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0. Introduction

Operad theory originates from work of Boardman-Vogt [4] and May [29] in homotopy 
theory in 1970s. Since then many applications of both topological and algebraic operads 
have been discovered in algebra, category theory, combinatorics, geometry, mathematical 
physics and topology [9,10,26,28]. In this paper we study operads from the algebraic 
viewpoint.

Following tradition, let Ass denote the associative algebra operad that encodes the 
category of unital associative algebras. (In the book [26], it is denoted by uAs.) Given 
an operadic ideal I of Ass, one can define the quotient operad Ass/I. Quotient operads 
of Ass relate to polynomial identity algebras (PI-algebras) closely. In fact, a PI-algebra 
is equivalent to an algebra over Ass/I for some nonzero operadic ideal of Ass [3,18]. It 
is worth mentioning that an operadic ideal is essentially equivalent to so-called T -ideal. 
For an introduction to PI-algebras and T -ideals, we refer to [30, Chapter 13].

We are mainly interested in those operads that have some common properties with 
Ass/I. Let k be a base field. Let P := (P(n))n≥0 denote a k-linear operad. Recall that 
P is unitary if P(0) = k10 with a basis element 10 (called a 0-unit), see [9, Section 2.2]. 
Denote by Op+ the category of unitary operads, in which a morphism preserves the 0-
unit. Operads in this paper are usually unitary. We say P is 2-unitary, if P is a unitary 
operad equipped a morphism Mag → P in Op+, where Mag is the unital magmatic 
operad (see Subsection 8.4 or [25, Section 4.1.10]), or equivalently, there is an element 
12 ∈ P(2) (call a 2-unit) such that

12 ◦ (10,1) = 1 = 12 ◦ (1,10), (E0.0.1)

where 1 ∈ P(1) is the identity of the operad P and ◦ is composition in P. An operad 
P is called 2a-unitary if P is a unitary operad equipped with a morphism Ass → P in 
Op+, or equivalently, P is 2-unitary with a 2-unit 12 satisfying

12 ◦ (12,1) = 12 ◦ (1,12).

Note that every quotient operad Ass/I is 2a-unitary and that there are many other 
interesting 2-unitary (respectively, 2a-unitary) operads [Example 2.2 and Lemma 2.3].

All operads in this paper are k-linear. An operad usually means a symmetric operad 
and the word symmetric could be omitted. Plain operads are used in a few places.

0.1. Definition of truncations

Given a unitary operad P, one can define restriction operators [9, Section 2.2.1] as 
follows. We are using different notation from [9]. Some explanations concerning the 
restriction operators are given in [9, Section 2.2]. Let [n] be the set {1, · · · , n} and I
be a subset of [n]. Let χI be the characteristic function of I, i.e. χI(x) = 1 for x ∈ I and 
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χI(x) = 0 otherwise. Then one defines the restriction operator πI : P(n) → P(s), where 
s = |I|, by

πI(θ) = θ ◦ (1χI(1), · · · ,1χI(n))

for all θ ∈ P(n). The restriction operator also appeared in many other papers, see for 
example, [24]. For k ≥ 1, the k-th truncation of P, denoted by kΥ , is defined by

kΥ(n) =

⎧⎨⎩
⋂

I⊂[n], |I|=k−1
KerπI , if n ≥ k;

0, if n < k.
(E0.0.2)

By convention, 0Υ = P. The truncation {kΥ}k≥1 of P is a sequence of ideals that are 
naturally associated to P. In the case of P = Ass,

1Υ = 2Υ = Ker(Ass → Com)

where Com is the commutative algebra operad defined by Com(n) = k for all n ≥ 0. We 
will use the truncation to study the growth of operads, as well as their ideal structure 
and classification of operads of low growth.

0.2. Truncations and Gelfand-Kirillov dimension

The first application of the truncations concerns the growth property. The growth of a 
T -ideal (in the theory of PI algebras) has been studied by many authors, see for instance 
[20,11–14]. This paper deals with a similar question in the framework of operad theory. 
Next we define the Gelfand-Kirillov dimension of an operad. For the definition of Gelfand-
Kirillov dimension of an algebra, we refer to [21]. The Gelfand-Kirillov dimension (or 
GKdimension for short) of an operad P is defined to be

GKdimP := lim sup
n→∞

(
logn(

n∑
i=0

dimk P(i))
)
. (E0.0.3)

The exponent of P is defined to be

exp(P) := lim sup
n→∞

(dimP(n)) 1
n . (E0.0.4)

When we talk about the GKdimension or the exponent of an operad P, we usually 
implicitly assume that P is locally finite, namely, dimk P(n) < ∞ for all n ≥ 0. We say 
P has polynomial growth if GKdimP < ∞. It is easy to see that GKdimAss = ∞ and 
GKdim Com = 1. The generating series or Hilbert series of P is defined to be
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GP(t) =
∞∑

n=0
dimk P(n)tn ∈ Z[[t]].

Also see Definition 4.1.1
Our first result is to give a characterization of operads that have finite GKdimension.

Theorem 0.1 (Theorem 5.3). Let P be a 2-unitary operad.

(1) If P has polynomial growth, then the generating series GP(t) is rational. As a con-
sequence, GKdimP ∈ N.

(2) P has polynomial growth if and only if there is an integer k such that kΥ = 0. And

GKdimP = max{k | kΥ �= 0} + 1 = min{k | kΥ = 0}.

Theorem 0.1(1) answers an open question (or rather fulfills an expectation) of 
Khoroshkin-Piontkovski [19, Expectation 3] for 2-unitary symmetric operads. When P
has finite Gröbner basis [19], Theorem 0.1(2) is a consequence of a more general result 
[19, Theorem 0.1.5]. Our proof is not dependent on the Gröbner basis. It follows from 
Corollary 6.12 that the GKdimension of a unitary operad can be a non-integer. There are 
some other results concerning the exponent of an operad, see for example Theorem 0.8(2). 
In the next corollary, let {kΥ}k≥0 be the truncation of Ass.

Corollary 0.2 (Corollary 5.4). Let I be an operadic ideal of Ass and P be the quotient 
operad Ass/I. Let k be a positive integer. Then GKdimP ≤ k if and only if I ⊇ kΥ. In 
particular,

GKdim(Ass/kΥ) =
{

1, k = 1, 2,
k, k ≥ 3.

0.3. Chain conditions on ideals of an operad

The second application of the truncations concerns the ideal structure of operads. We 
say an operad P is artinian (respectively, noetherian) if the set of ideals of P satisfies 
the descending chain condition (respectively, ascending chain condition).

Theorem 0.3 (Theorem 5.6). Let P be a 2-unitary operad that is locally finite.

(1) If GKdimP < ∞, then P is noetherian.
(2) GKdimP < ∞ if and only if P is artinian.

1 In [26, Section 5.1.10, p. 128], the generating series of P is defined to be EP (x) : =
∑

n≥0

dimk P(n)
n!

xn, 

which is also called the Hilbert-Poincaré series of P.
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(3) [An operadic version of Hopkins’ Theorem] If P is artinian, then it is noetherian.

We have a version of Artin-Wedderburn Theorem for operads. Similar to the definition 
given before Theorem 0.3, we can define left or right artinian operads [Definition 1.9 (2, 
3)]. We say an operad P is semiprime, if it does not contain an ideal N �= 0 such that 
N 2 = 0 [Definition 1.11 (4)]. An operad P is called bounded above if P(n) = 0 for all 
n 
 0. The next result contains Theorems 3.6 and 6.5.

Theorem 0.4 (Operadic versions of Artin-Wedderburn Theorem). Suppose P is semi-
prime. In parts (1) and (2), P is either a plain operad or a symmetric operad. In part (3), 
P is a symmetric operad.

(1) If P is reduced and left or right artinian, then

P(n) =
{

0, n �= 1,
Λ, n = 1,

where Λ is a semisimple algebra.
(2) If P is unitary, bounded above, and left or right artinian, then

P(n) =

⎧⎪⎪⎨⎪⎪⎩
0, n �= 0, 1,
k, n = 0,
Λ, n = 1,

where Λ is an augmented semisimple algebra.
(3) If P is 2-unitary and left or right artinian, then P is as in Example 2.4(1) and P(1)

is an augmented semisimple algebra.
If, further, P(1) is finite dimensional over k, then P is locally finite, GKdimP = 2
or GKdimP = 1 (and hence P = Com), and P(1) is a finite dimensional augmented 
semisimple algebra.

Note that there are unitary and left (or right) artinian operads that are not bounded 
above. Such examples are given in Example 2.4(2).

0.4. Classifications of operads of low Gelfand-Kirillov dimension

The third application of truncations concerns classifications of 2-unitary operads.
The classification of 2-unitary operads of GKdimension 1 is easy.

Proposition 0.5 (Proposition 2.12). Let P be a (symmetric or plain) 2-unitary operad. 
If GKdim(P) < 2, then P ∼= Com.
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A 2-unitary operad consists of a triple (P, 10, 12) satisfying (E0.0.1). A morphism 
between two 2-unitary operads means a morphism of operads that preserves 10 and 12. 
All 2-unitary operads form a category with morphisms being defined as above.

Theorem 0.6 (Theorem 6.3). There are natural equivalences between

(a) the category of finite dimensional, not necessarily unital, k-algebras;
(b) the category of 2-unitary operads of GKdimension ≤ 2;
(c) the category of 2a-unitary operads of GKdimension ≤ 2.

At this point we have not found any 2-unitary plain operad of GKdimension two that 
is not a symmetric operad. It would be nice to show that every 2-unitary plain operad 
of GKdimension 2 admits a natural S-module structure making it a symmetric operad.

Note that the category in Theorem 0.6(1) is equivalent to the category of finite di-
mensional unital augmented k-algebras. The description of operads in the above theorem 
is given in Example 2.4(1).

For quotient operads of Ass, we can classify a few more operads with small GKdi-
mension.

Theorem 0.7 (Theorem 6.6). Suppose chark = 0. Let P be a quotient operad of Ass and 
GKdimP = n. Let kΥ be the k-th truncation of Ass.

(1) [Proposition 0.5] If n = 1, P = Ass/1Υ ∼= Com.
(2) [Gap Theorem] GKdimP can not be 2, (so can not be strictly between 1 and 3).
(3) If n = 3, then P = Ass/3Υ.
(4) If n = 4, then P = Ass/4Υ.
(5) There are at least two non-isomorphic quotient operads P such that GKdimP = 5.

0.5. Other results related to truncations

We list two other results related to the truncations indirectly. In Theorem 0.9, operads 
P need not be unitary.

Using the Hilbert series of an operad P, one can define another numerical invariant, 
signature of P, denoted by S(P) [Definition 6.1]. Let Com ↓ Op+ denote the category 
of operads with a morphism Com → P. (More precisely, an object in Com ↓ Op+ is a 
unitary operad with a morphism Com → P in Op+ and morphisms are the commutative 
triangles.) Every operad in Com ↓Op+ is canonically 2a-unitary, inherited from Com. We 
prove the following

Theorem 0.8 (Theorem 6.11). Let Com ↓Op+ be defined as above.
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(1) For every sequence of non-negative integers d := {d1, d2, · · · }, there is an operad P
in Com ↓Op+ such that dim kΥ(k) = dk for all k ≥ 1.

(2) Exponent exp of (E0.0.4) is a surjective map from Com ↓ Op+ (or the category of 
2-unitary operads) to {1} ∪ [2, ∞].

For a 2-unitary operad P with infinite GKdimension, we can show that exp(P) ≥ 2. 
This implies that there are no 2-unitary operads that have subexponential growth [Defi-
nition 4.1(5)]. On the other hand, there are many unitary operads having subexponential 
growth [Example 2.2(3)]. Theorem 0.8(2) says that exp of an 2-unitary operad can be 
any real number larger than 2. However, for 2-unitary Hopf operads, we don’t have any 
example that has non-integer exp.

The next result is a connection between the GKdimension of an operad and the 
GKdimension of finitely generated algebras over it.

Theorem 0.9 (Theorem 5.9). Let P be an operad and A be an algebra over P. Suppose 
A is generated by g elements as an algebra over k. Then

GKdimA ≤ g − 1 + GKdimP.

When P is the commutative algebra operad Com, then the above theorem gives rise to 
a well-known fact that the GKdimension of a commutative algebra A is bounded by the 
number of generators of A [Example 5.10]. Note that every finitely generated PI-algebra 
has finite GKdimension, see for instance [20,8].

The theory of operads provides a unified approach to several different topics. Operads 
are also closely related to clones in universal algebra [34,7] and species in combinatorics 
[17,1,2]. Some ideas presented in this paper can be adapted to study both clones and 
species.

The paper is organized as follows. We recall some basic concepts in Section 1. In 
Section 2, we study basic properties of 2-unitary operads, and prove some lemmas that 
are needed in later sections. One of the main examples is given in Example 2.4. Proposi-
tion 0.5 is proved in Section 2. The main object of this paper, the sequence of truncation 
ideals, is defined in Section 3. As an application of truncations, a basis theorem is proved 
in Section 4. Binomial transform of generating series is defined in Section 5. Theorems 0.1, 
0.9, 0.3 and Corollary 0.2 are proved in Section 5. In Section 6, we study the signature 
of an operad. Theorems 0.6, 0.7 and 0.8 are proved in Section 6. Theorem 0.4 is proved 
in Sections 3 and 6. In Section 7 we introduce the notion of a truncatified operad. Some 
basic material is reviewed in Section 8 (Appendix).

1. Preliminaries

Throughout let k be a fixed base field, and all unadorned ⊗ will be ⊗k. In this section, 
we recall some basic facts about operads from standard books such as [26] and [9,10]. 
Also see Section 8 for some extra material.
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1.1. Operads

An algebraic structure of a certain type is usually defined by generating operations and 
relations, see for instance, the definition for associative algebras, commutative algebras, 
Lie algebras and so on. Given a type of algebras, the set of operations generated by the 
ones defining this algebra structure will form an operad, and an algebra of this type is 
exactly given by a set (or a vector space) together with an action of the operad on it. 
Roughly speaking, an operad can be viewed as a set of operations, each of which has a 
fixed number of inputs and one output, satisfying a set of compatibility laws.

In this paper we consider operads over k-vector spaces. We now recall the classical 
definition of an operad. Usually the word “symmetric” is omitted in this paper.

Definition 1.1. Most of the following definitions are copied from [26, Chapter 5].

(1) A plain operad (sometimes called a non-Σ or non-symmetric operad) consists of the 
following data:
(i) a sequence (P(n))n≥0 of sets, whose elements are called n-ary operations,
(ii) an element 1 ∈ P(1) called the identity,
(iii) for all integers n ≥ 1, k1, · · · , kn ≥ 0, a composition map

◦ : P(n) × P(k1) × · · · × P(kn) −→ P(k1 + · · · + kn)
(θ, θ1, · · · , θn) �→ θ ◦ (θ1, · · · , θn),

satisfying the following coherence axioms:
(OP1) (Identity)

θ ◦ (1,1, · · · ,1) = θ = 1 ◦ θ;

(OP2) (Associativity)

θ ◦ (θ1 ◦ (θ1,1, · · · , θ1,k1), · · · , θn ◦ (θn,1, · · · , θn,kn
))

= (θ ◦ (θ1, · · · , θn)) ◦ (θ1,1, · · · , θ1,k1 , · · · , θn,1, · · · , θn,kn
),

where in the left hand side, θi ◦ (θi,1, · · · , θi,ki
) = θi in case ki = 0.

(2) A plain operad P is called an operad (or a symmetric operad), if there exists a right 
action ∗ of the symmetric group Sn on P(n) for each n, satisfying the following 
compatibility condition:
(OP3) (Equivariance)

(θ ∗ σ) ◦ (θ1 ∗ σ1, · · · , θn ∗ σn)

=(θ ◦ (θσ−1(1), · · · , θσ−1(n))) ∗ ϑn;k1,··· ,kn
(σ, σ1, · · · , σn),

where ϑn;k1,··· ,kn
is defined in Section 8.
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(3) An operad (respectively, a plain operad) is said to be k-linear if P(n) is a kSn-module 
(respectively, a k-module) for each n and all composition maps are k-multilinear.

(4) A k-linear operad is called unitary if P(0) = k10 ∼= k, which is the unit object in 
the symmetric monoidal category Vectk. Here 10 is a basis for P(0) and is called a 
0-unit of P.

(5) If P(0) = 0, P is called reduced.
(6) If P(1) = k, P is called connected.

Unless otherwise stated, all operads considered here will be k-linear. In some occasions, 
it will be more convenient to use another definition, called the partial definition of an 
operad.

Definition 1.2 ([9, Section 2.1], [26, Section 5.3.4]). An operad consists of the following 
data:

(i) a sequence (P(n))n≥0 of right kSn-modules, whose elements are called n-ary oper-
ations,

(ii) an element 1 ∈ P(1) called the identity,
(iii) for all integers m ≥ 1, n ≥ 0, and 1 ≤ i ≤ m, a partial composition map

− ◦
i
− : P(m) ⊗ P(n) → P(m + n− 1) (1 ≤ i ≤ m),

satisfying the following axioms:

(OP1′) (Identity)
for θ ∈ P(n) and 1 ≤ i ≤ n,

θ ◦
i
1 = θ = 1 ◦

1
θ;

(OP2′) (Associativity)
for λ ∈ P(l), μ ∈ P(m) and ν ∈ P(n),

⎧⎨⎩(λ ◦
i
μ) ◦

i−1+j
ν = λ ◦

i
(μ ◦

j
ν), 1 ≤ i ≤ l, 1 ≤ j ≤ m,

(λ ◦
i
μ) ◦

k−1+m
ν = (λ ◦

k
ν) ◦

i
μ, 1 ≤ i < k ≤ l;

(OP3′) (Equivariance)
for μ ∈ P(m), φ ∈ Sm, ν ∈ P(n) and σ ∈ Sn,

⎧⎨⎩μ ◦
i
(ν ∗ σ) = (μ ◦

i
ν) ∗ σ′,

(μ ∗ φ) ◦ ν = (μ ◦ ν) ∗ φ′′,

i φ(i)
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where

σ′ = ϑm;1,··· ,1,n
i
,1,··· ,1(1m, 11, · · · , 11, σ

i
, 11, · · · , 11),

φ′′ = ϑm;1,··· ,1,n
i
,1,··· ,1(φ, 11, · · · , 11, 1n

i
, 11 · · · , 11)

(E1.2.1)

(see (E8.1.3) for the definition of ϑm;1,··· ,1,n
i
,1,··· ,1).

Remark 1.3. The above two definitions for operads are equivalent by [26, Proposi-
tion 5.3.4]. Let P be an operad in the sense of Definition 1.1. Then the partial com-
positions

− ◦
i
− : P(m) ⊗ P(n) → P(m + n− 1) (1 ≤ i ≤ m)

associated to P are defined by

μ ◦
i
ν = μ ◦ (11, · · · ,11, ν

i
,11, · · · ,11).

Conversely, let P be an operad in the sense of Definition 1.2, then one can define com-
position maps by

θ ◦ (θ1, · · · , θn) = (· · · ((θ ◦
n
θn) ◦

n−1
θn−1) ◦

n−2
θn−2 · · · ) ◦1 θ1.

One can show that the axioms (OP1)-(OP3) are equivalent to the axioms (OP1′)-(OP3′) 
respectively.

We will use the partial definition in several examples in later sections.

Example 1.4. [26, Section 5.2.11] For every k-vector space V , the sequence (EndV (n))n≥0
together with the composition map defined as in (E8.1.6) gives rise to an operad, which 
is denoted by EndV . We call EndV the endomorphism operad of V . It is easy to see that 
EndV is not unitary unless V = k.

If T is a k-linear symmetric monoidal category with internal hom-bifunctor

HomT (−,−) : T op × T → T ,

then endomorphism operad EndV can be defined for any object V ∈ T . Some results in 
this paper can be extended from Vectk to T .

Let P, P ′ be (k-linear) operads. A morphism from P to P ′ is a sequence of Sn-
morphism γ = (γn : P(n) → P ′(n))n≥0, satisfying

γ(1) = 1′
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where 1 and 1′ are identities of P and P ′, respectively, and

γ(θ ◦ (θ1, · · · , θn)) = γ(θ) ◦ (γ(θ1), · · · , γ(θn))

for all θ, θ1, · · · θn.
We denote by Op the category of operads. The category of unitary operads is denoted 

by Op+, in which morphisms are operadic morphisms preserving 0-units.
Recall that Mag and Ass are the operads governing the unital magmatic and unital 

associative algebra, respectively. See Sections 8.3 and 8.4 for details.

Definition 1.5. Retain the above notation.

(1) A 2-unitary operad P is a unitary operad P equipped with a morphism Mag → P
in Op+.

(2) A 2a-unitary operad P is a unitary operad P equipped with a morphism Ass → P
in Op+.

Let P and P ′ be 2-unitary operads. A morphism of 2-unitary operads is a morphism 
γ : P → P ′ in Op+ satisfying the following commutative diagram

Mag

P
γ

P ′

The category of 2-unitary operads is denoted by Mag ↓Op+. Similarly, one can define 
the category of 2a-unitary operads, denoted by Ass ↓Op+.

