

which implies that

logK −RxC̄1,s ≤ hB(x,y) ≤ RxC̄1,s + logK. (6.14)

Using (6.13) and (6.14), we can now proceed to bound the out-of-
sample log-loss using the empirical Rademacher complexity RN (·) of
the following class of loss functions:

H = {(x,y)→ hB(x,y): hB(x,y) = log 1′eB′x − y′B′x}.

Lemma 6.3.4. Under Assumptions U and V,

RN (H) ≤ 2(RxC̄s,r + logK)√
N

.

The version of record is available at: http://dx.doi.org/10.1561/2400000026



160 Distributionally Robust Multi-Output Learning

Under Assumptions U and W,

RN (H) ≤ 2(RxC̄1,s + logK)√
N

.

Using Lemma 6.3.4, we are able to bound the out-of-sample log-loss
of the solutions to MLG-SR and MLG-1S by applying Theorem 8 in
[98].

Theorem 6.3.5. Suppose the solution to MLG-SR is B̂s,r. Under As-
sumptions U and V, for any 0 < δ < 1, with probability at least 1− δ
with respect to the sampling,

E[log 1′eB̂′s,rx − y′B̂′s,rx] ≤ 1
N

N∑
i=1

(log 1′eB̂′s,rxi − y′iB̂′s,rxi)

+ 2(RxC̄s,r + logK)√
N

+ (RxC̄s,r + logK)

√
8 log(2

δ )
N

,

and for any ζ > 2(RxC̄s,r+logK)√
N

+ (RxC̄s,r + logK)
√

8 log( 2
δ

)
N ,

P
(

log 1′eB̂′s,rx − y′B̂′s,rx ≥
1
N

N∑
i=1

(log 1′eB̂′s,rxi − y′iB̂′s,rxi) + ζ

)

≤
1
N

∑N
i=1(log 1′eB̂′s,rxi − y′iB̂′s,rxi) + 2(RxC̄s,r+logK)√

N

1
N

∑N
i=1(log 1′eB̂′s,rxi − y′iB̂′s,rxi) + ζ

+
(RxC̄s,r + logK)

√
8 log( 2

δ
)

N

1
N

∑N
i=1(log 1′eB̂′s,rxi − y′iB̂′s,rxi) + ζ

.

Theorem 6.3.6. Suppose the solution to MLG-1S is B̂1,s. Under As-
sumptions U and W, for any 0 < δ < 1, with probability at least 1− δ
with respect to the sampling,

E[log 1′eB̂
′
1,sx − y′B̂′1,sx] ≤ 1

N

N∑
i=1

(log 1′eB̂
′
1,sxi − y′iB̂′1,sxi)

+ 2(RxC̄1,s + logK)√
N

+ (RxC̄1,s + logK)

√
8 log(2

δ )
N

,
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and for any ζ > 2(RxC̄1,s+logK)√
N

+ (RxC̄1,s + logK)
√

8 log( 2
δ

)
N ,

P
(

log 1′eB̂
′
1,sx − y′B̂′1,sx ≥

1
N

N∑
i=1

(log 1′eB̂
′
1,sxi − y′iB̂′1,sxi) + ζ

)

≤
1
N

∑N
i=1(log 1′eB̂

′
1,sxi − y′iB̂′1,sxi) + 2(RxC̄1,s+logK)√

N

1
N

∑N
i=1(log 1′eB̂

′
1,sxi − y′iB̂′1,sxi) + ζ

+
(RxC̄1,s + logK)

√
8 log( 2

δ
)

N

1
N

∑N
i=1(log 1′eB̂

′
1,sxi − y′iB̂′1,sxi) + ζ

.

We note that the expected log-loss on a new test sample depends
both on the sample average log-loss on the training set, and the mag-
nitude of the regularizer in the formulation. The form of the bounds
in Theorems 6.3.5 and 6.3.6 demonstrates the validity of MLG-SR and
MLG-1S in leading to a good out-of-sample performance. For r ≥ 2,
C̄s,r can be considered smaller than C̄1,s, while for r = 1, the reverse
holds. We can decide which model to use on a case-by-case basis, by
computing their out-of-sample error on a validation set.

6.4 Numerical Experiments

In this section, we will test the out-of-sample performance of the MLR
and MLG relaxations on a number of synthetic datasets, and com-
pare with several commonly used multi-output regression/classification
models.

6.4.1 MLR Relaxations

In this subsection we will first explore the selection of a proper norm
for the regularizer based on an appropriate notion of distance in the
data space. To this end, we design two different structures for the true
coefficient matrix denoted by B∗ in order to reflect different distance
metrics.
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1. B∗ is drawn from a standard multivariate normal distribution,
which corresponds to an `2-norm induced Wasserstein metric
(r = 2).

2. We first generate B∗ from a standard multivariate normal distri-
bution, and then normalize each row using the softmax function
while keeping the sign of each element unchanged. The normaliza-
tion guarantees an equal row absolute sum for B∗. This can be
thought of as standardizing the effect of each predictor, which is
represented by the absolute sum over the K columns of B∗. Such
a coefficient matrix implies an `1-norm distance metric in the data
space (r = 1). The reason is that in the dual space (‖ · ‖∞), the
vertex of the constraint set has each coordinate being the same in
absolute value, and in our setting each coordinate is represented
by the absolute sum over the K columns of B∗.

The predictor x is generated from a multivariate normal distribution
with mean zero and covariance Σx = (σx

ij)i,j∈JpK, where σx
ij = 0.9|i−j|.

The response vector y is generated as

y = (B∗)′x + η,

where η is a standard normal random vector. Throughout the experi-
ments we set p = 5, and K = 3.

We adopt a loss function hB(x,y) = ‖y−B′x‖r that is 1-Lipschitz
continuous on ‖ · ‖r. Note that we use the same norm to define the loss
function and the Wasserstein metric. We will compare the MLR-SR
and MLR-1S relaxations induced by r = 1 and r = 2, respectively, in
terms of their out-of-sample Weighted Mean Squared Error (WMSE),
defined as:

WMSE ,
1
M

M∑
i=1

(yi − ŷi)′Σ̂
−1(yi − ŷi),

where M is the size of the test set, yi and ŷi are the true and predicted
response vectors for the i-th test sample, respectively, and Σ̂ is the
covariance matrix of the prediction error on the training set,

Σ̂ = (Y− Ŷ)′(Y− Ŷ)/(N − pK),
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where Y, Ŷ ∈ RN×K are the true and estimated response matrices of
the training set, respectively, and N is the size of the training set. We
will also look at the Conditional Value at Risk (CVaR) of the WMSE
(at the confidence level α = 0.8) that quantifies its tail behavior.

Figures 6.1 and 6.2 show the comparison of MLR-SR and MLR-1S
formulations derived from the Wasserstein metric induced by the `r
norm, with r = 1 and r = 2, when the radius of the Wasserstein ball
ε is varied. As expected, when B∗ is a dense matrix, the `2 norm is
a proper distance metric in the data space, and as a result, the two
relaxations with r = 2 achieve a lower out-of-sample prediction bias. On
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Figure 6.1: The out-of-sample performance of MLR-SR and MLR-1S with normally
distributed B∗.
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Figure 6.2: The out-of-sample performance of MLR-SR and MLR-1S when B∗ has
an equal row absolute sum.
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Table 6.1: The out-of-sample performance of MLR-SR and MLR-1S with cross-
validated ε when B∗ is normally distributed

WMSE CVaR

MLR-SR (r = 1) 3.26 (0.48) 4.91 (0.70)
MLR-1S (r = 1) 3.21 (0.40) 4.93 (0.65)
MLR-SR (r = 2) 3.11 (0.36) 4.74 (0.62)
MLR-1S (r = 2) 3.11 (0.35) 4.75 (0.64)

Table 6.2: The out-of-sample performance of MLR-SR and MLR-1S with cross-
validated ε when B∗ has an equal row absolute sum

WMSE CVaR

MLR-SR (r = 1) 3.04 (0.52) 4.56 (0.83)
MLR-1S (r = 1) 3.05 (0.52) 4.60 (0.89)
MLR-SR (r = 2) 3.05 (0.52) 4.62 (0.88)
MLR-1S (r = 2) 3.05 (0.52) 4.62 (0.89)

the other hand, when the structure of B∗ implies an `1-norm distance
metric on the data (Figure 6.2), the formulations with r = 1 have a
better performance.

We also compare the four MLR relaxations with an optimal ε chosen
by cross-validation. Tables 6.1 and 6.2 show the mean WMSE and CVaR
over 100 repetitions (the numbers inside the parentheses indicate the
corresponding standard deviations). Similar conclusions can be drawn
from the results in the tables. With a proper choice of r, the MLR
relaxations are able to achieve a lower prediction error with a smaller
variance. For example, in Table 6.1, compared to MLR-SR (r = 1), the
two relaxations with r = 2 improved the WMSE by 4.6%.

We next compare the MLR-SR and MLR-1S formulations with
several other popular methods for MLR, including OLS, Reduced Rank
Regression (RRR) [142], [143], Principal Components Regression (PCR)
[144], Factor Estimation and Selection (FES) [145], the Curds and Whey
(C&W) procedure [138], and Ridge Regression (RR) [146], [147]. We
provide a brief outline of these methods. RRR restricts the rank of
B, and its solution is obtained by a Canonical Correlation Analysis
(CCA) of the response and predictor matrices that finds a sequence of
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uncorrelated linear combinations of the predictors and a corresponding
sequence of uncorrelated linear combinations of the responses such
that their correlations are successively maximized. PCR converts the
predictors into a set of linearly uncorrelated variables and applies
OLS on the transformed variables. Both RRR and PCR form linear
combinations of predictors and responses (in the case of RRR) which
hurts interpretability since it is not possible to explain an original
response via the original predictors. FES penalizes the sum of the
singular values of B. The C&W procedure shrinks the canonical variates
between x and y. RR penalizes the sum of the squared elements in B
(equivalent to multiple independent ridge regression of each coordinate
of y).

To test the robustness of various methods, we inject outliers to
the training datasets whose distribution differs from the majority by
a normally distributed random quantity. Specifically, the response of
outliers is generated as

y = (B∗)′x + η + oη,

where η ∼ N (0, I), and oη ∼ N (0,Σy), where Σy = (σy
ij)i,j∈JKK, with

σy
ij = (−0.9)|i−j|. Note that the perturbation occurs only on the response

variables.
We generate 20 datasets with a training size of 100 and a test size of

60, and compare the WMSE and CVaR of various models on a clean test
set. All the regularization coefficients are tuned through cross-validation.
Table 6.3 shows the average performance on datasets with 20% and 30%
outliers, respectively, when B∗ is generated from a standard normal
distribution. We see that as the proportion of outliers increases, the
WMSE and its CVaR increase, and in both scenarios, the MLR-SR and
MLR-1S relaxations achieve the smallest out-of-sample prediction error
with a small variance. They improve the WMSE by 1%–5% and 3%–7%
when the proportion of outliers is 20% and 30%, respectively. PCR
and FES achieve a slightly worse performance, but with a considerably
higher variance in the scenario with 20% outlier. PCR works well with
linearly correlated predictors, but could possibly fail when there exists
a highly nonlinear relationship among the predictors.

The version of record is available at: http://dx.doi.org/10.1561/2400000026



166 Distributionally Robust Multi-Output Learning

Table 6.3: The out-of-sample performance of different MLR models, mean (std)

WMSE CVaR AUC

Proportion of Outliers 20%

MLR-SR (r = 2) 2.55 (0.26) 3.91 (0.51) 0.89 (0.04)
MLR-1S (r = 2) 2.59 (0.21) 3.93 (0.43) 0.89 (0.03)
OLS 2.66 (0.44) 4.11 (0.83) 0.85 (0.06)
RR 2.64 (0.42) 4.12 (0.82) 0.87 (0.03)
RRR 2.68 (0.36) 4.03 (0.61) 0.80 (0.05)
FES 2.58 (0.29) 4.01 (0.55) 0.89 (0.03)
C&W 2.65 (0.42) 4.10 (0.80) 0.86 (0.06)
PCR 2.61 (0.29) 4.01 (0.50) 0.86 (0.03)
Proportion of Outliers 30%

MLR-SR (r = 2) 2.63 (0.33) 4.07 (0.66) 0.83 (0.09)
MLR-1S (r = 2) 2.57 (0.31) 4.02 (0.60) 0.83 (0.09)
OLS 2.75 (0.33) 4.14 (0.71) 0.73 (0.11)
RR 2.72 (0.32) 4.14 (0.60) 0.78 (0.10)
RRR 2.76 (0.44) 4.22 (0.80) 0.71 (0.12)
FES 2.66 (0.33) 4.02 (0.61) 0.83 (0.09)
C&W 2.74 (0.33) 4.11 (0.65) 0.74 (0.11)
PCR 2.68 (0.32) 4.02 (0.62) 0.73 (0.11)

To further characterize the robustness of various approaches, we
compute outlier detection rates on the test set, and draw the Receiver
Operating Characteristic (ROC) curves obtained from varying the thresh-
old values in the outlier detection rule. Note that in this case both the
training and test datasets contain outliers. The response of outliers is
generated as

y = (B∗)′x + oη,
where oη ∼ N (4 ∗ 1K ,Σy), with 1K the K-dimensional vector of all
ones, and Σy = (σy

ij)i,j∈JKK, with σy
ij = (−0.9)|i−j|. The outlier detection

criterion is described as follows:

(xi,yi) =

outlier, if r′iΣ̂
−1ri ≥ c,

not an outlier, otherwise,

where ri = yi − B̂′xi is the estimated residual, Σ̂ is the covariance
matrix of the prediction error on the training set, and c is the threshold
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Figure 6.3: The ROC curves of different MLR models.

value that is varied between 0 and χ2
0.99(K) (0.99 percentile of the

chi-square distribution with K degrees of freedom) to produce the
ROC curves. Table 6.3 shows the average Area Under the ROC Curve
(AUC) on the test set over 20 repetitions, and Figure 6.3 shows the
ROC curves for different methods with 20% and 30% outliers, where
the true positive rates and false positive rates are averaged over 20
repetitions. Compared to other methods except FES, the MLR-SR
and MLR-1S models improve the AUC by 2%–11% when we have 20%
outliers, and 6%–17% when we have 30% outliers, with a relatively
small variability. Notice that FES also achieves a high AUC, but with a
worse out-of-sample predictive performance.
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6.4.2 MLG Relaxations

In this subsection we study the performance of the two DRO-MLG
relaxations, and compare them with a number of MLG variants on simu-
lated datasets, in terms of their out-of-sample log-loss and classification
accuracy.

