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Abstract This study examined records of 2566 consecutive COVID-19 patients at five
Massachusetts hospitals and sought to predict level-of-care requirements based on clinical and
laboratory data. Several classification methods were applied and compared against standard
pneumonia severity scores. The need for hospitalization, ICU care, and mechanical ventilation were
predicted with a validation accuracy of 88%, 87%, and 86%, respectively. Pneumonia severity
scores achieve respective accuracies of 73% and 74% for ICU care and ventilation. When
predictions are limited to patients with more complex disease, the accuracy of the ICU and
ventilation prediction models achieved accuracy of 83% and 82%, respectively. Vital signs, age,
BMI, dyspnea, and comorbidities were the most important predictors of hospitalization. Opacities
on chest imaging, age, admission vital signs and symptoms, male gender, admission laboratory
results, and diabetes were the most important risk factors for ICU admission and mechanical
ventilation. The factors identified collectively form a signature of the novel COVID-19 disease.

Introduction

As a result of the SARS-CoV-2 pandemic, many hospitals across the world have resorted to drastic
measures: canceling elective procedures, switching to remote consultations, designating most beds
to COVID-19, expanding Intensive Care Unit (ICU) capacity, and re-purposing doctors and nurses to
support COVID-19 care. In the U.S., the CDC estimates more than 310,000 COVID-19 hospitaliza-
tions from March 1 to June 13, 2020 (CDC, 2020).

Much of the modeling work related to the pandemic has focused on spread dynamics
(Kucharski et al., 2020). Others have described patients who were hospitalized (Richardson et al.,
2020) (n = 5700) and (Buckner et al., 2020) (n = 105), became critically ill (Gong et al., 2020)
(n = 372), or succumbed to the disease (n = 1625 (Onder et al., 2020), n = 270 [Wu et al., 2020)). In
data from the New York City, 14.2% required ICU treatment and 12.2% mechanical ventilation
(Richardson et al., 2020). With such rates, the logistical and ethical implications of bed allocation
and potential rationing of care delivery are immense (White and Lo, 2020). To date, while state- or
country-level prognostication has developed to examine resource allocation at a mass scale, there is
inadequate evidence based on a large cohort on accurate prediction of the disease progress at the
individual patient level. A string of recent studies developed models to predict severe disease or
mortality based on clinical and laboratory findings, for example (Yan et al., 2020) (n = 485),
(Gong et al., 2020) (n = 372), (Bhargava et al., 2020) (n = 197), (Ji et al., 2020) (n = 208), and
(Wang et al., 2020) (n = 296). In these studies, several variables such as Lactate Dehydrogenase
(LDH) (Gong et al., 2020; Ji et al., 2020; Yan et al., 2020) and C-reactive protein (CRP) have been
identified as important predictors. All of these studies considered relatively small cohorts and, with
the exception of Bhargava et al., 2020, considered patients in China. Although it is believed that
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elLife digest The new coronavirus (now named SARS-CoV-2) causing the disease pandemic in
2019 (COVID-19), has so far infected over 35 million people worldwide and killed more than 1
million. Most people with COVID-19 have no symptoms or only mild symptoms. But some become
seriously ill and need hospitalization. The sickest are admitted to an Intensive Care Unit (ICU) and
may need mechanical ventilation to help them breath. Being able to predict which patients with
COVID-19 will become severely ill could help hospitals around the world manage the huge influx of
patients caused by the pandemic and save lives.

Now, Hao, Sotudian, Wang, Xu et al. show that computer models using artificial intelligence
technology can help predict which COVID-19 patients will be hospitalized, admitted to the ICU, or
need mechanical ventilation. Using data of 2,566 COVID-19 patients from five Massachusetts
hospitals, Hao et al. created three separate models that can predict hospitalization, ICU admission,
and the need for mechanical ventilation with more than 86% accuracy, based on patient
characteristics, clinical symptoms, laboratory results and chest x-rays.

Hao et al. found that the patients’ vital signs, age, obesity, difficulty breathing, and underlying
diseases like diabetes, were the strongest predictors of the need for hospitalization. Being male,
having diabetes, cloudy chest x-rays, and certain laboratory results were the most important risk
factors for intensive care treatment and mechanical ventilation. Laboratory results suggesting tissue
damage, severe inflammation or oxygen deprivation in the body's tissues were important warning
signs of severe disease.

The results provide a more detailed picture of the patients who are likely to suffer from severe
forms of COVID-19. Using the predictive models may help physicians identify patients who appear
okay but need closer monitoring and more aggressive treatment. The models may also help policy
makers decide who needs workplace accommodations such as being allowed to work from home,
which individuals may benefit from more frequent testing, and who should be prioritized for
vaccination when a vaccine becomes available.

the virus remains the same around the globe, the physiologic response to the virus and the eventual
course of disease depend on multiple other factors, many of them regional (e.g. population charac-
teristics, hospital practices, prevalence of pre-existing conditions) and not applicable universally. Tri-
age of adult patients with COVID-19 remains challenging with most evidence coming from expert
recommendations; evidence-based methods based on larger U.S.-based cohorts have not been
reported (Sprung et al., 2020).

Leveraging data from five hospitals of the largest health care system in Massachusetts, we seek
to develop personalized, interpretable predictive models of (i) hospitalization, (ii) ICU treatment, and
(ili) mechanical ventilation, among SARS-CoV-2 positive patients. To develop these models, we
developed a pipeline leveraging state-of-the-art Natural Language Processing (NLP) tools to extract
information from the clinical reports for each patient, employing statistical feature selection methods
to retain the most predictive features for each model, and adapting a host of advance machine
learning-based classification methods to develop parsimonious (hence, easier to use and interpret)
predictive models. We found that the more interpretable models can, for the most part, deliver simi-
lar predictive performance compared to more complex, ‘black-box’ models involving ensembles of
many decision trees. Our results support our initial hypothesis that important clinical outcomes can
be predicted with a high degree of accuracy upon the patient’s first presentation to the hospital
using a relatively small number of features, which collectively compose a ‘signature’ of the novel
COVID-19 disease.

Results

We extracted data for all patients (n = 2566) who had a positive RT-PCR SARS-CoV-2 test between
March 4 and April 13, 2020 at five Massachusetts hospitals, included in the same health care system
(Massachusetts General Hospital (MGH), Brigham and Women'’s Hospital (BWH), Faulkner Hospital
(FH), Newton-Wellesley Hospital (NWH), and North Shore Medical Center (NSM)). The study was
approved by the pertinent Institutional Review Boards.
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Demographics, pre-hospital medications, and comorbidities were extracted for each patient
based on the electronic medical record. Patient symptoms, vital signs, radiologic findings, and labo-
ratory results were recorded at their first hospital presentation (either clinic or emergency depart-
ment) before testing positive for SARS-CoV-2. A total of 164 features were extracted for each
patient. ICU admission and mechanical ventilation were determined for each patient. Complete
blood count values were considered as absolute counts. Representative statistics comparing hospi-
talized, ICU admitted, and mechanically ventilated patients are provided in Table A1 (Appendix).
Table A2 (Appendix) reports how patients were distributed among the five hospitals.

Among the 2566 patients with a positive test, 930 (36.2%) were hospitalized. Among the hospital-
ized, 273 (29.4% of the hospitalized) required ICU care of which 217 (79.5%) required mechanical
ventilation. The mean age over all patients was 51.9 years (SD: 18.9 years) and 45.6% were male.

Hospitalization

The mean age of hospitalized patients was 62.3 years (SD: 18 years) and 55.3% were male. We
employed linear and non-linear classification methods for predicting hospitalizations. Non-linear
methods included random forests (RF) (Breiman, 2001) and XGBoost (Chen and Guestrin, 2016).
Linear methods included support vector machines (SVM) (Cortes and Vapnik, 1995) and Logistic
Regression (LR); each linear method used either ¢;- or /,-norm regularization and we report the
best-performing flavor of each model.

Results are reported in Table 1. We report the Area Under the Curve (AUC) of the Receiver Oper-
ating Characteristic (ROC) and the Weighted-F1 score, both computed out-of-sample (in a test set
not used for training the model). As we detail under Methods, we used two validation strategies.
The ‘Random’ strategy randomly split the patients into a training and a test set and was repeated
five times; from these five splits we report the average and the standard deviation of the test perfor-
mance. The ‘BWH’ strategy trained the models on MGH, FH, NWH, and NSM patients, and evalu-
ated performance on BWH patients.