1.2. Algebras and free algebras over an operad

Given a type of algebras, there is a notion of “free” algebras, which can be constructed 
by using the associated operad.

Definition 1.6. [26, Sections 5.2.1 and 5.2.3] An algebra over P, or a P-algebra for short, 
is a k-vector space A equipped with a morphism γ : P → EndA. Also see [9, Proposi-
tion 1.1.15].

Let P be an operad and V a k-vector space. Set

P(V )n = P(n) ⊗kSn
V ⊗n, P(V ) =

⊕
n≥0

P(V )n

where a pure tensor θ ⊗ x1 ⊗ · · · ⊗ xn in P(n) ⊗kSn
V ⊗n is denoted by [θ, x1, · · · , xn]. 

Then we have
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P(V )⊗n =
⊕
m≥0

⊕
k1+···+kn=m

P(V )k1 ⊗ · · · ⊗ P(V )kn
.

The composition in P gives a linear map

γn : P(n) → Homk

( ⊕
k1+···+kn=m

P(V )k1 ⊗ · · · ⊗ P(V )kn
,P(V )m

)

γn(θ)([θ1, x1,1, · · · , x1,k1 ] ⊗ · · · ⊗ [θn, xn,1, · · · , xn,kn
])

= [θ ◦ (θ1, · · · , θn), x1,1, · · · , x1,k1 , · · · , xn,1, · · · , xn,kn
],

which extends to a linear map γn : P(n) → EndP(V )(n). One can check that γn is well 
defined and the sequence γ = (γn)n≥0 is a morphism of operads, i.e., P(V ) is a P-algebra. 
We mention that P(V ) is a free P-algebra in the following sense.

Proposition 1.7. [26, Proposition 5.2.1] Let A be a P-algebra, and V a k-vector space. 
Then every linear map f : V → A extends uniquely to a morphism f : P(V ) → A of 
P-algebras.

Remark 1.8. The above proposition can be restated as follows. Given an operad P, the 
functor V �→ P(V ) is a left adjoint to the forgetful functor from the category of P-
algebras to the category Vectk of k-vector spaces.

1.3. Operadic ideals and quotient operads

We denote by S the disjoint union of all Sn, n ≥ 0. We call a family

M = (M(0),M(1), · · · ,M(n), · · · )

of right kSn-modules M(n) a (right) S-module over k. Thus a k-linear operad is an 
S-module over k equipped with a family of suitable composition maps.

An S-submodule N of M is a sequence N = (N (n))n≥0, where each N (n) is an Sn-
submodule of M(n). Given M, N , one defines the quotient S-module M/N by setting 
(M/N )(n) = M(n)/N (n).

Definition 1.9. Let P be an operad and I is a S-submodule of P.

(1) [26, Section 5.2.14]. We call I an operadic ideal (or simply ideal) of P if the operad 
structure on P passes to P/I. In this case, P/I is called a quotient operad of P. 
More explicitly, I is an ideal if and only if

I(n) ◦ (P(k1), · · · ,P(kn)) ⊆ I(k1 + · · · + kn)

and
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P(n) ◦ (P(k1), · · · ,P(ks−1), I(ks),P(ks+1), · · · ,P(kn)) ⊆ I(k1 + · · · + kn)

for all n > 0, k1, · · · , kn ≥ 0. In other words, for any family of operations θ, θ1, · · · , θn, 
if one of them is in I, then so is θ ◦ (θ1, · · · , θn).

(2) An S-submodule I of P is called a right ideal of P, if for every λ ∈ I(m) and 
μ ∈ P(n), λ ◦

i
μ ∈ I(m + n − 1) for every 1 ≤ i ≤ m. We say P is right artinian if 

the set of right ideals of P satisfies the descending chain condition.
(3) An S-submodule I of P is called a left ideal of P, if for every λ ∈ P(m) and μ ∈ I(n), 

λ ◦
i
μ ∈ I(m + n − 1) for every 1 ≤ i ≤ m. We say P is left artinian if the set of left 

ideals of P satisfies the descending chain condition.

It is easy to see that I is an ideal if and only if it is both a left and a right ideal.

Let {Ij}j∈J be a family of ideals of P. Let 
∑

j∈J Ij and 
⋂

j∈J Ij be the S-modules 
given by

(
∑

j∈J
Ij)(n) =

∑
j∈J

Ij(n), (
⋂

j∈J
Ij)(n) =

⋂
j∈J

Ij(n)

for all n ≥ 0. The following lemmas are easy and their proofs are omitted.

Lemma 1.10. Let {Ij}j∈J be a family of ideals (respectively, left or right ideals) of an 
operad P. Then both 

∑
j∈J Ij and 

⋂
j∈J Ij are ideals (respectively, left or right ideals) 

of P.

Let I and J be S-submodules (or ideals) of P. The product IJ is defined to be the 
S-submodule of P generated by elements of the form μ ◦

i
ν for all possible μ ∈ I(m), 

ν ∈ J (n) and 1 ≤ i ≤ m.

Definition 1.11. Let P be an operad.

(1) Let X be a property that is defined on operads (or a class of operads). We define 
X-radical of P to be

X rad(P) :=
⋂

{I | P/I has property X}.

(2) For example, if (GK ≤ k) denotes the property that the GKdim of P is no more 
than k, then

(GK ≤ k) rad(P) :=
⋂

{I | GKdim(P/I) ≤ k}.

(3) We say P is semiprime if P does not contain an ideal N �= 0 such that N 2 = 0.
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(4) If p denotes the property of P being semiprime, then

p. rad(P) :=
⋂

{I | P/I does not contain an ideal N �= 0 such that N 2 = 0}.

Lemma 1.12. Let I and J be S-submodules of an operad P.

(1) If I and J are right ideals of P, then so is IJ .
(2) If I is a left ideal of P, then so is IJ .
(3) If I is an ideal of P and J is a right ideal of P, then IJ is an ideal of P.

We conclude this section with the following fact. Recall that Com denotes the operad 
that encodes the category of unital commutative algebras, namely, Com(n) = k for all 
n ≥ 0. Let Uni be the trivial unitary operad defined by

Uni(n) =

⎧⎪⎪⎨⎪⎪⎩
k10 ∼= k, n = 0,
k11 ∼= k, n = 1,
0, n ≥ 2.

Lemma 1.13.

(1) [9, Proposition 2.2.21] The operad Com is the terminal object in the category of 
unitary operads.

(2) The operad Uni is the initial object in the category of unitary operads.

2. Unitary and 2-unitary operads

Let P be a unitary operad with a fixed 0-unit 10 ∈ P(0). An element 12 ∈ P(2) is 
called a right 2-unit if

12 ◦ (1,10) = 1. (E2.0.1)

An element 12 ∈ P(2) is called a left 2-unit if

12 ◦ (10,1) = 1. (E2.0.2)

If both (E2.0.1) and (E2.0.2) hold for the same 12, then it is called a 2-unit.
Recall from Definition 1.5 that a 2-unitary operad is a unitary operad P equipped 

with a morphism ϕ : Mag → P in Op+, where Mag is the unital magmatic algebra 
operad.

Lemma 2.1. Let P be a unitary operad with a 0-unit 10.

(1) P is 2-unitary if and only if it has a 2-unit 12.
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(2) P is a 2a-unitary if and only if it has a 2-unit 12 satisfying

12 ◦1 12 = 12 ◦2 12. (E2.1.1)

Proof. (1) Let P be a 2-unitary operad with operadic morphism ϕ : Mag → P, where, 
by the convention in Subsection 8.4, Mag = (ku, k1, kν, · · · ) is the unital magmatic 
algebra operad. Denote

10 = ϕ0(u) ∈ P(0), 12 = ϕ2(ν) ∈ P(2).

Since ν ◦
i
u = 1 for i = 1, 2, we have

12 ◦
i
10 = ϕ1(ν ◦

i
u) = ϕ(1) = 1P .

Therefore, 12 is a 2-unit of P.
Conversely, if P has a 2-unit 12, then one can define a morphism ϕ : Mag → P in 

Op+ by ϕ0(u) = 10 and ϕ2(ν) = 12 �= 0.
(2) The proof is similar to part (1) and we omit it. �
Note that a 2-unit may not be unique. For example, if 12 is a 2-unit, then so is 

12 ∗ (12), where (12) is the non-identity element in S2.
Suggested by (E2.0.1)-(E2.0.2), sometimes we denote 1 by 11. It is easy to see that 

(E2.0.1) implies that

12 ◦ (θ,10) = θ (E2.1.2)

for all θ ∈ P(n) and that (E2.0.2) implies that

12 ◦ (10, θ) = θ (E2.1.3)

for all θ ∈ P(n).

2.1. Examples of 2-unitary operads

Example 2.2. Parts (1) and (2) are examples of 2-unitary operads and part (3) is an 
example of unitary operad.

(1) There are many commonly-used 2-unitary operads from textbooks, such as the unital 
magmatic algebra operad Mag, unitary operads Ass and Com, the unitary A∞-
algebra operad (denoted by A∞), the Poisson operad (denoted by Pois), the operad 
governing unital dg associative algebras.

(2) One can easily show that every quotient operad of a 2-unitary operad is again 2-
unitary.
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(3) Let M be an S-module with M(0) = 0. Then Uni ⊕M is an unitary operad with 
partial composition defined by

11 ◦1 θ = θ = θ ◦
i
11, ∀θ ∈ M,

θ ◦
i
10 = 0, ∀θ ∈ M,

θ1 ◦
i
θ2 = 0, ∀θ1, θ2 ∈ M.

One can use the partial definition to check that this operad is unitary, but not 
2-unitary.

Of course, any non-unitary operads can not be 2-unitary. In the rest of this subsection 
we give some examples of 2-unitary operads different from ones in Example 2.2. The 
following lemma is easy to prove.

Lemma 2.3. Let P and Q be unitary operads.

(1) If P and Q are 2-unitary, then so is the Hadamard product [26, Section 5.3.2] (also 
called Segre product or white product) of P and Q. In fact, the 2-unit in P ⊗

H
Q is 

just 1P2 ⊗ 1Q2 , where 1P2 and 1Q2 are 2-units in P and Q, respectively.
(2) Suppose P is 2-unitary with 2-unit 1P2 and f : P → Q is a morphism of unitary 

operads. Then Q is 2-unitary with 2-unit f(1P2 ).

The next example will be used in the classification of 2-unitary operads of GKdimen-
sion two.

Example 2.4. Let Λ = k11 ⊕ Λ̄ be an augmented algebra with augmentation ideal Λ̄. We 
consider the plain operad DΛ generated by the sequence (k10, Λ, k12, 0, 0, · · · ) of vector 
spaces and subject to the following relations

δ ◦ 10 = 0, for all δ ∈ Λ̄,

12 ◦
i
10 = 11, for i = 1, 2,

δ ◦ δ′ = δδ′, for all δ, δ′ ∈ Λ,

12 ◦1 12 = 12 ◦2 12,

12 ◦ (δ, δ′) = 0, for all δ, δ′ ∈ Λ̄,

δ ◦ 12 = 12 ◦1 δ + 12 ◦2 δ, for all δ ∈ Λ̄,

where δδ′ is the product of δ and δ′ in Λ.
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(1) Next we give an explicit description of DΛ. For this, we choose an arbitrary basis 
{δi | i ∈ T} for Λ̄ where T is an index set. Suppose that {Ωk

ij | i, j, k ∈ T} are the 
corresponding structural constants, namely,

δiδj =
∑
k∈T

Ωk
ijδk (E2.4.1)

for all i, j ∈ T . We assume that 0 is not in T . Then we have

DΛ(0) = k10 ∼= k, DΛ(1) = Λ = k11 ⊕ Λ̄,

and

DΛ(n) = k1n ⊕
⊕

i∈[n],j∈T

kδn(i)j ∼= k1n ⊕ Λ̄⊕n (E2.4.2)

for n ≥ 2. For consistency of notations, we set δ1
(1)j = δj for each j ∈ T , and 

δn(i)0 = 1n for all i ∈ [n].
We use the partial definition of an operad [Definition 1.2]. The partial composition

− ◦
i
− : DΛ(m) ⊗DΛ(n) → DΛ(m + n− 1) (i ∈ [m])

is defined by

δm(s)t ◦
i
δn(k)l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δm+n−1
(k+i−1)l, t = 0, l ≥ 0,

δm+n−1
(s)t , t ≥ 1, l = 0, 1 ≤ s ≤ i− 1,

i+n−1∑
h=i

δm+n−1
(h)t , t ≥ 1, l = 0, s = i,

δm+n−1
(s+n−1)t, t ≥ 1, l = 0, i < s ≤ m,∑

v∈T

Ωv
tlδ

m+n−1
(i+k−1)v, t ≥ 1, l ≥ 1, s = i,

0, t ≥ 1, l ≥ 1, s �= i

(E2.4.3)

for all n ≥ 1, and 11 ◦
1
10 = 10, δj ◦1 10 = 0 for all j ∈ T . If we separate 1m from 

elements of the form δm(k)l for k ∈ [m] and 0 �= l ∈ T , it is easy to see that (E2.4.3)
is equivalent to

1m ◦
i
1n = 1m+n−1,

1m ◦ δn(k)l = δm+n−1
(k+i−1)l,
i
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δm(s)t ◦
i
1n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δm+n−1
(s)t , 1 ≤ s ≤ i− 1,

i+n−1∑
h=i

δm+n−1
(h)t , s = i,

δm+n−1
(s+n−1)t, i < s ≤ m,

δm(s)t ◦
i
δn(k)l =

⎧⎪⎨⎪⎩
∑
v∈T

Ωv
tlδ

m+n−1
(i+k−1)v, s = i,

0, s �= i.

It is easy to see that the above defining equations are independent of the choices of 
the basis {δi | i ∈ T}. Note that − ◦

1
− in A is just the associative multiplication of 

Λ. By the second relation on the above list, we obtain

δn(i)j = 1n ◦
i
δj (E2.4.4)

for all i ∈ [n], j ∈ T .
One can now directly check via a tedious computation that DΛ is a 2-unitary plain 
operad with the partial composition defined above. In fact, it is easily seen that 
DΛ(0) = k10, DΛ(1) = Λ and for every n ≥ 2, DΛ(n) = k1n ⊕ Λ̄n, where Λ̄n =
{1n ◦

i
δ | δ ∈ Λ̄, 1 ≤ i ≤ n} is isomorphic to n copies of Λ̄ as a vector space.

Observe that there is a natural right action of Sn on DΛ(n) given by

1n ∗ σ = 1n and (1n ◦
i
δ) ∗ σ = 1n ◦

σ−1(i)
δ

for all σ ∈ Sn and all n. It is easily checked that DΛ is a symmetric operad under 
the above S-action. Furthermore, this action is uniquely determined. In fact, by 
12 ∗ (12) = 12 and 1n = 12 ◦11n−1 = 12 ◦21n−1, we have inductively that 1n ∗σ = 1n, 
and by (OP3′) we have

1n ◦
σ−1(i)

δ = (1n ∗ σ) ◦
σ−1(i)

δ = (1n ◦
i
δ) ∗ σ

for all σ ∈ Sn and all n ≥ 2.
A k-linear basis of DΛ is explicitly given in (E2.4.2). When T is a finite set with d
elements, the generating function of DΛ is

GDΛ(t) =
∞∑

n=0
(1 + dn)tn = 1

1 − t
+ dt

(1 − t)2 .

As a consequence, DΛ has GKdimension two. We will see later that every 2-unitary 
operad of GKdimension two is of this form.
An algebra A over DΛ means a unital commutative associative algebra together with 
a set of derivations {δi}i∈T satisfying
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(i) δi(x)δj(y) = 0 for all i, j ∈ T and all x, y ∈ A, and
(ii) (E2.4.1): δiδj =

∑
k∈T Ωk

ijδk.
Note that a DΛ-algebra is a special kind of commutative differential k-algebra. Similar 
algebras have been studied by Goodearl in [15, Section 1].

(2) Let I := {In}n≥2 be a descending chain of ideals of Λ inside Λ̄ such that ImIn ⊆
Im+n−1 for all m and n. Denote I1 = Λ. We define a unitary operad, denoted by 
DI

Λ, associated to I. For the sake of using k-linear bases, suppose we can choose a 
descending chain of subsets {Tn} of T such that {δi | i ∈ Tn} is a k-linear basis of 
In (this is not essential). Define

DI
Λ(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k10, n = 0,

Λ = k11 ⊕
⊕

j∈T kδj , n = 1,⊕
i∈[n],j∈Tn

kδn(i)j , n ≥ 2.

Alternatively, denote by δn(i) the n-ary operation 1n ◦
i
δ ∈ DΛ(n) for all δ ∈ Λ̄. Then 

DI
Λ(0) = k10 and DI

Λ(1) = Λ, and for n ≥ 2,

DI
Λ(n) = {δn(i) | δ ∈ In, 1 ≤ i ≤ n}.

One can check that the suboperad DI
Λ of DΛ is a unitary, but not 2-unitary.

An algebra over DI
Λ is a k-vector space A with a fixed element e ∈ A and a collection 

of n-ary operations δn(i) : A⊗n → A for all δ ∈ In and 1 ≤ i ≤ n, n ≥ 1, satisfying
(a) δ(e) = 0 for all δ ∈ Λ̄.
(b)

δn(i)(x1, · · · , xk−1, e,xk+1, · · · , xn)

=

⎧⎪⎪⎨⎪⎪⎩
δn−1
(i−1)(x1, · · · , xk−1, xk+1, · · · , xn), if k < i,

0, if k = i,

δn−1
(i) (x1, · · · , xk−1, xk+1, · · · , xn), if k > i;

for all δ ∈ In, 1 ≤ i ≤ n, n ≥ 2 and all xs ∈ A, s = 1, · · · , n, s �= k.
(c)

δm(i)(x1, · · · , xk−1, (δ′)n(j)(xk, · · · , xk+n−1), xk+n, · · · , xm+n−1)

=
{

(δδ′)m+n−1
(i+j−1)(x1, · · · , xm+n−1), if k = i

0, if k �= i;

for all 1 ≤ i, k ≤ m, n ≥ 1, δ ∈ Im, δ′ ∈ In, and for all xs ∈ A where s =
1, · · · , m + n + 1.
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To see that, let A be a DI
Λ-algebra that is given by γ = (γn : DI

Λ(n) → EndA(n))n≥0. 
Let e = γ0(10) ∈ A. Since DI

Λ is a suboperad of DΛ, relation (a) follows from the 
equation δ ◦ 10 = 0 for all δ ∈ Λ̄. Similarly, relations (b) and (c) are deduced from 
relations of DI

Λ such as (E2.4.3).
A special case is when In = I for all n ≥ 2. In this case, the above defined operad 
is denoted by DI

Λ. Suppose T ′ is a subset of T such that {δi | i ∈ T ′} is a k-linear 
basis of I. Then

DI
Λ(n) =

⎧⎪⎪⎨⎪⎪⎩
k10, n = 0,
Λ, n = 1,⊕

i∈[n],j∈T ′ kδn(i)j , n ≥ 2.

2.2. Some elementary operators on 2-unitary operads

Let s be an integer no more than n, and I ⊆ [n] a subset consisting of s elements. 
Clearly, there exists a unique 1-1 correspondence from [s] to I that preserves the ordering. 
Choosing I ⊆ [n] is equivalent to giving an order preserving map

−→
I : [s] −→ I ⊆ [n].

Let χI be the characteristic function of I, i.e. χI(x) = 1 for x ∈ I and χI(x) = 0
otherwise.

We recall the following useful operators. Let P be a (2-)unitary operad. Consider the 
following restriction operator [9, Section 2.2.1]

πI : P(n) → P(s), πI(θ) = θ ◦ (1χI(1), · · · ,1χI(n)) (E2.4.5)

for all θ ∈ P(n). The contraction operator is defined by ΓI = πÎ where Î is the comple-
ment of I in [n], or

ΓI : P(n) → P(n− s), ΓI(θ) = θ ◦ (1χÎ(1), · · · ,1χÎ(n)) (E2.4.6)

for all θ ∈ P(n).
Recall that • denotes the usual composition of two functions that is omitted some-

times.

Lemma 2.5. [9, Lemma 2.2.4(1)] Retain the above notation.

(1) Let I ⊆ [n] with |I| = s and J ⊆ [s]. Let J̃ := −→
I (J) be the image of J under −→I . 

Then πJ̃ = πJ • πI .
(2) For each W ⊆ Î, πI = ΓÎ = ΓW ′ • ΓW for some subset W ′ of [n − |W |] with 

|W ′| + |W | = n − |I|.
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(3) If k /∈ I, then πI = πI′ • Γk for some I ′ ⊆ [n − 1] with |I ′| = |I|.

