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Abstract. We present adaptive sequential SAA (sample average approximation) algorithms to solve large-scale4
two-stage stochastic linear programs. The iterative algorithm framework we propose is organized into outer and inner5
iterations as follows: during each outer iteration, a sample-path problem is implicitly generated using a sample of6
observations or “scenarios,” and solved only imprecisely, to within a tolerance that is chosen adaptively, by balancing7
the estimated statistical error against solution error. The solutions from prior iterations serve as warm starts to8
aid efficient solution of the (piecewise linear convex) sample-path optimization problems generated on subsequent9
iterations. The generated scenarios can be independent and identically distributed (iid), or dependent, as in Monte10
Carlo generation using Latin-hypercube sampling, antithetic variates, or randomized quasi-Monte Carlo. We first11
characterize the almost-sure convergence (and convergence in mean) of the optimality gap and the distance of the12
generated stochastic iterates to the true solution set. We then characterize the corresponding iteration complexity13
and work complexity rates as a function of the sample size schedule, demonstrating that the best achievable work14
complexity rate is Monte Carlo canonical and analogous to the generic O(ε−2) optimal complexity for non-smooth15
convex optimization. We report extensive numerical tests that indicate favorable performance, due primarily to the16
use of a sequential framework with an optimal sample size schedule, and the use of warm starts. The proposed17
algorithm can be stopped in finite-time to return a solution endowed with a probabilistic guarantee on quality.18
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1. INTRODUCTION. The two-stage stochastic linear program (2SLP) is that of minimiz-22

ing the real-valued function c>x+ E[Q(x, ξ)] with respect to decision variables x ∈ Rn1
+ over a set23

of linear constraints X := {x ∈ Rn1
+ : Ax = b}, where Q(x, ξ) is itself the optimal value of a random24

linear program (LP) parameterized by x. Crucially, in 2SLPs, the term E[Q(x, ξ)] appearing in the25

objective function is not observable directly; instead, E[Q(x, ξ)] can only be estimated to requested26

precision as the sample mean Qn(x) := n−1
∑n
i=1Q(x, ξi) of optimal values Q(x, ξi), i = 1, 2, . . . , n27

from randomly sampled LPs. The generation of the random LPs to estimate E[Q(x, ξ)] is usu-28

ally accomplished through Monte Carlo sampling, by generating identically distributed “scenarios”29

ξi, i = 1, 2, . . . , n that may or may not be independent.30

It appears that 2SLPs were originally introduced by [17] and, owing to their usefulness, have31

been extensively studied over the last few decades [9]. The sample average approximation (SAA)32

method seems to have emerged as a popular approach to solving 2SLPs by constructing a solution33

estimator as follows:34

(i) generate an implicit approximation of the objective function using a specified number of35

“scenarios” ξ1, ξ2, . . . , ξn obtained, e.g., using Monte Carlo sampling;36

(ii) replace the 2SLP by a sample-path optimization problem [35, 61] having the objective37

function obtained in (i) and having the known constraint set X , and solve it using one38

of a variety of decomposition approaches that have been proposed in the literature, e.g.,39

[1, 51, 77].40

SAA’s popularity stems from its simplicity and its obvious utility within distributed settings, where41

its structure lends to easy parallelization. Over the last two decades, SAA as described through42
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(i) and (ii) has been extensively analyzed in settings that are much more general than just 2SLPs.43

For example, results on the consistency and rates of convergence of optimal values/solutions, large44

and small sample properties, and other special properties are now available through standard text-45

books [68] and surveys [34, 35].46

It is important to note that SAA is a paradigm and not an algorithm in that important com-47

ponents within the SAA framework still need to be chosen before implementation can occur. To48

implement the SAA paradigm as stated in (i) and (ii), a practitioner needs to select a sample size49

and a Monte Carlo generation mechanism in (i), and an appropriate solver/stopping-mechanism in50