The hospitalization models used symptoms, pre-existing medications, comorbidities, and patient
demographics. Laboratory results and radiologic findings were not considered since these were not
available for most non-hospitalized patients. Full models used all (106) variables retained after sev-
eral pre-processing steps described in Materials and methods. Applying the statistical variable selec-
tion procedure described in the Appendix (specifically, eliminating variables with a p-value
exceeding 0.05), yields a model with 74 variables. To provide a more parsimonious, highly interpret-
able, and easier to implement model, we used recursive feature elimination (see Appendix) to select
a model with only 11 variables. The best model using the random validation approach has an AUC
of 88% while the best parsimonious (linear) model has an AUC of 83%, being though easier to inter-
pret and implement. Validation on the BWH patients yields an AUC of 84% for the parsimonious
model.

Table 1 also reports the 11 variables in the parsimonious LR model, including their LR coeffi-
cients, and a binarized version of this model as described in Materials and methods. The most
important variables associated with hospitalization were: oxygen saturation, temperature, respiratory
rate, age, pulse, blood pressure, a comorbidity of adrenal insufficiency, BMI, prior transplantation,
dyspnea, and kidney disease.

Additionally, we assessed the role of pre-existing ACE inhibitor (ACEI) and angiotensin receptor
blocker (ARB) medications by adding these variables into the parsimonious binarized model, while
controlling for additional relevant variables (hypertension, diabetes, and arrhythmia comorbidities
and other hypertension medications). We found that while ARBs are not a factor, ACEls reduce the
odds of hospitalization by 3/4, on average, controlling for other important factors, such as age,
hypertension, and related comorbidities associated with the use of these medications.

ICU admission

The mean age of ICU admitted patients was 63.3 years (SD: 15.1 years) and 63% were male. The
ICU and ventilation prediction models used the features considered for the hospitalization, as well
as laboratory results and radiologic findings. For these models, we excluded patients who required
immediate ICU admission or ventilation (defined as within 4 hr from initial presentation). This was
implemented in order to focus on patients where triaging is challenging and risk prediction would
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The values inside the parentheses refer to the standard deviation of the corresponding metric. Random refers to test set results from
the five random training/test splits. BWH refers to training on four other hospitals and testing on data from BWH. SVM-L1 and LR-L1
refer to the ¢4-norm regularized SVM and LR models. For the parsimonious model, we list the LR coefficients of each variable (Coef),
the correlation of the variable with the outcome (Y-corr), the mean of the variable (Y7-mean) in the positive class (hospitalized for this
table), and the mean of the variable (YO-mean) in the negative class (non-hospitalized). Binary Coef denotes the coefficient of the varia-
bles in the binarized model. We report the corresponding odds ratio (OR) and the 95% confidence intervals (Cl). Thresholds used for

the binarized model are provided in Appendix 1—table 5.

AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 106 features
LR-L2 87.0% (1.7%) 85.9% 81.6% (1.3%) 84.2%
SVM-L1 87.0% (1.6%) 85.8% 81.5% (1.5%) 83.9%
XGBoost 87.8% (1.9%) 87.7% 80.9% (1.8%) 83.3%
RF 88.2% (1.6%) 88.1% 81.2% (1.1%) 83.2%
Models using 74 statistically selected features
LR-L2 87.1% (1.7%) 86.0% 82.0% (1.3%) 83.9%
SVM-L1 87.1% (1.7%) 85.8% 82.0% (1.4%) 84.0%
XGBoost 87.9% (1.9%) 87.6% 81.2% (1.9%) 84.2%
RF 88.0% (1.7%) 88.1% 80.8% (1.7%) 83.9%
Parsimonious Model using 11 features
LR-L2 83.4% (1.7%) 83.7% 78.7% (0.9%) 81.0%
SVM-L1 83.4% (1.7%) 83.8% 78.1% (1.1%) 79.9%
Variables for the Parsimonious Model
OR 95% CI
Variable Coef Y1 mean YO0 mean p-value Y-corr Coef binary OR
SpO2 (%) -11.90 95.44 97.11 <0.001 -0.29 1.74 5.67 397 8.12
Temperature 10.36 37.21 37.06 <0.001 0.08 0.86 2.36 1.76 3.18
Respiratory 7.20 22.82 20.83 <0.001 0.18 -0.13 0.88 0.69 1.13
Rate
Age 5.14 62.31 46.02 <0.001 0.41 0.88 24 1.86 311
Pulse 4.60 90.09 90.4 <0.001 —0.01 0.7 2.01 1.49 2.71
géastolic —3.56 73.07 77.21 <0.001 -0.23 1.51 4.51 2.88 7.06
Adrenal 3.09 0.013 0.001 <0.001 0.08 2.58 13.14 1.57 110.37
Insufficiency
BMI 2.30 31.34 31.64 <0.001 —0.04 —0.09 0.91 0.71 1.17
Transplantation 1.90 0.023 0.002 <0.001 0.1 1.43 4.19 1.04 16.87
Dyspnea 1.85 0.17 0.02 <0.001 0.26 2 7.41 4.85 11.32
CKD 1.55 0.14 0.02 <0.001 0.25 0.81 2.25 1.35 374
Intercept —2.51

SpO2: oxygen saturation; BP: Blood pressure; BMI: Body Mass Index; CKD: Chronic Kidney Disease.

be beneficial. There were 2513 and 2525 patients remaining for the ICU and the mechanical ventila-

tion prediction models, respectively.

For the model including 2513 patients (Table 2), we first developed a model using all 130 varia-
bles retained after pre-processing, then employed statistical variable selection to retain 56 of the
variables, and then applied recursive feature elimination with LR to select a parsimonious model

which uses only 10 variables. The following variables were included: opacity observed in a chest
scan, respiratory rate, age, fever, male gender, albumin, anion gap, oxygen saturation, LDH, and
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Table 2. ICU prediction model (test performance).

Abbreviations are as in Table 1. Thresholds for the binarized model, PSI and CURB-65 scores are in the Appendix.

ICU prediction results with 2513 patients
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AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 130 features
XGBoost - 86.0% (2.8%) 83.1% 90.0% (1.7%) 91.7%
SVM-L1 85.9% (2.5%) 80.2% 89.9% (1.0%) 89.2%
LR-L1 84.6% (2.8%) 76.8% 89.7% (1.0%) 89.9%
RF 86.9% (2.4%) 83.7% 90.4% (1.1%) 91.1%
Models using 56 statistically selected features
XGBoost 86.8% (3.1%) 82.8% 90.4% (1.4%) 91.3%
SVM-L1 86.2% (2.6%) 82.6% 90.6% (1.2%) 90.8%
LR-L1 85.8% (2.9%) 81.8% 90.2% (1.3%) 91.3%
RF 86.7% (2.0%) 83.2% 90.5% (1.7%) 91.5%
Parsimonious Model using 10 features
LR-L1 85.8% (2.6%) 83.9% 90.0% (1.4%) 89.1%
LR-L1 (binarized model) 84.2% (2.2%) 82.5% 89.8% (1.1%) 88.1%
Model using PSI or CURB-65 score
PSI score o 72.9% (4.9%) 78.8% 86.8% (0.7%) 88.2%
CURB-65 score 67.0% (5.0%) 75.4% 87.0% (0.5%) 88.1%
Variables for the parsimonious model
OR 97.5% ClI
Variable Coef Y1 mean YO0 mean p-value Y-corr Coef binary OR
Radiology 0.54 0.76 0.27 <0.001 0.30 1.41 4.08 2.83 5.89
Opacities
Respiratory 0.46 24.61 21.37 <0.001 0.16 0.50 1.66 1.14 2.41
Rate
Age 0.45 62.61 50.58 <0.001 0.18 0.56 1.76 1.27 243
Fever 0.40 0.64 0.33 <0.001 0.18 0.61 1.83 1.32 2.55
Male 0.35 0.64 0.44 <0.001 0.12 0.50 1.65 1.21 2.26
Albumin -0.34 3.68 3.84 <0.001 -0.16 0.58 1.78 1.10 2.90
Anion 0.33 16.40 15.35 <0.001 0.13 —-0.05 0.95 0.46 1.98
Gap
SpO2 (%) -0.22 94.72 96.72 <0.001 -0.24 0.83 2.29 1.63 3.21
LDH 0.22 400.40 327.48 <0.001 0.15 0.96 2.62 1.74 3.94
Calcium -0.21 8.84 9.01 <0.001 -0.10 0.55 173 1.21 248
Intercept -0.93

SpO2: oxygen saturation; LDH: Lactate dehydrogenase.

calcium. In addition, we generated a binarized version of the parsimonious model. The parsimonious
model for all 2513 patients has an AUC of 86%, almost as high as the model with all 130 features.
For comparison purposes against well-established scoring systems, we implemented two com-
monly used pneumonia severity scores, CURB-65 (Lim et al., 2003) and the Pneumonia Severity
Index (PSI) (Fine et al., 1997). Predictions based on the PSI and CURB-65 scores, have AUCs of 73%

and 67%, respectively.