Proof. (1) This is [9, Lemma 2.2.4(1)]. It follows from (OP2).
(2, 3) Easy consequences of part (1). �
If P is 2-unitary, we can define another operator as follows. The extension operator

Δ
I
: P(n) → P(n + s) is defined by

Δ
I
(θ) = θ ◦ (1χ

I
(1)+1, · · · ,1χ

I
(n)+1)

for all θ ∈ P(n). If I = {i1, · · · , is} with i1 < i2 < · · · < is, then we also write πI , ΓI

and Δ
I

as πi1,··· ,is , Γi1,··· ,is and Δi1,··· ,is respectively.
Assume that P is 2-unitary. For every n ≥ 3, we define inductively that

1n = 12 ◦ (1n−1,11). (E2.5.1)

Note that one might also define inductively

1′n = 12 ◦ (11,1
′
n−1) (E2.5.2)

for all n ≥ 3. By convention, 1n = 1′n for n = 0, 1, 2. Unless P is 2a-unitary, it is not 
automatic that 1′n = 1n for any n ≥ 3. In fact, 13 = 1′3 means that the binary operation 
given by 12 is associative.

Definition 2.6. Let P and Q be operads.

(1) Let Q be a (unitary) operad. We call P Q-augmented if there are morphisms of 
operads f : Q → P and g : P → Q such that gf = IdQ.

(2) P is called Com-augmented if there is a morphism Com → P, or equivalently, there 
exists a 2-unit 12 ∈ P(2) satisfying (E2.1.1) and 12 ∗ (12) = 12. In this case it is 
automatic that the morphism Com → P has the unique left inverse P → Com.

It is easy to see that Com-augmented operads are 2a-unitary. Observe that the 2a-
unitary property of a 2-unitary operad may be dependent on choices of 12. For example, 
if (10, 11, 12) = (10, 11, 12) as elements in Sn for n = 0, 1, 2, then (Ass, 10, 11, 12) is a 
2a-unitary operad. Suppose char k �= 2. If we set (10, 11, 12) = (10, 11, 12 (12 +12 ∗ (12))), 
(Ass, 10, 11, 12) is only 2-unitary, but not 2a-unitary.

Lemma 2.7. Let P be a 2a-unitary operad, namely, 13 = 1′3. Then the following hold.

(1) For every n ≥ 3, 1n = 1′n.
(2) For every n ≥ 1 and k1, · · · , kn ≥ 0, 1n ◦ (1k1 , · · · , 1kn

) = 1k1+···+kn
.
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Proof. (1) Use induction on n. Assume that 1k = 1′k for all 3 ≤ k ≤ n − 1. Then

1n =12 ◦ (1n−1,11) = 12 ◦ (1′n−1,11) = 12 ◦ (12 ◦ (11,1
′
n−2),11 ◦ 11)

=(12 ◦ (12,11)) ◦ (11,1
′
n−2,11) = (12 ◦ (11,12)) ◦ (11,1n−2,11)

=12 ◦ (11,12 ◦ (1n−2,11)) = 12 ◦ (11,1n−1) = 12 ◦ (11,1
′
n−1)

=1′n.

(2) This follows from induction. �
By definition, Mag and Ass are the initial objects in the category of 2-unitary and 

2a-unitary operads, respectively. It is easy to see that Lemma 2.3 holds for 2a-unitary 
operads.

For any l, r ≥ 0, we define the function ιlr : P(n) → P(l + n + r) by

ιlr(θ) = 13 ◦ (1l, θ,1r).

We simply write ιr = ι0r and ιl = ιl0.

Lemma 2.8. Retain the above notation. Let P be a 2-unitary operad and let θ ∈ P(n).

(1) πI(1n) = 1|I| for all I ⊆ [n].
(2) ιr(θ) = 12 ◦ (θ, 1r).
(3) ιl(θ) = 12 ◦ (1l, θ).
(4) ιlr = ιr • ιl. Moreover, ιlr = ιl • ιr for all l, r ≥ 0 if and only if P is 2a-unitary.

Proof. (1) This follows by induction on n.
(2) We compute

ιr(θ) = 13 ◦ (10, θ,1r) = (12 ◦ (12,11)) ◦ (10, θ,1r)

= 12 ◦ (12 ◦ (10, θ),11 ◦ 1r)

= 12 ◦ (θ,1r).

(3) We compute

ιl(θ) = 13 ◦ (1l, θ,10) = (12 ◦ (12,11)) ◦ (1l, θ,10)

= 12 ◦ (12 ◦ (1l, θ),11 ◦ 10)

= 12 ◦ (12 ◦ (1l, θ),10)

= 12 ◦ (1l, θ).
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(4) Using parts (2) and (3), we compute

ιlr(θ) = 13 ◦ (1l, θ,1r) = (12 ◦ (12,11)) ◦ (1l, θ,1r)

= 12 ◦ (12 ◦ (1l, θ),11 ◦ 1r)
= 12 ◦ (ιl(θ),1r)

= ιr • ιl(θ).

If ιl • ιr = ιlr, taking r = l = 1, then

13 = ι1(ι1(11)) = ι1(ι1(11)) = 12 ◦ (11,12) = 1′3.

Conversely, if 13 = 1′3 (equivalently, if P is 2a-unitary), then we have

ιl(ιr(θ)) = 12 ◦ (1l,12 ◦ (θ,1r)) = (12 ◦ (11,12)) ◦ (1l, θ,1r) = 13 ◦ (1l, θ,1r) = ιlr(θ)

for all θ. �
Example 2.9. Let P = Ass. Assume n = 5, I = {2, 4} and σ = (14)(235). Then ΓI(σ) =
(123) ∈ S3, πI(σ) = (12) ∈ S2, ΔI(σ) = (1624735) ∈ S7 and ι12(σ) = (25)(346) ∈ S8. 
Following the convention introduced in Section 8.1 the sequences corresponded to

σ, ΓI(σ), πI(σ), Δ
I
(σ) and ι12(σ)

are given by

(4, 5, 2, 1, 3), (3, 1, 2), (2, 1), (5, 6, 7, 2, 3, 1, 4) and (1, 5, 6, 3, 2, 4, 7, 8),

respectively.

By an easy calculation, we have the following useful lemmas.

Lemma 2.10. Let P be 2-unitary. Let n, l, r ≥ 0 be integers and i, j, i1, · · · , is ∈ [n]. Then 
the following hold.

(1) Assume that i1 < · · · < is, then

Δi1,··· ,is = Δis+s−1 • · · · • Δi2+1 • Δi1 = Δi1 • · · · • Δis ,

and

Γi1,··· ,is = Γis−s+1 • · · · • Γi2−1 • Γi1 = Γi1 • · · · • Γis .

(2) Γi+1 • Δi = id.
(3) Γi • Δi = id.
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(4) Δj • Γi =
{

Γi • Δj+1, i ≤ j;
Γi+1 • Δj , i > j.

(5) Γl+i • ιlr = ιlr • Γi, and Δl+i • ιlr = ιlr • Δi.
(6) Γ1 • ι1 = id, and Γn+1 • ι1|P(n) = idP(n).

Proof. This follows from easy computations and (OP2). �
Lemma 2.11. Let P be 2-unitary. Let n, k1, · · · , kn ≥ 0 be integers. Then, for each θ ∈
P(n),

θ ◦ (1k1 , · · · ,1kn
) = ((Δ1)k1−1 • · · · • (Δn)kn−1)(θ),

where, by convention, (Δi)−1 means Γi in case ki = 0.

Proof. We use (OP2) in the following computation. If ks ≥ 2, we have

θ ◦ (1k1 , · · · ,1ks
,11, · · · ,11︸ ︷︷ ︸

t

)

=θ ◦ (11 ◦ 1k1 , · · · ,11 ◦ 1ks−1 ,12 ◦ (1ks−1,11),11 ◦ 11, · · · ,11 ◦ 11︸ ︷︷ ︸
t

)

=Δs(θ) ◦ (1k1 , · · · ,1ks−1 ,1ks−1,11,11, · · · ,11︸ ︷︷ ︸
t+1

).

If ks = 0, then

θ ◦ (1k1 , · · · ,1ks
,11, · · · ,11︸ ︷︷ ︸

t

)

=θ ◦ (11 ◦ 1k1 , · · · ,11 ◦ 1ks−1 ,10 ◦ (),11 ◦ 11, · · · ,11 ◦ 11︸ ︷︷ ︸
t

)

=Γs(θ) ◦ (1k1 , · · · ,1ks−1 ,11,11, · · · ,11︸ ︷︷ ︸
t

).

Combining the above, we have

θ ◦ (1k1 , · · · ,1ks
,11, · · · ,11︸ ︷︷ ︸

t

) (E2.11.1)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δs(θ) ◦ (1k1 , · · · ,1ks−1 ,1ks−1,11,11, · · · ,11︸ ︷︷ ︸

t+1

) if ks ≥ 2;

Γs(θ) ◦ (1k1 , · · · ,1ks−1 ,11, · · · ,11︸ ︷︷ ︸
t

) if ks = 0.

The lemma follows by applying the formula (E2.11.1) iteratively. �
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Note that Lemmas 2.10 and 2.11 hold for plain operads. Now we have the following 
classification result.

Proposition 2.12. Let P be a (symmetric or plain) 2-unitary operad. If GKdim(P) < 2, 
then P ∼= Com.

Proof. Assume that P is not Com. Let n = min{m | P(m) �= k1m}. Since P is unitary, 
n ≥ 1. Since P(n −1) = k1n−1, there is a nonzero element θ ∈ P(n) such that πI(θ) = 0
where I = [n − 1]. For every J ⊆ [n] such that |J | = n − 1,

π∅ • πJ(θ) = π∅(θ) = π∅ • πI(θ) = 0.

Firstly since π∅ : P(n − 1) → P(0) is an isomorphism,

πJ(θ) = 0 (E2.12.1)

for all J ⊆ [n] with |J | = n −1. For every w ≥ n +1 and 0 ≤ i ≤ w−n, let θwi = ιiw−i−n(θ). 
We claim that {θw0 , θw1 · · · , θww−n} are linearly independent. We prove this by induction 
on w. The initial case is when w = n + 1. Suppose

aθw0 + bθw1 = 0. (E2.12.2)

By (E2.12.1), we have Γ1(θw0 ) = 0 and Γ1(θw1 ) = θ. Thus bθ = 0 after applying Γ1 to 
(E2.12.2). Hence b = 0. Applying Γw to (E2.12.2), we obtain that a = 0. Therefore the 
claim holds for w = n + 1. Now suppose the claim holds for w, and we consider the 
equation

w−n+1∑
s=0

asθ
w+1
s = 0. (E2.12.3)

Since Γw+1(θw+1
s ) =

{
θws , s < w − n + 1,
0, s = w − n + 1,

we obtain that 
∑w

s=0 asθ
w
s = 0 after applying 

Γw+1 to (E2.12.3). By induction hypothesis, as = 0 for all s = 0, · · · , w − n. Using Γ1

instead of Γw+1, we obtain that as = 0 for all s = 1, · · · , w−n + 1. Therefore we proved 
the claim by induction.

By the claim dimP(w) ≥ w − n for all w, which implies that GKdimP ≥ 2, a 
contradiction. �

Recall that ∗ denote the right action of Sn on P(n). The following lemma is easy.

Lemma 2.13. Let P be a unitary operad.
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(1) Let n be a positive integer and I a subset of [n]. Then, for all θ ∈ P(n), σ ∈ Sn,

πI(θ ∗ σ) = πσI(θ) ∗ πI(σ), (E2.13.1)

where σI = {σ(i) | i ∈ I} ⊆ [n].
(2) Let μ ∈ P(m), ν ∈ P(n) and 1 ≤ i ≤ m. Then

πI(μ ◦
i
ν) = πJ(μ) ◦

j
πI′

(ν) (E2.13.2)

where

J = (I ∩ [i− 1]) ∪ {i} ∪ ((I ∩ {i + n, · · · ,m + n− 1}) − (n− 1)),

I ′ = (I ∩ {i, · · · , i + n− 1}) − (i− 1),

j = |I ∩ [i− 1]| + 1.

Proof. (1) First we recall (OP3). For all k1 · · · , kn ≥ 0, θi ∈ P(ki), σi ∈ Ski
, 1 ≤ i ≤ n

and θ ∈ P(n), σ ∈ Sn,

(θ ∗σ)◦ (θ1 ∗σ1, · · · , θn ∗σn) = (θ ◦ (θσ−1(1), · · · , θσ−1(n)))∗ (σ ◦ (σ1, · · · , σn)). (E2.13.3)

Let k = |I|. Take θi = 11 ∈ P(1) and σi = 11 ∈ S1 for i ∈ I and θi = 10 ∈ P(0) and 
σi = 10 ∈ S0 otherwise. By (E2.13.3), we obtain

πI(θ ∗ σ) =(θ ∗ σ) ◦ (θ1 ∗ σ1, · · · , θn ∗ σn)

=(θ ◦ (θσ−1(1), · · · , θσ−1(n))) ∗ (σ ◦ (σ1, · · · , σn))

=πσI(θ) ∗ πI(σ).

(2) This follows from the definition of π and (OP2). �
2.3. Some basic lemmas

We show the following properties of ideals of P.

Lemma 2.14. Let P be 2-unitary operads. Let I and I ′ be ideals of P.

(1) For each integer n ≥ 0 and each subset I ⊆ [n], πI : I(n) → I(|I|) is surjective.
(2) If I(n) = I ′(n) for some n, then I(s) = I ′(s) for all s ≤ n.

Proof. (1) Without loss of generality, we may assume that the complement Î of I
is {i1, · · · , is} with 1 ≤ i1 < · · · < is ≤ n. Since πI = Γi1,··· ,is = Γi1 • · · · • Γis

[Lemma 2.10(1)], it suffices to prove that each Γit : I(n + t − s) → I(n + t − s − 1) is 
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surjective, which follows from the fact Γit •Δit = id [Lemma 2.10(3)] or Γit •Δit−1 = id
[Lemma 2.10(2)]. The proof is completed.

(2) This is an easy consequence of part (1). �
Let X be a subset of an operad P. The operadic ideal of P generated by X is the 

unique minimal ideal of P that contains X. We denote by 〈X〉 the ideal generated by 
X. An ideal is said to be finitely generated if it can be generated by a finite subset.

Lemma 2.15. Let k be a field of characteristic zero, and I an ideal of 2-unitary operad P.

(1) If I is finitely generated, then I is generated by a subset X ⊆ P(n) for some n.
(2) Suppose P is a quotient operad of Ass. Then I is finitely generated if and only if 

there exists some n ≥ 0 and some x ∈ I(n), such that I = 〈x〉.

Proof. (1) Let X be a finite generating set of I. Then there exists some n such that 
X ⊂

⋃
0≤i≤n I(n). Therefore we can take X ⊆ 〈I(n)〉 by Lemma 2.14(1).

(2) It suffices to show the “only if” part. Without loss of generality, we suppose 
P = Ass. By part (1), we know I can be generated by I(n) for some n. Then I(n) is 
a right submodule and hence a direct summand of kSn by chark = 0. Since a direct 
summand of a cyclic module is always cyclic, we have I(n) = x · kSn for some x ∈ I(n). 
Clearly, x is the desired generator of I, which completes the proof. �
Theorem 2.16. Let P be Ass/I for some ideal I ⊆ Ass. Let k ≥ 0 be an integer and M
a submodule of the kSk-module P(k).

(1) As an S-module, 〈M〉 is generated by elements of the form ιlr •Δi1 • · · · •Δis •πI(x), 
x ∈ M . More explicitly, for every n ≥ 0, 〈M〉(n) is a kSn-submodule generated by

Xn =
{

(ιlr • Δi1 • · · · • Δis • πI)(x)
∣∣∣∣x∈M,I⊆[k],l,r≥0,l+r+s+|I|=n,

1≤it≤|I|+t−1,t=1,··· ,s

}
.

(2) If Γi(M) = 0 for all 1 ≤ i ≤ k, then 〈M〉(k) = M and 〈M〉(n) = 0 for all n < k.

Proof. (1) Let I(n) denote the kSn-submodule of P(n) generated by the subset Xn and 
let X be 

⋃
n Xn. We claim that I = (I(n))n≥0 is an ideal of P.

By definition we need to show that θ ◦ (θ1, · · · , θn) ∈ I provided that one of θ, 
θ1, · · · , θn is in I. By (OP2) or (E2.0.2), it suffices to show that

1s ◦ (1k1 , · · · ,1kt−1 , θ,1kt+1 , · · · ,1ks
) ∈ X, and θ ◦ (1k1 , · · · ,1kn

) ∈ X

if θ ∈ X. Since P is 2a-unitary, we have 13 = 1′3 and ιr • ιl = ιl • ιr [Lemma 2.8(4)]. It 
follows that
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1s ◦ (1k1 , · · · ,1kt−1 , θ,1kt+1 , · · · ,1ks
) = ι

k1+···+kt−1
kt+1+···+ks

(θ)

and therefore the former holds. For the latter, Lemma 2.11 shows that θ ◦ (1k1 , · · · , 1kn
)

is obtained by applying Γi’s and Δj ’s on θ iteratively. The commutativity relations in 
Lemma 2.10(2-4) together with Lemma 2.11 imply that

θ ◦ (1k1 , · · · ,1kn
) ∈ Xk1+···+kn

.

Clearly M ⊆ Xk ⊆ I(k), and I ⊆ 〈M〉. By definition 〈M〉 is the minimal ideal 
containing M , which forces that 〈M〉 ⊆ I and hence 〈M〉 = I.

(2) If Γi(M) = 0 for all 1 ≤ i ≤ k, then πI(M) = 0 for any I ⊂ [k] with |I| < k, and 
the statement follows. �
3. Truncation ideals

3.1. The truncation ideals kΥ

We first recall the definition of truncation ideals (E0.0.2) from the introduction. Let 
P be a unitary operad (or a unitary plain operad). For integers k, n ≥ 0, we use kΥP(n)
to denote the subspace of P(n) defined by

kΥP(n) =
⋂

I⊂[n], |I|≤k−1

KerπI =

⎧⎨⎩
⋂

I⊂[n], |I|=k−1
KerπI , if n ≥ k;

0, otherwise.
(E3.0.1)

By convention, we denote 0ΥP = P. It is easily deduced from Lemma 2.13 that kΥP(n)
is an Sn-submodule of P(n). Therefore we obtain an S-submodule kΥP = (kΥP(n))n≥0
of P. If no confusion, we write kΥ = kΥP for brevity. For two ideals I and J of P, let 
IJ denote the S-module generated by all elements of the form μ ◦

i
ν for all μ ∈ I(m)

and ν ∈ J (n) and all i. It is easy to see that IJ is also an ideal of P.

Proposition 3.1. Let P be a unitary operad (respectively, a unitary plain operad).

(1) kΥ is an ideal of P for any k ≥ 1.
(2) If m, n ≥ 1, then mΥnΥ ⊆ m+n−1Υ, and if m = 0 or n = 0, then mΥnΥ ⊆ m+nΥ.

Proof. (1) Let n > 0, k1, · · · , kn ≥ 0 be integers, and θ ∈ P(n), θi ∈ P(ki) for i =
1, · · · , n. We need to show that if either θ ∈ kΥ(n) or θi ∈ kΥ(ki) for some i ∈ [n], then 
θ ◦ (θ1, · · · , θn) ∈ kΥ(m), where m = k1 + · · · + kn.

Let I be an arbitrary subset of [m] with |I| = k − 1. Then we have

πI(θ ◦ (θ1, · · · ,θn)) = (θ ◦ (θ1, · · · , θn)) ◦ (1χI(1), · · · ,1χI(m))
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= θ ◦ (θ1 ◦ (1χ(1), · · · ,1χI(k1)), · · · , θn ◦ (1χI(k1+···+kn−1+1), · · · ,1χI(m)))

= θ ◦ (πI1(θ1), · · · , πIn(θn))

where in the last equality, each Ii is a subset of [ki] determined by I, with |Ii| ≤ ki and 
n∑

i=1
|Ii| = |I| = k − 1.

If θi ∈ kΥ(ki) for some i ∈ [n], then πIi(θi) = 0 by Lemma 2.5 and the fact that 
|Ii| ≤ k − 1. So πI(θ ◦ (θ1, · · · , θn)) = 0.

We are left to show that if θ ∈ kΥ(n), then πI(θ ◦ (θ1, · · · , θn)) = 0. Set J = {i ∈ [n] |
Ii �= ∅}. By 

n∑
i=1

|Ii| = k − 1, we have s := |J | ≤ k − 1. Consequently, πJ(θ) = 0. Observe 

that if Ii = ∅ and P(0) = k10, then

πIi(θi) = θi ◦ (10, · · · ,10) = λi10

for some λi ∈ k. Therefore, we have

πI(θ ◦ (θ1, · · · , θn)) = θ ◦ (πI1(θ1), · · · , πIn(θn))

= (
∏
i/∈J

λi)(πJ(θ)) ◦ (πIj1 (θj1), · · · , πIjs (θjs))

= 0

where J = {j1, · · · , js} and 1 ≤ j1 < j2 < · · · < js ≤ n.
(2) If m = 0 or n = 0, the assertion follows from part (1). For the rest of the proof, 

we assume that mn > 0.
Let μ ∈ mΥ(m0) and ν ∈ nΥ(n0) and let i ≤ m0. It suffices to show that

μ ◦
i
ν ∈ m+n−1Υ(m0 + n0 − 1)

for all i. Let I ⊆ [m0 + n0 − 1] such that |I| ≤ m + n − 2. By Lemma 2.13(2), we have

πI(μ ◦
i
ν) = πJ(μ) ◦

j
πI′

(ν) (E3.1.1)

where

J = (I ∩ [i− 1]) ∪ {i} ∪ ((I ∩ {i + n0, i + n0 + 1, · · · ,m0 + n0 − 1}) − (n0 − 1)),

I ′ = I ∩ {i, i + 1, . . . , i + n0 − 1} − (i− 1),

j = |I ∩ [i− 1]| + 1.