We first study the problem of selecting the right regularizer based
on the distance metric in the data space. Similar to Section 6.4.1, we
experiment with two types of B∗, one coming from a multivariate normal
distribution, and the other normalized to have an equal row absolute
sum. They respectively correspond to an `2 and `1-norm distance metric
in the data space. The predictor is drawn according to x ∼ N (0,Σx),
where Σx = (σx

ij)i,j∈JpK, and σx
ij = 0.9|i−j|. The label vector y ∈ {0, 1}K

is generated from a multinomial distribution with probabilities specified
by the softmax normalization of (B∗)′x + η, where η ∼ N (0, IK).

We set p = 5,K = 3, and conduct 20 simulation runs, each with
a training size of 100 and a test size of 60. The performance metrics
we use include: (i) the average log-loss, (ii) the Correct Classification
Rate (CCR), and (iii) the Conditional Value at Risk (CVaR) (at the
confidence level 0.8) of log-loss, which computes the expectation of
extreme log-loss values. The average performance metrics on the test
set over 20 replications are reported.

Figures 6.4 and 6.5 show the comparison of the four models as
the Wasserstein radius ε is varied. We see that when B∗ is a dense
matrix, the MLG-SR and MLG-1S induced by the `2-norm have a
higher classification accuracy and a lower log-loss. By contrast, when
the structure of B∗ implies an `1-norm distance metric in the data space,
the MLG-SR and MLG-1S with r = 1 perform better. We also validate
this conclusion in Tables 6.4 and 6.5 where the optimal Wasserstein set
radius ε is chosen through cross-validation. With normally distributed
B∗, the formulations with r = 2 improve the CCR and log-loss by 5%
compared to the ones induced by r = 1.

Next we will compare with a number of MLG models, including: (i)
Vanilla MLG which minimizes the empirical log-loss with no penalty
term, and (ii) Ridge MLG which penalizes the trace of B′B (the squared
Frobenius norm of B) as in ridge regression [146], [147]. In addition
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Figure 6.4: The out-of-sample performance of MLG-SR and MLG-1S when B∗ is
normally distributed.
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Figure 6.5: The out-of-sample performance of MLG-SR and MLG-1S when B∗ has
an equal row absolute sum.
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Table 6.4: The out-of-sample performance of MLG-SR and MLG-1S with cross-
validated ε when B∗ is normally distributed

CCR Log-Loss CVaR

MLG-SR (r = 1) 0.73 (0.06) 0.59 (0.09) 1.17 (0.24)
MLG-1S (r = 1) 0.75 (0.03) 0.60 (0.10) 1.16 (0.19)
MLG-SR (r = 2) 0.76 (0.05) 0.57 (0.08) 1.16 (0.21)
MLG-1S (r = 2) 0.76 (0.04) 0.57 (0.09) 1.11 (0.13)

Table 6.5: The out-of-sample performance of MLG-SR and MLG-1S with cross-
validated ε when B∗ has an equal row absolute sum

CCR Log-Loss CVaR

MLG-SR (r = 1) 0.84 (0.04) 0.35 (0.05) 0.54 (0.18)
MLG-1S (r = 1) 0.84 (0.04) 0.34 (0.07) 0.55 (0.26)
MLG-SR (r = 2) 0.82 (0.05) 0.35 (0.12) 0.58 (0.32)
MLG-1S (r = 2) 0.83 (0.05) 0.35 (0.06) 0.58 (0.25)

to the three performance metrics used earlier, we introduce another
robustness measure that calculates the minimal perturbation needed to
fool the classifier. For a given x with label k, for any j 6= k, consider
the following optimization problem:

min
x̃

‖x− x̃‖1

s.t. Pj(x̃) ≥ Pk(x̃),
k = arg max

i
Pi(x),

(6.15)

where Pi(x) denotes the probability of assigning class label i to x, which
is a function of the trained classifier. Problem (6.15) measures the
minimal perturbation distance (in terms of the `1-norm) that is needed
to change the label of x. Its optimal value evaluates the robustness of
a given classifier in terms of the perturbation magnitude. The more
robust the classifier, the larger the required perturbation to switch the
label, and thus the larger the optimal value. We solve Problem (6.15)
for every test point x and any j 6= k, and take the minimum of the
optimal values to be the Minimal Perturbation Distance (MPD) of the
classifier.
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We experiment with two types of B∗:

1. type-1: each column of B∗, with probability 0.4, is generated
from a multivariate normal distribution, and with probability 0.6,
it is generated as a sparse vector where only one randomly picked
element is set to nonzero;

2. type-2: we first generate a B∗ that is normalized to have an equal
row absolute sum as before, and then set each column to a sparse
vector with probability 0.6.

To test the robustness of various methods, we inject outliers to
the training datasets. The predictors of the outliers have the same
distribution as the clean samples, but their label vector is generated
from a multinomial distribution with probabilities specified by the
softmax normalization of 1/(x′B∗ + η), where η ∼ N (0, IK). The test
set does not contain any outlier.

Tables 6.6 and 6.7 show the average performance of various models
over 20 repetitions under different experimental settings. For type-1
B∗, the MLG-1S (r = 2) achieves the highest classification accuracy
and the largest MPD, while for type-2 B∗, the MLG-1S (r = 1) excels.
Notice that in both cases, the DRO-MLG models lose to vanilla MLG in
terms of the log-loss. The reason is that vanilla MLG focuses solely on
minimizing the sample average log-loss, while the MLG-SR and MLG-1S
models balance between maintaining a low log-loss and achieving a high
robustness level. By allowing for a slightly larger log-loss, the DRO-MLG
models achieve a considerably higher MPD and a higher classification

Table 6.6: The out-of-sample performance of different MLG models trained on
datasets with 30% outliers and type-1 B∗

CCR Log-Loss CVaR MPD

MLG-SR (r = 1) 0.81 (0.05) 0.65 (0.09) 0.97 (0.10) 0.04 (0.15)
MLG-1S (r = 1) 0.81 (0.05) 0.65 (0.08) 0.99 (0.10) 0.04 (0.13)
MLG-SR (r = 2) 0.81 (0.05) 0.64 (0.04) 0.94 (0.11) 0.07 (0.02)
MLG-1S (r = 2) 0.82 (0.05) 0.66 (0.07) 0.95 (0.14) 0.10 (0.03)
Vanilla MLG 0.78 (0.07) 0.61 (0.08) 0.94 (0.17) 0.02 (0.01)
Ridge MLG 0.81 (0.04) 0.68 (0.08) 0.95 (0.13) 0.06 (0.05)
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Table 6.7: The out-of-sample performance of different MLG models trained on
datasets with 40% outliers and type-2 B∗

CCR Log-Loss CVaR MPD

MLG-SR (r = 1) 0.69 (0.14) 0.80 (0.06) 1.10 (0.17) 0.01 (0.007)
MLG-1S (r = 1) 0.69 (0.14) 0.82 (0.06) 1.11 (0.17) 0.03 (0.02)
MLG-SR (r = 2) 0.66 (0.13) 0.84 (0.05) 1.08 (0.12) 0.02 (0.01)
MLG-1S (r = 2) 0.68 (0.13) 0.82 (0.05) 1.10 (0.13) 0.02 (0.02)
Vanilla MLG 0.66 (0.06) 0.79 (0.06) 1.13 (0.14) 0.004 (0.002)
Ridge MLG 0.65 (0.09) 0.84 (0.04) 1.10 (0.09) 0.02 (0.01)

accuracy. They improve the CCR by 1%–5% and 5%–6%, the MPD by
67%–400% and 50%–650% in Tables 6.6 and 6.7, respectively. Compared
to ridge MLG, they improve the log-loss by 6% and 5% in the two tables.

6.5 Summary

In this section, we developed a Distributionally Robust Optimization
(DRO) based approach under the Wasserstein metric to robustify Multi-
output Linear Regression (MLR) and Multiclass Logistic Regression
(MLG), leading to matrix-norm regularized formulations that establish
a connection between robustness and regularization in the multi-output
scenario. We established out-of-sample performance guarantees for the
solutions to the DRO-MLR and DRO-MLG extracts, illustrating the
role of the regularizer in controlling the out-of-sample prediction er-
ror. We provided empirical evidence showing that the DRO-MLR and
DRO-MLG models achieve a comparable (slightly better) out-of-sample
predictive performance to others, but a significantly higher robustness
to outliers.
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7
Optimal Decision Making via Regression

Informed K-NN

In this section, we will develop a prediction-based prescriptive model
for optimal decision making that (i) predicts the outcome under each
possible action using a robust nonlinear model, and (ii) adopts a ran-
domized prescriptive policy determined by the predicted outcomes. The
predictive model combines the Wasserstein DRO regression with the
K-Nearest Neighbors (K-NN) regression that helps to capture the non-
linearity embedded in the data. We apply the proposed methodology in
making recommendations for medical prescriptions, using a diabetes and
a hypertension dataset extracted from the Electronic Health Records
(EHRs) of a major safety-net hospital in New England.

7.1 The Problem and Related Work

Suppose we are given a set of M actions, and our goal is to choose
m ∈ JMK such that the future outcome y is optimized. We are interested
in finding the optimal decision with the aid of auxiliary data x ∈ Rp that
is concurrently observed, and correlated with the uncertain outcome y.
A main challenge with learning from observational data lies in the lack
of counterfactual information. One solution is to predict the effects
of counterfactual policies by learning an action-dependent predictive

174
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model that groups the training samples based on their actions, and
fits a model in each group between the outcome y and the feature x.
The predictions from this composite model can be used to determine
the optimal action to take. The performance of the prescribed decision
hinges on the quality of the predictive model. We have observed that
(i) there is often significant “noise” in the data caused by recording
errors, missing values, and large variability across individuals, and (ii)
the underlying relationship we try to learn is usually nonlinear and
its parametric form is not known a priori. To deal with these issues, a
nonparametric robust learning procedure is in need.

Motivated by the observation that individuals with similar features
x would have similar outcomes y if they were to take the same ac-
tion, we propose a predictive model that makes predictions based on
the outcomes of similar individuals – to be called neighbors – in each
group of the training set. It is a nonlinear and nonparametric estimator
which constructs locally linear (constant) curves based on the similarity
between individuals. To find reasonable neighbors, we need to accu-
rately identify the set of features that are correlated with the outcome.
We use the Wasserstein DRO regression for this task in consideration
of the noise that could potentially bias the estimation. Our prescrip-
tive methodology is established on the basis of a regression informed
K-Nearest Neighbors (K-NN) model [161] that evaluates the importance
of features through Wasserstein DRO regression, and estimates the
outcome by averaging over the neighbors identified by a regression
coefficients-weighted distance metric.

Our framework uses both parametric (Wasserstein DRO regres-
sion) and nonparametric (K-NN) predictive models, producing robust
predictions immunized against significant noise and capturing the under-
lying nonlinearity by utilizing the information of neighbors. It is more
information-efficient and more interpretable than the vanilla K-NN. We
then develop a randomized prescriptive policy that chooses each ac-
tion m with probability e−ξŷm(x)/

∑M
j=1 e

−ξŷj(x), for some pre-specified
positive constant ξ, where ŷm(x) is the predicted future outcome for x
under action m ∈ JMK. We show that this randomized strategy leads
to a nearly optimal future outcome by an appropriate choice of ξ.
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In recent years there has been an emerging interest in combining
ideas from machine learning with operations research to develop a
framework that uses data to prescribe optimal decisions [162]–[164].
Current research focus has been on applying machine learning method-
ologies to predict the counterfactuals, based on which optimal decisions
can be made. Local learning methods such as K-Nearest Neighbors
[161], LOESS (LOcally Estimated Scatterplot Smoothing) [165], CART
(Classification And Regression Trees) [1], and Random Forests [2], have
been studied in [162], [166]–[169]. Extensions to continuous and multi-
dimensional decision spaces with observational data were considered
in [170]. To prevent overfitting, [171] proposed two robust prescriptive
methods based on Nadaraya-Watson and nearest-neighbors learning.
Deviating from such a predict-optimize paradigm, [172] presented a
new bandit algorithm based on the LASSO to learn a model of decision
rewards conditional on individual-specific covariates.

Our problem is closely related to contextual bandits [173]–[176],
where an agent learns a sequence of decisions conditional on the contexts
with the aim of maximizing its cumulative reward. It has recently found
applications in learning personalized treatment of long-term diseases
from mobile health data [177]–[179]. However, we learn the interaction
between the context and rewards in each action group across similar
individuals, not over the history of the same individual as in contextual
bandits. A contextual bandits framework is most suitable for learning
sequential strategies through repeated interactions with the environment,
which requires a substantial amount of historical data for exploring the
reward function and exploiting the promising actions. In contrast, our
method does not require the availability of historical data, but instead
learns the payoff function from similar individuals. This can be viewed
as a different type of exploration, i.e., when little information can be
acquired for the past states of an individual, investigating the behavior
of similar subjects may be beneficial. This is essential for learning from
the Electronic Health Records (EHRs), where rapid and continuous
collection of patient data is not possible. We may observe a very short
treatment history for some patients, and the lag between patient visits
is usually large.
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Our method is similar to K-NN regression with an OLS-weighted
metric used in [166] to learn the optimal treatment for type-2 diabetic
patients. The key differences lie in that: (i) we adopt a robustified
regression procedure that is immunized against outliers and is thus more
stable and reliable; (ii) we propose a randomized prescriptive policy that
adds robustness to the methodology whereas [166] deterministically
prescribed the treatment with the best predicted outcome; (iii) we
establish theoretical guarantees on the quality of the predictions and the
prescribed actions, and (iv) the prescriptive rule in [166] was activated
when the improvement of the recommended treatment over the standard
of care exceeded a certain threshold, whereas our method looks into
the improvement over the previous regimen. This distinction makes
our algorithm applicable in the scenario where the standard of care is
unknown or ambiguous. Further, we derive a closed-form expression for
the threshold level, which greatly improves the computational efficiency
compared to [166], where a threshold was selected by cross-validation.