We also developed a model for a more restrictive set of patients. Specifically, the number of miss-
ing lab values for some patients is substantial. Given the importance of LDH and CRP, as revealed
by our models, the more restricted patient set contains 669 patients with non-missing LDH and CRP
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Table 3. Restricted ICU prediction model (test performance).
Abbreviations are as in Table 1. Thresholds for the binarized model, PSI and CURB-65 scores are in the Appendix.

ICU prediction results with 628 patients

AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 130 features
XGBoost o 82.5% (1.9%) 67.3% 81.4% (0.7%) 72.6%
SVM-L1 77.8% (3.8%) 72.8% 79.7% (1.2%) 73.6%
LR-L1 75.9% (3.6%) 69.7% 79.2% (2.5%) 73.7%
RF 80.9% (2.7%) 76.9% 78.8% (1.9%) 73.6%
Models using 29 statistically selected features
XGBoost 82.7% (2.7%) 76.2% 80.6% (2.1%) 72.6%
SVM-L1 77.9% (3.7%) 73.1% 78.5% (1.4%) 73.6%
LR-L1 78.4% (4.1%) 71.5% 79.5% (2.6%) 74.4%
RF 82.1% (2.8%) 74.1% 79.0% (2.4%) 75.4%
Parsimonious Model using 8 features
LR-L1 80.1% (2.9%) 74.2% 80.9% (2.1%) 77.2%
LR-L1 (binarized model) 72.5% (5.4%) 69.9% 73.4% (2.8%) 69.7%
Model using PSI or CURB-65 score
PSI score o 58.8% (7.4%) 68.3% 66.7% (2.2%) 65.3%
CURB-65 score 56.8% (4.5%) 76.9% 66.2% (1.5%) 63.8%
Variables for the parsimonious model
OR 97.5% ClI
Variable Coef Y1 mean YO0 mean p-value Y-corr Coef binary OR
LDH 0.53 519.88 304.40 <0.001 0.15 1.59 4.88 2.65 8.99
CRP (mg/L) 0.47 127.17 67.43 <0.001 0.35 0.76 213 0.70 6.47
Calcium -0.35 8.83 9.01 <0.001 -0.13 0.71 2.03 1.25 3.31
IDDM 0.30 0.25 0.12 0.003 0.15 1.00 2.73 1.62 4.60
SpO2 (%) -0.29 94.13 95.59 0.003 -0.22 0.34 1.41 0.92 2.16
Radiology Opacities 0.25 0.88 0.71 <0.001 0.16 0.62 1.86 1.05 3.29
Anion Gap 0.20 16.66 15.28 <0.001 0.20 0.34 1.40 0.48 4.12
Sodium -0.16 136.13 137.53 <0.001 —-0.14 0.47 1.60 1.05 243
Intercept -0.34

LDH: Lactate dehydrogenase; CRP: C-reactive protein; IDDM: Insulin-dependent diabetes mellitus; SpO2: oxygen saturation.

values. After removing patients who required intubation or ICU admission within 4 hr of hospital pre-
sentation, we included 628 patients and 635 patients for the restricted ICU admission and ventilation
models, respectively.

The best restricted model for the 628 patients (Table 3) is the nonlinear XGBoost model using 29
statistically selected features with an AUC of 83%, with a linear parsimonious LR model close behind
(AUC 80%). An RF model using all variables yields an AUC of 77% when tested on BWH data. PSI-
and CURB-65 models have AUCs below 59%.

Mechanical ventilation

The mean age of patients requiring mechanical ventilation was 63.3 years (SD: 14.7 years) and 63.6%

were male. Again, we excluded patients who were intubated within 4 hr of their hospital admission.
For the model including 2525 patients (Table 4), we used statistical feature selection to select 55

variables, and recursive feature elimination with LR to select a parsimonious model with only eight

variables. The following variables were included: lung opacities, albumin, fever, respiratory rate,
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Table 4. Ventilation prediction model (test performance).
Abbreviations are as in Table 1. Thresholds for the binarized model, PSI and CURB-65 scores are in the Appendix.

Ventilation prediction results with 2525 patients

AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 130 features
XGBoost o 85.8% (4.0%) 83.8% 91.0% (0.4%) 91.6%
SVM-L1 82.6% (4.9%) 83.8% 90.9% (0.8%) 91.6%
LR-L1 80.7% (5.4%) 81.7% 90.4% (1.2%) 91.4%
RF 85.7% (3.9%) 83.7% 91.2% (0.9%) 91.8%
Models using 55 statistically selected features
XGBoost 85.7% (3.3%) 86.3% 91.1% (0.6%) 91.6%
SVM-L1 83.9% (3.7%) 84.8% 90.9% (1.1%) 91.7%
LR-L1 83.3% (4.0%) 83.9% 90.8% (1.3%) 91.4%
RF 86.4% (3.4%) 86.7% 91.4% (1.1%) 91.3%
Parsimonious Model using 8 features
LR-L1 85.2% (2.3%) 87.0% 90.3% (0.3%) 90.7%
LR-L1 (binarized model) 81.3% (3.1%) 82.6% 90.0% (0.6%) 90.2%
Model using PSI or CURB-65 score
PSI score o 73.6% (4.1%) 80.7% 89.4% (0.4%) 90.3%
CURB-65 score 66.8% (3.1%) 75.9% 89.7% (0.1%) 90.0%
Variables for the Parsimonious Model
Variable Coef Y1 mean YO0 mean p-value Y-corr Coef binary OR OR 97.5% ClI
Radiqlpgy 0.86 0.77 0.28 <0.001 0.27 1.58 4.86 3.25 7.25
opacities
Albumin —-0.45 3.65 3.83 <0.001 -0.16 1.07 2.91 1.80 4.72
Fever 0.43 0.66 0.33 <0.001 0.17 0.72 2.05 1.42 2.95
Respiratory 0.42 24.70 21.44 <0.001 0.15 0.50 1.64 1.09 247
rate
Glucose 0.38 170.17 138.32 <0.001 0.15 0.97 2.63 1.71 4.06
Male 0.34 0.64 0.44 <0.001 0.10 0.43 1.54 1.09 2.18
LDH 0.33 408.56 328.78 <0.001 0.14 0.91 248 1.58 3.89
Anion 0.31 16.50 15.37 <0.001 0.13 0.27 1.31 0.53 3.25
gap
Intercept —1.06

LDH: Lactate dehydrogenase.

glucose, male gender, LDH, and anion gap. In addition, we generated a binarized version of the par-
simonious model. The best model for all 2525 patients was a nonlinear RF model using the 55 statis-
tically selected variables and yielding an AUC of 86%. The best linear model was the parsimonious
LR model with an AUC of 85%. PSI- and CURB-65 models yield AUCs of 74% and 67%, respectively.

The best model for the restricted case of 635 patients (Table 5) was the linear parsimonious LR
model (with just five variables) achieving an AUC of 82%. PSI- and CURB-65 models do not exceed
AUC of 58%.

Time period between ICU/ventilation model prediction and
corresponding outcomes

Table 6 reports the mean and the median time interval (in hours) between hospital admission time
and ICU/ventilation outcomes. Specifically, we report statistics for ICU admission or intubation
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Table 5. Restricted ventilation prediction model (test performance).
Abbreviations are as in Table 1.Thresholds for the binarized, PSI and CURB-65 scores are in the Appendix.