If |I ′| ≤ n − 1, then πI′(ν) = 0, whence πI(μ ◦
i
ν) = 0 by (E3.1.1). Otherwise, |I ′| ≥ n

and then
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|J | = |I| + 1 − |I ′| ≤ m + n− 2 + 1 − n = m− 1.

In this case πJ(μ) = 0, whence πI(μ ◦
i
ν) = 0 by (E3.1.1). Therefore μ ◦

i
ν ∈ m+n−1Υ(m0+

n0 − 1) as required. �
Note that for any operad P, P(1) is always a unital associative algebra; and for a 

unitary operad P, P(1) is an augmented algebra and 1Υ(1) is the augmented ideal of 
P(1).

In later sections we will also use a modification of truncation ideals that we define 
now. Let M be an Sk-submodule of kΥ(k). We consider the following two conditions

(E3.1.2) ν ◦m ∈ M for all ν ∈ P(1) and m ∈ M .
(E3.1.3) m ◦

i
ν ∈ M for all ν ∈ P(1), m ∈ M and 1 ≤ i ≤ k.

Define kΥM by

kΥM (n) = {μ ∈ kΥ(n) | πI(μ) ∈ M, ∀ I ⊆ [n], |I| = k}.

We have the following proposition similar to Proposition 3.1.

Proposition 3.2. Let P be a unitary operad. Let M (respectively, N) be an Sm (respec-
tively, Sn)-submodule of mΥ(m) (respectively, nΥ(n)).

(1) If (E3.1.2) holds, then mΥM is a left ideal of P.
(2) If (E3.1.3) holds, then mΥM is a right ideal of P.
(3) (mΥM )(nΥN ) ⊆ m+n−1ΥMN , where MN is an Sm+n−1-submodule generated by el-

ements of the form μ ◦
i
ν for all μ ∈ M and ν ∈ N and 1 ≤ i ≤ m.

Proof. (1) By Lemma 2.13, mΥM is an S-module. Next we show that mΥM is a left ideal.
For ν ∈ P(m0) and μ ∈ mΥM (n0), I ⊆ [m0 + n0 − 1] with |I| = m, by Lemma 2.13

(2),

πI(ν ◦
i
μ) = πJ(ν) ◦

j
πI′

(μ)

where J , I ′ and j are given as after (E3.1.1). If |I ′| ≤ m − 1, then πI′(μ) = 0, and 
πI(ν ◦

i
μ) = 0. Otherwise |I ′| = m (which is maximum possible) and I ⊂ {i, i +1, · · · , i +

n0 − 1}, then j = 1, |J | = 1, and

πJ(ν) ◦
1
πI(μ) ∈ M

by assumption of M . Thus πI(ν ◦ μ) ∈ M .

i
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(2) The proof is similar to the proof of part (1). For μ ∈ mΥM (m0) and ν ∈ P(n0), 
I ⊆ [m0 + n0 − 1] with |I| = m, by Lemma 2.13(2),

πI(μ ◦
i
ν) = πJ(μ) ◦

j
πI′

(ν)

where J , I ′ and j are given as after (E3.1.1). If |J | ≤ m − 1, then πJ(μ) = 0, and 
πI(ν ◦

i
μ) = 0. If |J | = m, then πJ(μ) ∈ M and πI′(ν) ∈ P(1), and by the assumption on 

M , we obtain that πJ(μ) ◦
j
πI′(ν) ∈ M . If |J | = m + 1 (maximal possible), then I ′ = ∅

and πI′(ν) ∈ P(0). Then

πJ(μ) ◦
j
πI′

(ν) = πJ(μ) ◦
j
π∅(ν)10 = πJ\{j′}(μ)π∅(ν) ∈ M

for some j′. Combining these cases, we have πI(μ ◦
i
ν) ∈ M . Therefore mΥM is a right 

ideal.
(3) Let μ ∈ mΥM (m0) and ν ∈ nΥN (n0) and let i ≤ m0. It suffices to show that

μ ◦
i
ν ∈ m+n−1ΥMN (m0 + n0 − 1)

for all i. By Proposition 3.1(2), μ ◦
i
ν ∈ m+n−1Υ(m0 + n0 − 1).

Let I ⊆ [m0+n0−1] such that |I| = m +n −1. It suffices to show that πI(μ ◦
i
ν) ∈ MN . 

By Lemma 2.13(2),

πI(μ ◦
i
ν) = πJ(μ) ◦

j
πI′

(ν)

where

J = (I ∩ [i− 1]) ∪ {i} ∪ ((I ∩ {i + n0, i + n0 + 1, · · · ,m0 + n0 − 1}) − (n0 − 1)),

I ′ = (I ∩ {i, i + 1, . . . , i + n0 − 1}) − (i− 1), and

j = |I ∩ [i− 1]| + 1.

In particular, |I ′| + |J | = m + n. If |I ′| ≤ n − 1 or |J | ≤ m − 1, then πI′(ν) = 0 or 
πJ(μ) = 0. Hence πI(μ ◦

i
ν) = 0 ∈ M . The remaining case is when |I ′| = n and |J | = m. 

Then, in this case, πJ(μ) ∈ M and πI′(ν) ∈ N . Hence πJ(μ) ◦
j
πI′(ν) ∈ MN by definition. 

Combining all cases, πI(μ ◦
i
ν) ∈ MN as required. �

A version of Proposition 3.2 holds for plain operads. The following lemmas are clear.

Lemma 3.3. Let f : P → Q be a morphism of unitary operads in Op+. Then, for every 
I ⊆ [n] with |I| = k − 1, we have a commutative diagram
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P(n) −−−−→ Q(n)

πI

⏐⏐� ⏐⏐�πI

P(k − 1) −−−−→ Q(k − 1).

As a consequence, f maps from kΥP to kΥQ for all k ≥ 0.

Recall from Definition 1.1(6) that an operad P is called connected if P(1) = k ·11 ∼= k.

Lemma 3.4. Let P be a connected unitary operad. Then 1Υ = 2Υ.

Proof. In this case, π∅ : P(1) → P(0) is an isomorphism. Then

Ker(πi : P(n) → P(1)) = Ker(π∅ : P(n) → P(0))

for all i ≤ n. Therefore 1Υ = 2Υ . �
Recall that operads Com and Uni are defined before Lemma 1.13.

Lemma 3.5. Let P be a unitary operad.

(1) 1Υ is the maximal ideal of P and P/1Υ is isomorphic to either Com or Uni.
(2) If P/1Υ ∼= Com and P is connected, then P is 2-unitary.
(3) Uni ⊕ 1Υ is a suboperad of P and it is unitary, but not 2-unitary.
(4) If P/1Υ ∼= Uni, then P = Uni ⊕ 1Υ.

Proof. (1) Since P is unitary, P(0) = k10. By definition,

1Υ(n) = Ker(π∅ : P(n) → P(0)).

Then dim(P/1Υ)(n) is either 0 or 1 for each n. If (P/1Υ)(2) = 0, then one can check 
that (P/1Υ)(n) = 0 for all n ≥ 2. Consequently, P/1Υ = Uni. If (P/1Υ)(2) �= 0, then 
one can check that P/1Υ is 2a-unitary and (P/1Υ)(n) = k1n for all n. Consequently, 
P/1Υ = Com.

(2) Since P is connected, 1Υ = 2Υ by Lemma 3.4. Since P(2) �= 1Υ(2), there is an 
f ∈ P(2) such that π1(f) = 11. Since π∅ • π2(f) = π∅(f) = π∅ • π1(f) = 10, we obtain 
that π2(f) = 11. Thus f is a 2-unit by definition.

(3) This follows from the fact that 1Υ is an ideal of P.
(4) This follows from part (3). �
Let P be a (plain or symmetric) operad. For each n ≥ 0, we denote an S-submodule 

P≥n of P as follows:
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P≥n(i) =
{

0, 0 ≤ i < n,

P(n), i ≥ n.

Now we are ready to prove the following Artin-Wedderburn Theorem for reduced operads 
and unitary operads.

Theorem 3.6. Let P be a semiprime plain or symmetric operad.

(1) If P is reduced and left or right artinian, then

P(n) =
{

0, n �= 1,
Λ, n = 1,

where Λ is a semisimple algebra.
(2) If P is unitary, bounded above, and left or right artinian, then

P(n) =

⎧⎪⎪⎨⎪⎪⎩
0, n �= 0, 1,
k, n = 0,
Λ, n = 1,

where Λ is an augmented semisimple algebra.

Proof. We only prove the results for symmetric operads. The proofs for plain operads 
are similar.

(1) Since P is reduced, P≥n is an ideal for every n. Since P is artinian and {P≥n}∞n=0
is a descending chain of ideals, P≥n = 0 for some n. Let n be the largest integer such 
that P(n) �= 0. If n ≥ 2, then P being reduced implies that P(n) is an ideal such that 
P(n)2 = 0. This contradicts the hypothesis that P is semiprime. Therefore P(n) = 0 for 
all n ≥ 2. Let P(1) = Λ. In this case the left (or right) ideals of P coincide with the left 
(or right) ideals of Λ. Thus Λ is left or right artinian and semiprime. This implies that 
Λ is semisimple as desired.

(2) In the proof of part (2), we need to use truncation ideals kΥ of P. By definition, ⋂
k≥1

kΥ = 0. Since P is left or right artinian, kΥ = 0 for some k. Let n be the largest 
integer such that nΥ �= 0. If n ≥ 2, by Proposition 3.1(2), (nΥ)2 ⊆ 2n−1Υ = 0. This 
contradicts the hypothesis that P is semiprime. Therefore 2Υ = 0. Let P(1) = Λ. By 
Proposition 3.2 (1, 2), if Λ is not left (respectively, right) artinian, then P is not left 
(respectively, right) artinian. Since P is left or right artinian, so is Λ. Let N be an 
ideal of Λ such that N2 = 0. By Proposition 3.2 (1, 2), 1ΥN is an ideal of P. By 
Proposition 3.2 (3),

(1ΥN )2 ⊆ 1ΥN2

= 1Υ0 = 2Υ = 0.
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Since P is semiprime, 1ΥN = 0, consequently, N = 0. Thus Λ is semiprime. Since Λ is 
left artinian or right artinian, Λ is semisimple. It remains to show that P(n) = 0 for all 
n ≥ 2. If not, let n ≥ 2 be the largest integer such that P(n) �= 0 (such n exists since P is 
bounded above). For every element 0 �= μ ∈ P(n), x := πi(μ) �= 0 for some i as 2Υ = 0. 
Let I be the ideal of Λ generated by x. For every element f ∈ I, f can be written as ∑w

s=1 asxbs with as, bs ∈ Λ. Let

g =
w∑

s=1
as ◦1 (μ ◦

i
bs) ∈ P(n).

Then f = πi(g). Since I is a nonzero ideal of a semisimple ring, I = eΛ = Λe for 
some idempotent e ∈ I. Hence we may assume that f = e is a nonzero idempotent. Let 
ν = πi,j(g). Then f = π1(ν) or f = π2(ν). By symmetry, we assume that f = π1(ν). Let 
h = g ◦

i
ν ∈ P(n + 1). Then

πi(h) = πi(g) ◦ π1(ν) = f ◦ f = f �= 0

which contradicts the fact that P(n + 1) = 0. Therefore P(n) = 0 for all n ≥ 2 as 
required. �
Lemma 3.7. Let P be a 2-unitary operad and I an ideal of P. Then for each k ≥ 1, 
I(k − 1) = 0 if and only if I ⊂ kΥ.

Proof. (⇐) is obvious. Next we show the other implication (⇒). Suppose I(k − 1) = 0
for some k ≥ 1.

If n ≥ k − 1, then we have

πI(θ) ∈ I(k − 1) = 0

for any θ ∈ I(n) and any I ⊆ [n] with |I| = k − 1, and hence θ ∈ kΥ(n).
If n < k − 1, for every θ ∈ I(n), we have

(Δi1 • · · · • Δik−1−n
)(θ) ∈ I(k − 1) = 0,

for all possible i1, · · · , ik−1−n. Since P is 2-unitary, each Δi is injective by Lemma 2.10
(2) (or (3)). It follows that θ = 0 and hence I ⊂ kΥ . �
3.2. The unique maximal ideal of a quotient operad of Ass

In this subsection we assume that P = Ass/W for some ideal W. We use Φn to denote 
the alternating sum 

∑
σ∈Sn

sgn(σ)σ, where sgn(σ) = 1 if σ is an even permutation, and 
sgn(σ) = −1 if σ is an odd permutation. When applied to an associative algebra, the 
operator Φ2 gives exactly the usual commutator.



Y.-H. Bao et al. / Advances in Mathematics 372 (2020) 107290 35
Lemma 3.8. As an ideal of P, 1Υ = 2Υ = 〈Φ2〉.

Proof. We only consider the case P = Ass. By Lemma 3.4, 1Υ = 2Υ . Clearly, we have 
2Υ ⊇ 〈Φ2〉 since Φ2 ∈ 2Υ(2). It suffices to show that 2Υ ⊆ 〈Φ2〉. By definition πi(σ) = 11
for all n ≥ 1, σ ∈ Sn, and 1 ≤ i ≤ n. Thus we have

2Υ(n) =

⎧⎨⎩ ∑
σ∈Sn

λσσ |
∑
σ∈Sn

λσ = 0, λσ ∈ k

⎫⎬⎭ .

It is well-known that 2Υ(n) is generated by the set {1n−σ | σ ∈ Sn, σ �= 1n}. (It may 
not be a basis unless P = Ass). For any σ1, · · · , σs ∈ Sn, we write

1n − σ1 · · ·σs =(1n − σs) + (σs − σs−1σs) + · · · + (σ2 · · ·σs − σ1 · · ·σs)

=(1n − σs) + (1n − σs−1)σs + · · · + (1n − σ1)σ2 · · ·σs.

Since {(12), (23), · · · , (n −1, n)} generates the group Sn, the above equality implies that 
2Υ(n) is generated by the elements 1n− (12), 1n− (23), · · · , 1n− (n −1, n) as a right Sn-
module. For each i ≥ 1, we have 1n−(i, i +1) = ιi−1

n−i−1(Φ2), and hence 2Υ(n) ⊆ 〈Φ2〉(n). 
The assertion follows. �
Lemma 3.9. Let I � P be an ideal. Then either I = 2Υ or I ⊆ 3Υ.

Proof. First we claim that I ⊆ 2Υ . Otherwise, there exist n ≥ 1 and θ ∈ I(n) such that 
πi(θ) �= 0 for some 1 ≤ i ≤ n. It follows that 11 ∈ I, and hence P ⊆ I, which leads to a 
contradiction.

Next assume that I � 3Υ . Then there exist n ≥ 2 and θ ∈ I(n), such that πi,j(θ) �= 0
for some 1 ≤ i < j ≤ n. Note that πi,j(θ) ∈ 2Υ(2) and hence πi,j(θ) = λΦ2 for some 
λ �= 0. Now Lemma 3.8 implies that I = 2Υ . �
3.3. A descending chain of ideals

In this subsection we assume that P = Ass. By definition and Lemma 2.5 (1), k+1Υ ⊆
kΥ for all k ≥ 0. Thus we obtain a descending chain of ideals

1Υ = 2Υ ⊇ 3Υ ⊇ 4Υ ⊇ · · ·

of Ass. Then for any ideal I of Ass, after taking intersections with kΥ ’s, we also obtain 
a descending chain of subideals

I ∩ 2Υ ⊇ I ∩ 3Υ ⊇ I ∩ 4Υ ⊇ · · · .

Before continuing, we introduce a useful lemma.
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Lemma 3.10. Let n ≥ k ≥ 0 be integers, and θ be in Ass(n). Then

(1) Φ2 ◦ (θ, 11) ∈ k+1Υ(n + 1) if and only if θ ∈ kΥ(n).
(1′) Φ2 ◦ (11, θ) ∈ k+1Υ(n + 1) if and only if θ ∈ kΥ(n).
(2) 12 ◦ (θ, Φ2) ∈ k+2Υ(n + 2) if and only if θ ∈ kΥ(n).
(2′) 12 ◦ (Φ2, θ) ∈ k+2Υ(n + 2) if and only if θ ∈ kΥ(n).

Proof. To avoid confusion, we use τ to denote the 2-cycle (12) ∈ S2. Thus Φ2 = 12 − τ . 
We only prove (1) and (2), and the argument for (1′) and (2′) are the same.

(1) (⇐) First we assume that θ ∈ kΥ(n). Take any subset I of [n + 1] with |I| = k. 
We claim that πI(Φ2 ◦ (θ, 11)) = 0. By definition,

πI(Φ2 ◦ (θ, 11)) = (Φ2 ◦ (θ, 11)) ◦ (1χ
I
(1), · · · , 1χ

I
(n), 1χ

I
(n+1)) (E3.10.1)

= Φ2 ◦ (πI1(θ), 1χ
I
(n+1)),

where I1 = I ∩ [n]. There are two cases: n + 1 ∈ I or n + 1 /∈ I. If n + 1 ∈ I, then 
|I1| = k−1, and hence πI1(θ) = 0 by assumption. The claim follows in this case. Now we 
assume that n + 1 /∈ I, i.e., I = I1 ⊆ [n]. Obviously one has τ ◦ (θ′, 10) = θ′, and hence 
Φ2 ◦ (θ′, 10) = 0 for any θ′. Now in both cases, we have πI(Φ2 ◦ (θ, 11)) = 0. Therefore 
the claim holds and the “if” part follows.

(⇒) Next we prove the “only if” part. Assume that Φ2◦(θ, 11) ∈ k+1Υ(n +1). We need 
only to show that πI(θ) = 0 for every subset I ⊆ [n] with |I| = k−1. Set I ′ = I∪{n +1}. 
Clearly I ′ is a subset of [n + 1] with |I ′| = k. By (E3.10.1), we have

0 = πI′
(Φ2 ◦ (θ, 11)) = Φ2 ◦ (πI(θ), 11) = 12 ◦ (πI(θ), 11) − τ ◦ (πI(θ), 11).

Note that

{12 ◦ (σ, 11) | σ ∈ Sk−1} ∪ {τ ◦ (σ, 11) | σ ∈ Sk−1}

are linearly independent in kSk. It follows that 12 ◦ (πI(θ), 11) = 0 and hence πI(θ) = 0.
(2) For every I ⊂ [n], denote by Ĩ the set I ∪ {n + 1, n + 2}. Then we obtain a 1-1 

correspondence between subsets of [n] and the ones of [n + 2] containing both n + 1 and 
n + 2.

(⇐) Assume that θ ∈ kΥ(n). Then for every J ⊆ [n + 2] with |J | = k + 1, we claim 
that

πJ(12 ◦ (θ, 12 − τ)) = 0.

Easy calculations show that

Γn+1(12 ◦ (θ, 12 − τ)) = Γn+2(12 ◦ (θ, 12 − τ)) = 0.
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Thus, if {n + 1, n + 2} � J , then πJ(12 ◦ (θ, 12 − τ)) = 0 since πJ will factor through 
Γn+1 or Γn+2 in this case. Now we may assume that J = Ĩ for some I ⊆ [n]. Then

πĨ(12 ◦ (θ, 12 − τ)) = 12 ◦ (πI(θ), 12 − τ) = 0. (E3.10.2)

The “if” part follows.
(⇒) For the “only if” part, again we use (E3.10.2) and the fact that 12 ◦ (πI(θ),

12 − τ)) = 0 if and only if πI(θ) = 0. �
The main result of this subsection is the following separability property of the ideals 

kΥ of Ass.

Proposition 3.11.

(1) Let I be a nonzero ideal of Ass. Then I ∩ kΥ �= I ∩ k+1Υ for all k 
 0.
(2) kΥ �= k+1Υ for every k ≥ 2.

Proof. (1) Note that 
⋂

k≥0
kΥ = 0 since kΥ(k − 1) = 0 for all k ≥ 1. By Lemma 3.9 and 

the assumption I �= 0, we have I ∩ 2Υ �= 0. Thus I ∩ k0Υ �= I ∩ k0+1Υ for some k0 ≥ 1. 
There exist some k0 ≥ 1, n ≥ k0, and θ ∈ I(n) such that θ ∈ k0Υ(n) while θ /∈ k0+1Υ(n). 
By Lemma 3.10, Φ2 ◦ (θ, 11) ∈ k0+1Υ(n + 1), and Φ2 ◦ (θ, 11) /∈ k0+2Υ(n + 1), which 
implies that I ∩ k0+1Υ �= I ∩ k0+2Υ . By induction we may show that I ∩ kΥ �= I ∩ k+1Υ
for all k ≥ k0.