(ii). For instance, the question of sample size choice for generating the sample-path problem in (i)51

has sometimes been a vexing issue, with practitioners often making this choice through trial and52

error, using minimum sample size bounds that have been noted to be conservative [35, 41, 64], and53

more recently, using multiple sample sizes and solving multiple sample-path problems.54

A premise of this paper is that SAA’s effective implementation depends crucially on the disci-55

plined customization (to narrowly defined problem classes, e.g., 2SLPs) of choices internal to SAA.56

Such customization involves answering specific algorithmic questions that arise during implemen-57

tation. For instance:58

(a) Is it best to generate and solve (to machine precision) a single sample-path problem with a59

large Monte Carlo sample size or is it better to progressively and roughly solve a sequence60

of sample-path problems generated with increasing sample size? If the latter strategy is61

better, what schedule of sample sizes should be used?62

(b) Recognizing that any generated sample-path problem suffers from sampling error and hence63

suggests not solving to machine precision, to what extent should a sample-path problem64

be solved?65

(c) What type of solvers should be used in solving the generated sample-path problems, given66

that the solution information to previously solved sample-path problem(s) can be fruitfully67

used as a warm start to a subsequent sample-path problem?68

In this paper, we rigorously investigate questions (a)–(c) for the specific case of 2SLPs. And,69

consistent with our earlier comments, our answers to (a)–(c) seem to be vital to attaining the70

encouraging numerical experience we describe in Section 7.71

1.1. Summary and Insight on Main Results. The essence of our proposed framework is72

the construction of a sequential SAA framework for solving 2SLPs, where a sequence of approximate73

2SLPs are generated and solved to progressively increasing precision across iterations. The frame-74

work is such that the early iterates are obtained with little computational burden since, by design,75

the generated sample-path problems tend to have small sample sizes and are solved imprecisely; and76

the later iterates can be expected to be obtained with ease as well since they tend to benefit from77

the warm starts using solution information obtained in previous iterations. The schedule of sample78

sizes and the adaptive optimality-tolerance parameters are chosen to be in lock-step, ensuring that79

no particular sample-path problem is “over-solved.” The framework we provide is an algorithm in80

the strict sense of the word in that we make specific recommendations for choosing: (i) the schedule81

of sample sizes to generate the sample-path problems to approximate the 2SLP, (ii) the schedule82

of error-tolerance parameters to which each of the generated sample-path problems is to be solved,83

and (iii) the solver to use when solving the sample-path problems. We also demonstrate that our84

framework can exploit existing results on finite-time stopping to provide solutions with probabilistic85

guarantees on optimality. Our extensive numerical experience on solving large-scale 2SLPs suggests86

that the proposed algorithm yields competitive computational performance compared with existing87

methods.88
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We present a number of results that form the theoretical basis for the proposed algorithm. We89

present sufficient conditions under which the optimality gap and the distance (from the true solution90

set) of the algorithm’s stochastic iterates converges to zero almost surely and in expectation. We91

also derive the corresponding iteration complexity and work complexity rates, that is, we provide92

upper bounds (in expectation) on the number of iterations and the number of Monte Carlo oracle93

calls to ensure that the solution resulting from the framework is ε-optimal. The derived work94

complexity leads to an optimal sample size schedule which is shown to achieve the fastest possible95

convergence rate in a Monte Carlo setting. Lastly, we demonstrate that using sample size schedules96

that deviate from the proposed schedule will lead to inferior convergence rates.97

We emphasize that the framework we propose is general in that it allows for the use of a wide98

range of dependent sampling, e.g., Latin-hypercube sampling (LHS) [45], antithetic variates [47],99

and randomized quasi-Monte Carlo [27, 42] within a generated sample-path problem, and the reuse100

of scenarios across generated sample-path problems. While we do not attempt to demonstrate that101

the use of such variance reduction measures is better than iid sampling, other reports [15, 73] in102

the literature suggest the fruitfulness of such variance reduction techniques.103