Ventilation prediction results with 635 patients

Algorithm AUC F1-weighted
Random BWH Random BWH
Models using all 130 features
XGBoost C 806% (1.9%) 74.7% 79.4% (2.6%) 75.7%
SVM-L1 79.4% (5.2%) 71.3% 80.8% (2.0%) 75.7%
LR-L1 76.9% (3.9%) 68.2% 78.6% (3.2%) 73.4%
RF 81.0% (3.1%) 75.8% 79.8% (4.2%) 72.7%
Models using 29 statistically selected features
XGBoost o 81.6% (3.2%) 76.9% 79.0% (2.9%) 71.7%
SVM-L1 79.1% (4.6%) 69.4% 80.6% (2.5%) 75.7%
LR-L1 80.9% (3.6%) 70.9% 80.4% (2.2%) 75.7%
RF 81.3% (2.6%) 75.4% 79.2% (1.7%) 69.6%
Parsimonious Model using 5 features
LR-L1 82.4% (3.7%) 75.2% 81.8% (1.7%) 71.7%
LR-L1 (binarized model) 71.4% (6.2%) 65.5% 76.6% (3.5%) 68.3%
Model using PSI or CURB-65 score
PSI score 57.6% (4.5%) 67.4% 73.2% (1.3%) 71.2%
CURB-65 score 56.9% (7.1%) 74.0% 72.4% (0.2%) 68.3%
Variables for the parsimonious model
OR 97.5% CI
Variable Coef Y1 mean YO0 mean p-value Y-corr Coef binary OR
CRP (mg/L) 0.60 134.52 69.62 <0.001 0.35 0.42 1.53 0.51 4.59
LDH 0.55 550.41 311.01 <0.001 0.16 1.87 6.47 3.19 13.10
Calcium -0.39 8.82 9.00 <0.001 -0.13 0.58 1.79 1.07 2.98
IDDM 0.36 0.26 0.12 0.002 0.15 1.18 3.26 1.90 5.58
Anion Gap 0.29 16.81 15.32 <0.001 0.19 18.66 1.27E+08 0.00 inf
Intercept —0.39

CRP: C-reactive protein; LDH: Lactate dehydrogenase; IDDM: Insulin-dependent diabetes mellitus.

outcomes from the correct ICU/intubation predictions made by our models trained on four hospitals
(MGH, NWH, NSM, FH) and applied to BWH patients (both the models making predictions for all
patients and the restricted models). As we have noted earlier, our models use the lab results closest
to admission (either on admission date or the following day). We also report the time interval
between the last lab result used by the model and the corresponding ICU/intubation outcome.

Discussion

We developed three models to predict need for hospitalization, ICU admission, and mechanical ven-
tilation in patients with COVID-19. The prediction models are not meant to replace clinicians’ judg-
ment for determining level of care. Instead, they are designed to assist clinicians in identifying
patients at risk of future decompensation. Patient vital signs were the most important predictors of
hospitalization. This is expected as vital signs reflect underlying disease severity, the need for cardio-
respiratory resuscitation, and the risk of future decompensation without adequate medical support.
Older age and BMI were also important predictors for hospitalization. Age has been recognized as
an important factor associated with severe COVID-19 in previous series (Grasselli et al., 2020,
Guan et al., 2020; Richardson et al., 2020). However, it is not known whether age itself or the
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presence of comorbidities place patients at risk for severe disease. Our results demonstrate that age
is a stronger predictor of severe COVID-19 than a host of underlying comorbidities.

In terms of patient comorbidities, adrenal insufficiency, prior transplantation, and chronic kidney
disease were strongly associated with need for hospitalization. Diabetes mellitus was associated with
a need for ICU admission and mechanical ventilation, which might be due to its detrimental effects
on immune function.

For the ICU and ventilation prediction models screening all at-risk (COVID-19-positive patients),
opacities observed in a chest scan, age, and male gender emerge as important variables. Males
have been found to have worse in-hospital outcomes in other studies as well (Palaiodimos et al.,
2020).

We also identified several routine laboratory values that are predictive of ICU admission and
mechanical ventilation. Elevated serum LDH, CRP, anion gap, and glucose, as well as decreased
serum calcium, sodium, and albumin were strong predictors of ICU admission and mechanical venti-
lation. LDH is an indicator of tissue damage and has been found to be a marker of severity in P. jiro-
vecii pneumonia (Zaman and White, 1988). Along with CRP, it was among the two most important
predictors of ICU admission and ventilation in the parsimonious model among patients who had
LDH and CRP measurements on admission. This finding is consistent with previous reports identify-
ing LDH as an important prognostic factor (Gong et al., 2020; Ji et al., 2020; Mo et al., 2020;
Yan et al., 2020). In addition, lower serum calcium is associated with cell lysis and tissue destruction,
as it is often seen as part of the tumor lysis syndrome. Elevated serum anion gap is a marker of met-
abolic acidosis and ischemia, suggesting that tissue hypoxia and hypoperfusion may be components
of severe disease.

For all three prognostic models, we developed predicting hospitalizations, ICU care, and mechan-
ical ventilation, AUC ranges within 86-88%, which indicates strong predictive power. Interestingly,
we can achieve AUC within 85-86% for ICU and ventilation prediction with a parsimonious linear
model utilizing no more than 10 variables. In all cases, we can also develop a parsimonious model
with binarized variables using medically suggested normal and abnormal variable thresholds. These
binarized models have similar performance with their continuous counterparts. The ICU and ventila-
tion models using all patients are very accurate, but, arguably, make a number of ‘easier’ decisions
since more than 60% of the patients are never hospitalized. Many of these patients are younger,
healthy, and likely present with mild-to-moderate symptoms. To test the robustness of the models
to patients with potentially more ‘complex’ disease, we developed ICU and ventilation models on a
restricted set of patients. This is the subset of patients who are hospitalized and most of the crucial
labs are available for them (specifically CRP and LDH which emerged as important from our models).
The best AUC for these models drops, but not below 82%, which indicates robustness of the model
even when dealing with arguably harder to assess cases. LDH, CRP, calcium, lung opacity, anion
gap, SpO2, sodium, and a comorbidity of insulin-controlled diabetes appear as the most significant
for these patients. Interestingly, the corresponding binarized models have about 10% lower AUC;
apparently, for the more severely ill, clinical variables deviate substantially from normal and knowing
the exact values is crucial.

The models have been validated with two different approaches, using random splits of the data
into training and testing, as well as training in some hospitals and testing at a different hospital. Per-
formance metrics are relatively consistent with these two approaches. We also compared the models
against standard pneumonia severity scores, PSI and CURB-65, establishing that our models are sig-
nificantly stronger, which highlights the different clinical profile of COVID-19.

Table 6. Mean and median hours between reference date/lab results to outcomes in full/restricted ICU and ventilation model

prediction.

From reference date (mean) From reference date (median) From lab results (mean) From lab results (median)

3813

Restricted ICU 28.08 22.55 9.90
Restricted intubation ~ 35.36 26.40 22.37 10.39
Full ICU 22.86 17.28 15.86 12.99
Full intubation 25.62 22.20 10.23 8.97
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We also examined how much in advance of the ICU or ventilation outcomes our models are able
to make a prediction. Of course, this is not entirely in our control; it depends on what state the
patients get admitted and how soon their condition deteriorates to require ICU admission and/or
ventilation. Table 6 reports the corresponding statistics. For example, the restricted ICU and ventila-
tion models are making a correct prediction upon admission (using the lab results closest to that
time) for outcomes that on average occur 38 and 35 hr later, respectively.

To further test the accuracy of the restricted ICU and ventilation models well in advance of the
corresponding event, we considered an extended BWH test set (adding 11 more patients) and com-
puted the accuracy of the models when the test set was restricted to patients whose outcome (ICU
admission or ventilation) was more than x hours after the admission lab results based on which the
prediction was made, with x being 6 hr, or 12 hr, or 18 hr, or 24 hr, or even 48 hr. The ICU model
reaches an AUC of 87% and a weighted F1-score of 86% at x = 18 hr. The ventilation model reaches
an AUC of 64% and an F1-score of 72% at x = 48 hr. These results demonstrate that the predictive
models can indeed make predictions well into the future, when physicians would be less certain
about the course of the disease and when there is potentially enough time to intervene and improve
outcomes.

A manual review of the predictions by the models indicates that they performed well at predict-
ing future ICU admissions for patients who presented with mild disease several days before ICU
admission was necessary. Such patients were hemodynamically stable and had minimal oxygen
requirements on the floor, before clinical deterioration necessitated ICU admission. We identified
several such patients. A typical case is that of a 51-year-old male with a history of hypertension, obe-
sity, and insulin-dependent type 2 diabetes mellitus, who presented with a 3-day history of dyspnea,
cough and myalgias. In the emergency department, he was hemodynamically stable, saturating at
96-97% on 2 L of nasal cannula. The patient was admitted to the floor and did well for 3 days, satu-
rating at 93-96% on room air. On the fourth day of hospitalization, he had increasing oxygen
requirements and the decision was made to transfer him to the ICU. He was intubated and venti-
lated for 30 days. Our prediction models accurately predicted at the time of his presentation that he
would eventually require ICU admission and mechanical ventilation. This prediction was based on
such variables as an elevated LDH (241 U/L) and the presence of insulin-dependent diabetes melli-
tus. Another such case is that of a 59-year-old male without a significant prior medical history who
presented with 2 days of dyspnea, nausea, and diarrhea. At the emergency department, he was
tachycardic at 110 beats per minute and saturating at 96% on room air, and the patient was admit-
ted. For 2 days, the patient was hemodynamically stable, saturating at 94-97% on room air. On the
third day of hospitalization, he had increasing oxygen requirements, eventually requiring transfer to
the ICU. He was intubated and ventilated for the next 14 days. Our prediction model predicted the
patient’s decompensation at his presentation, due to elevations in LDH (348 U/L) and CRP (102.3
mg/L).