(2) The statement follows from the above proof and the fact that Φ2 ∈ 2Υ and 
Φ2 /∈ 3Υ . �
Remark 3.12. Recall that the descending chain condition (DCC, for short) for an object 
C means that any descending chain

C ⊇ C1 ⊇ C2 ⊇ C3 ⊇ · · ·

of subobjects of C is stable, that is, Ck = Ck+1 = · · · for sufficiently large k. The 
proposition says that the DCC does NOT hold for any nonzero ideal of Ass and Ass is 
not artinian.

Let P be a unitary operad and let nΥ be nΥP . Let Υ denote the S-submodule of P
given by

Υ(n) = nΥ(n), (n = 0, 1, · · · ). (E3.12.1)

Proposition 3.13. Let P be a unitary operad.

(1) Υ is closed under partial compositions.
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(2) k11 ⊕Υ is a unitary operad.
(3) k11 ⊕Υ is Uni-augmented.

Proof. (1) By the proof of Proposition 3.1 (2), mΥ(m)nΥ(n) ⊆ m+n−1Υ(m + n − 1) for 
all m, n. The assertion follows.

(2, 3) These follow from part (1). �
4. Dimension computation, basis theorem and categorification

4.1. Definitions of growth properties

We collect some definitions.

Definition 4.1. Let M = (M(n))n≥0 be an S-module (or a k-linear operad).

(1) The sequence (dimM(0), dimM(1), · · · ) is called the dimension sequence (or simply 
dimension) of M. We call M locally finite if dimk M(n) < ∞ for all n.

(2) The generating series of M is defined to be

GM(t) =
∞∑

n=0
dimM(n)tn ∈ Z[[t]].

The exponential generating series of M is defined to be

EM(t) =
∞∑

n=0

dimM(n)
n! tn ∈ Q[[t]].

(3) The exponent of M is defined to be

exp(M) := lim sup
n→∞

(dimM(n)) 1
n .

We say M has exponential growth if exp(M) > 1. We say M has finite exponent if 
exp(M) < ∞.

(4) We say that M has polynomial growth if there are 0 < C, k < ∞ such that 
dimM(n) < Cnk for all n > 0. The infimum of such k is called the order of polyno-
mial growth and denoted by o(M).

(5) We say M has sub-exponential growth if exp(M) ≤ 1 and if M does not have 
polynomial growth.

(6) The Gelfand-Kirillov dimension (GKdimension for short) of M is defined to be

GKdim(M) = lim sup
n→∞

logn

(
n∑

i=0
dimk M(i)

)

which is the same as (E0.0.3).
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When we talk about the growth of an operad P, we implicitly assume that P is locally 
finite. It is easy to see that exp(Ass) = ∞, so Ass has (infinite) exponential growth. And 
GKdim(Com) = 1, so Com has polynomial growth. We will see that for every integer 
k ≥ 1, there exists a quotient operad P/kΥ has polynomial growth of order (no more 
than) k. First we state a lemma for arbitrary unitary operads.

Lemma 4.2. Let P be a k-linear (symmetric or plain) unitary operad. If kΥ = 0 for some 
k, then GKdimP ≤ k.

As usual (
n

k

)
= n!

k! · (n− k)! .

Proof. Consider the restriction operator πI : P(n) → P(k − 1) for all n ≥ k − 1, which 
induces an injective map

(πI)′ : P(n)/KerπI → P(k − 1)

where I ⊆ [n] with |I| = k − 1. By hypothesis and definition,

0 = kΥ(n) =
⋂

I⊂[n], |I|=k−1

KerπI .

Hence we have an injective map

P(n)
∼=−→ P(n)

(
⋂

I⊂[n], |I|=k−1
KerπI) →

⊕
I⊂[n], |I|=k−1

P(n)
KerπI

→
⊕

I⊂[n], |I|=k−1

P(k − 1),

which implies that

dimP(n) ≤ dimP(k − 1)
(

n

k − 1

)
for all n ≥ k − 1. The assertion follows. �

Let P be a unitary operad and I an ideal of P. Let dkI(n) denote the codimension of 
(kΥ ∩ I)(n) in I(n), that is,

dkI(n) = dimk

I
kΥ ∩ I (n) = dimk I(n) − dimk(kΥ ∩ I)(n), (E4.2.1)

where the second equality holds if P is locally finite. If I = P, we have

dk(n) = dimk

P (n) = dimk P(n) − dimk
kΥ(n),
kΥ
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where the second equation holds if P is locally finite.
We do not assume that dkI(n) is finite. When P is locally finite, we will give a recursive 

formula for dkI(n). The key idea is to find a basis for the quotient module 
kΥ ∩ I

k+1Υ ∩ I (n), 

so we can calculate dim
kΥ ∩ I

k+1Υ ∩ I (n) for all n.
For every subset I ⊆ [n], we use cI to denote the element in Sn which corresponds to 

the permutation

cI := (1, · · · , i1 − 1, i1 + 1, · · · , is − 1, is + 1, · · · , n, i1, · · · , is), (E4.2.2)

where I = {i1, · · · , is} with i1 < · · · < is. Let P be a 2-unitary operad. By an easy 
calculation we have

ΓI((12 ◦ (1n−s,1s)) ∗ cI) = 1n−s.

In fact, we have a more general result.

Lemma 4.3. Let P be a 2-unitary operad. Let n ≥ k be integers and set s = n − k.

(1) Let I ⊆ [n] be a subset with |I| = s. Then ΓI((12 ◦ (θ, 1s)) ∗ cI) = θ for all θ ∈ P(k).
(2) Let J ⊆ [n] be a subset with |J | = k. Then for every θ ∈ kΥ(k) and every σ ∈ Sn,

πJ((12 ◦ (θ,1s)) ∗ σ) = 0

unless J = {σ−1(1), · · · , σ−1(k)}.

Proof. (1) To avoid possible confusion, we use 1n for 1Sn
∈ Sn for all n ≥ 0. Applying 

(OP3) and using the fact that θ ∗ 1k = θ for all θ ∈ P(k), we have

ΓI(12 ◦ (θ,1s) ∗ cI) =((12 ◦ (θ,1s)) ∗ cI) ◦ (1χ
Î
(1), · · · ,1χ

Î
(n))

=((12 ◦ (θ,1s)) ∗ cI) ◦ (1χ
Î
(1) ∗ 1χ

Î
(1), · · · ,1χ

Î
(n) ∗ 1χ

Î
(n))

=[(12 ◦ (θ,1s)) ◦ (1χ
Î
(c−1

I (1)), · · · ,1χ
Î
(c−1

I (n)))]

∗ [cI ◦ (1χ
Î
(1), · · · , 1χ

Î
(n))]

=[(12 ◦ (θ,1s)) ◦ (11, · · · ,11︸ ︷︷ ︸
k

,10, · · · ,10︸ ︷︷ ︸
s

)] ∗ 1k

=12 ◦ (θ ◦ (11, · · · ,11︸ ︷︷ ︸
k

),1s ◦ (10, · · · ,10︸ ︷︷ ︸
s

))

=12 ◦ (θ,10) = θ,
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where the second to last equality is Lemma 2.8(1) and the last equality uses the hypoth-
esis that P is 2-unitary.

(2) We will consider the special case σ = 1n ∈ Sn, and the general case follows from 
Lemma 2.13. If there exists some r ∈ [k] such that r /∈ J , then πJ = πJ ′ • Γr for some 
J ′ ⊆ [n − 1] by Lemma 2.5(3). We have

Γr(12 ◦ (θ,1n−k)) = 12 ◦ (Γr(θ),1n−k) = 0,

as θ ∈ kΥ(k). Hence πJ (12 ◦ (θ, 1n−k)) = 0 as desired. �
As an immediate consequence of the above lemma we have the following.

Corollary 4.4. Let I, I ′ ⊆ [n] be subsets with |I| = |I ′| = n − k =: s. For θ ∈ kΥ(k), we 
have

ΓI′
((12 ◦ (θ,1s)) ∗ cI) =

{
θ, if I ′ = I;
0, otherwise.

(E4.4.1)

We are now in a position to give a recursive formula to compute the dimension of 
kΥ ∩ I. By convention, 0Υ = P. Let

Gk
I(t) =

∞∑
n=0

dkI(n)tn

and let

fI(k) = dk+1
I (k) − dkI(k)

for all k ≥ 0. Clearly, it follows from (E4.2.1) that

fI(k) = dimk(kΥ ∩ I)(k), and fP(k) = dimk
kΥ(k).

Note that if fI(k) is not finite, then it denotes a cardinal.

Theorem 4.5. Let P be 2-unitary and I an ideal of P. Let n ≥ k ≥ 0 be integers.

(1) Let {θi | 1 ≤ i ≤ fI(k)} be a basis of (kΥ ∩ I)(k). Then

{12 ◦ (θi,1n−k) ∗ cI | 1 ≤ i ≤ fI(k), I ⊆ [n], |I| = n− k}

forms a basis of ((kΥ ∩ I)/(k+1Υ ∩ I))(n). Consequently,

dimk

kΥ ∩ I (n) = fI(k)
(
n
)
.

k+1Υ ∩ I k
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(2)
dk+1
I (n) = dkI(n) + fI(k)

(
n
k

)
.

Equivalently,

Gk+1
I (t) −Gk

I(t) = fI(k) tk

(1 − t)k+1 .

(3) If I = P, then

dk+1(n) = dk(n) + (dk+1(k) − dk(k))
(
n
k

)
,

for all n.

Proof. (1) Let I, I ′ ⊆ [n] be subsets with |I| = |I ′| = n − k. By Corollary 4.4, we have

ΓI′
(12 ◦ (ΓI(θ),1n−k) ∗ cI) =

{
ΓI(θ), if I ′ = I,

0, otherwise,
(E4.5.1)

for all θ ∈ (kΥ ∩ I)(n), because ΓI(θ) ∈ (kΥ ∩ I)(k). For each θ ∈ (kΥ ∩ I)(n), we set

θ′ = θ −
∑
I⊆[n]

|I|=n−k

12 ◦ (ΓI(θ),1n−k) ∗ cI . (E4.5.2)

Then (E4.5.1) implies that θ′ ∈ (k+1Υ ∩ I)(n), and hence the image of the elements of 
the form

12 ◦ (θi,1n−k) ∗ cI

span 
kΥ ∩ I

k+1Υ ∩ I (n).
Next we show the linear independency. Assume that∑

1≤i≤fI(k)
I⊆[n],|I|=n−k

λi,I12 ◦ (θi,1n−k) ∗ cI ∈ (k+1Υ ∩ I)(n)

for some λi,I ∈ k. Then, for each I, by applying ΓI we obtain that∑
1≤i≤fI(k)

λi,Iθi = 0,

again we use Corollary 4.4 here. It follows that all λi,I ’s must be zero.
(2,3) Easy consequences of part (1). �
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4.2. Basis theorem

As a consequence of Theorem 4.5(1), we have the following result concerning a k-linear 
basis of P. In theorem below, if zk is not finite, then it denotes a cardinal.

Recall that an operad P is finitely generated if there is a finite dimensional subspace 
X such that every element in P is generated by X by using operad composition and 
Sn-actions for n ≥ 0.

Theorem 4.6. Suppose P is a 2-unitary operad.

(1) [Basis theorem] For each k ≥ 0, let

Θk := {θk1 , · · · , θkzk}

be a k-linear basis for kΥ(k). Let Bk(n) be the set

{12 ◦ (θki ,1n−k) ∗ cI | 1 ≤ i ≤ zk, I ⊆ [n], |I| = n− k}.

Then P(n) has a k-linear basis⋃
0≤k≤n

Bk(n) = {1n} ∪
⋃

1≤k≤n

Bk(n),

and, for every k ≥ 1, kΥ(n) has a k-linear basis 
⋃

k≤i≤n Bi(n).
(2) P is generated by {10, 11, 12} ∪

{
kΥ(k) | k ≥ 1

}
.

(3) If P is locally finite and nΥ = 0 for some n, then it is finitely generated.

Proof. (1) For each n ≥ 0, P(n) admits a decreasing filtration {kΥ(n)}∞k=0. As a vector 
space, we have

P(n) ∼=
∞⊕
k=0

kΥ(n)/k+1Υ(n) ∼= k1n ⊕
∞⊕
k=1

kΥ(n)/k+1Υ(n).

By Theorem 4.5 (1), Bk(n) is a k-linear basis of kΥ(n)/k+1Υ(n). Note that Bk(n) is 
empty if k ≥ n + 1. The first assertion follows. The proof of the second assertion is 
similar.

(2) This follows from part (1).
(3) This follows from part (2) and the fact that kΥ(k) = 0 for all k ≥ n. �
As a consequence of the above basis theorem, we have the following corollary. A 

morphism f of operads is called a morphism of 2-unitary operads if f preserves 1i for 
i = 0, 1, 2. Before we prove the corollary, we need the following lemma.
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Lemma 4.7. Let P be a 2-unitary operad and I be an ideal of P. Then kΥP/I ∼=
kΥP/(kΥP ∩ I).

Proof. Let Q = P/I. The canonical morphism ϕ : P → Q induces a natural map 
f : kΥP → kΥQ by Lemma 3.3. Since I is the kernel of ϕ, f induces a natural injective 
morphism

g : kΥP/(kΥP ∩ I) → kΥQ.

It remains to show that g is surjective, equivalently, to show that, for each n,

φ : (kΥP(n) + I(n))/I(n) → kΥQ(n)

is surjective. For every x ∈ kΥQ(n), let θ ∈ P(n) such that ϕ(θ) = x. Suppose θ ∈ iΥP(n)
for some i. We will use induction to show that i ≥ k for some choice of θ. There is nothing 
to be proved if i ≥ k. Assume now that i < k. Then ΓJ(θ) ∈ iΥP(i) when |J | = n − i. 
Let

θ′ = θ −
∑
J⊆[n]

|J|=n−i

12 ◦ (ΓJ(θ),1n−i) ∗ cJ

which is similar to the element given in (E4.5.2). By Corollary 4.4 or the proof of Theo-
rem 4.5 (1), ΓJ (θ′) = 0 for all J ⊆ [n] with |J | = n − i. This means that θ′ ∈ i+1ΥP(n). 
For each J as above, we have

ϕ(ΓJ (θ)) = ΓJ (ϕ(θ)) = ΓJ (x) = 0

as x ∈ kΥQ(n) and k > i. Thus ΓJ(θ) ∈ I(i) for all J . Consequently,

Ω :=
∑
J⊆[n]

|J|=n−i

12 ◦ (ΓJ(θ),1n−i) ∗ cJ ∈ I(n).

Hence φ(θ′) = φ(θ) = x. Replacing θ by θ′ we move i to i + 1. The assertion follows by 
induction. �

Recall from (E3.12.1)ΥP denote the S-submodule (nΥP(n))n≥0.

Corollary 4.8. Suppose that P and Q are 2-unitary operads. Let f : P → Q be a morphism 
of 2-unitary operads.

(1) f is uniquely determined by f |ΥP .
(2) f is injective if and only if f |ΥP is.
(3) f is surjective if and only if f |ΥP is.
(4) f is an isomorphism if and only if f |ΥP is.
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Proof. Since f is a morphism of operads, it follows from Lemma 3.3 that f maps kΥP
to kΥQ for every k. Consequently, f maps kΥP(k) to kΥQ(k) for every k. This defines a 
map f :ΥP →ΥQ. Since f preserves 1i for i = 0, 1, 2, it preserves 1n for all n. Therefore 
f maps 12 ◦ (θ, 1n−k) ∗ cI to 12 ◦ (f(θ), 1n−k) ∗ cI for all θ ∈ kΥP(k).

(1) Since f is a morphism of 2-unitary operads, P is generated by elements in Θk for 
k ≥ 0 by Theorem 4.6 (1). The assertion follows.

(2) Suppose f is not injective. Let I be the nonzero kernel Ker f . Then I is an ideal of 
P. Since I �= 0, I ∩ kΥP �= I ∩ k+1ΥP for some k. Let x ∈ (I ∩ kΥP)(n) \ (I ∩ k+1ΥP)(n)
for some n > k. Then there is a subset I of [n] with |I| = k such that 0 �= πI(x) ∈
(I ∩ kΥP)(k). So f |ΥP is not injective. The converse is easy.

(3) Suppose f |ΥP is surjective. Since Q is generated by {kΥQ(k)}k≥1 by Theorem 4.6
(2), f is surjective.

Conversely, suppose that f is surjective. Then Q is a quotient operad of P. By 
Lemma 4.7, f maps surjectively from kΥP(k) to kΥQ(k) for each k. The assertion follows.

(4) This is a consequence of parts (2) and (3). �
4.3. Categorification of binomial coefficients

Following the basis theorem [Theorem 4.6 (1)], for each I ⊆ [n] with |I| = n − k, we 
define a k-linear map

Λn
I : kΥ(k) → kΥ(n) (E4.8.1)

by

Λn
I (θ) = 12 ◦ (θ,1n−k) ∗ cI . (E4.8.2)

Lemma 4.9. Retain the above notation. For every n ≥ k and every σ ∈ Sn, the following 
diagram is commutative in the quotient space kΥ/k+1Υ

kΥ(k) Λn
I−−−−→ kΥ(n)

∗Γσ−1(I)(σ)

⏐⏐� ⏐⏐�∗σ

kΥ(k) −−−−−→
Λn

σ−1(I)

kΥ(n).

As a consequence, if k+1Υ = 0, then

Λn
I (θ) ∗ σ = Λn

σ−1(I)(θ ∗ Γσ−1(I)(σ)).

Proof. Let θ be an element in kΥ(k). For every I ′ ⊆ [n] with |I ′| = n −k, by Lemma 2.13
and Corollary 4.4,
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ΓI′
(Λn

I (θ) ∗ σ) = Γσ(I′)(Λn
I (θ)) ∗ ΓI′

(σ) =
{
θ ∗ ΓI′(σ), σ(I ′) = I,

0, σ(I ′) �= I

and

ΓI′
(Λn

σ−1(I)(θ ∗ Γσ−1(I)(σ))) =
{
θ ∗ Γσ−1(I)(σ), σ(I ′) = I,

0, σ(I ′) �= I.

Thus ΓI′(Λn
I (θ) ∗ σ) = ΓI′(Λn

σ−1(I)(θ ∗ Γσ−1(I)(σ))) for all I ′. Therefore

Λn
I (θ) ∗ σ = Λn

σ−1(I)(θ ∗ Γσ−1(I)(σ))

modulo k+1Υ . The assertion follows. �

Let Mod-Sn denote the category of right kSn-modules. Suggested by Lemma 4.9, we 
define the following functor

Cn
k : Mod-Sk → Mod-Sn

for n ≥ k as follows. Let Tn
k be the set {I ⊂ [n] | |I| = n − k}. Let M be a right 

Sk-module. Then Cn
k (M) is a right Sn-module such that

(i) as a vector space, Cn
k (M) =

⊕
I∈Tn

k

M , elements in Cn
k (M) are linear combinations of 

(m, I) for m ∈ M and I ∈ Tn
k ;

(ii) the Sn-action on Cn
k (M) is determined by

(m, I) ∗ σ := (m ∗ Γσ−1(I)(σ), σ−1(I))

for all (m, I) ∈ Cn
k (M) and all σ ∈ Sn.

Lemma 4.10. Retain the notation as above.

(1) If M is a right Sk-module, then Cn
k (M) is a right Sn-module.

(2) Let A be an algebra. If M is an (A, Sk)-bimodule, then Cn
k (M) is an (A, Sn)-bimodule.

(3) The functor Cn
k (−) is equivalent to the tensor functor − ⊗Sk

Cn
k (Sk).
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Proof. (1) For σ, τ ∈ Sn, and (m, I) ∈ Cn
k (M),

((m, I) ∗ σ) ∗ τ = (m ∗ Γσ−1(I)(σ), σ−1(I)) ∗ τ

= ((m ∗ Γσ−1(I)(σ)) ∗ Γτ−1σ−1(I)(τ), τ−1(σ−1(I)))

= ((m ∗ Γσ−1(I)(σ)) ∗ Γ(στ)−1(I)(τ), (στ)−1(I))

= (m ∗ (Γτ(στ)−1(I)(σ) ∗ Γ(στ)−1(I)(τ)), (στ)−1(I))

= (m ∗ (Γ(στ)−1(I)(σ ∗ τ)), (στ)−1(I))

= (m ∗ (Γ(στ)−1(I)(στ)), (στ)−1(I))

= (m, I) ∗ (στ).

(2) This follows from the definition and part (1).
(3) This follows from the Watts Theorem and the fact that Cn

k is exact. �
5. Binomial transform of generating series

In this section we study 2-unitary operads of finite Gelfand-Kirillov dimension. One 
tool is binomial transform [22,31,32] of generating series that is closely related to trun-
cation ideals of 2-unitary operads.