The remainder of this section is organized as follows. In Section 7.2,
we introduce the robust nonlinear predictive model and present the
performance guarantees on its predictive power. Section 7.3 develops
the randomized prescriptive policy and proves its optimality in terms
of the expected true outcome. The numerical experimental results are
presented in Section 7.4. We conclude in Section 7.5.

7.2 Robust Nonlinear Predictive Model

Given a feature vector x ∈ Rp, and a set of M available actions, our
goal is to predict the future outcome ym(x) under each possible action
m ∈ JMK. Assume the following relationship between the feature and
outcome:

ym = x′mβ∗m + hm(xm) + εm,

where (xm, ym) represents the feature-outcome pair of an individual
taking action m; β∗m is the coefficient that captures the linear trend;
hm(·) is a nonlinear function (whose form is unknown) describing the
nonlinear fluctuation in ym, and εm is the noise term with zero mean
and standard deviation ηm that expresses the intrinsic randomness of
ym and is assumed to be independent of xm.
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Suppose for eachm ∈ JMK, we observe Nm independently and identi-
cally distributed (i.i.d.) training samples (xmi, ymi), i ∈ JNmK, that take
action m. To estimate β∗m, we adopt the `2-norm induced Wasserstein
DRO formulation. A robust model could lead to an improved out-of-
sample performance, and accommodate the potential nonlinearity that
is not explicitly revealed by the linear coefficient β∗m, thus, resulting
in a more accurate assessment of the features. Solving the Wasserstein
DRO regression model gives us a robust estimator of the linear regres-
sion coefficient β∗m, which we denote by β̂m , (β̂m1, . . . , β̂mp). The
elements of β̂m measure the relative significance of the predictors in
determining the outcome ym. We feed the estimator into the nonlinear
non-parametric K-NN regression model, by considering the following
β̂m-weighted metric:

‖x− xmi‖Ŵm
=
√

(x− xmi)′Ŵm(x− xmi), (7.1)

where Ŵm = diag(β̂2
m), and β̂2

m = (β̂2
m1, . . . , β̂

2
mp). For a new test

sample x, within each action group m, we find its Km nearest neighbors
using the weighted distance function (7.1). The predicted future outcome
for x under action m, denoted by ŷm(x), is computed by

ŷm(x) = 1
Km

Km∑
i=1

ym(i), (7.2)

where ym(i) is the outcome of the i-th closest individual to x in the
training set who takes actionm. In essence, we compute a K-NN estimate
of the future outcome by using the regression weighted distance function,
which can be viewed as a locally smoothed estimator in the neighborhood
of x. Notice that due to (7.1), the nearest neighbors are similar to x in
the features that are most predictive of the outcome. Therefore, their
corresponding response values should serve as a good approximation
for the future outcome of x.

We next show that (7.2) provides a good prediction in the sense of
Mean Squared Error (MSE). The bias-variance decomposition implies

The version of record is available at: http://dx.doi.org/10.1561/2400000026



7.2. Robust Nonlinear Predictive Model 179

the following:

MSE
(
ŷm(x)

∣∣x,xmi, i ∈ JNmK
)

, E[(ŷm(x)− ym(x))2|x,xmi, i ∈ JNmK]

= E
[( 1
Km

Km∑
j=1

(
x′m(j)β

∗
m + hm(xm(j)) + εm(j)

)
−
(
x′β∗m + hm(x) + εm

))2∣∣∣∣x,xmi, i ∈ JNmK
]

=
(

x′β∗m + hm(x)− 1
Km

Km∑
i=1

(
x′m(i)β

∗
m + hm(xm(i))

))2
+ η2

m

Km
+ η2

m

=
( 1
Km

Km∑
i=1

(
(x− xm(i))′β∗m + hm(x)− hm(xm(i))

))2
+ η2

m

Km
+ η2

m,

(7.3)

where ym(x) is the true future outcome for x under action m, and xm(i),
εm(i) are the feature vector and noise term corresponding to the i-th
closest sample to x within group m, respectively. For each m ∈ JMK, we
aim at providing a probabilistic bound for (7.3) w.r.t. the measure of
the Nm training samples. According to (7.3), for the MSE to be small
the following three conditions suffice:

1. ‖β∗m − β̂m‖2 is small;

2. ‖x− xm(i)‖Ŵm
is small for i ∈ JKmK;

3. hm(x)− hm(xm(i)) is small for i ∈ JKmK.

In other words, to ensure an accurate prediction of the outcome, we
require an accurate estimate of the linear trend and a smooth nonlinear
fluctuation, with the selected neighbors close enough to x. An upper
bound for the MSE follows from bounding these three quantities. We
note that Theorem 4.3.12 provides an upper bound on the estimation
bias ‖β∗m−β̂m‖2 in a linear model. If we view the nonlinear term hm(xm)
as part of the noise, then the bound provided by Theorem 4.3.12 applies
to our case. The increased variance of the noise (due to hm(xm)) is
reflected in the eigenvalues of the covariance matrix, which play a
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role in the estimation error bound. We provide a simplified version of
Theorem 4.3.12 in the following theorem.

Theorem 7.2.1. Under Assumptions I–N, when the sample size Nm ≥
nm, with probability at least δm,

‖β∗m − β̂m‖2 ≤ τm.

We next show that the distance between x and its Km nearest
neighbors xm(i) could be upper bounded probabilistically. All predictors
are assumed to be centered, and independent from each other. In
Theorem 7.2.2 we present a lower bound for P(‖x− xm(i)‖W ≤ w̄m, i ∈
JKmK), for any positive definite diagonal matrix W.

Theorem 7.2.2. Suppose we are given Nm i.i.d. samples (xmi, ymi),
i ∈ JNmK, drawn from some unknown probability distribution with
finite fourth moment. Every xmi has independent, centered coordinates:

E(xmi) = 0, cov(xmi) = diag(σ2
m1, . . . , σ

2
mp), ∀i ∈ JNmK.

For a fixed predictor x, and for any given positive definite diagonal
matrix W ∈ Rp×p with diagonal elements wj , j ∈ JpK, and |wj | ≤ B̄2,
suppose:

|(xmij − xj)2 − (σ2
mj + x2

j )| ≤ Tm, a.s., ∀i ∈ JNmK, j ∈ JpK,

where xmij , xj are the j-th components of xmi and x, respectively. Under
the condition that w̄2

m > B̄2∑p
j=1(σ2

mj + x2
j ), with probability at least

1− I1−pm0(Nm −Km + 1,Km),

‖x− xm(i)‖W ≤ w̄m, i ∈ JKmK,

where g(u) = (1 + u) log(1 + u)− u,

I1−pm0(Nm −Km + 1,Km)

, (Nm −Km + 1)
(

Nm

Km − 1

)∫ 1−pm0

0
tNm−Km(1− t)Km−1dt,

pm0 = 1− exp
(
−σ

2
m

T 2
m

g

(
Tm
(
w̄2
m/B̄

2 −
∑
j(σ2

mj + x2
j )
)

σ2
m

))
,

and,

σ2
m =

p∑
j=1

var((xmij − xj)2).
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Proof. To simplify the notation, we will omit the subscript m in all
proofs, e.g., using xi and x(i) for xmi and xm(i), respectively, and N

for Nm. Define the event Ai := {‖xi − x‖B̄2I ≤ w̄}. As long as we can
calculate the probability that at least K of Ai, i ∈ JNK, occur, we are
able to provide a lower bound on P(‖x− x(i)‖W ≤ w̄, i ∈ JKK). Note
that given x, Ai, i ∈ JNK, are independent and equiprobable, since xi,
i ∈ JNK, are i.i.d. Based on Bennett’s inequality [103], we have:

P(Ai) = P(‖xi − x‖2
B̄2I ≤ w̄

2)
= P(B̄2(xi1 − x1)2 + · · ·+ B̄2(xip − xp)2 ≤ w̄2)
= P(t1 + · · ·+ tp ≤ w̄2/B̄2)

= P
(∑

j

(tj − (σ2
j + x2

j )) ≤ w̄2/B̄2 −
∑
j

(σ2
j + x2

j )
)

≥ 1− exp
(
−σ

2

T 2 g

(
T (w̄2/B̄2 −

∑
j(σ2

j + x2
j ))

σ2

))
, p0,

where tj = (xij−xj)2, j ∈ JpK; σ2 = ∑
j var(tj). In the above derivation,

we used the fact that tj , j ∈ JpK, are independent, and |tj − E[tj ]| ≤
T, a.s., ∀j.

Given the lower bound for P(Ai), we can derive a lower bound for
the probability that exactly K of Ai, i ∈ JNK, occur. For a given x, Ai,
i ∈ JNK, are independent, and thus,

P(‖x− x(i)‖W ≤ w̄, i ∈ JKK)
≥ P(at least K of Ai, i ∈ JNK occur)

=
N∑

k=K

(
N

k

)
(P(Ai))k(1− P(Ai))N−k

≥
N∑

k=K

(
N

k

)
pk0(1− p0)N−k

= 1− I1−p0(N −K + 1,K),
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where I1−p0(N −K + 1,K) is the regularized incomplete beta function
defined as:

I1−p0(N −K+ 1,K) , (N −K+ 1)
(

N

K − 1

)∫ 1−p0

0
tN−K(1− t)K−1dt.

Note that pm0 is nonnegative, due to the assumption that w̄2
m >

B̄2∑
j(σ2

mj + x2
j ), and the non-decreasing property of the function g(·)

when its argument is non-negative. We also note that a lower bound on
P(‖x− xm(i)‖2 ≤ w̄m, i ∈ JKmK) can be obtained by setting B̄ = 1.

By now we have shown results on the accuracy of β̂m and the
similarity between x and its neighbors. Notice that for a Lipschitz
continuous function hm(·) with a Lipschitz constant Lm, the difference
between hm(x) and hm(xm(i)) can be bounded by Lm‖x−xm(i)‖2. With
these results we are ready to bound the MSE of ŷm(x).

Theorem 7.2.3. Suppose we are given Nm i.i.d. copies of (xm, ym),
denoted by (xmi, ymi), i ∈ JNmK, where xm has independent, centered
coordinates, and cov(xm) = diag(σ2

m1, . . . , σ
2
mp). We are given a fixed

predictor x = (x1, . . . , xp), a scalar w̄m, and we assume:

1. hm(·) is Lipschitz continuous with a Lipschitz constant Lm on the
metric spaces (Xm, ‖ · ‖2) and (Ym, | · |), where Xm,Ym are the
domain and codomain of hm(·), respectively;

2. w̄2
m > B̄2

m

∑p
j=1(σ2

mj + x2
j ), where B̄m is the upper bound on

‖(−βm, 1)‖2 for any feasible βm to (4.5);

3. |(xmij −xj)2− (σ2
mj +x2

j )| is upper bounded a.s. under the proba-
bility measure P∗Xm for any i, j, where xmij is the j-th component
of xmi, and P∗Xm is the underlying true probability distribution
of xm;

4. the coordinates of any feasible solution to (4.5) have absolute
values greater than or equal to some positive number bm (dense
estimators).
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Under Assumptions I–N, when Nm ≥ nm, with probability at least
δm − I1−pm0(Nm −Km + 1,Km) w.r.t. the measure of samples,

E[(ŷm(x)− ym(x))2 |x,xmi, i ∈ JNmK]

≤
(
w̄mτm
bm

+√pw̄m + Lmw̄m

B̄m

)2
+ η2

m

Km
+ η2

m, (7.4)

and for any a ≥ (w̄mτm/bm +√pw̄m + Lmw̄m/B̄m)2 + η2
m/Km + η2

m,

P
((
ŷm(x)− ym(x)

)2 ≥ a |x,xmi, i ∈ JNmK
)

≤
( w̄mτmbm

+√pw̄m + Lmw̄m
B̄m

)2 + η2
m

Km
+ η2

m

a
, (7.5)

where all parameters are set in the same way as in Theorems 7.2.1
and 7.2.2.

Proof. We omit the subscript m for simplicity. By Theorems 7.2.1 and
7.2.2, we know that,

|(x− x(i))′(β∗ − β̂)| = |(x− x(i))′Ŵ
1
2 Ŵ− 1

2 (β∗ − β̂)|

≤ ‖(x− x(i))′Ŵ
1
2 ‖2‖Ŵ− 1

2 (β∗ − β̂)‖2

≤ w̄τ

b
,

where the second inequality used the fact that ‖Ŵ− 1
2 (β∗ − β̂)‖2 ≤ τ/b

if ‖β∗−β̂‖2 ≤ τ , which can be verified by the Courant-Fischer Theorem,
and the fact that Ŵ is diagonal with elements β̂2

j , j ∈ JpK, and |β̂j | ≥ b.
Based on the inequality (∑n

i=1 ai)2 ≤ n(∑n
i=1 a

2
i ), we know:

|(x− x(i))′β̂| =
∣∣∣∣ p∑
j=1

β̂j(x− x(i))j
∣∣∣∣

≤

√√√√p p∑
j=1

(
β̂j(x− x(i))j

)2

=
√
p(x− x(i))′Ŵ(x− x(i))

≤ √pw̄.
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Therefore,

|(x− x(i))′β∗| = |(x− x(i))′(β∗ − β̂) + (x− x(i))′β̂|
≤ |(x− x(i))′(β∗ − β̂)|+ |(x− x(i))′β̂|

≤ w̄τ

b
+√pw̄.

Thus, for a given x,

E[(ŷ(x)− y(x))2 |x,xi]

=
( 1
K

K∑
i=1

(
(x− x(i))′β∗ + h(x)− h(x(i))

))2
+ η2

K
+ η2

≤
( 1
K

K∑
i=1

(
|(x− x(i))′β∗|+ |h(x)− h(x(i))|

))2
+ η2

K
+ η2

≤
(
w̄τ

b
+√pw̄ + Lw̄

B̄

)2
+ η2

K
+ η2.