We also considered the role of ACEls and ARBs and their potential association with the out-
comes. It has been speculated that ACEls may worsen COVID-19 outcomes because they upregulate
the expression of ACE2, which the virus targets for cell entry. No such evidence has been reported
in earlier studies (Kuster et al., 2020, Patel and Verma, 2020). In fact, a smaller study
(Zhang et al., 2020) (n = 1128 vs. 2566 in our case) reported a beneficial effect and (Rossi et al.,
2020) warn of potential harmful effects of discontinuing ACEls or ARBs due to COVID-19. Our hospi-
talization model suggests that ACEls do not increase hospitalization risk and may slightly reduce it
(OR 95% Cl is (0.52,1.04) with a mean of 0.73). In the ICU and ventilation models, the role of these
two medications is statistically weaker to observe any meaningful association.

The models we derived can be used for a variety of purposes: (i) guiding patient triage to appro-
priate inpatient units, (ii) guiding staffing and resource planning logistics, and (iii) understanding
patient risk profiles to inform future policy decisions, such as targeted risk-based stay-at-home
restrictions, testing, and vaccination prioritization guidelines once a vaccine becomes available.

Calculators implementing the parsimonious models corresponding to each of the Tables 1,
2, 3, 4, 5 have been made available online (Hao et al., 2020).
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Materials and methods

Data extraction
Natural Language Processing (NLP) was used to extract patient comorbidities (see Appendix for
details), pre-existing medications, admission vital signs, hospitalization course, ICU admission, and
mechanical intubation.

Pre-processing

The categorical features were converted to numerical by ‘one-hot’ encoding. Each categorical fea-
ture, such as gender and race, was encoded as an indicator variable for each category. Features
were standardized by subtracting the mean and dividing by the standard deviation.

Several pre-processing steps, including variable imputation, outlier elimination, and removal of
highly correlated variables were undertaken (see Appendix). After completing these procedures,
106 variables for each patient remained to be used by the hospitalization model. For the ICU and
ventilation prediction models, we added laboratory results and radiologic findings. We removed var-
iables with more than 90% missing values out of the roughly 2500 patients retained for these mod-
els; the remaining missing values were imputed as described above. These pre-processing steps
retained 130 variables for the ICU and ventilation models.

Classification methods

We employed nonlinear ensemble methods including Random forests (RF) (Breiman, 2001) and
XGBoost (Chen and Guestrin, 2016). We also employed ‘custom’ linear methods which yield inter-
pretable models; specifically, support vector machines (SVM) (Cortes and Vapnik, 1995) and Logis-
tic Regression (LR). In both cases, the variants we computed were robust to noise and the presence
of outliers (Chen and Paschalidis, 2018), using proper regularization. LR, in addition to a prediction,
provides the likelihood associated with the predicted outcome, which can be used as a confidence
measure in decision making. Further details on these methods are in the Appendix.

For each outcome, we used the statistical feature selection and recursive feature elimination pro-
cedures described in the Appendix to develop an LR parsimonious model. The LR coefficients are
comparable since the variables are standardized. Hence, a larger absolute coefficient indicates that
the corresponding variable is a more significant predictor. Positive (negative) coefficients imply posi-
tive (negative) correlation with the outcome. We also developed a version of this model by convert-
ing all continuous variables into binary variables, using medically motivated thresholds (see
Appendix). We report the coefficients of the ‘binarized’ model and the implied odds ratio (OR), rep-
resenting how the odds of the outcome are scaled by having a specific variable being abnormal vs.
normal, while controlling for all other variables in the model.

Outcomes and performance metrics
Model performance metrics included the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) and the Weighted-F1 score. The ROC plots the true positive rate (a.k.a. recall
or sensitivity) against the false positive rate (equal to one minus the specificity). We optimized algo-
rithm parameters to maximize AUC.

The F1 score is the harmonic mean of precision and recall. Precision (or positive predictive value)
is defined as the ratio of true positives over true and false positives. The Weighted-F1 score is com-
puted by weighting the F1-score of each class by the number of patients in that class.

Model validation

The data were split into a training (80%) and a test set (20%). Algorithm parameters were optimized
on the training (derivation) set using fivefold cross-validation. Performance metrics were computed
on the test set. This process was repeated five times, each time with a random split into training/
testing sets. In columns labeled as Random in Tables 1, 2, 3, 4, 5, we report the average (and stan-
dard deviation) of the test performance metrics over the five random splits. We also performed a dif-
ferent type of validation. We trained the models on MGH, FH, NWH, and NSM patients, and
evaluated performance on BWH patients. These results are reported under the columns BWH in the
tables.
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Appendix 1

1. Representative statistics of patients and variables highly correlated
with the outcomes

Characteristics of the 2566 patients who tested positive for SARC-CoV2 with key statistics for each
cohort (hospitalized vs. not, ICU admitted vs. not, and mechanically ventilated vs. not) are provided
in Appendix 1—table 1. For each variable we provide a mean value of the variable (or percentage
for categorical variables) in each cohort and its complement and a p-value computed using a chi-
squared test for categorical variables and a Kolmogorov-Smirnov (KS) test for continuous variables.
A low p-value supports rejection of the null hypothesis, implying that the corresponding variable is
statistically different in a cohort compared to its complement (e.g., hospitalized vs. not).

Appendix 1—table 2 reports how the entire patient cohort is distributed across the five different
hospitals according to the various outcome groups.

Appendix 1—table 1. Representative patient statistics.

Admitted (36.2%) ICU (10.6%) Intubated (8.5%)
P- P- P-

Yes No value Yes No value Yes No value
Age 623 460 <0001 633 506 <0001 633 509 <0001
Gender (male) 55.3% 40.1% <0.001 63.0% 43.5% <0.001 63.6% 43.9% <0.001
Asian 37% 40% 097 37% 39% 1 37% 39% 1
Black/African American 15.7% 17.8% 0.61 14.7% 17.3% 0.75 14.3% 17.3% 0.74
Hispanic/Latino 49% 59% 081 6.6% 54% 088 69% 54% 0.83
White 45.4% 43.9% 0.91 39.6% 45.0% 040  39.6% 44.9% 0.53
Hypertension 61.7% 26.4% <0.001 62.3% 36.5% <0.001 61.8% 37.1% <0.001
Diabetes 34.2% 9.7% <0.001 40.7% 15.9% <0.001 42.9% 16.3% <0.001
Alzheimer 6.7% 0.6% <0.001 2.6% 28% 1 32% 27% 0.98
Congestive Heart Failure (CHF) 11.3% 0.8% <0.001 95% 4.0% <0.001 88% 4.2% 0.025
Chronic Kidney Disease (CKD) 14.4% 1.7% <0.001 12.8% 5.5% <0.001 11.5% 5.8% 0.011
ACE Inhibitors (ACEls) 17.5% 8.4% <0.001 20.5% 10.7% <0.001 19.8% 11.0% 0.002
Acetaminophen 39.8% 17.8% <0.001 31.9% 25.1% 0.12  304% 254% 0.45
Tylenol
Amiodarone 1.6% 0.1% <0.001 1.5% 05% 032 09% 06% 095
Anticoagulants 94% 1.7% <0001 9.9% 38% <0.001 11.1% 3.8% <0.001
Anti-depressants 254% 16.7% <0.001 20.5% 19.8% 0.99  22.6% 19.6% 0.77
Angiotensin Receptor Blockers (ARBs) 120% 5.2% <0.001 154% 6.8% <0.001 17.1% 6.8% <0.001
Aspirin related 32.3% 11.6% <0.001 33.7% 17.4% <0.001 33.2% 17.8% <0.001
Beta-Blockers 28.1% 10.4% <0.001 25.6% 15.7% <0.001 25.8% 16.0% 0.003
Calcium Chanel Blockers (CCBs) 26% 07% 0001 44% 1.0% <0.001 4.6% 1.1% <0.001
Coumadin 35% 07% <0001 1.8% 17% 1 1.8% 1.7% 1
warfarin
Diuretics 16.0% 4.5% <0.001 13.9% 8.1% 0.015 13.4% 83% 0.089
Immuno- suppressants 53% 26% 0005 37% 35% 1 41% 3.5% 097
Insulin related 14.6% 3.5% <0.001 19.0% 6.2% <0.001 21.2% 6.3% <0.001
Metformin related 19.5% 8.6% <0.001 23.8% 11.2% <0.001 24.9% 11.4% <0.001
Nonsteroidal anti-inflammatory drugs 21.9% 21.0% 0.95 19.0% 21.6% 082  18.0% 21.6% 0.66
(NSAIDs)
Proton Pump Inhibitors (PPls) 26.6% 15.0% <0.001 245% 18.5% 0.13 25.8% 18.6% 0.081
Statins 451% 17.3% <0.001 47.6% 24.9% <0.001 45.6% 257% <0.001