5.1. Binomial transform

First of all, there are at least two versions of binomial transforms, we will use the 
following version. We also list some facts without proofs.

Let a := {a0, a1, a2, · · · } be a sequence of numbers. Its generating series is denoted by

Ga(t) =
∞∑
i=0

ait
i

and its exponential generating series is

Ea(t) =
∞∑
i=0

ai
i! t

i.

The binomial transform of a is a sequence b := {b0, b1, b2, · · · , } defined by

bi =
i∑

k=0

ak(−1)i−k
(
i
k

)
(E5.0.1)

for all i ≥ 0. It is well-known (see [31]) that
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ai =
i∑

k=0

bk
(
i
k

)
(E5.0.2)

for all i ≥ 0, and

Ga(t) = 1
1 − t

Gb(
t

1 − t
), Gb(t) = 1

1 + t
Ga(

t

1 + t
) (E5.0.3)

and

Ea(t) = etEb(t), Eb(t) = e−tEa(t). (E5.0.4)

Note that (E5.0.3) is equivalent to

∞∑
k=0

akt
k =

∞∑
k=0

bk
tk

(1 − t)k+1 . (E5.0.5)

We also write

T ({ai}) = {bi}, and T −1({bi}) = {ai},

or

T (
∞∑
k=0

akt
k) =

∞∑
k=0

bkt
k, and T −1(

∞∑
k=0

bkt
k) =

∞∑
k=0

akt
k,

where {ak}k≥0 and {bk}k≥0 are determined by each other via (E5.0.1)-(E5.0.2), and in 
this case we call a = {ai} the inverse binomial transform of b = {bi}. For a sequence of 
non-negative numbers (called a non-negative sequence) a = {ai}, define the exponent of 
a to be

exp(a) := lim sup
n→∞

a
1
n
n . (E5.0.6)

When {an} is a sequence of non-negative integers with infinitely many nonzero an’s, 
then by [33, Lemma 1.1(1)],

exp(a) = lim sup
n→∞

(
n∑

i=0
ai

) 1
n

. (E5.0.7)

Lemma 5.1. Let b := {bn} be a non-negative sequence with b0 = 1 and a := {an} =
T −1({bn}).

(1) exp(a) = exp(b) + 1.
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(2) If bn = 0 for n 
 0, then exp(a) = 1.
(3) For every real number r ≥ 2, let b = {�(r − 1)n�}, then exp(a) = r.

Proof. First of all exp(a) ≥ 1 since an ≥ 1 for each n. From calculus, the radius of 
convergence of the power series Ga(t) is ra := exp(a)−1. The same is true for b.

(1) By (E5.0.3), r−1
a = r−1

b + 1. The assertion follows.
(2) Since exp(b) = 0, this is a special case of (1).
(3) Clearly exp(b) = r − 1. The assertion follows from part (1). �
Next we apply binomial transform to operads. Let P be a 2-unitary operad and let I

be an ideal of P or I = P. Let nΥ be defined as (E3.0.1) and let 0Υ = P. Let

Gw
I (t) =

∞∑
n=0

dimk(
I

wΥ ∩ I (n))tn =
∞∑

n=0
dwI (n)tn (E5.1.1)

and

GI(t) =
∞∑

n=0
dimk(I(n))tn. (E5.1.2)

Lemma 5.2. Let P be a 2-unitary operad and let I be an ideal of P or I = P. Then 
Gw

I (t) and GI(t) are

Gw
I (t) =

w−1∑
k=0

fI(k) tk

(1 − t)k+1 (E5.2.1)

for all w and

GI(t) =
∞∑
k=0

fI(k) tk

(1 − t)k+1 (E5.2.2)

where fI(k) = dk+1
I (k) − dkI(k) for all k.

Proof. Since GI(t) = limw→∞ Gw
I (t), (E5.2.2) is a consequence of (E5.2.1). So we only 

prove (E5.2.1).
By Theorem 4.5(2), we have

Gw
I (t) = Gw−1

I (t) + fI(w − 1) tw−1

(1 − t)w

for all w ≥ 1. When w = 1, the above equation becomes 0 = 0 + 0 where I �= P, or ∑∞
i=0 t

i = 0 + 1 where I = P, both of which hold clearly. We have
1−t
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Gw
I (t) =

w∑
k=1

(Gk
I(t) −Gk−1

I (t)) =
w−1∑
k=0

fI(k) tk

(1 − t)k+1 . �

Lemma 5.2 tells us that the sequence {fI(n)} is the binomial transform of {dimI(n)}. 
By Definition 4.1(6) and (E5.0.5), we immediately get

GKdim I = max{k | fI(k) �= 0} + 1. (E5.2.3)

5.2. Operads with finite GKdimension

Using the truncation ideals, we give a characterization of 2-unitary operads with finite 
GKdimension.

Theorem 5.3. Let P be a 2-unitary operad.

(1) If P has polynomial growth, then the generating series GP(t) is rational. As a con-
sequence, GKdimP ∈ N.

(2) P has polynomial growth if and only if there is an integer k such that kΥ = 0. And

GKdimP = max{k | kΥ �= 0} + 1 = min{k | kΥ = 0}.

Proof. If kΥ = 0, then P has finite GKdimension by Lemma 4.2. Conversely, we assume 
that GKdimP < ∞. By Lemma 5.2,

GP(t) =
∞∑

n=0
fP(n) tn

(1 − t)n+1 . (E5.3.1)

By definition, fP(n) ≥ 0 for all n. Since GKdimP < ∞, there is an N ∈ N such that 
fP(n) = 0 for all n ≥ N where fP(n) = dn+1

P (n) −dnP(n) = dim nΥ(n). This implies that 
nΥ(n) = 0 for all n ≥ N . By Theorem 4.6(1), nΥ = 0 for all n ≥ N . In this case,

GP(t) =
N−1∑
n=0

fP(n) tn

(1 − t)n+1

which is rational. It is clear and follows from (E5.2.3) that

GKdimP = max{n | fP(n) �= 0} + 1 = max{n | nΥ �= 0} + 1. (E5.3.2)

Therefore assertions in parts (1) and (2) follow. �
Corollary 5.4. Let I be an operadic ideal of Ass and P be the quotient operad Ass/I. 
Let k be a positive integer. Then GKdimP ≤ k if and only if I ⊇ kΥ. In particular,
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GKdim(Ass/kΥ) =
{

1, k = 1, 2,
k, k ≥ 3.

Proof. By Theorem 5.3 (2) and Lemma 4.7, GKdimP ≤ k if and only if kΥP = 0 if and 
only if I ⊇ kΥAss.

By definition,

GAss(t) =
∞∑

n=0
fAss(n) tn

(1 − t)n+1 ,

and

GAss/kΥ(t) = Gk
Ass(t) =

k−1∑
n=0

fAss(n) tn

(1 − t)n+1 . (E5.4.1)

Since GAss(t) =
∑∞

k=0 k!tk, by (E5.0.1),

fAss(n) =
n∑

s=0
(−1)n−ss!

(
n
s

)
.

It is easy to check that fAss(n) �= 0 for all n �= 1. The assertion concerning the GKdi-
mension of Ass/kΥ follows from (E5.4.1). �

Let 
∑

k akt
k and 

∑
k bkt

k be two power series. If ak ≤ bk for all k, then we write ∑
k akt

k ≤
∑

k bkt
k.

Lemma 5.5. Let I be an ideal of P. Then T (GI(t)) ≤ T (GP(t)). As a consequence, if 
nΥ = 0 for some n, the set {GI(t) | I ⊆ P} is finite.

Proof. By Theorem 4.5(1) and Lemma 5.2,

GI(t) =
∞∑
k=0

fI(k) tk

(1 − t)k+1

where fI(k) = dim(kΥ ∩ I)(k). Since

0 ≤ fI(k) = dim(kΥ ∩ I)(k) ≤ dim kΥ(k) = fP(k)

for all k, we have

0 ≤ T (GI(t)) =
∞∑

fI(k)tk ≤
∞∑

fP(k)tk = T (GP(t)).

k=0 k=0
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If nΥ = 0, then there are only finitely many nonzero fP(k). Therefore there are only 
finitely many possible choices {fI(k)}k≥0. The assertion follows. �

The classical Hopkins (or Hopkins-Levitzki) Theorem states that any right artinian 
ring with identity element is right noetherian. Using the truncation ideals, we show that 
similar phenomenon occurs in 2-unitary operads.

Theorem 5.6. Let P be a locally finite 2-unitary operad.

(1) If GKdimP < ∞, then P is noetherian.
(2) GKdimP < ∞ if and only if P is artinian.
(3) [An operadic version of Hopkins’ Theorem] If P is artinian, then it is noetherian.

Proof. (1) Let

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

be an ascending chain of ideals of P. Then we have

GI1(t) ≤ GI2(t) ≤ · · · ≤ GIn
(t) ≤ · · ·

Since GKdimP < ∞, we have kΥ = 0 for some k. By Lemma 5.5, {GIi
| i = 1, 2, · · · } is 

finite and therefore the sequence {GIi
(t)}i≥1 stabilizes. This implies that the sequence 

of ideals {Ii}i≥1 stabilizes.
(2) (⇒) The proof is similar to the proof of part (2) above. Let

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·

be a descending chain of ideals of P. Since GKdimP < ∞, we have kΥ = 0 for some k. 
By Lemma 5.5, {GIi

(t) | i = 1, 2, · · · } is finite and therefore the sequence {GIi
(t)}i≥1

stabilizes. This implies that the sequence of ideals {Ii}i≥1 stabilizes.
(⇐) By Proposition 3.1 and Lemma 2.5(1), we have a descending chain of ideals

0Υ ⊇ 1Υ ⊇ 2Υ ⊇ · · · ⊇ kΥ ⊇ · · ·

of P. If P is artinian, then this chain is stable. On the other hand, we have ∩k≥0
kΥ = 0

since kΥ(k′ − 1) = 0 for all k ≥ k′ ≥ 0. It follows that kΥ = 0 for some sufficiently large 
k and hence P has finite GKdimension.

(3) This is a consequence of parts (1) and (2). �
The Gelfand-Kirillov dimension (or GKdimension) is an important tool in the study of 

noncommutative algebra [30,21]. Similar to associative algebras, we introduce the notion 
of the GKdimension for algebras over any operad.
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Definition 5.7. Let P be an operad and A a P-algebra.

(1) Let X be a subset of A. We say that X is a set of generators of A if A =
∑

n≥0 γn(X), 
where γn(X) denotes the image P(n) ⊗ (kX)⊗n → A.

(2) We say A is finitely generated if it has a set of generators which is finite.
(3) The GKdimension of A is defined to be

GKdim(A) = sup
V

{
lim sup
n→∞

logn

(
dim

n∑
i=0

γi(V )
)}

,

where the sup is taken over all finite dimensional subspaces V ⊆ A.

Remark 5.8. If A is an associative algebra, then the above defined notions of generators 
and GKdimension coincide with the standard ones in [30,21].

The next result connects the GKdimension of an operad P and the ones of finitely 
generated P-algebras. We stress that P is not assumed to be 2-unitary here.

Theorem 5.9. Let P be an operad with order of the growth o(P) (see Definition 4.1(4)) 
and A an algebra over P with a finite set X of generators. Then A has finite GKdimen-
sion, precisely

GKdim(A) ≤ o(P) + r,

where r = |X| is the cardinality of X. If, the generating series of P is rational, then

GKdim(A) ≤ GKdim(P) − 1 + r.

Proof. First we claim that

dim(P(n) ⊗Sn
(kX)⊗n) ≤ dimP(n) ·

(
n+r−1
r−1

)
.

In fact, assume X = {x1, · · · , xr}. We define a total ordering on X by x1 < x2 < · · · < xr. 
For any xi1 , · · · , xin with 1 ≤ i1, · · · , in ≤ r, there exists some σ ∈ Sn such that 
iσ(1) ≤ · · · ≤ iσ(n), thus

θ ⊗ (xi1 ⊗ · · · ⊗ xin) = (θ ∗ σ) ⊗ σ−1 ∗ (xi1 ⊗ · · · ⊗ xin) = (θ ∗ σ) ⊗ (xiσ(1) ⊗ · · · ⊗ xiσ(n)).

By a standard argument we obtain the desired inequality.
Consequently, we have

dim(γn(kX)) ≤ dimP(n) ·
(
n+r−1). (E5.9.1)
r−1
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By Definition 4.1(4), for any arbitrary small positive number ε, there is a positive number 
C such that

dimP(n) ≤ Cno(P)+ε (E5.9.2)

for all n ≥ 1. Now let V be any finite dimensional subspace of A. Since X is a generating 
set of A, V ⊆

∑m
i=0 γi(kX) for some integer m ≥ 1. Then we have

γn(V ) ⊆
∑

0≤i1,··· ,in≤m

γ(P(n) ⊗ ((γi1(kX)i1) ⊗ · · · (γin(kX)in)))

=
∑

0≤i1,··· ,in≤m

γ((P(n) ◦ (P(i1), · · · ,P(in))) ⊗ (kX)i1+···+in)

⊆
∑

0≤i1,··· ,in≤m

γi1+···+in(kX) ⊆
mn∑
i=0

γi(kX),

and hence 
∑n

i=0 γi(V ) ⊆
∑mn

i=0 γi(kX). Combining with (E5.9.1) and (E5.9.2), we have

dim(
n∑

i=0
γi(V )) ≤ dim(

mn∑
i=0

γi(kX)) ≤
mn∑
i=0

dimP(i)
(
i+r−1
r−1

)
≤

mn∑
i=0

Cio(P)+ε
(
i+r−1
r−1

)
≤

mn∑
i=0

C1i
o(P)+ε+r−1

≤ C2n
o(P)+ε+r

for some constants C1 and C2. Thus GKdim(A) ≤ o(P) + r when taking ε arbitrary 
small.

When P has rational generating series, one can easily check that GKdimP = o(P) +1. 
Thus GKdim(A) ≤ GKdim(P) − 1 + r. �
Example 5.10. Consider the operad Com. It is easy to check that GKdim Com = 1, and 
consequently, any commutative algebra generated in n-elements has GKdimension no 
greater than n. Notice that the free algebra generated in n elements over Com is the 
polynomial algebra in n variables, and has GKdimension n.

Recall that (GK ≤ k) rad(P) is defined in Definition 1.11(2).

Proposition 5.11. Let P be a 2-unitary operad. Then (GK ≤ k) rad(P) = kΥ.

Proof. Let I be an ideal of P and let P ′ = P/I. If GKdimP ′ ≤ k, then kΥP′ = 0 by 
Theorem 5.3(2). By Lemma 4.7, kΥP ⊆ I. By definition, kΥP ⊆ (GK ≤ k) rad(P). For 
the other inclusion, note that,
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GKdimP/kΥ ≤ k

by Lemmas 4.2 and 4.7. Hence kΥ ⊇ (GK ≤ k) rad(P). �
6. Signature of a 2-unitary operad

In this section we introduce the notion of the signature of an unitary operad, and 
classify some 2-unitary operads of low GKdimension. Note that we do not usually assume 
that P is locally finite.

6.1. Definition of the signature

Definition 6.1. Let P be a unitary operad. The signature of P is defined to be the sequence

S(P) := {d1, d2, d3, · · · }

where

dk = dimk
kΥ(k)

for all k ≥ 1. We leave out d0 = dimk
0Υ(0) because it is always 1.

We borrow the word “signature” from a paper of Brown-Gilmartin [6, Defini-
tion 5.3(1)]. There are some similarities between the signature of a connected Hopf 
algebra in the sense of [6] and the signature of a 2-unitary operad defined above.

The signature of Com is {0, 0, 0, · · · }. Let P be a 2-unitary operad of GKdimension 
k. By (E5.3.2), we have the signature of P is of form

{fP(1), · · · , fP(k − 1), 0, 0, · · · }

where fP(k − 1) �= 0, and

dimP(n) =
k−1∑
i=0

fP(i)
(
n
i

)
,

where 
(
n
i

)
= 0 if n < i. Thus the signature of P is uniquely determined by the Hilbert 

series of P, and vice versa.

6.2. 2-Unitary operads of low GKdimension

We start with the following lemma.
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Lemma 6.2. Let P be a 2-unitary operad or a 2-unitary plain operad. Suppose that 2Υ = 0. 
Then

(1) P is 2a-unitary.
(2) P is Com-augmented, namely, there is a morphism from Com → P.

Proof. Note that 2Υ = 0 means that, for each θ ∈ P(n), if πi(θ) = 0 for all i ∈ [n], then 
θ = 0.

(1) It is easily seen that πi(13) = 11 = πi(1′3) for i = 1, 2, 3. So 13 − 1′3 ∈ Kerπi and 
13 − 1′3 ∈ 2Υ(3) = 0. The assertion follows.

(2) We claim that 12 ∗ τ = 12 where τ = (12) ∈ S2. The proof is similar to the proof 
of part (1) by using the fact that πi(12 ∗ τ) = 11 = πi(12) for i = 1, 2. It follows by 
induction on n that, for every n ≥ 1, 1n ∗σ = 1n for all σ ∈ Sn. Thus there is an operad 
morphism from Com to P by sending 1n ∈ Com to 1n ∈ P. �

First we have the following classification of all 2-unitary operads of GKdimension 2.

Theorem 6.3. There are natural equivalences between

(a) the category of finite dimensional, not necessarily unital, k-algebras;
(b) the category of 2-unitary operads of GKdimension ≤ 2;
(c) the category of 2a-unitary operads of GKdimension ≤ 2.

Proof. If P is a 2-unitary operad of GKdim ≤ 2, then, by Theorem 5.3(2), 2Υ = 0. 
Hence Lemma 6.2 can be applied. In particular, two categories in parts (2) and (3) are 
the same. We now show that two categories in parts (1) and (2) are equivalent.

Suppose Λ is a finite dimensional augmented algebra. By Example 2.4(1), one can 
construct an operad, denoted by DΛ. Recall that DΛ(0) = k10, DΛ(1) = Λ, and for 
n ≥ 2, DΛ(n) = k1n ⊕ Λ̄n, where 1n ∗ σ = 1n and Λ̄n = {1n ◦

i
δ | δ ∈ Λ̄, 1 ≤ i ≤ n} is 

the kSn-module with the action (1n ◦
i
δ) ∗ σ = 1n ◦

σ−1(i)
δ for all σ ∈ Sn. Let f : Λ → Λ′

be a homomorphism of algebras. Then f extends to a unique morphism f̃ : DΛ → DΛ′

in Mag ↓Op+ given by f̃m(1m) = 1′m for all m ≥ 0 and f̃n(1n ◦
i
δ) = 1′n ◦

i
f(δ) for all 

δ ∈ Λ̄ and n ≥ 1. Thus the assignment (Λ �→ DΛ, f �→ f̃) define a functor F from the 
category of finite dimensional augmented algebras to the category of 2-unitary operads 
of GKdim ≤ 2.

Let D be a 2-unitary operad of GKdimension ≤ 2. Observe that D(1) is an asso-
ciative k-algebra with identity 11. The map π∅ : D(1) → D(0) = k shows that D(1)
is augmented. The restriction G : D → D(1) defines a functor from the category of 2-
unitary operads of GKdim ≤ 2 to the category of finite dimensional augmented algebras. 
It is clear that G • F ∼= Id. It remains to show that F •G ∼= Id.
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If GKdimD = 1, then D = Com by Proposition 2.12. In this case we have F •G(D) =
D. For the rest of the proof we assume that GKdimD = 2. By Theorem 5.3(2), we have 
that fD(1) �= 0 (or 1ΥD �= 0) and fD(n) = 0 (or nΥD = 0) for all n ≥ 2. Recall that 
fD(0) = dim 0ΥD(0) = dimD(0) = 1. Suppose fD(1) = dim 1ΥD(1) = dimD(1) − 1 =
d > 0. Then by Lemma 5.2, we know that the generating series of D is

GD(t) = fD(0) 1
1 − t

+ fD(1) t

(1 − t)2 =
∞∑

n=0
(1 + nd)tn.

Since 1Υ(1) is the kernel of the k-linear map π∅ : D(1) → D(0) (sending θ �→ θ ◦ 10), 
we can choose a k-basis 11, δ1, · · · , δd for D(1) with δi ◦ 10 = 0 for all i = 1, · · · , d.

The claim that F • G ∼= Id is equivalent to the claim that D is naturally isomorphic 
to the operad introduced in Example 2.4(1). We separate the proof into several steps.

Step 1: Denote δn(i)j : = 1n ◦
i
δj . We claim that {1n, δn(i)j | i ∈ [n], j ∈ [d]} is a basis for 

D(n). In fact, since dimD(n) = 1 +nd, we only need show {1n, δn(i)j | i ∈ [n], j ∈ [d]} are 
linearly independent. Assume that there exist {λ0, λij ∈ k | i ∈ [n], j ∈ [d]} such that 
λ01n +

∑
i,j

λijδ
n
(i)j = 0. Then we have

0 = πk(λ01n +
∑
i,j

λijδ
n
(i)j) = λ011 +

∑
j

λkjδj

since πk(δn(i)j) =
{
δj , i = k

0, i �= k.
It follows that λ0 = 0 and λij = 0 for all i, j. Therefore 

we proved our claim.