The probability bound can be easily derived using Markov’s
inequality.

The expectation in (7.4) and the probability in (7.5) are taken w.r.t.
the measure of the noise εm. Theorem 7.2.3 essentially says that for
any given predictor x, with a high probability (w.r.t. the measure of
samples), the prediction from our model is close to the true future
outcome. The prediction bias depends on the sample size, the variation
in the predictors and response, and the smoothness of the nonlinear
fluctuation.

The dependence on bm in the upper bound provided by (7.4) is
due to the fact that Ŵm has diagonal elements β̂2

mj , j ∈ JpK, which
are assumed to be at least b2m. If we multiply Ŵm by a very large
number, the neighbor selection criterion is not affected, since the relative
significance of the predictors stays unchanged, but the bm appearing in
(7.4) would be replaced by a very large number, diminishing the effect
of the first term in the parentheses, at the price of increasing B̄m and
w̄m, which in turn have an effect on the number of neighbors needed.
It might be interesting to explore this implicit trade-off and optimize
Ŵm to achieve the smallest MSE.
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7.3 Prescriptive Policy Development

We now proceed to develop the prescriptive policy with the aim of
minimizing the future outcome. A natural idea is to take the action
that yields the minimum predicted outcome. To allow for flexibility in
exploring alternatives that have a comparable performance, and also to
correct for potential prediction errors that might mislead the ranking
of actions, we propose a randomized policy that prescribes each action
with a probability inversely proportional to its exponentiated predicted
outcome. It can be viewed as an offline Hedge algorithm [180] that
increases the robustness of our method through exploration.

Specifically, given an individual with a feature vector x, and her
predicted future outcome under each action m, denoted by ŷm(x), we
consider a randomized policy that chooses action m with probability
e−ξŷm(x)/

∑M
j=1 e

−ξŷj(x), with ξ some pre-specified positive constant.
The randomness in making decisions might hurt the interpretability of
the model. But on the other hand, it presents a range of comparable
options that can be assessed subjectively by the decision maker based on
her expertise. As ξ goes to infinity, the randomized policy will converge
to a deterministic one which selects the action with the lowest predicted
outcome. We next establish a related property of the randomized policy
in terms of its expected true outcome.

Theorem 7.3.1. Given any fixed predictor x ∈ Rp, denote its predicted
and true future outcome under action m by ŷm(x) and ym(x), respec-
tively. Assume that we adopt a randomized strategy that prescribes
action m with probability e−ξŷm(x)/

∑M
j=1 e

−ξŷj(x), for some ξ ≥ 0. As-
sume ŷm(x) and ym(x) are non-negative, ∀m ∈ JMK. The expected true
outcome under this policy satisfies:

M∑
m=1

e−ξŷm(x)∑
j e
−ξŷj(x) ym(x) ≤ yk(x) +

(
ŷk(x)− 1

M

M∑
m=1

ŷm(x)
)

+ ξ

( 1
M

M∑
m=1

ŷ2
m(x) +

M∑
m=1

e−ξŷm(x)∑
j e
−ξŷj(x) y

2
m(x)

)
+ logM

ξ
, (7.6)

for any k ∈ JMK.
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Proof. The proof borrows ideas from Theorem 1.5 in [180]. Define
Wm , e−ξŷm(x)/

∑M
j=1 e

−ξŷj(x), and φ ,
∑M
m=1 e

−ξŷm(x)e−ξym(x). Then,

φ =
( M∑
j=1

e−ξŷj(x)
) M∑
m=1

Wme
−ξym(x)

≤
( M∑
j=1

e−ξŷj(x)
) M∑
m=1

Wm(1− ξym(x) + ξ2y2
m(x))

=
( M∑
j=1

e−ξŷj(x)
)(

1− ξ
M∑
m=1

Wmym(x) + ξ2
M∑
m=1

Wmy
2
m(x)

)

≤
( M∑
j=1

e−ξŷj(x)
)
e−ξ

∑M

m=1 Wmym(x)+ξ2
∑M

m=1 Wmy2
m(x),

where the first inequality uses the fact that for x ≥ 0, e−x ≤ 1− x+ x2,
and the last inequality is due to the fact that 1 + x ≤ ex. Next let us
examine the sum of exponentials:

M∑
j=1

e−ξŷj(x) ≤
M∑
j=1

(1− ξŷj(x) + ξ2ŷ2
j (x))

= M

(
1− ξ 1

M

M∑
j=1

ŷj(x) + ξ2 1
M

M∑
j=1

ŷ2
j (x)

)

≤Me
−ξ 1

M

∑M

j=1 ŷj(x)+ξ2 1
M

∑M

j=1 ŷ
2
j (x)

.

On the other hand, for any k ∈ JMK,

e−ξŷk(x)−ξyk(x) ≤φ

≤M exp
{
−
ξ
∑M
j=1 ŷj(x)
M

+
ξ2∑M

j=1 ŷ
2
j (x)

M

− ξ
M∑
m=1

Wmym(x) + ξ2
M∑
m=1

Wmy
2
m(x)

}
.

(7.7)
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Taking the logarithm on both sides of (7.7) and dividing by ξ, we obtain

1
M

M∑
m=1

ŷm(x) +
M∑
m=1

e−ξŷm(x)∑
j e
−ξŷj(x) ym(x) ≤ ŷk(x) + yk(x)

+ ξ

( 1
M

M∑
m=1

ŷ2
m(x) +

M∑
m=1

e−ξŷm(x)∑
j e
−ξŷj(x) y

2
m(x)

)
+ logM

ξ
.

Theorem 7.3.1 says that the expected true outcome of the random-
ized policy is no worse than the true outcome of any action k plus two
components, one accounting for the gap between the predicted outcome
under k and the average predicted outcome, and the other depending on
the parameter ξ. Thinking about choosing k = arg minm ym(x), if ŷk(x)
is below the average predicted outcome (which should be true if we have
an accurate prediction), it follows from (7.6) that the randomized policy
leads to a nearly optimal future outcome by an appropriate choice of ξ.

In the medical applications, when determining the future prescription
for a patient, we usually have access to some auxiliary information such
as the current prescription that she is receiving, and her current lab
results. In consideration of the health care costs and treatment transients,
it is not desired to switch patients’ treatments too frequently. We thus
set a threshold level for the expected improvement in the outcome,
below which the randomized strategy will be “frozen” and the current
therapy will be continued. Specifically,

mf(x)

=


m, w.p. e−ξŷm(x)∑M

j=1 e
−ξŷj(x) , if ∑

k

e−ξŷk(x)∑
j
e−ξŷj(x) ŷk(x) ≤ xco − T (x),

mc(x), otherwise,

where mf(x) and mc(x) are the future and current prescriptions for
patient x, respectively; xco represents the current observed outcome (e.g.,
current blood pressure), which is assumed to be one of the components
of x, and T (x) is some threshold level which will be determined later.
This prescriptive rule basically says that the randomized strategy will
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be activated only if the expected improvement relative to the current
observed outcome is significant.

Theorem 7.3.2. Assume that the distribution of the predicted outcome
ŷm(x) conditional on x, is sub-Gaussian, and its ψ2-norm is equal to√

2Cm(x), for any m ∈ JMK and any x. Given a small 0 < ε̄ < 1, to
satisfy

P
(∑

k

e−ξŷk(x)∑
j e
−ξŷj(x) ŷk(x) > xco − T (x)

)
≤ ε̄,

it suffices to set a threshold

T (x) = max
(
0, min

m

(
xco − µŷm(x)−

√
−2C2

m(x) log(ε̄/M)
))
,

where µŷm(x) = E[ŷm(x)|x].

Proof. By the sub-Gaussian assumption we have:

P
(∑

k

e−ξŷk(x)∑
j e
−ξŷj(x) ŷk(x) > xco − T (x)

)
≤ P

(
max
k

ŷk(x) > xco − T (x)
)

= P
(⋃
k

{ŷk(x) > xco − T (x)}
)

≤
∑
k

P(ŷk(x) > xco − T (x))

≤
∑
k

exp
(
−
(
xco − T (x)− µŷk(x)

)2
2C2

k(x)

)
. (7.8)

Note that the probability in (7.8) is taken with respect to the measure
of the training samples. We essentially want to find the largest threshold
T (x) such that the probability of the expected improvement being less
than T (x) is small. Given a small 0 < ε̄ < 1 and due to (7.8), to satisfy

P
(∑

k

e−ξŷk(x)∑
j e
−ξŷj(x) ŷk(x) > xco − T (x)

)
≤ ε̄,

it suffices to set:∑
k

exp
(
−
(
xco − T (x)− µŷk(x)

)2
2C2

k(x)

)
≤ ε̄. (7.9)
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A sufficient condition for (7.9) is:

exp
(
−
(
xco − T (x)− µŷm(x)

)2
2C2

m(x)

)
≤ ε̄

M
, ∀m ∈ JMK,

which yields that,

T (x) ≤ xco − µŷm(x)−
√
−2C2

m(x) log(ε̄/M), ∀m ∈ JMK. (7.10)

Given that T (x) is non-negative, we set the largest possible threshold
satisfying (7.10) to:

T (x) = max
(

0, min
m

(xco − µŷm(x)−
√
−2C2

m(x) log(ε̄/M))
)
.

When using a deterministic policy (ξ →∞), for any m ∈ JMK, we have

P
(

min
m

ŷm(x) > xco − T (x)
)

= P
(⋂
m

{ŷm(x) > xco − T (x)}
)

≤ P(ŷm(x) > xco − T (x))

≤ exp
(
−
(
xco − T (x)− µŷm(x)

)2
2C2

m(x)

)
.

Similarly, to make

P
(
min
m

ŷm(x) > xco − T (x)
)
≤ ε̄,

we set:

T (x) = max
(
0, min

m

(
xco − µŷm(x)−

√
−2C2

m(x) log ε̄
))
,

which establishes the desired result.

Theorem 7.3.2 finds the largest threshold T (x) such that the proba-
bility of the expected improvement being less than T (x) is small. The
parameters µŷm(x) and Cm(x), for m ∈ JMK, can be estimated by
simulation through random sampling a subset of the training examples.
Algorithm 1 provides the details.
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Algorithm 1 Estimating the conditional mean and standard deviation
of the predicted outcome.
Input: a feature vector x; am: the number of subsamples used to
compute β̂m, am < Nm; dm: the number of repetitions.
for i = 1, . . . , dm do

Randomly pick am samples from group m, and use them to esti-
mate a robust regression coefficient β̂mi through solving (4.5).

The future outcome for x under action m is predicted as ŷmi(x) =
x′β̂mi .
end for
Output: Estimate the conditional mean of ŷm(x) as:

µŷm(x) = 1
dm

dm∑
i=1

ŷmi(x),

and the conditional standard deviation as:

Cm(x) =

√√√√ 1
dm − 1

dm∑
i=1

(ŷmi(x)− µŷm(x))2.

A Special Case As ξ → ∞, the randomized policy will assign prob-
ability 1 to the action with the lowest predicted outcome, which is
equivalent to the following deterministic policy:

mf(x) =

arg min
m

ŷm(x), if min
m

ŷm(x) ≤ xco − T (x),
mc(x), otherwise.

A slight modification to the threshold level T (x) is given as follows:

T (x) = max
(
0, min

m

(
xco − µŷm(x)−

√
−2C2

m(x) log ε̄
))
.

7.4 Developing Optimal Prescriptions for Patients

In this section, we apply our method to develop optimal prescriptions
for patients with type-2 diabetes and hypertension. The data used for
the study come from the Boston Medical Center – the largest safety-net
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hospital in New England – and consist of Electronic Health Records
(EHRs) containing the patients’ medical history in the period 1999–2014.
The medical history of each patient includes demographics, diagnoses,
prescriptions, lab tests, and past admission records. We build two
datasets from the EHRs, one containing the medical records of patients
with type-2 diabetes and the other for patients with hypertension. For
diabetic patients, we want to determine the treatment (drug regimen)
that leads to the lowest future HbA1c

1 based on the medical histories,
while for hypertension patients, our goal is to find the treatment that
minimizes the future systolic blood pressure.2

7.4.1 Description of the Datasets

The patients that meet the following criteria are included in the diabetes
dataset:

• patients present in the system for at least 1 year;

• received at least one blood glucose regulation agent, including
injectable (e.g., insulin) and oral (e.g., metformin) drugs, etc., and
had at least one medical record 100 days before this prescription;

• had at least three measurements of HbA1c in the system; and,

• were not diagnosed with type-1 diabetes.

Similarly, for the hypertension dataset, the patients that meet the
following criteria are included:

• patients present in the system for at least 1 year;

• received at least one type of cardiovascular medications, including
ACE inhibitors, Angiotensin Receptor Blockers (ARB), calcium
channel blockers, diuretics, α-blockers and β-blockers, and had at
least one medical record 10 days before this prescription;

1HbA1c measures the percentage of glycosylated hemoglobin in the total amount
of hemoglobin present in the blood. It reflects average blood glucose levels over the
past 6–8 weeks. The normal range is below 5.7%.

2Systolic blood pressure is the maximum arterial pressure during contraction of
the left ventricle of the heart. It is measured in mmHg (millimeters of mercury) and
the normal range is below 120.
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• had at least one recorded diagnosis of hypertension (corresponding
to the ICD-9 diagnosis codes 401–405);

• had at least three measurements of the systolic blood pressure.

We have identified 11,230 patients for the diabetes dataset and 49,401
patients for the hypertension dataset. Each patient may have multiple
entries in her/his medical record. We define the line of therapy as a
time period (between 200 and 500 days) during which the combination
of drugs prescribed to the patient does not change. Each line of therapy
is characterized by a drug regimen which is defined as the combination
of drugs prescribed to the patient within the first 200 days. The line of
therapy intends to capture the period when the patient was experiencing
the effect of the drug regimen.

We define patient visits within each line of therapy to reflect changes
in the features and outcomes. For the diabetic patients, we consider
four possible drug regimens (combinations of oral and injectable drugs),
while for the hypertension patients, we consider the most frequent 19
of the 32 combinations of drugs and merge all others into one class.