Continued on next page
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Intubated (8.5%)

Yes No value Yes No value Yes No value

Steroids 30.5% 23.0% <0.001 30.8% 25.2% 0.26  304% 253% 0.44
Cough 65.6% 29.6% <0.001 68.1% 39.6% <0.001 69.1% 40.2% <0.001
Dyspnea 16.6% 2.2% <0.001 21.6% 57% <0.001 23.5% 59% <0.001
Chest pain 21.1% 5.6% <0.001 22.0% 9.9% <0.001 24.4% 10.0% <0.001
Fever 57.4% 23.7% <0.001 61.2% 32.9% <0.001 63.6% 33.4% <0.001
SpO2 952 974 <0001 934 967 <0.001 933 967  <0.001
Diastolic BP 725 781 <0001 720 756 <0.001 702 756 <0.001
Pulse 90.6 883 <0.001 93.3 888 0.003 94.1 88.9 0.01
Respiratory Rate (RR) 231 20.3 <0.001 256 212 <0.001 259 213 <0.001
Temperature (oC) 372 370 <0001 37.3 371 0.001 373 3741 0.001
Anion Gap 15.8 17.0 15.1 <0.001 171 15.1 <0.001
Sodium 137.0 1363 137.4 <0.001 1362 137.3 <0.001
Calcium 9.0 8.8 9.0 <0.001 8.8 9.0 <0.001
Lactic acid 1.8 2.1 1.6 <0.001 2.1 1.6 <0.001
Glomerular filtration rate (GFR) 67.0 648 723 <0.001 647 719 <0.001
Chloride 98.1 97.2 98.8 <0.001 97.1 98.8  <0.001
Glucose 149.6 171.5 1358 <0.001 173.9 137.2 <0.001
Lactate Dehydrogenase (LDH) 377.2 524.6 303.9 <0.001 551.8 310.6 <0.001
Albumin 38 36 39 <0.001 3.6 3.9 <0.001
D-Dimer 1373.5 1525.0 1223.7 <0.001 1614.5 1214.0 <0.001
C-reactive Protein (CRP) 89.6 133.1 655 <0.001 140.1 68.1 <0.001
Blood Urea Nitrogen (BUN) 21.4 243 185 <0.001 238 189 <0.001
Creatine Kinase (CK) 385.2 563.4 282.7 <0.001 620.3 285.1 <0.001
Ferritin 854.2 1349.5 601.6 <0.001 1477.1 621.8 <0.001
Mean Platelet Volume (MPV) 10.5 10,6 105 <0.001 106 105 <0.001
Atelectasis 19.0% 4.6% <0.001 15.8% 9.2% 0.008 16.6% 9.2% 0.007
Consolidation 59% 0.6% <0.001 10.3% 1.6% <0.001 11.1% 1.7% <0.001
Nodule 49% 0.6% <0.001 44% 1.9% 0072 37% 20% 047
Opacity 64.8% 13.7% <0.001 78.4% 26.7% <0.001 80.6% 27.8% <0.001
Pleural Effusion 8.8% 1.1% <0.001 11.7% 3.0% <0.001 13.8% 3.0% <0.001
Appendix 1—table 2. Distribution of patients in different hospitals and outcome groups.
Hospital Positive Admitted ICU Intubated
Brigham and Women’s Hospital (BWH) 648 171 67 56
Newton-Wellesley Hospital (NWH) 434 145 33 18
Massachusetts General Hospital (MGH) 1195 475 144 121
North Shore Medical Center (NSM) 97 63 16 12
Faulkner Hospital (FH) 192 76 13 10
Total 2566 930 273 217
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2. Natural Language Processing (NLP) of clinical notes

The de-identified data consisted of demographics, lab results, history and physical examination (H
and P) notes, progress notes, radiology reports, and discharge notes. We extracted all variables
needed for each patient and built a profile using NLP tools. There were mainly two difficulties. First,
many important features such as vitals and medical history (prior conditions, medications) were not
in a table format and were extracted from the report text using different regular expression tem-
plates, post-processing the results to eliminate errors due to non-uniformity in the reports (e.g., a
line break may separate a date from the field indicating the type). Second, the negations in the text
should be recognized. Simply recognizing a medical term such as ‘cough’ or ‘fever’ is not sufficient
since the report may include ‘Patient denies fever or cough’. We applied multiple NLP schemes to
overcome these difficulties.

Regular expression matching is the basic strategy we used to extract features such as body tem-
perature values (with or without decimal followed by ‘?C/?F’) and blood pressure values ("xx(x)/xx(x)’
even if they are mixed up with a date ‘'mm/dd/yyyy’ having similar symbols). Extracting pulse and
respiratory rates is challenging since it is easy to mismatch the corresponding values; thus, we also
matched the indicators ‘RR:’ (respiratory rate) or ‘P’ (pulse rate) in the vicinity of the number.

To extract symptoms in H and P notes and findings in radiology reports, we used two NLP mod-
els: a Named Entity Recognition (NER) model, and a Natural Language Inference (NLI) model
(Zhu et al., 2018). The first model aims at finding all the symptoms/disease named entities in the
report. The key motivation of NER is that it is hard to list all possible disease names and search for
them in each sentence; instead, NER models use the context to infer the possible targets, thus, even
abbreviations like ‘N/V' will be recognized. We used the spaCy NER model (Kiperwasser and Gold-
berg, 2016) trained on the BC5CDR corpus. The NLI model is used to detect negations, by checking
if a sentence as a premise supports the hypothesis that the patient truly has the disease/symptoms
in it. We applied a fine-tuned RoBERTa model (Liu et al., 2019) to perform NLI.

For medication extraction, we used the Unified Medical Language System (UMLS) (UMLS, 2019),
which comprehensively contains medical terms and their relationships. We added a medication to
the patient’s prior to admission medication list only If the medication or brand name is found in the
UMLS ‘Pharmacologic Substance’ or ‘Clinical Drug’ category.

Symptoms, medical history, and prior medications from H and P notes are often described using
different terminology or acronyms that imply the same condition or medication (e.g., dyspnea and
SOB). We manually mapped these non-unique descriptors to distinct categories. An appropriate
classification was also used for comorbidities, prior medications, radiological findings, and laborato-
ries. The entire list of variables extracted and used in the analysis is provided in Appendix 1—table
3.

Appendix 1—table 3. List of 164 features used for hospitalization, ICU, and ventilation models.

Category Features

Demographics Marital status, Gender, Race, Age, Language, Tobacco, Alcohol, Height, Weight, BMI

Vitals Systolic BP, Diastolic BP, Temperature, Pulse, Respiratory Rate, SpO2 percentage

Symptoms Fever, Cough, Dyspnea, Fatigue, Diarrhea, Nausea, Vomiting, Abdominal pain, Loss of smell,
Loss of taste, Chest pain, Headache, Sore throat, Hemoptysis, Myalgia

Pre-existing Steroids, ACEls, ARBs, NSAIDs, Anti-depressants, CCBs, Diuretics, Digoxin, Statins, Beta-

medications Blockers, Acetaminophen Tylenol, Immunosuppressants, Anticoagulants, Aspirin related,
Coumadin warfarin, Amiodarone, Insulin related, Metformin related, PPls

Comorbidities Hypertension, COPD, Diabetes, CKD, CAD, MI, Asthma, Osteoarthritis arthritis, SLE, HLD,

Arrhythmia, Thyroid disease, Stroke, Migraine, Epilepsy, Alzheimer, Parkinson, Nephrolithiasis,
Cushing, Adrenal Insufficiency, Diverticulosis, GERD, IBS, IBD, Cholelithiasis, Inguinal hernia,
Hepatitis, Cirrhosis, Valvular disease, CHF, PAD, Osteoporosis, Cancer, TB, Cardiomyopathy,
AAA, DVT, VWD, Anemia, Transplantation, HIV, Depression, Anxiety