Step 2: For consistency, we set δ0 = 11, and δn(i)0 = 1n for any n ≥ 1 and any i ∈ [n]. For 
other i ∈ [n], 0 ≤ j ≤ d, n ≥ 1, we have δn(i)j = 1n ◦

i
δj by definition. Next, we compute 

δm(s)t ◦i δ
n
(k)l for all possible m, s, t, i, n, k, l.

Case 1: t ≥ 1 and l = 0. We consider the special case m = 1. Suppose that δt ◦ 1n =
λt

01n +
∑

1≤i≤n
1≤j≤d

λt
ijδ

n
(i)j . Then for any k ∈ [n], we have

δt =(δt ◦ 1n) ◦ (10, · · · ,10,11
k
,10, · · · ,10)

=(λt
01n +

∑
1≤i≤n
1≤j≤d

λt
ijδ

n
(i)j) ◦ (10, · · · ,10,11

k
,10, · · · ,10)

=λt
011 +

∑
1≤i≤n
1≤j≤d

λt
ij(1n ◦ (11, · · · ,11, δj

i

,11, · · · ,11)) ◦ (10, · · · ,10,11
k
,10, · · · ,10)

=λt
011 +

∑
j

λt
kjδj .
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It follows that λt
0 = 0 and λt

ij =
{

1, j = t, i ∈ [n],
0, otherwise.

Therefore,

δt ◦ 1n =
∑

1≤i≤n

δn(i)t. (E6.3.1)

In general,

δm(s)t ◦
i
1n =(1m ◦

s
δt) ◦

i
1n

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1m ◦

i
1n) ◦

s
δt, i > s,

1m ◦
s
(δt ◦1 1n), i = s,

(1m ◦
i
1n) ◦

s+n−1
δt, i < s

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δm+n−1
(s)t , i > s,
n∑

k=1
δm+n−1
(s+k−1)t, i = s,

δm+n−1
(s+n−1)t, i < s.

Case 2: t = 0 and l ≥ 1.

1m ◦
i
δn(k)l = 1m ◦

i
(1n ◦

k
δl) = (1m ◦

i
1n) ◦

i+k−1
δl = 1m+n−1 ◦

i+k−1
δl = δm+n−1

(i+k−1)l.

Case 3: t ≥ 1, l ≥ 1 and n = 1.
For any 1 ≤ i < i′ ≤ m, 1 ≤ j, j′ ≤ d, we have

πk(1m ◦ (11, · · · ,11, δj
i

,11, · · · ,11, δj′
i′
,11, · · · ,11)) = 0

for any k ∈ [m]. So 1m ◦ (11, · · · , 11, δj
i

, 11, · · · , 11, δj′
i′
, 11, · · · , 11) = 0. It follows that

δm(s)t ◦
i
δl = 0 (E6.3.2)

for any 1 ≤ s �= i ≤ m.

Step 3: Next we consider the multiplication of D(1). Suppose that δj ◦ δj′ = Ω0
jj′11 +

d∑
k=1

Ωk
jj′δk, where Ωk

jj′ (k = 0, 1, · · · , d) are the structure constants of the associative 

algebra D(1) associated to the basis {11, δ1, · · · , δd}. By (E6.3.1), we have δj ◦ 12 =
12 ◦(δj , 11) +12 ◦(11, δj), and by (E6.3.2), we have 12 ◦(δj , δj′) = 0 for any 1 ≤ j, j′ ≤ d. 
It follows that

(δj ◦ δj′) ◦ 12 = 12 ◦ (δj ◦ δj′ ,11) + 12 ◦ (11, δj ◦ δj′)
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and hence Ω0
jj′ = 0, which means that D(1) = k11 ⊕D(1) is an augmented algebra with 

D(1) =
d⊕

j=1
kδj .

Step 4: We now consider general δm(s)t ◦i δ
n
(k)l for t, l ≥ 1.

By (E6.3.2), we have δm(s)t ◦i δ
n
(k)l = 0 for any i �= s. If s = i, we have

δm(s)t ◦
i
δn(k)l =(1m ◦

s
δt) ◦

i
(1n ◦

k
δl) = 1m ◦

s
(δt ◦1 (1n ◦

k
δl))

=1m ◦
s
((δt ◦1 1n) ◦

k
δl)

=1m ◦
s
((

n∑
u=1

δn(u)t) ◦
k
δl) by (E6.3.1)

=1m ◦
s
(δn(k)t ◦

k
δl) by (E6.3.2)

=1m ◦
s
(1n ◦

k
(δt ◦1 δl))

=(1m ◦
s
1n) ◦

k+s−1
(δt ◦1 δl)

=
d∑

v=1
Ωv

tlδ
m+n−1
(k+s−1)v.

The first 4 steps show that (E2.4.3) holds.

Step 5: Finally it follows from 2ΥD = 0 that δn(i)j ∗ σ = δn(σ−1(i))j for all σ ∈ Sn.
As above, we have shown that a 2-unitary operad D is isomorphic to an operad 

introduced in Example 2.4(1) with Λ = D(1) and that D is uniquely determined by an 
augmented algebra D(1). This implies that F •G ∼= Id, as required. �

We make a remark.

Remark 6.4. The above proof works for non-locally finite operads when the use of the 
generating function is replaced by the basis Theorem 4.6 (1). Therefore, for non-locally 
finite 2-unitary operads, there are natural equivalences between the following categories:

(aI) the category of k-algebras not necessarily having unit;
(aI’) the category of unital augmented k-algebras;
(bI) the category of 2-unitary operads with 2Υ = 0;
(cI) the category of 2a-unitary operads with 2Υ = 0.

Every operad in one of the above categories is isomorphic to one given in Example 2.4(1).

Consequently, we have the following Artin-Wedderburn Theorem for 2-unitary oper-
ads.
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Theorem 6.5. Let P be a semiprime symmetric operad. If P is 2-unitary and left or right 
artinian, then P is as in Example 2.4(1) and P(1) is an augmented semisimple algebra.

If, further, P(1) is finite dimensional over k, then P is locally finite, GKdimP = 2
or GKdimP = 1 (and hence P = Com), and P(1) is a finite dimensional augmented 
semisimple algebra.

Proof. The proof of this part is similar to the proof of Theorem 3.6(2).
Let kΥ be the truncation ideals of P. By definition, 

⋂
k≥1

kΥ = 0. Since P is left or 
right artinian, kΥ = 0 for some k. Let n be the largest integer such that nΥ �= 0. If n ≥ 2, 
by Proposition 3.1 (2), (nΥ)2 ⊆ 2n−1Υ = 0. This contradicts the hypothesis that P is 
semiprime. Therefore 2Υ = 0.

Let A = P(1). By Proposition 3.2(1,2), if A is not left (respectively, right) artinian, 
then P is not left (respectively, right) artinian. Since P is left or right artinian, so is A. 
Let N be an ideal of A such that N2 = 0. By Proposition 3.2(1,2), 1ΥN is an ideal of P. 
By Proposition 3.2(3),

(1ΥN )2 ⊆ 1ΥN2

= 1Υ0 = 2Υ = 0.

Since P is semiprime, 1ΥN = 0, consequently, N = 0. Thus A is semiprime. Since A is 
left artinian or right artinian, A is semisimple.

By Remark 6.4, the operad P is given as in Example 2.4(1).
If, further, P(1) is finite dimensional, then by Theorem 4.6(1) P is locally finite. Since 

2Υ = 0, GKdimP ≤ 2. If GKdimP = 1, then P = Com by Proposition 2.12. Otherwise 
GKdimP = 2. The rest of assertion follows. �

Next we consider the quotient operads of Ass of low GKdimension.

Theorem 6.6. Suppose chark = 0. Let P be a quotient operad of Ass and n be GKdimP. 
Let kΥ be the truncations of Ass.

(1) If n = 1, then P = Ass/1Υ ∼= Com.
(2) [Gap Theorem] GKdimP can not be 2, (so can not be strictly between 1 and 3).
(3) If n = 3, then P = Ass/3Υ.
(4) If n = 4, then P = Ass/4Υ.
(5) There are at least two non-isomorphic quotient operads P such that GKdimP = 5.

Proof. Let P = Ass/I be a quotient operad of Ass of GKdimension n. Let kΥP and kΥ
be the truncations of P and Ass, respectively. Since P is unitary, fP(0) = dim 0ΥP(0) =
dimP(0) = 1.

(1) This is Proposition 2.12.
(2) Since P is a quotient of Ass, fP(1) = dim 1ΥP(1) = 0. By (E5.2.3), GKdimP is 

either 1 or at least 3.
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(3) GKdimP = 3. From Corollary 5.4 and Lemma 3.9, it immediately follows that 
I = 3Υ and P = Ass/3Υ .

(4) GKdimP = 4. Then dimP(0) = dimP(1) = 1. By Lemma 3.9, I ⊆ 3Υ . Hence 
dimP(2) = 2, and consequently by (E5.3.1), dim fP(1) = 0 and dim fP(2) = 1. Hence 
we have

GP(t) =
∞∑

n=0
(1 +

(
n
2
)

+ fP(3)
(
n
3
)
)tn.

Observe that I(3) must be a kS3-submodule of

3Υ(3) := k((1, 2, 3)−(2, 1, 3)−(3, 1, 2)+(3, 2, 1))+k((1, 3, 2)−(2, 1, 3)−(3, 1, 2)+(2, 3, 1)),

where the permutations are written by the convention introduced in Appendix 8.1. Since 
3Υ(3) above is a simple kS3-module, we have either I(3) = 0 or I(3) = 3Υ(3).

If I(3) = 3Υ(3), then fP(3) = 0, which is impossible. The only possibility is I(3) = 0. 
In this case, dimP(3) = 6 and fP(3) = 2. So we have

dimP(n) = 1 +
(
n
2
)

+ 2
(
n
3
)

= dim(Ass/4Υ)(n),

and consequently,

dim I(n) = dim 4Υ(n).

On the other hand, we have 4Υ ⊆ I. Therefore, we have I(n) = 4Υ(n) for all n ≥ 4. It 
follows that I = 4Υ and P = Ass/4Υ .

(5) It is easy to see that dimAss/4Υ(4) = 15 (for example, by the proof of part (4)). 
Hence dim 4Υ(4) = 4! −15 = 9. Thus there is a nonzero kS4-submodule M � 4Υ(4). Since 
Ass(1) = k, both (E3.1.2) and (E3.1.3) hold trivially for M . By Proposition 3.2(1,2), 
4ΥM is an ideal of Ass. By the choice of M , we have

5Υ � 4ΥM
� 4Υ

which implies that

GKdimAss/5Υ = 5 = GKdimAss/4ΥM
.

Since the Hilbert series of Ass/5Υ and Ass/4ΥM are different, these two operads are 
non-isomorphic. �
6.3. Com-augmented operad with a given signature

For the rest of this section we consider Com-augmented operads. Let Com ↓Op+ denote 
the category of Com-augmented operads. For every P in Com ↓Op+, there is a natural 
decomposition
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P = Com⊕ 1Υ

of S-module, where 1Υ = Ker(P → Com).

Definition 6.7. Let {Pi}i∈I be a family of operads in Com ↓Op+. The Com-augmented 
sum of {Pi}i∈I is defined to be⊕

i∈I

Pi := Com⊕
⊕
i∈I

1ΥPi
(E6.7.1)

with relations, for all homogeneous element θk in Com ∪
⋃

i∈I
1ΥPi

,

θ0 ◦ (θ1, · · · , θn) = 0 (E6.7.2)

whenever at least two of θ0, · · · , θn are in different 1ΥPj
. If all θk’s are in the same Pj , 

then the composition in 
⊕

i∈I Pi agrees with the composition in Pj .

Lemma 6.8. Let {Pi}i∈I be a family of operads in Com ↓Op+.

(1) P :=
⊕

i∈I Pi is an operad in Com ↓Op+.
(2) kΥP =

⊕
i∈I

kΥPi
for all k ≥ 1.

(3) S(P) =
∑

i∈I S(Pi).
(4) For each subset I ′ ⊆ I, 

⊕
i∈I′

1ΥPi
is an ideal of P. As a consequence, if there are 

infinitely many i such that ΥPi
�= 0, then P is neither artinian nor noetherian.

Proof. (1) We need to show (OP1), (OP2), (OP3) in Definition 1.1. Since all maps are 
linear or multilinear, we only need to consider elements in Com, ΥPi

, for i ∈ I. Using 
the relations in (E6.7.1), it amounts to verify (OP1), (OP2) and (OP3) for elements in 
Com ∪ 1ΥPi

for one i. In this setting (OP1), (OP2), (OP3) hold since Pi is an operad. 
Therefore 

⊕
i∈I Pi is an operad. It is clear from (E6.7.1) that we can define a morphism 

from Com →
⊕

i∈I Pi. So the assertion follows.
(2) Let P be 

⊕
i∈I Pi. It is clear from the definition that

1ΥP =
⊕
i∈I

1ΥPi
.

Inside this ideal, we have πI
P =

⊕
i∈I π

I
Pi

for restriction maps defined in (E2.4.5). The 
assertion follows easily from this fact.

(3) This is an consequence of part (2).
(4) It is easy to show and the proof is omitted. �
Next we will show the existence of operads with any given signature. We begin with 

a special case.
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Example 6.9. Fix w ≥ 1 and d ≥ 1. In this example, we construct a Com-augmented 
operad of signature {0, · · · , 0, d, 0, · · · }, where d is in wth position.

Let V be an Sw-module of dimension d and let {δ1, · · · , δd} be a k-linear basis of V . If 
w = 1, we further assume that the multiplication δiδj = 0 for all i, j. Let Cn

w be defined 
as before Lemma 4.10. Define

P(n) =

⎧⎪⎪⎨⎪⎪⎩
k1n, n < w,

k1w
⊕

V n = w,

k1n
⊕

Cn
w(V ) n > w.

(E6.9.1)

We recall the following notation. For n = w + s, where s > 0, and for every I ⊆ [n] such 
that |I| = s and for j ∈ [d], let

(δ, I) := 12 ◦ (δ,1s) ∗ cI

for all δ ∈ V . As a vector space, P(n) has a basis {1n} ∪{(δi, I) | i ∈ [d], I ⊆ [n], |I| = s}.
Assuming first that P is an operad, we would like to derive some defining equations. 

By Corollary 4.4, if I ′ ⊆ [n] such that |I ′| = n − w, then

ΓI′
((δ, I)) =

{
δ, I = I ′,

0, I �= I ′,

or, for J ⊆ [n] with |J | = w,

πJ((δ, I)) =
{
δ, I ∪ J = [n],
0, I ∪ J �= [n].

Following Lemma 4.9, we set

(δ, I) ∗ σ = (δ ∗ Γσ−1(I), σ−1(I))

for all δ ∈ V and I. Together with the trivial Sn on k1n, this defines Sn-module structure 
on P(n).

Next we consider partial compositions. Similar to Example 2.4 (1), we set

(δ, I) ◦
s
(δ′, I ′) = 0

because, for every |J | = w,

πJ((δ, I) ◦
s
(δ′, I ′)) = 0.

Write I = {i1, · · · , in−w} ⊆ [n]. Define
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1m ◦
s
1n = 1m+n−1,

1m ◦
s
(δ, I) = (δ, I ′),

where I ′ = {1, · · · , s − 1, I + (s − 1), n + s, · · · , n + m − 1}, and

(δ, I) ◦
s
1m =

{
(δ, Ī), s ∈ I,∑m

u=1(δ, Iu), s /∈ I,

where

Ī = {i1, · · · , if−1, s, s + 1, · · · , s + m− 1, if+1 + m− 1, · · · , in−w + m− 1}

when s = if for some f , and where

Iu = {i1, · · · , if−1, s, · · · , ̂s + u− 1, · · · , s+m−1, if+m−1, if+1+m−1, · · · , in−w+m−1}

when if−1 < s < if . Now it is routine to check that P is a 2-unitary operad with given 
signature. Conversely, any operad with signature {0, · · · , 0, d, 0, · · · , } is given in this 
way.

Theorem 6.10. Let w ≥ 2. Every Com-augmented operad of signature {0, · · · , 0, dw, 0, · · · }
is of the form given in (E6.9.1).

Proof. The proof is similar to the proof of Theorem 6.3. We omit the proof due to its 
length. �

Now we can prove the main result in this subsection.

Theorem 6.11. Let Com ↓Op be the category of Com-augmented operads.

(1) For every sequence of non-negative integers d := {d1, d2, · · · }, there is an operad P
in Com ↓Op such that S(P) = d.

(2) Exponent exp of (E0.0.4) is a surjective map from Com ↓Op or from the category of 
2-unitary operads to {1} ∪ [2, ∞].

Proof. (1) For each dw for w ≥ 1, pick a trivial Sw-module Vw of dimension dw. By 
Example 6.9, there is a Com-augmented (thus 2-unitary) operad Pw with signature 
{0, · · · , 0, dw, 0, · · · }. By Lemma 6.8(3), 

⊕
w Pw has the required signature.

(2) Take a sequence S(P) with exp(S(P)) = ∞, then exp(P) = ∞. One such example 
is P = Ass.

We know that exp(Com) = 1. Let P be an 2-unitary operad with S(P) =
{b1, · · · , bw, · · · }. If bn = 0 for all n 
 0, then exp(S(P)) = 0 and by Lemma 5.1(1), 
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exp(P) = exp({dimP(n)}n≥0) = 1 since {dimP(n)}n≥0 is the inverse binomial trans-
form of S(P), see (E5.3.1). Otherwise, exp(S(P)) = 1 and by Lemma 5.1(1), exp(P) ≥ 2.

It remains to show that for each r ≥ 2, there is a 2-unitary operad (in fact, a Com-
augmented operad) P such that exp(P) = r. Let dw = �(r − 1)w� for each w ≥ 1. By 
part (1), there is a Com-augmented operad P such that S(P) = {d1, d2, · · · , dw, · · · }. 
Thus exp(S(P)) = r − 1. By Lemma 5.1(1), exp(P) = r as required. �

We conclude this section with an easy corollary.

Corollary 6.12. Let d := {di}i≥1 be any sequence of non-negative integers. Then there is 
a unitary operad P such that GP(t) = 1 + (d1 + 1)t +

∑∞
i=2 dit

i.

Proof. By Theorem 6.11(1), there is a 2-unitary operad Q such that S(Q) = d. Let 
P = k11⊕

⊕∞
i=0

iΥQ(i). By Proposition 3.13(2), P is a unitary operad. By the definition 
of signature, we see that

GP(t) = 1 + (d1 + 1)t +
∞∑
i=2

dit
i. �

7. Truncatified operads

The truncation of a unitary operad P defines a descending filtration on P which 
induces an associated operad, called a truncatified operad, as we will define next.

Definition 7.1. A unitary operad P is called truncatified if the following hold.

(1) For each n, P(n) has a decomposition of Sn-submodules,

P(n) =
n⊕

i=0
P(n)i.

(2) For all k and all n ≥ k,

kΥ(n) =
n⊕

i=k

P(n)i.

(3) Let μ ∈ P(n)n0 and ν ∈ P(m)m0 . Suppose 1 ≤ i ≤ n.
(3a) If n0, m0 ≥ 1, then

μ ◦
i
ν ∈ P(n + m− 1)n0+m0−1.

(3b) If m0 = 0 or n0 = 0, then

μ ◦ ν ∈ P(n + m− 1)m0+n0 .

i
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Remark 7.2. A truncatified operad in the above definition may be called a truncated
operad since it is induced by the truncation (see also Lemma 7.3). However, the notion 
of a truncated operad has been defined in [16, Definition 4.2.1] and been used in some 
other papers [35]. To avoid possible confusions, we create a new word, “truncatified”, 
in Definition 7.1. Note that every truncatified operad is either Com-augmented or Uni-
augmented.

It is easy to check that the operads in Examples 2.4 and 6.9 are truncatified. Trun-
catified operads can be constructed from a non-truncatified operad.

Lemma 7.3. Let Q be a unitary operad and {iΥQ}i≥0 be the truncation of Q. For each 
n ≥ 0, let P(n) denote the k-linear space 

⊕∞
i=0

iΥQ(n)/i+1ΥQ(n). Then P := {P(n)}n≥0
is a truncatified operad.

Proof. Let P(n)i := iΥQ(n)/i+1ΥQ(n) for all n, i. For the rest of the proof, i, j, k, m, n
and s are non-negative integers. Assume that 1 ≤ s ≤ m.

Let μ ∈ P(m)i and ν ∈ P(n)j . Then μ is the image of some a ∈ iΥQ(m) and ν is the 
image of some b ∈ jΥQ(n). Define μ ◦

s
ν to be the image of a ◦

s
b in P(m +n − 1)i+j−1 :=

i+j−1ΥQ(m +n − 1)/i+jΥQ(m +n − 1) (or in P(m +n − 1)i+j if either i or j is zero). It 
is routine to check that P is a unitary operad using the partial definition Definition 1.2.