Diabetic Patients. During each line of therapy, we assume that the
patient visits every 100 days, beginning from the start of the therapy
and continuing until at least 80 days prior to the end of the therapy.
The measurements, lab tests are averaged over the 100 days prior to the
visit. We define the current prescription of each visit as the combination
of drugs that was given during the 100 days immediately preceding the
visit, and the standard of care as the drug regimen that is prescribed
by the doctors at the time of the visit. If no value exists over the 100
days, we use the neighboring visits to determine the measurements/lab
tests (through linear interpolation) and the current prescription. The
future outcome for each visit is computed as the average HbA1c 75 to
200 days after the visit. Patient visits that contain missing values for
the outcome are dropped. We end up with 12,016 valid visits, which
are divided into four groups based on their standard of care.

Hypertension Patients. During each line of therapy, the patient visits
are considered occurring every 70 days, beginning from the start of the
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therapy and continuing until at least 180 days prior to the end of the
therapy. The measurements, lab tests are averaged over the 10 days
prior to the visit. We define the current prescription of each visit as the
combination of drugs that was given during the 10 days immediately
preceding the visit, and the standard of care as the drug regimen that is
prescribed by the doctors at the time of the visit. We narrow down the
time window due to the fact that the blood pressure is usually much
more noisy than the HbA1c, and thus the features within a smaller
time window tend to be more relevant. The future outcome of the visit
is the average systolic blood pressure 70 to 180 days after it. Linear
interpolation is used to replace the missing values of the measurements
and lab tests. We have obtained 26,128 valid visits, which are divided
into 20 groups based on their standard of care.

Prescriptions. The prescriptions are used to group the patient visits.
For the diabetic patients, we consider two types of prescriptions: one
includes oral medications, e.g., metformin, pioglitazone, and sitagliptin,
etc., and the other type includes injectable medications, e.g., insulin.
Typically, injectable medications are prescribed for patients with more
advanced disease. For the hypertension patients, six types of prescrip-
tions are considered: ACE inhibitor, Angiotensin Receptor Blockers
(ARB), calcium channel blockers, thiazide and thiazide-like diuretics,
α-blockers and β-blockers.

The following sets of features are considered for building the predic-
tive model. The number of features included in both datasets is 63. All
features are standardized before fed into our algorithm.

Demographic information. Includes sex (male, female and other),
age and race (10 types). We consider the three most frequent races:
Caucasian, Black, and Hispanic, and group all others into one category
“other”.

Measurements. Systolic/diastolic blood pressure (mmHg), Body Mass
Index (BMI) and pulse.
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Lab tests. Two types of tests considered: blood chemistry tests such
as calcium, carbon dioxide, chloride, potassium, sodium, creatinine, and
urea nitrogen; and hematology tests such as blood glucose, hematocrit,
hemoglobin, leukocyte count, platelet count, and mean corpuscular
volume.

Diagnosis history. The ICD-9 coding system is used to record diag-
noses.

7.4.2 Model Development and Results

We will compare our prescriptive algorithm with several alternatives
that replace our Distributionally Robust Linear Regression (DRLR)
informed K-NN with a different predictive model such as LASSO, CART,
and OLS informed K-NN [166]. Both deterministic and randomized
prescriptive policies are considered using predictions from these models.
We note a very recent tree-based algorithm called Optimal Prescription
Tree (OPT) developed in [167], that uses either constant or linear models
in the leaves of the tree in order to predict the counterfactuals and to
assign optimal treatments to new samples. We do not include it as a
comparison in this work, yet, it would be interesting to do in subsequent
work.

Parameter tuning. Within each prescription group, we randomly split
the patient visits into three sets: a training set (80%), a validation set
(10%), and a test set (10%). To reflect the dependency of the number
of neighbors on the number of training samples, we perform a linear
regression between these two quantities, which will be used to determine
the number of neighbors needed in different settings.

To tune the exponent ξ for the randomized strategy, it is necessary
to evaluate the effects of counterfactual treatments. We assess the
predictive power of a series of robust predictive models in terms of the
following metrics:

• R-square:

R2(y, ŷ) = 1−
∑Nt
i=1(yi − ŷi)2∑Nt
i=1(yi − ȳ)2

,
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where y = (y1, . . . , yNt) and ŷ = (ŷ1, . . . , ŷNt) are the vectors of
the true (observed) and predicted outcomes, respectively, with Nt

the size of the test set, and ȳ = (1/Nt)
∑Nt
i=1 yi.

• Mean Squared Error (MSE):

MSE(y, ŷ) = 1
Nt

Nt∑
i=1

(yi − ŷi)2.

• Mean Absolute Error (MeanAE), which is more robust to large
deviations than the MSE in that the absolute value function
increases more slowly than the square function over large (absolute)
values of the argument.

MeanAE(y, ŷ) = 1
Nt

Nt∑
i=1
|yi − ŷi|.

• MAD, which can be viewed as a robust measure of the MeanAE,
computing the median of the absolute deviations:

MAD(y, ŷ) = Median (|yi − ŷi|, i ∈ JNtK) .

The out-of-sample performance metrics of the various models on the
two datasets are shown in Tables 7.1 and 7.2, where the numbers
in the parentheses show the improvement of DRLR informed K-NN
compared against other methods. Huber refers to the robust regression
method proposed in [7], [8], and CART refers to the Classification And
Regression Trees. Huber/OLS/LASSO + K-NN means fitting a K-NN
regression model with a Huber/OLS/LASSO-weighted distance metric.
We note that in order to produce well-defined and meaningful predictive
performance metrics, the dataset used to generate Tables 7.1 and 7.2
did not group the patients by their prescriptions. A universal model was
fit to all patients with prescription information being used as one of the
predictors. Nevertheless, it would still be considered as a fair comparison
as all models were evaluated on the same dataset. The results provide
supporting evidence for the validity of our DRLR+K-NN model that
outperforms all others in all metrics, and is thus used to impute the
outcome for an unobservable treatment m, through averaging over the
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Table 7.1: Performance of different models for predicting future HbA1c for diabetic
patients

Methods R2 MSE MeanAE MAD
OLS 0.52 (2%) 1.36 (2%) 0.81 (4%) 0.55 (11%)
LASSO 0.52 (2%) 1.37 (2%) 0.80 (3%) 0.54 (9%)
Huber 0.36 (47%) 1.81 (26%) 0.96 (19%) 0.70 (30%)
RLAD 0.50 (4%) 1.40 (4%) 0.78 (1%) 0.50 (1%)
K-NN 0.25 (109%) 2.11 (37%) 1.07 (27%) 0.81 (39%)
OLS+K-NN 0.52 (0%) 1.34 (0%) 0.79 (1%) 0.51 (3%)
LASSO+K-NN 0.52 (1%) 1.36 (1%) 0.79 (1%) 0.50 (1%)
Huber+K-NN 0.51 (3%) 1.38 (3%) 0.81 (3%) 0.53 (7%)
DRLR+K-NN 0.52 (N/A) 1.34 (N/A) 0.78 (N/A) 0.49 (N/A)
CART 0.49 (7%) 1.43 (7%) 0.81 (3%) 0.50 (2%)

Table 7.2: Performance of different models for predicting future systolic blood
pressure for hypertension patients

Methods R2 MSE MeanAE MAD
OLS 0.31 (14%) 170.80 (6%) 10.09 (7%) 8.15 (9%)
LASSO 0.31 (14%) 170.83 (6%) 10.08 (7%) 8.22 (10%)
Huber 0.22 (62%) 193.54 (17%) 10.70 (12%) 8.61 (14%)
RLAD 0.30 (18%) 173.32 (8%) 10.11 (7%) 8.28 (11%)
K-NN 0.33 (10%) 167.41 (5%) 9.62 (2%) 7.50 (2%)
OLS+K-NN 0.35 (1%) 160.22 (0%) 9.42 (0%) 7.49 (1%)
LASSO+K-NN 0.32 (12%) 169.50 (6%) 9.74 (3%) 7.73 (5%)
Huber+K-NN 0.32 (10%) 167.92 (5%) 9.71 (3%) 7.84 (6%)
DRLR+K-NN 0.36 (N/A) 159.74 (N/A) 9.42 (N/A) 7.38 (N/A)
CART 0.25 (43%) 186.23 (14%) 10.34 (9%) 8.22 (10%)

most similar patient visits who have received the prescription m in
the validation set, where the number of neighbors is selected to fit
the size of the validation set. Note that using DRLR+K-NN as an
imputation model might cause bias in evaluating the performance of
different methods, since it is in favor of the framework that uses the same
model (DRLR+K-NN) to predict the future outcome. Using a weighted
combination of several different predictive models may alleviate the
bias. This could be done in future work.
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Model training. We solve the predictive models on the whole training
set with the best tuned parameters, the output of which is used to
develop the optimal prescriptions for the test set patients. The parameter
ε̄ in the threshold T (x) is set to 0.1. For estimating the conditional mean
and standard deviation of the predicted outcome using Algorithm 1, we
set am = 0.9Nm, and dm = 100. We compute the average improvement
(reduction) in outcomes for patients in the test set, which is defined
to be the difference between the (expected) future outcome under
the recommended therapy and the current observed outcome. If the
recommendation does not match the standard of care, its future outcome
is estimated through the imputation model that was discussed earlier,
where Km should be selected to fit the size of the test set.

Results and discussions. The reductions in outcomes (future minus
current) for various models are shown in Table 7.3. The columns indi-
cate the prescriptive policies (deterministic or randomized); the rows
represent the predictive models whose outcomes ŷm(x) serve as inputs
to the prescriptive algorithm. We test the performance of all algorithms
over five repetitions, each with a different training set. The numbers
outside the parentheses are the mean reductions in the outcome and
the numbers inside the parentheses are the corresponding standard
deviations. We note that HbA1c is measured in percentage while sys-
tolic blood pressure in mmHg. We also list the reductions in outcomes
resulted from the standard of care, and the current prescription which
prescribes mf(x) = mc(x) with probability one, i.e., always continuing
the current drug regimen.

Table 7.3: The reduction in HbA1c/systolic blood pressure for various models

Diabetes Hypertension

Deterministic Randomized Deterministic Randomized

LASSO −0.51 (0.16) −0.51 (0.16) −4.71 (1.09) −4.72 (1.10)
CART −0.45 (0.13) −0.42 (0.14) −4.84 (0.62) −4.87 (0.66)
OLS+K-NN −0.53 (0.13) −0.53 (0.13) −4.33 (0.46) −4.33 (0.47)
DRLR+K-NN −0.56 (0.06) −0.55 (0.08) −6.98 (0.86) −7.22 (0.82)
Current prescription −0.22 (0.04) −2.52 (0.19)
Standard of care −0.22 (0.03) −2.37 (0.11)
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Several observations are in order: (i) all models outperform the
current prescription and the standard of care; (ii) the DRLR-informed
K-NN model leads to the largest reduction in outcomes with a rela-
tively stable performance; and (iii) the randomized policy achieves a
similar performance (slightly better on the hypertension dataset) to
the deterministic one. We expect the randomized strategy to win when
the effects of several treatments do not differ much, in which case the
deterministic algorithm might produce misleading results. The random-
ized policy could potentially improve the out-of-sample (generalization)
performance, as it gives the flexibility of exploring options that are
suboptimal on the training set, but might be optimal on the test set.
The advantages of the DRLR+K-NN model are more prominent in
the hypertension dataset, due to the fact that we considered a finer
classification of the prescriptions for patients with hypertension, while
for diabetic patients, we only distinguish between oral and injectable
prescriptions.

7.4.3 Refinement on the DRLR+K-NN Model

Up to now, we used a patient-independent parameter Km (the number
of neighbors in group m) to predict the effects of treatments on differ-
ent individuals. Such a strategy might improperly utilize less relevant
information and lead to inadequate predictions. For example, denote
by dmi the distance between the patient in question and her i-th closest
neighbor in group m, and assume there exists a “big jump” at dmj , i.e.,
dmj −

∑j−1
i=1 d

m
i /(j − 1) is large. If Km ≥ j, we would include the j-th

closest neighbor in computing the K-NN average, resulting in a biased
estimate given its dissimilarity to the patient of interest.

We thus propose a patient-specific rule to determine the appropriate
number of neighbors. Specifically, using the notations dmi defined above,
we know dm1 ≤ dm2 ≤ · · · ≤ dmKm . Define

j∗m = arg max
j

(
dmj −

j−1∑
i=1

dmi
j − 1

)
.
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The number of neighbors K ′m will be determined as follows:

K ′m =


j∗m − 1, if

dm
j∗m
−
∑j∗m−1

i=1
dm
i

j∗m−1∑j∗m−1
i=1

dm
i

j∗m−1

> T̃ ,

Km, otherwise,

where T̃ is some threshold that can be tuned using cross-validation.
This strategy discards the neighbors that are relatively far away from
the patient under consideration. We test this strategy on the two
datasets, using a cross-validated threshold T̃ = 2.5 and 1 for diabetes
and hypertension, respectively, and show the results in Tables 7.4 and 7.5.
Notice that such a truncation strategy could affect both the training
of DRLR+K-NN and the imputation model that is used to evaluate
the effects of counterfactual treatments. To compare with the original
strategy of using a uniform Km for every patient, we list in the left
halves of the tables the results from adopting the truncation strategy
to both training and imputation, and in the right halves the results

Table 7.4: The reduction in HbA1c for various models (T̃ = 2.5)

Training with K′m Training with Km

Deterministic Randomized Deterministic Randomized

LASSO −0.54 (0.19) −0.54 (0.20) −0.50 (0.17) −0.49 (0.17)
CART −0.62 (0.32) −0.57 (0.27) −0.56 (0.19) −0.53 (0.15)
OLS+K-NN −0.65 (0.25) −0.64 (0.25) −0.61 (0.16) −0.61 (0.17)
DRLR+K-NN −0.68 (0.20) −0.67 (0.23) −0.61 (0.10) −0.59 (0.10)
Current prescription −0.23 (0.05) −0.22 (0.05)
Standard of care −0.22 (0.03) −0.22 (0.03)

Table 7.5: The reduction in systolic blood pressure for various models (T̃ = 1)

Training with K′m Training with Km

Deterministic Randomized Deterministic Randomized

LASSO −4.34 (0.28) −4.33 (0.28) −4.22 (0.20) −4.22 (0.19)
CART −4.46 (0.46) −4.49 (0.50) −4.48 (0.55) −4.51 (0.49)
OLS+K-NN −4.30 (0.35) −4.30 (0.32) −4.27 (0.32) −4.29 (0.31)
DRLR+K-NN −7.42 (0.46) −7.58 (0.51) −6.58 (0.70) −6.78 (0.73)
Current prescription −2.56 (0.14) −2.50 (0.16)
Standard of care −2.37 (0.11) −2.37 (0.11)
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from applying the truncation only to the imputation/evaluation model.
We see that using a patient-specific K ′m in general leads to a larger
reduction in outcomes.