1.2. Related Literature. 2SLPs have been the subject of investigation for a long time [8] and104

algorithms to solve 2SLPs can be conveniently classified based on whether or not the probability105

space underlying the 2SLP is endowed with a sample space having a finite number of outcomes.106

As noted in [78], an enormous amount of work has been generated especially for the context where107

the sample space is finite, resulting in various algorithm classes that directly exploit the finite sum108

structure — see [8] and [14] for entry points into this substantial literature.109

For 2SLPs with sample spaces having countably infinite or an uncountable number of outcomes,110

or for that matter even sample spaces with large cardinality, Monte Carlo sampling approaches111

appear to be a viable alternative [68, 69, 70]. In fact, sequential Monte Carlo sampling methods112

such as what we propose here are not new and have appeared in the stochastic programming (SP)113

and simulation optimization (SO) literature for several decades now [54, 19, 23, 31, 33, 34, 69, 75].114

For instance, [23] proposes the stochastic quasi-gradient methods for optimization of discrete event115

systems, [69] suggests the idea of solving a sequence of sample-path problems with increasing sample116

sizes as a practical matter, and [33] gives various sufficient conditions on how fast the sample size117

should grow in order to ensure the consistency of the SAA estimator with varying sample sizes.118

For SPs where the corresponding sample-path problems are smooth optimization problems, [58, 62]119

study the sample size selection problem for the sequential sampling procedure. They model the120

sequential sampling procedure as a stochastic adaptive control problem, by finding the optimal121

sample size as well as the number of iterations that one should apply to solve the sampled problems,122

so that the total expected computational effort expended in the entire procedure is minimized. A123

surrogate model is then proposed to approximate this adaptive control model so that the sample124

size and the number of iterations to be employed at each iteration can be found (relatively) easily125

according to results from previous iterations, by solving the surrogate model. From an algorithmic126

perspective, the stochastic decomposition framework initially developed by [31] is perhaps the most127

well-known practical approach that exploits the connections between statistical inference, sampling,128

and stochastic LPs. In addition, [28] proposes simulation-based Benders decomposition approach129

as a variant of the stochastic sub-gradient method specifically for 2SLPs and develops statistical130

confidence bounds for the optimal values.131

Similar to [33], [54, 56, 53] suggest retrospective approximation (RA) where a smooth stochas-132

tic optimization problem is solved through a sequence of sample-path problems generated with133

increasing sample sizes. Unlike in [33], RA methods solve the sample-path problems imprecisely,134
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until a generally specified error-tolerance parameter is satisfied. The methods presented here can be135

thought to be adaptive RA in that the error-tolerance sequence in our current framework is adaptive136

since it depends explicitly on a measure of sampling variability. We find that such adaptivity is137

crucial for good numerical performance, although it brings additional technical difficulty due to the138

need to handle stopping time random variables. Also, whereas the methods in [54, 58, 62] do not139

apply to non-smooth problems such as 2SLPs, the methods we present here are tailored (through140

the choice of solver) to exploit the structure inherent to 2SLPs. We note in passing that adap-141

tive sampling as a strategy to enhance efficiency of stochastic optimization algorithms has recently142

gained popularity — see, for example, [10, 11, 29, 55, 71].143

There has also been some recent work on the question of assessing solution quality in general144

SPs that directly applies to the context we consider here. For example, [4, 5] propose sequential145

sampling methods and study conditions under which their employed optimality gap estimator is146

asymptotically valid in the sense of lying in a returned confidence interval with a specified prob-147

ability guarantee. Applying these conditions when stipulating the sample size to be employed in148

each iteration, one naturally gets a highly reliable stopping criterion for the sequential sampling149

procedure. As we will demonstrate, the results from [4, 5] can be modified for application within a150

finite-time version of the proposed framework, notwithstanding the fact that the generated sample-151

path problems in the proposed framework need only be solved imprecisely, to within a specified152

error-tolerance parameter.153

1.3. Organization of the Paper. The rest of the paper is organized as follows: Section 2154

presents important notation, convention, and terminology used throughout the paper, a precise155