Next we show (1), (2) and (3) in Definition 7.1.
(1) Since iΥQ(n) = 0 for all i > n, we have

P(n) =
∞⊕
i=0

iΥQ(n)/i+1ΥQ(n) =
n⊕

i=0

iΥQ(n)/i+1ΥQ(n) =
n⊕

i=0
P(n)i.

Since each P(n)i is clearly an Sn-module, (1) holds.
(2) Denote Tn

n−k = {K ⊂ [n] | |K| = k}. (Note that Tn
k is defined before Lemma 4.10.)

Let θ be an element in iΥQ(n) such that θ /∈ i+1ΥQ(n). If k < i, by definition, we have 
πK
Q (θ) = 0 for all K ∈ Tn

n−k. If k ≥ i, we have πK
Q (θ) ∈ iΥQ(k) for all K ∈ Tn

n−k, and 
there exists some K0 ∈ Tn

n−k such that πK0
Q (θ) /∈ i+1ΥQ(k). In fact, since θ /∈ i+1ΥQ(n), 

there exists some I ∈ Tn
n−i such that πI

Q(θ) �= 0. Then for every K0 with I ⊆ K0 ∈ Tn
n−k, 

we have πK0
Q (θ) /∈ i+1ΥQ(k).

Return to consider the restricted operator πI
P : P(n) → P(|I|). Pick any nonzero 

element μ in iΥQ(n)/i+1ΥQ(n) and write it as μ = θ+i+1ΥQ(n) �= 0̄ for some θ ∈ iΥQ(n). 
If i > k − 1, then, for every I ∈ Tn

n−(k−1), we have

πI
P(θ + i+1ΥQ(n)) = 0̄ ∈ P(k − 1).

This implies that, for any i ≥ k, P(n)i = iΥQ(n)/i+1ΥQ(n) ⊂ kΥP(n).
On the other hand, if i < k, then, for every nonzero element μ := θ + i+1ΥQ(n) ∈

P(n)i, there exists I0 ∈ Tn such that
n−(k−1)
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πI0
P (μ) = πI0

P (θ + i+1ΥQ(n)) = πI0
Q (θ) + i+1ΥQ(k − 1) �= 0̄

in P(k − 1). It follows that kΥP(n) ⊂
⊕n

i=k P(n)i.
(3) Note that (3a) and (3b) follow from the proof of Proposition 3.1(2). �
In the setting of Lemma 7.3, we say that P is the associated truncatified operad of Q, 

and denoted it by trcQ. The process from Q to trcQ is called truncatifying.
It follows from Lemma 7.3 that a unitary operad P is truncatified if and only if 

P ∼= trc(P). As a consequence, trc(trc(P)) ∼= trc(P) for all unitary operads P.
Next we show that Pois is the associated truncatified operad of Ass. For any unitary 

operad P, let P≥1 be the non-unitary version of P, namely,

P≥1(n) =
{

0 n = 0,
P(n) n ≥ 1.

Note that Pois≥1 agrees with the non-unitary version of the Poisson operad, and Pois≥1
is denoted by Pois in [9, Section 1.2.12] and [26, Section 13.3.3]. On the other hand, the 
unitary version of the Poisson operad (namely, our Pois) is denoted by Pois+ in the 
book [9].

Lemma 7.4. Let Ass be the operad for the unital associative algebras and Pois be the 
operad for unital commutative Poisson algebras. Then trcAss ∼= Pois.

Proof. Denote by kΥ the k-th truncation ideal of Ass. By Lemma 3.4, we have 1Υ = 2Υ . 
By definition, we have trcAss(2) = k1̄2⊕kΦ̄2, where 1̄2 = 12+1Υ(2) and Φ̄2 ∈ trcAss(2)
is the corresponding element of (12−(21)) ∈ 2Υ(2). Clearly, 1̄2∗(21) = 1̄2 and Φ̄2∗(21) =
−Φ̄2, and they satisfy the following relations

1̄2 ◦1 1̄2 =1̄2 ◦2 1̄2, (E7.4.1)

Φ̄2 ◦1 1̄2 =1̄2 ◦2 Φ̄2 + (1̄2 ◦2 Φ̄2) ∗ (213), (E7.4.2)

Φ̄2 ◦2 Φ̄2 =Φ̄2 ◦1 Φ̄2 + (Φ̄2 ◦2 Φ̄2) ∗ (213) (E7.4.3)

which are exactly the defining relations of Pois≥1, see [9, Section 1.2.12]. Observe that 
trcAss is generated by k1̄2⊕kΦ̄2. In fact, from Theorem 4.6(1), we know kΥ(n)/k+1Υ(n)
admits a k-linear basis

Bk(n) = {12 ◦ (θki , 1n−k) ∗ cI | 1 ≤ i ≤ zk, I ∈ Tn
k },

where {θk1 , · · · , θkzk} is a k-basis of kΥ(k). Furthermore, for every k ≥ 3, we have kΥ(k) ⊂
2Υ(k). By Lemma 3.8, 2Υ(2) is generated by Φ2. Note that 12 generates 1n for all n ≥ 2. 
By the proof of Lemma 3.8, for every k ≥ 3, kΥ(k) is generated by {1n}n≥2 and Φ2. 
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Therefore kΥ(n)/k+1Υ(n) can be generated by 1̄2 and Φ̄2 for any n ≥ k ≥ 2. It follows 
that (trcAss)≥1 can be generated by 1̄2 and Φ̄2. The above argument shows that there 
is a canonical epimorphism P := T (E)/(R) → (trcAss)≥1, where T (E)/(R) be the 
quotient operad of the free operad T (E) on the kS-module E = (0, 0, k1̄2 ⊕ kΦ̄2, 0, · · · )
modulo relations (E7.4.1)-(E7.4.3). By [9, Section 1.2.12], P ∼= Pois≥1. By the fact that

dimP(n) = dimPois(n) = n! = dimAss(n) = dim trcAss(n)

for all n ≥ 1 [26, Section 13.3.3], we have (trcAss)≥1 = P, which is isomorphic to the 
Poisson operad Pois≥1. Therefore we obtain that (trcAss)≥1 = Pois≥1. It remains to 
verify that 0-ary operations of trcAss and Pois agree. We can easily see that, in trcAss,

1̄2 ◦
i
1̄0 = 1̄1

and

Φ̄2 ◦
i
1̄0 = 0

for i = 1, 2. This is also how we define the unitary Poisson operad Pois. This finishes 
the proof. �
Remark 7.5. We make some comments about the above lemma.

(1) The result in Lemma 7.4 may be well-known, possibly in a different language. Similar 
ideas appeared in [23,5,27].

(2) By Livernet-Loday [23], Ass is a deformation of Pois, in the sense that there is a 
family of operads, denoted by LLq, such that Pois ∼= LL0 and that Ass ∼= LLq

for any q �= 0. Further study in this direction can be found in [5,27] and [26, Sec-
tion 13.3.4]. Lemma 7.4 gives an explanation why Ass is a deformation of Pois. 
We refer to [27, Example 4 and Theorem 5] for some interesting connections with 
deformation quantization.

(3) Related to combinatorics, the dimension of kΥ(k) of either Ass and Pois is the 
number of derangements of a set of size k.

(4) It would be interesting to determine associated truncatified operads of other unitary 
operads.

8. Appendix

In this part, we mainly rewrite some conventions and facts on operads, see [26] or 
[9,10].
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8.1. Symmetric groups, permutations and block permutations

We use Sn to denote the symmetric group, namely, the set of bijections, on the set 
[n]. Note that both S0 and S1 are isomorphic to the trivial group with one element.

Following convention in the book [26], we identify Sn with the set of permutations 
of [n] by assigning each σ ∈ Sn the sequence (σ−1(1), σ−1(2), · · · , σ−1(n)). This assign-
ment is convenient when we use other convention such as (E2.1.3). Equivalently, each 
permutation (i1, i2, · · · , in) of [n] corresponds to the σ ∈ Sn given by σ(ik) = k for all 
1 ≤ k ≤ n.

Let n > 0, k1, k2 · · · , kn ≥ 0 be integers. For simplicity we write m = k1+k2+· · ·+kn, 
m1 = 0, and mi = k1+· · ·+ki−1 for 2 ≤ i ≤ n. We may divide (1, 2, · · · , m) into n-blocks 
(B1, B2, · · · , Bn), where Bi = (mi + 1, · · · , mi + ki) for 1 ≤ i ≤ n. Now each Ski

acts 
on the block Bi, and each element in Sn acts on [m] naturally by permuting the blocks. 
More precisely, we have the following natural map

ϑn;k1,··· ,kn
: Sn × Sk1 × · · · × Skn

→ Sm,

(σ, σ1, · · · , σn) �→ (B̃σ−1(1), · · · , B̃σ−1(n))

for all σ ∈ Sn and σi ∈ Ski
for 1 ≤ i ≤ n, where each

B̃i = mi + (σ−1
i (1), · · · , σ−1

i (ki)) = (mi + σ−1
i (1), · · · ,mi + σ−1

i (ki)) (E8.0.1)

is the sequence corresponding to σi.
The following lemma is easy.

Lemma 8.1. Retain the above notation.

(1) We have

ϑn;k1,··· ,kn
(τσ, τ1σ1, · · · , τnσn) (E8.1.1)

=ϑn;kσ−1(1),··· ,kσ−1(n)
(τ, τσ−1(1), · · · , τσ−1(n))ϑn;k1,··· ,kn

(σ, σ1, · · · , σn)

for all σ, τ ∈ Sn, and σi, τi ∈ Ski
, 1 ≤ i ≤ n.

(2) In particular,

ϑn;k1,··· ,kn
(σ, σ1, · · · , σn)

=ϑn;k1,··· ,kn
(σ, 1, · · · , 1)ϑn;k1,··· ,kn

(1, σ1, · · · , σn) (E8.1.2)

=ϑn;kσ−1(1),··· ,kσ−1(n)
(1, σσ−1(1), · · · , σσ−1(n))ϑn;k1,··· ,kn

(σ, 1, · · · , 1)

where 1 in different positions represents the identity map of [ki] or [n].
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Proof. We first prove part (2). For any σ ∈ Sn, σi ∈ Ski
, 1 ≤ i ≤ n, using notation in 

(E8.0.1), we have

ϑn;k1,··· ,kn
(σ, 1, · · · , 1)ϑn;k1,··· ,kn

(1, σ1, · · · , σn)

= ϑn;k1,··· ,kn
(σ, 1, · · · , 1)(B̃1, · · · , B̃n)

= (B̃σ−1(1), · · · , B̃σ−1(n))

= ϑn;k1,··· ,kn
(σ, σ1, · · · , σn),

and

ϑn;kσ−1(1),··· ,kσ−1(n)
(1, σσ−1(1), · · · , σσ−1(n))ϑn;k1,··· ,kn

(σ, 1, · · · , 1)

= ϑn;kσ−1(1),··· ,kσ−1(n)
(1, σσ−1(1), · · · , σσ−1(n))(Bσ−1(1), · · · , Bσ−1(n))

= (B̃σ−1(1), · · · , B̃σ−1(n))

= ϑn;k1,··· ,kn
(σ, σ1, · · · , σn).

For part (1), by part (2), we have

ϑn;k1,··· ,kn
(τσ, τ1σ1, · · · , τnσn)

= ϑn;k1,··· ,kn
(τσ, 1, · · · , 1)ϑn;k1,··· ,kn

(1, τ1σ1, · · · , τnσn)

= ϑn;kσ−1(1),··· ,kσ−1(n)
(τ, 1, · · · , 1)ϑn;k1,··· ,kn

(σ, 1, · · · , 1)

ϑn;k1,··· ,kn
(1, τ1, · · · , τn)ϑn;k1,··· ,kn

(1, σ1, · · · , σn)

= ϑn;kσ−1(1),··· ,kσ−1(n)
(τ, 1, · · · , 1)ϑn;kσ−1(1),··· ,kσ−1(n)

(1, τσ−1(1), · · · , τσ−1(n))

ϑn;k1,··· ,kn
(σ, 1, · · · , 1)ϑn;k1,··· ,kn

(1, σ1, · · · , σn)

= ϑn;kσ−1(1),··· ,kσ−1(n)
(τ, τσ−1(1), · · · , τσ−1(n))ϑn;k1,··· ,kn

(σ, σ1, · · · , σn)

for all τ, σ ∈ Sn, τi, σi ∈ Ski
, 1 ≤ i ≤ n. �

For convenience, we introduce the following maps obtained from ϑn;k1,··· ,kn
:

ϑk1,··· ,kn
: Sn → Sm, σ �→ ϑn;k1,··· ,kn

(σ, 1, · · · , 1),

ϑi
k1,··· ,kn

: Ski
→ Sm, σi �→ ϑn;k1,··· ,kn

(1, 1, · · · , 1, σi, 1, · · · , 1). (E8.1.3)

Note that Sk1 ×· · ·×Skn
can be viewed as a subgroup of Sm via the embedding maps 

ϑi
k1,··· ,kn

. While in general, ϑk1,··· ,kn
is not an embedding of groups. It is the case if and 

only if all blocks have the same size, that is, k1 = k2 = · · · = kn.
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8.2. Multilinear maps, compositions and symmetric group action

Let V be a vector space and n > 0 an integer. Denote by V ⊗n the tensor space 
V ⊗V ⊗· · ·⊗V with n factors. For any v1, · · · , vn ∈ V , we simply denote v1⊗v2⊗· · ·⊗vn
by [v1, v2, · · · , vn]. Let B ⊂ V be a k-linear basis of V , then V ⊗n has a k-linear basis

{[v1, v2, · · · , vn] | vi ∈ B, 1 ≤ i ≤ n}.

For consistency, we set V ⊗0 = k, and denote by [ ] a fixed basis element of V ⊗0. Under the 
map [v1, · · · , vi] ⊗[ ] ⊗[vi+1, · · · , vi+j ] �→ [v1, · · · , vi+j ], we may identify V ⊗i⊗V ⊗0⊗V ⊗j

with V ⊗(i+j).
For each n ≥ 0, let EndV (n) denote the k-vector space Homk(V ⊗n, V ) of multilinear 

operators on V . Clearly, EndV (0) ∼= V under the mapping f �→ f([ ]).
It is standard that Sn acts on V ⊗n on the left by permuting the factors, more precisely

σ · [x1, x2, · · · , xn] = [xσ−1(1), xσ−1(2), · · · , xσ−1(n)] (E8.1.4)

for all σ ∈ Sn, and x1, x2 · · · , xn ∈ V [26, p. xxiv and p. 164]. This convention could be 
different from the one used by some researchers. This action induces a right action of Sn

on EndV (n) by

(f ∗ σ)(X) = f(σX)

for all σ ∈ Sn, f ∈ EndV (n) and X ∈ V ⊗n. Here ∗ denotes the (right) Sn-action.
Consider the composition map

◦ : EndV (n) ⊗ EndV (k1) ⊗ · · · ⊗ EndV (kn) −→ EndV (k1 + · · · + kn), (E8.1.5)

(f, f1, · · · , fn) �→ f ◦ (f1, · · · , fn) := f • (f1 ⊗ · · · ⊗ fn),

where

f • (f1 ⊗ · · · ⊗ fn)([x1,1, · · · , x1,k1 , · · · , xn,1, · · · , xn,kn
]) (E8.1.6)

= f(f1([x1,1, · · · , x1,k1 ]) ⊗ · · · ⊗ fn([xn,1, · · · , xn,kn
])),

for all f ∈ EndV (n), fi ∈ EndV (ki) and xij ∈ V . Here • denotes an ordinary composition 
of two functions and ◦ denotes the composition map of an operad. The composition map 
◦ is compatible with the symmetric group actions. The following is clear.

Lemma 8.2. Keep the above notation. Then

(f ∗ σ) ◦ (f1 ∗ τ1, · · · , fn ∗ τn) (E8.2.1)

=(f ◦ (fσ−1(1), · · · , fσ−1(n))) ∗ ϑn;k1,··· ,kn
(σ, τ1, · · · , τn)

for all σ ∈ Sn, and τi ∈ Ski
, 1 ≤ i ≤ n.
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Proof. We write m1 = 0, mi = k1 + · · · + ki−1 for 2 ≤ i ≤ n, and m = k1 + · · · + kn. 
Then

(f ∗ σ)◦(f1 ∗ τ1, · · · , fn ∗ τn)[x1, · · · , xn]

= (f ∗ σ)([(f1 ∗ τ1)([x1, · · · , xk1 ]), · · · , (fn ∗ τn)([xmn+1, · · · , xmn+kn
])])

= f([(fσ−1(1) ∗ τσ−1(1))([xmσ−1(1)+1, · · · , xmσ−1(1)+kσ−1(1)
]), · · · ,

(fσ−1(n) ∗ τσ−1(n))([xmσ−1(n)+1, · · · , xmσ−1(n)+kσ−1(n)
])])

= f([fσ−1(1)([xmσ−1(1)+τ−1
σ−1(1)

(1), · · · , xmσ−1(1)+τ−1
σ−1(1)

(kσ−1(1))
]), · · · ,

fσ−1(n)([xmσ−1(n)+τ−1
σ−1(n)

(1), · · · , xmσ−1(n)+τ−1
σ−1(n)

(kσ−1(n))
])])

= ((f ◦ (fσ−1(1), · · · , fσ−1(n))) ∗ ϑn;k1,··· ,kn
(σ, τ1, · · · , τn))([x1, · · · , xm])

This completes the proof. �
Moreover, denote by 1 ∈ EndV (1) the identity map on V . Clearly, the composition ◦

satisfies the following coherence axioms:

(1) (Identity)

f ◦ (1,1, · · · ,1) = f = 1 ◦ f ;

(2) (Associativity)

f ◦ (f1 ◦ (f1,1, · · · , f1,k1), · · · , fn ◦ (fn,1, · · · , fn,kn
))

=(f ◦ (f1, · · · , fn)) ◦ (f1,1, · · · , f1,k1 , · · · , fn,1, · · · , fn,kn
).

8.3. Associative algebras and the operad Ass

Recall that an associative algebra (over k) is a k-vector space A equipped with a 
binary operation,

μ : A⊗A → A, μ(a, b) = ab

satisfying the associative law μ ◦ (μ ⊗ idA) = μ ◦ (idA ⊗μ). If moreover, there exists a 
linear map u : k → A such that μ ◦ (u ⊗ idA) = idA = μ ◦ (idA ⊗u), then A is said to be 
unital.

The famous operad Ass encodes the category of unital associative algebras, namely, 
unital associative algebras are exactly Ass-algebras. Recall that, for each n ≥ 0, 
Ass(n) = kSn as a right Sn-module, and the composition ◦ is given by
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σ ◦ (σ1, · · · , σn) = ϑn;k1,··· ,kn
(σ, σ1, · · · , σn)

for all n > 0, k1, · · · , kn ≥ 0, and σ ∈ Sn and σi ∈ Ski
for 1 ≤ i ≤ n. It is direct to verify 

that Ass is an operad with the identity 11 := 1S1 ∈ Ass(1) [26, Section 9.1.3]. From 
now on, we denote 1Sn

by 1n (or 1n) for short for all n ≥ 0.
Let (A, γ) be an Ass-algebra. Clearly μ := γ(12) gives a binary operator on A, which 

is associative since

12 ◦ (12, 11) = 13 = 12 ◦ (11, 12). (E8.2.2)

Moreover, 10 gives a linear map u := γ(10) : k → A, and the fact that

12 ◦ (10, 11) = 11 = 12 ◦ (11, 10) (E8.2.3)

means that u is the unit map of A. Thus (A, μ, u) is a unital algebra. Conversely, for 
every unital associative algebra (A, μ, u), we may define γ : Ass → EndA as follows. By 
definition, γ(10) = u, and for each n > 0 and each σ ∈ Sn, γ(σ) is given by

γ(σ) : A⊗n → A, a1 ⊗ · · · ⊗ an �→ aσ−1(1)aσ−1(2) · · · aσ−1(n)

for all a1, · · · , an ∈ A, where the right hand side in the above formula means the multi-
plication in A. It is direct to check that γ is a morphism of operads (these are standard 
facts in the book [26]).

8.4. Magmatic algebras and the operad Mag

Recall that a magmatic algebra is a vector space equipped with a binary operad 
ν : A ⊗ A → A with no relation. If moreover, there exists a linear map u : k → A, such 
that

ν ◦ (u⊗ idA) = idA = ν ◦ (idA ⊗u),

then A is said to be unital.
The operad Mag encodes the category of unital magmatic algebras. In fact, the operad 

Mag is the operad generated by the S-module (ku, k1, kS2ν, 0, 0, · · · ) with relations

ν ◦
i
u = 1, (i = 1, 2),

where kS2ν is the regular kS2-module with the basis ν. To be precise, Mag(0) = ku, 
Mag(1) = k1, and for each n ≥ 2,

Mag(n) = k[PBTn]⊗kkSn,
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where PBTn is the set of planar binary rooted trees with n leaves, and the partial 
composition is given by the grafting of the trees, see [26, Appendix C.1.1] for details. In 
this paper we use 10 for u and 12 for v as in the proof of Lemma 2.1.
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