7.5 Summary

We proposed an interpretable robust predictive method by combining
ideas from distributionally robust optimization with the local learning
procedure K-Nearest Neighbors, and established theoretical guarantees
on its out-of-sample predictive performance. We also developed a ran-
domized prescriptive policy based on the robust predictions, and proved
its optimality in terms of the expected true outcome. In conjunction, we
derived a closed-form expression for a clinically meaningful threshold
that is used to activate the randomized prescriptive policy. We applied
the proposed methodology to a diabetes and a hypertension dataset
obtained from a major safety-net hospital, providing numerical evidence
for the predicted improvement on outcomes due to our algorithm.
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8
Advanced Topics in Distributionally

Robust Learning

In this section, we will cover a number of active research topics in the
domain of DRO under the Wasserstein metric. Different from previous
sections, where we focused on traditional supervised learning models
with identically and independently distributed labeled data, here we
want to explore how to adapt the DRO framework to more complex
data and model regimes. Specifically, we will study:

• Distributionally Robust Semi-Supervised Learning (SSL), which
estimates a robust classifier with partially labeled data, through
(i) either restricting the marginal distribution to be consistent
with the unlabeled data, (ii) or modifying the structure of DRO
by allowing the center of the ambiguity set to vary, reflecting the
uncertainty in the labels of the unsupervised data.

• DRO in Reinforcement Learning (RL) with temporally correlated
data, which considers Markov Decision Processes (MDPs) and
seeks to inject robustness into the probabilistic transition model.
We will derive a lower bound for the distributionally robust value
function in a regularized form.

201
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8.1 Distributionally Robust Learning with Unlabeled Data

In this section we study a Distributionally Robust Optimization (DRO)
model with the availability of unlabeled data. This problem can be
approached with two types of model architectures. One assumes a
setting where supervised DRO with labeled data does not ensure a good
generalization performance, and explores the role of unlabeled data in
enhancing the performance of conventional supervised DRO, while the
other is set up in a semi-supervised setting with potential noise on both
labeled and unlabeled data, and aims to robustify SSL algorithms by
employing the DRO framework.

Note that the role of the unlabeled data in the two modeling schemes
is different, so are the learning objectives. One seeks to utilize the ad-
ditional information contained in the unlabeled data, while the other
seeks immunity to perturbations on both labeled and unlabeled data.
As we will see in the subsequent sections, the former objective is realized
through confining the elements of the DRO formulation, i.e., the ambigu-
ity set Ω, to digest the additional information brought by the unlabeled
data. By contrast, the latter requires modification of the underlying
infrastructure of DRO so that it can be adapted to existing SSL algo-
rithms.

Examples of past works that use unlabeled data to improve adver-
sarial robustness include [181]–[184]. For inducing robustness to SSL,
[185] proposed an ensemble learning approach through label aggregation.
Previous works that fall into the intersection of DRO and SSL include
[186]–[188], where the first two study the role of unlabeled data in
improving the generalization performance, while the third one focuses
on robustifying a well-known SSL framework, called self-training, by
using the DRO.

Throughout this section, we consider a K-class classification problem
with a dataset D of size N consisting of two non-overlapping sets Dl
(labeled) and Dul (unlabeled), with size Nl and Nul, respectively, and
Nl + Nul = N . Denote by Il and Iul the index sets corresponding to
the labeled and unlabeled data points, respectively. Thus, Dl = {zi ,
(xi, yi): i ∈ Il}, where yi ∈ JKK, and Dul = {xi: i ∈ Iul}.
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8.1.1 Incorporating Unlabeled Data into Distributionally Robust
Learning

One of the prerequisites for ensuring a good generalization perfor-
mance of Wasserstein DRO requires that the ambiguity set includes
the true data distribution. In a “medium-data” regime, where the ob-
served data may be far from the true data distribution, the Wasserstein
ball must be extremely large to contain the true data distribution
(cf. Theorem 2.7.1). As a result, the learner has to be robust to an
enormous variety of data distributions, preventing it from making a
prediction with any confidence [187]. To address this problem, a num-
ber of works have proposed to use unlabeled data to further constrain
the adversary, see [186], [187]. Recall the general Wasserstein DRO
formulation for a supervised learning problem with feature vector x and
label y:

inf
β

sup
Q∈Ω

EQ[hβ(x, y)], (8.1)

where hβ(x, y) is the loss function evaluated at some hypothesis β, and
Q is the probability distribution of (x, y) belonging to some set Ω that
constrains the distribution to be close to the empirical distribution of
the labeled data, denoted by P̂Nl , in the sense of the order-1 Wasserstein
metric induced by a cost metric s:

Ω , {Q ∈ P(X × Y): Ws,1(Q, P̂Nl) ≤ ε}.

To overcome the problem of overwhelmingly-large ambiguity set Ω, [187]
proposed to remove from Ω the distributions that are unrealistic in
the sense that their marginals in feature space do not resemble the
unlabeled data. Specifically, they define the uncertainty set to be

Ω , {Q ∈ U(PX ,PY ,PY): Ws,1(Q, P̂Nl) ≤ ε}, (8.2)

where PY and PY are two distributions on the label y with probabil-
ity vectors p , (p1, . . . , pK) and p , (p1, . . . , pK), respectively, and
U(PX ,PY ,PY) is the set of probability measures whose x-marginal is
PX and y-marginal is constrained by [p,p], i.e., the class i probabil-
ity pi ∈ [p

i
, pi], i ∈ JKK. They choose PX to be consistent with the
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unlabeled data x ∈ Dul. The constraint on PY could come from prior
knowledge, or could be implied by the labeled training data.

[186] also constrained the uncertainty set Ω by incorporating the in-
formation of the unlabeled data. Different from (8.2) where the marginals
are enforced to be consistent with the unlabeled data, they set the joint
support of the feature and labels to be confined to the empirical observa-
tions. Specifically, they build a “complete” unlabeled set by assigning all
possible labels to each unlabeled data point: Cul ,

⋃K
y=1{(xi, y): i ∈ Iul},

and then construct the full dataset C = Dl ∪ Cul. The uncertainty set is
restricted to be supported on C, namely,

Ω , {Q ∈ P(C): Ws,1(Q, P̂Nl) ≤ ε}. (8.3)

Compared to (8.2), (8.3) is more restrictive in the sense that it imposes
constraints on the joint distribution of the feature and labels, while (8.2)
only restricts the marginals. Furthermore, it does not allow support
points outside the empirical observations, which eliminates one of the
major advantages of the Wasserstein metric. In the absence of the
unlabeled data, (8.3) essentially asks the learner to be robust only to
distributions with support on Dl, which could hurt the generalization
capability on unseen data. By contrast, (8.2) guarantees robustness to
distributions with support on the whole data space.

Note that the DRO formulation with an uncertainty set defined
through either (8.2) or (8.3) does not serve the purpose of robustifying
an existing SSL model. Rather, it explores ways of improving the
generalization performance of a DRO model by utilizing the unlabeled
data information.

In the remainder of this section, we will discuss a Stochastic Gradi-
ent Descent (SGD) algorithm proposed in [187], in order to solve the
Wasserstein DRO formulation assembled with the ambiguity set (8.2).
The key is to transform the inner infinite-dimensional maximization
problem in (8.1) into its finite-dimensional dual. Define the worst-case
expected loss as

vP (β) , sup
Q∈Ω

EQ[hβ(x, y)]. (8.4)
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Rewrite (8.4) by casting it as an optimal transportation problem with
a transport plan π ∈ P(Z × Z):

vP (β) = sup
π∈P(Z×Z)

∫
(X×Y)×Z

hβ(x, y)dπ((x, y), z′)

s.t.
∫
Z×Z

s(z, z′)dπ(z, z′) ≤ ε,∫
Z×Z

δzi(z′)dπ(z, z′) = 1
Nl
, ∀i ∈ Il,∫

(A×Y)×Z
dπ((x, y), z′) = PX (A), ∀A ⊆ X ,∫

(X×Y)×Z
δi(y)dπ((x, y), z′) ≤ pi, ∀i ∈ JKK,∫

(X×Y)×Z
δi(y)dπ((x, y), z′) ≥ p

i
, ∀i ∈ JKK,

(8.5)
where we use z , (x, y) to index the support of the worst-case measure
and z′ to index the support of P̂Nl . Notice that the constraint on the
x-marginal is infinite dimensional. Through translating (8.5) to its dual
one can move the infinite dimensional constraint to an expectation
under PX in the objective. The dual to (8.5) can be formulated as

vD(β) = inf
α,γ,λ,λ

αε+ 1
Nl

Nl∑
i=1

γi +
K∑
k=1

(λkpk − λkpk)

+EPX [φ(x;β, α,γ,λ,λ)]
s.t. α, λk, λk ≥ 0, ∀k ∈ JKK,

(8.6)

where

φ(x;β, α,γ,λ,λ) = max
i∈JNlK,k∈JKK

φi,k(x;β, α,γ,λ,λ),

φi,k(x;β, α,γ,λ,λ) , hβ(x, k)− (αs((x, k), zi) + γi)− (λk − λk).
It can be shown that strong duality holds if the primal problem (8.5) is
feasible. We refer the reader to Theorem 2 of [187] for a detailed proof.
The DRO problem (8.1) reduces to minimizing vD(β) w.r.t. β, which
can be solved via the stochastic gradient method. The main obstacle to
deriving the gradient lies in the expectation in the objective of vD(β).
By applying the Reynolds Transport Theorem [189], one can obtain
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that
∂

∂α
EPX [φ(x;β, α,γ,λ,λ)] = EPX

[
∂

∂α
φ(x;β, α,γ,λ,λ)

]
. (8.7)

Notice that φ is defined to be the maximum of a series of functions φi,k.
To evaluate its derivative, we need to partition the feature space X to
recognize the set of points x where the maximum is achieved at each
(i, k). Define

V i,k , {x ∈ X : φi,k(x;β, α,γ,λ,λ) ≥ φi′,k′(x;β, α,γ,λ,λ), ∀i′, k′}.

The derivative of φ can be evaluated as

∂

∂α
φ(x;β, α,γ,λ,λ) = −

Nl∑
i=1

K∑
k=1

1Vi,k(x)s((x, k), zi),

where 1Vi,k(x) denotes the indicator function of the event x ∈ V i,k.
Similarly, the gradients w.r.t. other parameters are computed as follows

∂

∂γi
φ(x;β, α,γ,λ,λ) = −

K∑
k=1

1Vi,k(x),

∂

∂λk
φ(x;β, α,γ,λ,λ) =

Nl∑
i=1

1Vi,k(x),

∂

∂λk
φ(x;β, α,γ,λ,λ) = −

Nl∑
i=1

1Vi,k(x),

∂

∂βj
φ(x;β, α,γ,λ,λ) ∈

Nl∑
i=1

K∑
k=1

1Vi,k(x) ∂

∂βj
hβ(x, k).

For x lying on the boundary between two of the sets V i,k, we can obtain
a subgradient by arbitrarily selecting only one of these V i,k to contain
x when evaluating 1Vi,k(x). To evaluate the expectation of the gradient
under PX on the RHS of (8.7), one can simulate a series of x values,
say x1, . . . ,xNb , from PX , and compute the above gradients by taking
the sample average. This is summarized in Algorithm 2.
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Algorithm 2 SGD for distributionally robust learning with unlabeled
data under uncertainty set (8.2).
Input: ε ≥ 0, p

i
, pi ∈ [0, 1], i ∈ JKK, feasible solution β0, step size

δ > 0, batch size Nb.
β ← β0, α← 0,γ,λ,λ← 0.
while not converged do

Sample x1, . . . ,xNb ∼ PX .
β ← ProjB[β − δ

Nb

∑Nb
j=1∇βφ(xj ;β, α,γ,λ,λ)]

α← max(0, α− δ[ε+ 1
Nb

∑Nb
j=1∇αφ(xj ;β, α,γ,λ,λ)])

γ ← γ − δ[ 1
Nl

e + 1
Nb

∑Nb
j=1∇γφ(xj ;β, α,γ,λ,λ)]

λ← max(0,λ− δ[−p + 1
Nb

∑Nb
j=1∇λφ(xj ;β, α,γ,λ,λ)])

λ← max(0,λ− δ[p + 1
Nb

∑Nb
j=1∇λφ(xj ;β, α,γ,λ,λ)])

end while

8.1.2 Distributionally Robust Semi-Supervised Learning

In this subsection we discuss the problem of robustifying existing SSL
algorithms via DRO. Different from Section 8.1.1, the goal here is
to induce robustness into conventional SSL models, which requires
modification of the DRO infrastructure in order to fit the characteristics
of the problem at hand. Note that DRO cannot readily be applied to
the partially-labeled setting, since it needs complete knowledge of all
the feature-label pairs.

A well-known family of SSL models is called self-learning, which first
trains a classifier on the labeled portion of a dataset, and then assigns
pseudo-labels to the remaining unlabeled samples using the learned rules.
The enlarged dataset consisting of both the supervised and artificially-
labeled unsupervised samples is used in the final stage of training. To
prevent overfitting, instead of assigning a deterministic hard label to
the unsupervised data points, one can apply a soft labeling scheme
that maintains a level of uncertainty through specifying a probability
distribution of the labels.