Radiology Opacity, Atelectasis, Consolidation, Pleural Effusion, Pneumothorax, Nodule

Continued on next page
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Appendix 1—table 3 continued

Category Features

Labs RDW, PLT, MCH, HGB, MCHC, HCT, MCV, RBC, WBC, MPV, NRBC (%), GFR (estimated),
Creatinine, Potassium, Chloride, Sodium, Anion Gap, BUN, Glucose, Calcium, Carbon
Dioxide, Absolute Neutrophil count, Absolute Lymphocyte count, Absolute Monocyte count,
Absolute Eosinophil count, Absolute Basophil count, Immature Granulocytes, ALT, Total
Protein, Albumin, Globulin, AST, Bilirubin (Total), Alkaline phosphatase, NRBC Auto (#), LDH,
Ferritin, CK, Magnesium, CRP, PT, D-Dimer, Lactic acid, Phosphorus, PTT, PCO2 (Venous), pH
(Venous), Fibrinogen, Lipase, Bands (manual), PO2 (Venous), Base Deficit (Venous), Iron,
Bilirubin (Direct), Myelocytes, HCO3 (unspecified), TIBC, Base Deficit (Arterial), PCO2 (Arterial),
Metamyelocytes, Plasma cells (%), PO2 (Arterial), lonized Calcium, pH (Arterial), Osmolality

To evaluate the accuracy of the NLP models on our data, we randomly selected 35 hr and P notes
and manually checked the model, evaluating the precision, recall, and F1-score for the extracted
terms. For the NER+NLI deep learning model, we compared all the symptoms extracted by the
models against the manually extracted ground truth. For the general regular expression matching
models, we checked the extraction of vitals as a representative task, particularly since vitals have the
most complicated format in the original notes. Appendix 1—table 4 provides the results of this
manual evaluation.

Appendix 1—table 4. Performance of the NLP models.

Precision (%) Recall (%) F1-score (%)
NER+NLI model 93.60 87.97 90.70
Regular expression matching 99.01 96.15 97.56

Appendix 1—table 5. Abnormal ranges for laboratory tests and vitals.

Variable Abnormal range
Albumin <33
Chloride <95

Lactic acid >2

LDH >250

CRP (mg/L) >10
Calcium <8.5

Anion gap >12
Glucose >110

Total protein <6.5 or >8.3
D-Dimer (ng/mL) >500

GFR <60

Sodium <135
Globulin <2 or >4
SpO2 <94

Systolic blood pressure <100

Pulse >100
Respiratory rate >20

Age >65
Diastolic blood pressure <60

BMI >30
Temperature >37.5°C or >98.7 °F
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For both types of models, the F1-score exceeds 90%. Most of the symptoms missing are due to
non-obvious abbreviations. Regular expression matching has better performance since potential
errors may only come from very rare formats we did not consider.

3. Classification methods

A random forest (RF) (Breiman, 2001) is an ensemble algorithm that achieves high accuracy and
generalization performance by combining multiple weak decision tree classifiers. For training, RF
uses bootstrap aggregating (bagging) technique to randomly select a training sample set for each
decision tree classifier. It trains multiple decision trees in parallel during the training phase, where
each tree is trained using a random sample set from the original training set. In the test phase, RF
uses the trained decision tree classifiers to classify a test sample, and then combines all the classifiers
by majority voting.

XGBoost (Chen and Guestrin, 2016) generates a series of decision trees in sequential order;
each decision tree is fitted to the residual between the prediction of the previous decision tree and
the target value, and this is repeated until a predetermined number of trees or a convergence crite-
rion is reached. All decision trees computed are combined with proper weights to produce a final
decision. XGBoost uses shrinkage and column subsampling to prevent overfitting and achieves fast
training using a number or parallelization approaches.

Both of these nonlinear models are expensive to train compared to the linear models we discuss
next. Essentially, each one of them trains an ensemble of many decision trees (could be as many as
500 or more) and a decision is made by combining information from all of these trees.

Among the linear classifiers, we used the support vector machine (SVM) (Cortes and Vapnik,
1995), which computes an optimal hyperplane separating the two classes. To render the method
robust to noise and the presence of outliers (Chen and Paschalidis, 2018) we used (¢4- or {>-norm)
regularized versions of SVM.

We also used Logistic regression (LR) — a common classification method that uses a linear regres-
sion model to approximate the logarithmic odds (logit) of the true classification label. LR, in addition
to a prediction, also provides the likelihood of the predicted outcome, which can be used as a confi-
dence measure in decision making. Similar to SVM, we used ({1- or f>-norm) regularized logistic
regression to find the optimal subset of features from the initial feature space. In particular, based
on the LR model, the predicted probability of the outcome, denoted by J, is estimated by the
formula:

N 1

r= 1+ exp{—bo > bix,-} ’
where exp{-} denotes the exponential function, b is the intercept, (xi,...,x,) the variables used by
the model, and (by,...,b,) the corresponding coefficients. Using this formula and the LR coefficients

(and intercept) provided in Tables 1, 2, 3, 4, 5, one can obtain an easily computable value for the
predicted probability of the corresponding outcome. Comparing that value to a threshold (in the
interval [0,1]) yields a prediction. The threshold can be set depending on the desired trade-off
between sensitivity and specificity, which is typically specified by the user.

4. Pre-processing, statistical feature selection and recursive feature
elimination

We extracted patients’ laboratory test results at the date of hospital admission (reference date).
Since some lab tests may be received several hours after the reference time, we extracted the near-
est set of lab results to the reference time. Some tests have multiple Logical Observation Identifiers
Names and Codes (LOINC), referring to the same quantity, and were merged. White blood cells
(WBC) types (basophils, eosinophils, lymphocytes, monocytes, and neutrophils) were reported both
as an absolute count and percentage (of WBC). We eliminated the percentages and maintained the
absolute counts. We also removed all laboratory test results that did not contain enough information
for a significant percentage of the patients (less than 10%). This retained 65 laboratory variables.
Missing variables were imputed using the mode or, for some key lab variables, by regressing on
the non-missing variables of the patient. To mitigate the effect of outliers, each variable with values
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higher than the 99th percentile or lower than the 1st percentile, was replaced with the 99th or 1st
percentile, respectively. Finally, and to avoid collinearity, of the variables that were highly correlated
(absolute correlation coefficient higher than 0.8) we removed one among the two.

For each model, we used a variety of statistical feature selection approaches. Specifically, we first
calculated a p-value for each variable as described earlier and removed all variables with a p-value
exceeding 0.05. Further, we used (¢4-norm) regularized LR and performed recursive feature elimina-
tion as follows. We run LR and obtained the coefficients of the model. We then eliminated the vari-
able with the smallest absolute coefficient and re-run LR to obtain a new model. We kept iterating in
this fashion, to select a model that maximizes a metric equal to the mean AUC minus its standard
deviation in a validation dataset.

5. Thresholds for the binarized models

Thresholds used for generating binarized versions of our parsimonious models are reported in
Appendix 1—table 5. In these models, a variable is set to one if the corresponding continuous vari-
able is abnormal and 0 otherwise.

6. Standard pneumonia severity scores

For comparison purposes we implemented two commonly used pneumonia severity scores, CURB-
65 (Lim et al., 2003) and the Pneumonia Severity Index (PSl) (Fine et al., 1997). CURB-65 uses a
mental test assessment, Blood Urea Nitrogen (BUN), respiratory rate, blood pressure, and the indi-
cator of age being 65 or older. PSI uses similar information, a host of laboratory values, and comor-
bidities. From CURB-65 we did not score for mental status since we did not have such information.
From PSI, we did not use mental status and whether the patient was a nursing home resident. Given
that laboratory values are used, we computed these scores to predict ICU care and ventilator use. In
each case, we computed the corresponding score and then optimized a threshold using cross-valida-
tion over the training set in order to make the prediction. We used these thresholds and evaluated
performance of each scoring system in the test set.

7. Training/Derivation Model Performance

Performance metrics for the various models on the training/derivation cohorts are reported in
Appendix 1—tables 6, 7, 8, 9, 10. These are computed for both the random splitting of the data
into training and testing sets (in this case, we provide the mean and standard deviation over the five
random splits), as well as for the training dataset formed from patients at MGH, FH, NWH, and NSM
(these results are under the column named BWH in Appendix 1—tables 6, 7, 8, 9, 10, simply to
match the terminology of Tables 1, 2, 3, 4, 5).

Appendix 1—table 6. Derivation cohort performance for the hospitalization prediction model.
Abbreviations and metrics reported are as in Table 1.

AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 106 features
LR-L2 88.3% (0.4%) 88.3% 82.9% (0.5%) 82.3%
SVM-L1 88.2% (0.4%) 88.2% 82.8% (0.5%) 82.1%
XGBoost 91.5% (2.1%) 90.9% 85.7% (2.3%) 85.2%
RF 96.0% (0.7%) 95.3% 92.9% (1.2%) 90.8%
Models using 74 statistically selected features
LR-L2 87.8% (0.4%) 87.8% 82.4% (0.4%) 81.7%
SVM-L1 87.8% (0.4%) 87.7% 82.5% (0.7%) 81.7%
XGBoost 91.9% (1.8%) 91.9% 86.0% (1.8%) 86.2%
RF 94.9% (0.9%) 96.6% 91.3% (1.3%) 93.2%

Continued on next page
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Appendix 1—table 6 continued

AUC F1-weighted
Algorithm Random BWH Random BWH
Parsimonious Model using 11 features
LR-L2 82.6% (0.5%) 82.4% 77.6% (0.1%) 76.9%
SVM-L1 82.5% (0.5%) 82.3% 77.5% (0.3%) 76.9%

Appendix 1—table 7. Derivation cohort performance for the ICU prediction model.
Abbreviations and metrics reported are as in Table 1.

ICU prediction results (training performance) with 2513 patients
AUC F1-weighted
Algorithm Random BWH Random BWH

Models using all 130 features

XGBoost 94.5% (3.6%) 96.1% 94.0% (1.7%) 94.1%
SVM-L1 89.7% (0.7%) 91.4% 91.5% (0.4%) 91.9%
LR-L1 91.3% (0.6%) 92.9% 91.5% (0.5%) 91.9%
RF 93.4% (3.2%) 97.0% 94.3% (1.6%) 95.4%
Models using 56 statistically selected features
XGBoost 94.1% (1.5%) 95.1% 93.6% (0.6%) 93.7%
SVM-L1 88.5% (0.7%) 89.7% 91.2% (0.4%) 91.4%
LR-L1 89.3% (0.7%) 90.4% 91.2% (0.2%) 91.4%
RF 91.0% (1.9%) 94.9% 93.0% (1.0%) 94.2%

Parsimonious Model using 10 features

LR-L1 86.2% (0.6%) 83.8% 90.4% (0.4%) 89.1%
LR-L1 84.0% (0.6%) 80.6% 89.4% (0.1%) 88.2%
(binarized

model)

Model using PSI or CURB-65 score

PSI score 74.3% (1.2%) 72.3% 87.5% (0.2%) 87.1%

CURB-65 67.9% (1.3%) 65.3% 87.3% (0.2%) 86.8%
score

Appendix 1—table 8. Derivation cohort performance for the restricted ICU prediction model.
Abbreviations and metrics reported are as in Table 1.

ICU prediction training performance with 628 patients

AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 130 features
XGBoost 89.6% (4.8%) 92.5% 85.4% (5.8%) 87.6%
SVM-L1 80.1% (0.6%) 80.8% 79.4% (0.5%) 80.4%
LR-L1 87.1% (0.8%) 88.0% 83.5% (0.5%) 83.6%
RF 95.6% (2.9%) 95.7% 91.0% (3.3%) 90.2%
Models using 29 statistically selected features
XGBoost 86.3% (1.0%) 87.4% 81.9% (0.4%) 83.8%
SVM-L1 80.5% (0.9%) 80.4% 79.1% (0.5%) 80.4%

Continued on next page
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LR-L1 80.9% (1.0%) 81.6% 79.0% (0.3%) 80.3%
RF 89.8% (2.6%) 92.8% 85.0% (1.9%) 88.2%
Parsimonious Model using 8 features
LR-L1 80.4% (0.9%) 81.4% 79.7% (0.5%) 80.0%
LR-L1 75.4% (1.1%) 77.2% 75.2% (0.7%) 77.5%
(binarized
model)
Model using PSI or CURB-65 score
PSI score 60.5% (1.7%) 59.0% 68.6% (0.5%) 68.7%
CURB-65 60.2% (1.2%) 57.2% 67.5% (0.4%) 67.3%
score
Appendix 1—table 9. Derivation cohort performance for the ventilation prediction model.
Abbreviations and metrics reported are as in Table 1.
Ventilation prediction training performance with 2525 patients
AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 130 features
XGBoost 97.2% (1.5%) 95.2% 95.8% (1.0%) 94.5%
SVM-L1 92.3% (0.7%) 92.8% 93.1% (0.1%) 93.4%
LR-L1 93.8% (0.6%) 94.3% 93.3% (0.2%) 93.2%
RF 95.1% (0.8%) 94.7% 95.4% (0.5%) 94.3%
Models using 55 statistically selected features
XGBoost 96.9% (1.4%) 98.3% 95.6% (0.9%) 96.6%
SVM-L1 90.8% (0.7%) 91.3% 92.7% (0.2%) 93.0%
LR-L1 91.4% (0.7%) 92.0% 92.6% (0.3%) 92.8%
RF 94.8% (0.7%) 94.1% 95.5% (0.3%) 94.8%
Parsimonious Model using 8 features
LR-L1 86.9% (0.5%) 88.1% 91.6% (0.2%) 91.9%
LR-L1 84.4% (0.7%) 86.7% 91.1% (0.2%) 91.2%
(binarized
model)
Model using PSI or CURB-65 score
PSI score 74.0% (1.0%) 71.4% 89.9% (0.1%) 89.6%
CURB-65 67.6% (0.8%) 64.7% 89.7% (0.0%) 89.6%
score

Appendix 1—table 10. Derivation cohort performance for the restricted ventilation prediction
model. Abbreviations and metrics reported are as in Table 1.

Ventilation prediction training performance with 635 patients

AUC F1-weighted
Algorithm Random BWH Random BWH
Models using all 130 features
XGBoost 91.8% (2.2%) 98.6% 87.4% (2.0%) 95.3%
SVM-L1 81.2% (0.7%) 83.2% 82.4% (1.1%) 83.9%
LR-L1 89.7% (0.6%) 89.6% 86.9% (1.0%) 85.8%
RF 93.5% (4.2%) 93.7% 89.5% (3.8%) 89.7%
Continued on next page
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Models using 29 statistically selected features

XGBoost 89.9% (2.3%) 89.9% 86.1% (1.6%) 86.0%
SVM-L1 81.5% (1.6%) 84.4% 82.2% (1.2%) 83.7%
LR-L1 82.6% (0.7%) 84.0% 83.0% (0.9%) 83.6%
RF 92.3% (4.8%) 94.3% 88.8% (3.7%) 89.3%

Parsimonious Model using 5 features

LR-L1 80.3% (1.0%) 79.0% 82.1% (0.7%) 81.7%
LR-L1 73.1% (1.4%) 66.5% 78.3% (0.9%) 73.5%
(binarized

model)

Model using PSI or CURB-65 score
PSI score 58.8% (1.0%) 57.2% 73.9% (0.3%) 74.2%

CURB-65 58.5% (1.7%) 55.8% 73.2% (0.1%) 73.7%
score

8. Performance of the restricted ICU and ventilation models with
sufficient distance to the event

Appendix 1—table 11 lists the performance of the restricted ICU and mechanical ventilation parsi-
monious LR-L1 models provided in Tables 3 and 5 when applied to a test set consisting of the BWH
patients and 11 additional patients whose data were collected right after the original dataset was
compiled. In these results, we excluded patients whose predicted outcome (ICU or intubation)
occurs less than x hours from the time the admission lab results were made available, where x takes
values in the set {6 hr, 12 hr, 18 hr, 24 hr, 48 hr}. Thus, the corresponding test set includes only
patients with sufficient time difference from the data used to make the prediction, assessing how far
into the future the predictive model could reach. We added the additional 11 patients to make sure
we have a sufficient number of test patients to perform this study. As the results suggest, ICU admis-
sion estimation is fairly accurate and robust, whereas intubation prediction had moderate predictive
power.

Appendix 1—table 11. AUC and weighted F1-score on an extended BWH test set, where patients
with lab-to outcome time smaller than or equal to certain gaps are excluded.

Time gap 6hr 12 hr 18 hr 24 hr 48 hr

Restricted ICU model - AUC 86.05% 84.73% 86.85% 86.14% 84.62%
Restricted ICU model - weighted-F1 83.10% 82.17% 86.47% 86.09% 86.28%
Restricted intubation model - AUC 68.00% 64.44% 63.85% 63.85% 64.34%
Restricted intubation model - weighted-F1 65.75% 66.59% 69.81% 69.81% 72.33%
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