To use DRO in a semi-supervised setting, we need to address the
uncertainty embedded in the unknown labels of the unsupervised sam-
ples. This can be resolved by soft-labeling. Define the consistent set of
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probability distributions P̂(D) ⊆ P(Z) w.r.t. a partially-labeled dataset
D = Dl ∪ Dul as

P̂(D) ,
{(

Nl

N

)
P̂Nl +

(
Nul

N

)
P̂Nul ·Q: Q ∈ PX (Y)

}
,

where Q encodes the uncertainty in the labels for the unsupervised
dataset Dul, and PX (Y) denotes the set of all conditional distributions
supported on Y, given features in X . Note that the distributions in
P̂(D) differ from each other only in the way they assign soft labels to
the unlabeled data, and the empirical measure corresponding to the
true complete dataset is a member of P̂(D).

We will illustrate the idea proposed in [188] for introducing DRO to
SSL, where they select a suitable measure from P̂(D), and use it as a
proxy of the true empirical probability measure that serves as the center
of the Wasserstein ball. The learner essentially aims to hedge against
a set of distributions centered at some S ∈ P̂(D) that is induced by a
soft-label distribution Q, so that the resulting classification rule would
show low sensitivity to adversarial perturbations around the soft-label
distribution. The criterion for choosing S is to make the worst-case
expected loss as small as possible. Specifically, the Semi-Supervised
Distributionally Robust Learning (SSDRO) model proposed by [188]
can be formulated as

inf
β

inf
S∈P̂(D)

{
sup

P∈Ωε(S)
EP[hβ(x, y)] +

(1−Nl/N

λ

)
EP̂Nul [H(S|x)]

}
, (8.8)

where Ωε(S) denotes the set of probability distributions that are close
to S by a distance at most ε, i.e.,

Ωε(S) , {P ∈ P(Z): Ws,1(P, S) ≤ ε},

In (8.8), S|x is the conditional distribution over Y given x ∈ X , λ < 0
is a user-defined parameter, and H(·) denotes the Shannon entropy.

Notice that for a fixed β, the inner infimum of (8.8) guides the
learner to pick a soft label distribution that tends to reduce the loss
function, which [188] refers to as an optimistic learner. Alternatively,
one can choose to be pessimistic, i.e., choosing a β that hedges against
the maximum loss over all possible choices of S. To prevent hard labeling
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of the unsupervised data, λ is set to be negative for optimistic learning,
and positive for pessimistic learning.

Note also that compared to conventional DRO models, in (8.8)
we have an additional regularization term that penalizes the Shannon
entropy of the conditional label distribution of the unlabeled data.
When λ < 0, the regularization term (1−Nl/N

λ )EP̂Nul [H(S|x)] becomes
negative. The formulation (8.8) essentially promotes softer labels for
the unlabeled data by encouraging a larger entropy, implying a higher
level of uncertainty in the labels.

We next discuss how to solve Problem (8.8). Using duality, [188] was
able to transform the inner min-max formulation to an analytic form
whose gradient can be efficiently computed. A Lagrangian relaxation to
(8.8) is given in the following theorem.

Theorem 8.1.1 ([188], Theorem 1). Consider a continuous loss function
h, and a continuous transportation cost s. For a partially-labeled dataset
D with size N , define the empirical Semi-Supervised Adversarial Risk
(SSAR), denoted by R̂SSAR(β;D), as

R̂SSAR(β;D) ,
1
N

∑
i∈Il

φγ(xi, yi;β)+ 1
N

∑
i∈Iul

(λ)
softmin
y∈Y

{φγ(xi, y;β)}+γε,

(8.9)
where γ ≥ 0, and the adversarial loss φγ(x, y;β) and the soft-minimum
operator are defined as:

φγ(x, y;β) , sup
z′∈Z

hβ(z′)− γs(z′, (x, y)), (8.10)

and
(λ)

softmin
y∈Y

{q(y)} ,
1
λ

log
( 1
|Y|

∑
y∈Y

eλq(y)
)
,

respectively. Let β∗ be a minimizer of (8.8) for some given ε ≥ 0 and
λ < 0. Then, there exists γ ≥ 0 such that β∗ is also a minimizer of (8.9)
with the same parameters ε and λ.

According to Theorem 8.1.1 our problem is now translated to solving
for a β that minimizes R̂SSAR(β;D). To apply SGD, the key is to derive
the gradient of the adversarial loss function φγ(x, y;β), which itself is the
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output of an optimization problem. The gradient of φ w.r.t. β relies on
the optimal solution of Problem (8.10), i.e., ∇βφγ(x, y;β) = gβ(z∗(β)),
where gβ(z) , ∇βhβ(z) and z∗(β) is the optimal solution to (8.10).
The following lemma specifies a set of sufficient conditions to ensure
the uniqueness of the solution.

Lemma 8.1.2 ([188], Lemma 1). Assume the loss function h to be
differentiable w.r.t. z, and ∇zhβ(z) is Lz-Lipschitz w.r.t. β. Also, the
cost metric s is 1-strongly convex in its first argument. If γ > Lz, then
Problem (8.10) is (γ − Lz)-strongly concave for all (x, y) ∈ Z.

Lemma 8.1.2 guarantees the existence and uniqueness of the solution
to (8.10). We can thus express the gradients of φ and R̂SSAR explicitly
as a function of the solution. An efficient computation of the gradient
of R̂SSAR(β;D) w.r.t. β is given in the following theorem.

Theorem 8.1.3 ([188], Lemma 2). Under conditions of Lemma 8.1.2,
assume the loss function h to be differentiable w.r.t. β, and let gβ(z) ,
∇βhβ(z). For a fixed β, define

z∗i (β) = arg max
z′∈Z

hβ(z′)− γs(z′, (xi, yi)), i ∈ Il, (8.11)

and,

z∗i (y;β) = arg max
z′∈Z

hβ(z′)− γs(z′, (xi, y)), y ∈ Y, i ∈ Iul. (8.12)

Then, the gradient of (8.9) w.r.t. β can be obtained as

∇βR̂SSAR(β;D) = 1
N

∑
i∈Il

gβ(z∗i (β)) + 1
N

∑
i∈Iul

∑
y∈Y

q(y;β)gβ(z∗i (y;β)),

(8.13)
where q(y;β) , eλφγ(xi,y;β)/(∑y′∈Y e

λφγ(xi,y′;β)).

Using Theorem 8.1.3, we can apply SGD to solve (8.9), or equiv-
alently, the SSDRO model (8.8). This is summarized in Algorithm 3.
[188] proved a convergence rate of O(T−1/2) for Algorithm 3, if we
assume z∗i (β) and z∗i (y;β) can be computed exactly. Nonetheless, the
optimality gap δ can be set infinitesimally small due to the strong
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concavity of (8.11) and (8.12) that is shown in Lemma 8.1.2. The
parameters γ and λ can be tuned via cross-validation.

Algorithm 3 Stochastic Gradient Descent for SSDRO.
Inputs: D, γ, λ, k ≤ N, δ, α, T .
Initialize: β ← β0, t← 0.
for t = 0→ T − 1 do

Randomly select index set I ⊆ JNK with size k.
for i ∈ Il ∩ I do

Compute a δ-approx of z∗i (βt) from (8.11).
end for
for (i, y) ∈ (Iul ∩ I)× Y do

Compute a δ-approx of z∗i (y;βt) from (8.12).
end for
Compute the sub-gradient of R̂SSAR(βt;D) from (8.13).
Update: βt+1 ← βt − α∇βR̂SSAR(βt;D).

end for
Output: β∗ ← βT .

8.2 Distributionally Robust Reinforcement Learning

So far in this monograph, we considered learning problems where the
objective is to predict an output variable (or vector in the setting of
Section 6). These learning problems were cast as distributionally robust
single-period optimization problems. Even in the applications of Sec-
tion 7 involving medical prescriptions, where we considered information
from multiple past time periods to learn actions that optimize an out-
come in the next time period, the resulting optimization problem was
single-period. In this section, we will discuss multi-period optimization
motivated by learning a policy for a Markov Decision Process (MDP).
We will restrict ourselves to model-based settings, where there is an
explicit model of how the MDP transitions from state to state under
some policy, and seek to inject robustness into this transition model.
The development follows the work in [190].
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We start by defining a discrete-time MDP. Consider an MDP with
a finite state space S, a finite action space A, a deterministic reward
function r: S×A → R, and a transition probability model p that, given a
state s1 and an action a, determines the probability p(s2|s1, a) of landing
to the next state s2. A policy π maps states to actions; specifically, π(a|s)
denotes the probability of selecting action a in state s. The state of
the MDP evolves dynamically as follows. Suppose that at time t the
MDP is in state st. According to the policy π, it selects some action
at, receives a reward r(st, at), and transitions to the next state st+1
with probability p(st+1|st, at). In an infinite-horizon discounted reward
setting, the objective is to select a policy π that maximizes the expected
total discounted reward

Eτ∼πp

[ ∞∑
t=0

γtr(st, at)
]
,

where γ ∈ [0, 1) is the discount factor and τ ∼ π represents a random
trajectory τ = (s0, a0, s1, a1, . . .) sampled by selecting the initial state
s0 according to some probability distribution ρ0(·) ∈ P(S), sampling ac-
tions according to at ∼ π(·|st), and states according to st+1 ∼ p(·|st, at)
(hence, the subscript p in the expectation to denote dependence on the
transition model p).

We can now define the state value, or reward-to-go function, which
equals the future total discounted reward when starting from state s,
namely,

vπp (s) = Eτ∼πp

[ ∞∑
t=0

γtr(st, at)
∣∣∣∣ s0 = s

]
.

The value function can be obtained as a solution to the following
Bellman equation:

v(s) = T πp v(s) 4=
∑
a∈A

π(a|s)
(
r(s, a) + γ

∑
q∈S

p(q|s, a)v(q)
)
.

The operator T πp satisfies a contraction property with respect to the
sup-norm, implying that the Bellman equation has a unique fixed point
denoted by vπp (s). This can for instance be obtained by successive
application of T πp to some arbitrary initial solution – a method known
as value iteration.
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8.2.1 Deterministically Robust Policies

A number of results in the literature examined how to introduce robust-
ness with respect to uncertainty on the transition probability model,
starting with [191]–[193]. A more complete theory of robust dynamic
programming has been developed in [194] and [195]. In this work, the
transition probability vector ps,a = (p(q|s, a); q ∈ S) at any state-action
pair (s, a) belongs to some ambiguity or uncertainty set Us,a ⊆ P(S). It
is assumed that every time a state-action pair (s, a) is encountered, a
potentially different measure ps,a ∈ Us,a could be applied; this has been
termed the rectangularity assumption in [194].

In this robust setting, one can define a robust value function as the
worst-case value function over the uncertainty set, that is,

vπU (s) = inf
p∈U

Eτ∼πp

[ ∞∑
t=0

γtr(st, at)
∣∣∣∣ s0 = s

]
, (8.14)

where the uncertainty set U is the cartesian product of the transition
probability uncertainty sets encountered throughout the trajectory, i.e.,
U = ∏∞

t=0 Ust,at .
[194] and [195] show that a robust Bellman equation can be written

as:

v(s) =T πU v(s) (8.15)
4=
∑
a∈A

π(a|s)
(
r(s, a) + γ inf

ps,a∈Us,a

∑
q∈S

p(q|s, a)v(q)
)
.

As with the non-robust case, the operator T πU satisfies a contraction
property, implying that the robust Bellman equation has a unique fixed
point which can be computed by successive application of T πU .

8.2.2 Distributionally Robust Policies

Distributionally robust MDPs can be thought of as a generalization
of deterministically robust MDPs. Instead of selecting transition prob-
abilities out of the ambiguity set U defined earlier, we can view the
transition probability model as being sampled according to some dis-
tribution µ ∈ M ⊆ P(U), i.e., µ is the probability distribution of the
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transition probability model p. Making the same rectangularity assump-
tion as before, that is, requiring that µ is a product of independent
distributions over Us,a, we can define a distributionally robust value
function similarly to (8.14) as:

vπM(s) = inf
µ∈M

Eτ∼πp∼µ

[ ∞∑
t=0

γtr(st, at)
∣∣∣∣ s0 = s

]
. (8.16)

[190] introduces Wasserstein distributionally robust MDPs by defin-
ing the set of distributions M as a Wasserstein ball around some
nominal distribution. More specifically, for any state-action pair (s, a),
let µ̂s,a ∈ P(Us,a) be some nominal distribution over Us,a. For any distri-
bution µs,a ∈ P(Us,a), define the order-1 Wasserstein distance induced
by some norm ‖ · ‖, and denote it by W1(µ̂s,a, µs,a). A Wasserstein ball
around the nominal distribution can be defined as:

Ωεs,a(µ̂s,a) = {µs,a ∈ P(Us,a): W1(µ̂s,a, µs,a) ≤ εs,a} . (8.17)

Under a rectangularity assumption as in Section 8.2.1, we define the
cartesian product of the sets Ωεs,a(µ̂s,a) over all state-action pairs and
denote it by Ωε(µ̂) = ∏

(s,a)∈S×A Ωεs,a(µ̂s,a), where ε is a vector defined
as ε = (εs,a; (s, a) ∈ S ×A), and µ̂ = ∏

(s,a)∈S×A µ̂s,a.
Analogously to (8.15), the distributionally robust Bellman equation

can be written as:

v(s) =T πΩε(µ̂)v(s)
4=
∑
a∈A

π(a|s)
(
r(s, a)

+ γ inf
µs,a∈Ωεs,a (µ̂s,a)

∫
ps,a∈Us,a

∑
q∈S

p(q|s, a)v(q)dµs,a(ps,a)
)
.

(8.18)

The operator T πΩε(µ̂) satisfies a contraction property with respect to the
sup-norm, implying that the Bellman equation has a unique fixed point
denoted by vπΩε(µ̂)(s). To find an optimal policy, consider the operator

TΩε(µ̂) = sup
π(·|s)∈P(A)

T πΩε(µ̂). (8.19)
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As shown in [190], [196], there exists a distributionally robust optimal
policy π∗ and a unique value function v∗Ωε(µ̂)(s) which is a fixed point of
the operator defined by (8.19). In particular, for every s ∈ S,

v∗Ωε(µ̂)(s) = sup
π

inf
µ∈Ωε(µ̂)

Eτ∼πp∼µ

[ ∞∑
t=0

γtr(st, at)
∣∣∣∣ s0 = s

]
= vπ

∗

Ωε(µ̂)(s).

The optimal value function can be obtained by value iteration, i.e.,
successive application of TΩε(µ̂) to some arbitrary initial value function.

Selecting a Nominal Distribution

The nominal distribution µ̂ that serves as the center of the Wasserstein
balls in (8.17) can be determined as the empirical distribution computed
from a set of different independent episodes of the MDP. Suppose we have
in our disposal n such episodes. Then, for each episode i ∈ JnK, and using
the observed sequence of states and actions during the episode, we can
compute the empirical transition probability p̂(i)(q|s, a) of transitioning
into state q when applying action a in state s. The resulting empirical
distribution µ̂ns,a assigns mass 1/n to each p̂(i)(·|s, a), namely,

µ̂ns,a = 1
n

n∑
i=1

δp̂(i)(·|s,a),

where δp̂(i)(·|s,a) is a Dirac function assigning mass 1 to the model
p̂(i)(·|s, a). Defining a product distribution for each episode i by δi =∏

(s,a)∈S×A δp̂(i)(·|s,a), we can define the empirical distribution

µ̂n = 1
n

n∑
i=1

δi.

The model above requires computing an empirical transition prob-
ability for each state-action pair. When the state-action space is very
large, this is not practical. Instead, one can employ some approximation
architecture. One possibility is to use an architecture of the following
type

p̂(i)(q|s, a) = exp{ξ′iψ(s, a, q)}∑
y∈S exp{ξ′iψ(s, a, y)} ,
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for some vector of feature functions ψ(s, a, q) and a parameter
vector ξi; the latter can be learned from the sequence of state-
actions corresponding to episode i by solving a logistic regression
problem.

A Regularization Result for the Distributionally Robust MDP

[190] obtains a regularization result for the Wasserstein distributionally
robust MDP that is analogous to the dual-norm regularization we
obtained in Section 4. We will outline some of the key steps, referring
the reader to [190] for the full details. The result obtains a lower bound
on the value function vπΩε(µ̂n)(s).

To that end, define first the conjugate robust value function at state
s and under policy π. Specifically, let p = (p(q|s, a); ∀q, s ∈ S, a ∈ A)
denote a vectorized form of the transition probability model. For any
z = (z(q|s, a); ∀q, s ∈ S, a ∈ A), we define the conjugate robust value
function as

v∗,πs (z) 4= inf
p

(vπp(s)− z′p), (8.20)

and let Ds = {z: v∗,πs (z) > −∞} be its effective domain. Note that as
defined, v∗,πs (z) is the negative of the convex conjugate of the value
function as a function of p [84].

A key result from [190] is in the following theorem. As discussed
earlier, suppose we have data from n episodes from the MDP and
we have constructed the empirical transition probabilities for each
episode. Let p̂(i) = (p̂(i)(q|s, a); ∀q, s ∈ S, a ∈ A) be the corresponding
vector.

Theorem 8.2.1 [190]. For any policy π, it holds that

vπΩε(µ̂n)(s) ≥
1
n

n∑
i=1

vπp̂(i)(s)− καs,

where αs = ∑
a∈A π(a|s)εs,a, κ = supz∈Ds ‖z‖∗, and ‖ · ‖∗ is the dual

norm to the norm used in defining the Wasserstein uncertainty set (cf.
(8.17)).
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Proof. We will provide an outline of the key steps. We start by expressing
vπΩε(µ̂n)(s) using the Bellman equation (8.18). We have

vπΩε(µ̂n)(s)

=
∑
a∈A

π(a|s)
(
r(s, a)

+ γ inf
µs,a∈Ωεs,a (µ̂ns,a)

∫
ps,a

∑
q∈S

p(q|s, a)v(q)dµs,a(ps,a)
)

=
∑
a∈A

π(a|s)
(
r(s, a)

+ γ inf
{µs,a: W1(µs,a,µ̂ns,a)≤εs,a}

∫
ps,a

∑
q∈S

p(q|s, a)v(q)dµs,a(ps,a)
)

=
∑
a∈A

π(a|s)
(
r(s, a)

+ γ inf
µs,a

sup
λ≥0

[ ∫
ps,a

∑
q∈S

p(q|s, a)v(q)dµs,a(ps,a)

+ λW1(µs,a, µ̂ns,a)− λεs,a
])

≥
∑
a∈A

π(a|s)
(
r(s, a)

+ γ sup
λ≥0

inf
µs,a

[ ∫
ps,a

∑
q∈S

p(q|s, a)v(q)dµs,a(ps,a)

+ λW1(µs,a, µ̂ns,a)− λεs,a
])
, (8.21)

where the last inequality used weak duality.
Next, using the structure of µ̂n as an average over n episodes and

the fact (due to the rectangularity assumption) that the empirical
distribution is a product distribution over state-action pairs, we can
deduce from (8.21) that

vπΩε(µ̂n)(s) ≥ sup
λ≥0

[ 1
n

n∑
i=1

inf
p

(vπp(s) + λ‖p− p̂(i)‖)− λαs
]
, (8.22)
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where αs = ∑
a∈A π(a|s)εs,a. This derivation used similar techniques as

in Theorem 3.1.2.
Using the definition of the dual norm and for any λ ≥ 0 we have

λ‖p− p̂(i)‖ = max
‖zi‖∗≤1

λz′i(p− p̂(i))

= max
‖λzi‖∗≤λ

λz′i(p− p̂(i))

= max
‖ui‖∗≤λ

u′i(p− p̂(i)). (8.23)

Denote by νπs : p → vπp(s) the function that maps the transition
probability vector p to the value function vπp(s). Let c̆l(νπs ) be its convex
closure, i.e., the greatest closed and convex function upper bounded by
νπs at any p. Since c̆l(νπs ) is a lower bound on vπp(s) and using (8.23)
and (8.22) we obtain:

vπΩε(µ̂n)(s) ≥ sup
λ≥0

[ 1
n

n∑
i=1

inf
p

max
‖ui‖∗≤λ

(c̆l(νπs )(p) + u′i(p− p̂(i)))− λαs
]
.

(8.24)
Using the fact that the convex closure of a function has the same

convex dual as the function itself, it follows that

c̆l(νπs )(p) =c̆l(νπs )∗∗(p)
= max

z∈Ds
[z′p− c̆l(νπs )∗(z)]

= max
z∈Ds

[z′p− (νπs )∗(z)]

= max
z∈Ds

[z′p + v∗,πs (z)], (8.25)

where the last equation used the definition of the conjugate robust value
function (8.20).

Then, using (8.25), the term inside the summation in the RHS of
(8.24) can be written as:

inf
p

max
‖ui‖∗≤λ

(c̆l(νπs )(p) + u′i(p− p̂(i)))

= inf
p

max
zi∈Ds

max
‖ui‖∗≤λ

(v∗,πs (zi) + z′ip + u′i(p− p̂(i)))

= max
zi∈Ds

max
‖ui‖∗≤λ

[v∗,πs (zi)− u′ip̂(i) + inf
p

p′(zi + ui)], (8.26)
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where the last equality used duality. Note that the minimization in
the RHS of the above is over transition probability vectors. We can
relax this minimization over all real vectors, which would render a lower
bound and result in the infimum being −∞ unless ui = −zi. Note that
if sup{‖zi‖∗: zi ∈ Ds} > λ, then one can pick some zi ∈ Ds such that
‖zi‖∗ > λ, in which case the inner minimization in (8.26) achieves −∞
since ui 6= −zi. When sup{‖zi‖∗: zi ∈ Ds} ≤ λ, we have

inf
p

max
‖ui‖∗≤λ

(c̆l(νπs )(p) + u′i(p− p̂(i)))

≥ max
zi∈Ds

max
‖zi‖∗≤λ

[v∗,πs (zi) + z′ip̂(i)]

=vπp̂(i)(s),

where the second step follows from the fact that v∗,πs (zi) is the negative
of the convex dual of the value function. It follows that

inf
p

max
‖ui‖∗≤λ

(c̆l(νπs )(p) + u′i(p− p̂(i)))

≥

vπp̂(i)(s), if sup{‖zi‖∗: zi ∈ Ds} ≤ λ,
−∞, otherwise.

(8.27)

Plugging (8.27) in (8.24) it follows that

vπΩε(µ̂n)(s) ≥
1
n

n∑
i=1

vπp̂(i)(s)− καs,

where κ = supz∈Ds ‖z‖∗.

The result of Theorem 8.2.1 provides a lower bound on the distri-
butionally robust value function, which can be used in the RHS of the
Bellman equation and in a value iteration scheme. It can also be used in
the same manner in obtaining a distributionally robust optimal policy.
However, this strategy is applicable in settings where the state-action
space is relatively small. For large state-action spaces, one typically
approximates either the value function or the policy. To that end, the
regularization result Theorem 8.2.1 can be extended to cases where the
value function is approximated by a linear function.

In particular, suppose we approximate the value function by vπp(s) ≈
φ(s)′wp, where φ(s) is some feature vector and wp a parameter vector.
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Similar to (8.20) we can define an approximate conjugate robust value
function at state s and under policy π as:

w∗,πs (z) 4= inf
p

(φ(s)′wp − z′p), (8.28)

and let Ws = {z: w∗,πs (z) > −∞} be its effective domain.
[190] provides a result analogous to Theorem 8.2.1.

Theorem 8.2.2 [190]. For any policy π, it holds that

inf
µ∈Ωε(µ̂n)

Eτ∼πp∼µ [φ(s)′wp] ≥ 1
n

n∑
i=1
φ(s)′wp̂(i) − ηαs, (8.29)

where αs = ∑
a∈A π(a|s)εs,a and η = supz∈Ws

‖z‖∗.
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Discussion and Conclusions

In this monograph, we developed a Wasserstein-based distribution-
ally robust learning framework for a comprehensive list of predictive
and prescriptive problems, including (i) Distributionally Robust Lin-
ear Regression (DRLR), (ii) Groupwise Wasserstein Grouped LASSO
(GWGL), (iii) Distributionally Robust Multi-Output Learning, (iv)
Optimal decision making via DRLR informed K-Nearest Neighbors
(K-NN), (v) Distributionally Robust Semi-Supervised Learning, and
(vi) Distributionally Robust Reinforcement Learning.

Starting with the basics of the Wasserstein metric and the DRO
formulation, we explored its robustness inducing properties, discussed
approaches for solving the DRO formulation, and investigated the prop-
erties of the DRO solution. Then, we turned our attention into specific
learning problems that can be posed and solved using the Wasserstein
DRO approach. In each case, we derived equivalent regularized empirical
loss minimization formulations and established the robustness of the
solutions both theoretically and empirically. We showed novel theoret-
ical results tailored to each setting and validated the methods using
real world medical applications, strengthening the notion of robustness
through these discussions.
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The robustness of the Wasserstein DRO approach hinges on the fact
that a family of distributions that are different from, but close to the
empirical measure, are being hedged against. This data-driven formula-
tion not only utilizes the information contained in the observed samples,
but also generalizes beyond that by allowing distributions with out-of-
sample support. This is a distinguishing feature from DRO approaches
based on alternative distance functions, such as φ-divergences, which
only consider distributions whose support is a subset of the observed
samples. Such a limitation could potentially hurt the generalization
power of the model. Another salient advantage of the Wasserstein metric
lies in its structure, in particular, encoding a distance metric in the
data space, which makes it possible to link the form of the regularizer
with the growth rate of the loss function and establish a connection
between robustness and regularization.

Our results on Wasserstein DRO and its connection to regularization
are not restricted to linear and logistic regression. From the analysis
presented in Section 3, we see that as long as the growth rate of the
loss function is bounded, the corresponding Wasserstein DRO problem
can be made tractable. We consider both static settings, where all the
samples are readily accessible when solving for the model (Sections 4–6),
and a dynamic setting where the samples come in a sequential manner
(Section 8.2). Another example of a dynamic DRO problem is [27], which
proposed a distributionally robust Kalman filter that hedges against
model risk; in that setting, the Wasserstein ambiguity set contains only
normal distributions.

More broadly, researchers have proposed distributionally robust
versions for general estimation problems, see, for example, [25] for
distributionally robust Minimum Mean Square Error Estimation, [26]
for distributionally robust Maximum Likelihood Estimation, which was
adopted to estimate the inverse covariance matrix of a Gaussian random
vector. We refer the reader to [75] for computational aspects related
to Wasserstein distances and optimal transport. [197] and [198] also
provided nice overviews of DRO, the former focusing specifically on
the Wasserstein DRO, covering in detail the theoretical aspects of the
general formulation with a brief discussion on some machine learning
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applications, while the latter covered DRO models with all kinds of
ambiguity sets. We summarize our key novel contributions as follows.

• We considered a comprehensive list of machine learning problems,
not only predictive models, but also prescriptive models, that can
be posed and solved using the Wasserstein DRO framework.

• We presented novel performance guarantees tailored to each prob-
lem, reflecting the particularity of the specific problem and provid-
ing justifications for using a Wasserstein DRO approach. This is
very different from [197], where a universal performance guarantee
result was derived. Their result is in general applicable to every
single DRO problem, but may miss the individual characteristics
of the problem at hand.

• The Wasserstein prescriptive model we presented in Section 7 is
novel. We showed the power of Wasserstein DRO through the
K-NN insertion in a decision making problem, and demonstrated
the benefit of robustness through a novel out-of-sample MSE
result.

• The non-trivial extension to multi-output DRO has implications
on training robust neural networks, e.g., the robustness of the
multiclass logistic regression classifier to optimized perturbations
that are designed to fool the classifier, see Section 6.2.3.

• Finally, we considered a variety of synthetic and real world case
studies of the respective models, demonstrating the applications
of the DRO framework and its superior performance compared to
other alternatives, which adds to the accessibility and appeal of
this work to an application-oriented reader.
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