problem statement of 2SLP, and a listing of key assumptions. Section 3 introduces the proposed156

adaptive sequential SAA framework. Section 4 presents various results pertaining to consistency,157

work complexity rates, and optimal sample size schedules. Section 6 provides a finite stopping rule158

for the adaptive sequential SAA algorithm by incorporating the sequential sampling approaches159

proposed in [4] and [5]. Section 7 shows computational performance of the proposed adaptive160

sequential SAA framework on a variety of test instances.161

2. PROBLEM SETUP. The 2SLP is formally stated as follows:162

min c>x+ q(x)(P )163

s.t. x ∈ X :=
{
x ∈ Rn1

+ | Ax = b
}
,164165

where the r1×n1 matrix A, r1× 1 vector b and n1× 1 vector c are assumed to be fixed and known.166

The second-stage value function q(x) is defined as:167

(2.1) q(x) = E[Q(x, ξ)] =

∫
Ξ

Q(x, ξ) dP (ξ),168

where for each ξ ∈ Ξ, the second-stage objective value169

(2.2) Q(x, ξ) = min
y∈Rn2

+

{
d(ξ)>y |W (ξ)y ≥ h(ξ)− T (ξ)x

}
.170

We assume that the second-stage objective value is finite, i.e., Q(x, ξ) > −∞, ∀x ∈ X , and171

ξ ∈ Ξ. Notice that the function q(·) is not directly “observable” but can be estimated pointwise by172

“generating scenarios.” Specifically, we assume that an iterative algorithm, during the `-th iteration,173
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generates scenarios ξ`1, ξ
`
2, . . . , ξ

`
m`
∈ Ξ that are identically distributed according to some probability174

measure. The resulting “sample-path problem” due to scenarios ξ`1, ξ
`
2, . . . , ξ

`
m`
∈ Ξ is given by175

min c>x+Q`m`(x)(P`)176

s.t. x ∈ X :=
{
x ∈ Rn1

+ | Ax = b
}
,177178

where the second-stage sample-path value function Q`m`(x) := m−1
`

∑m`
i=1Q(x, ξ`i ), and Q(x, ξ`i ) is179

given through (2.2).180

To accommodate the probabilistic analysis of the adaptive iterative algorithms we propose, we181

assume the existence of a filtered probability space (Ω,F , (F`)`≥1,P) such that the iterates (x̂`)`≥1182

generated by the algorithm we propose are adapted to (F`)`≥1. We note then that Q`m`(·) denotes an183

F`-measurable function estimator of q(·) constructed from ξ`i , i = 1, 2, . . . ,m` identically distributed,184

F`-measurable random objects. The random objects ξ`i , i = 1, 2, . . . ,m`; ` = 1, 2, . . . correspond to185

what have been called “scenarios” in the SP literature. We will use ξ` to denote a generic F`-186

measurable outcome, and ξ`1, ξ
`
2, . . . to denote F`-measurable outcomes obtained from Monte Carlo187

sampling during iteration `. Thus, the problem in (P`) is a “sample-path approximation” of the188

problem in (P ) and the function Q`m`(·) is a “sample-path approximation” of the function q(·). The189

precise sense in which the function Q`m`(·) approximates q(·) will become clear when we state the190

standing assumptions in Section 2.2.191

The notation we use (with the superscript and subscript), while cumbersome, is needed to192

reflect the fact that the framework we propose allows for a variety of dependence structures of193

ξ`i , i = 1, 2, . . . ,m` within and across iterations ` = 1, 2, . . . . For example, in the simplest and most194

prevalent case of independent and identically distributed (iid) sampling, generation is done so that195

the random objects ξ`i , i = 1, 2, . . . ,m` are mutually independent and identically distributed for196

each `; the objects ξ`i , i = 1, 2, . . . ,m` can also be generated so as to satisfy chosen dependency197

structures that reduce variance, e.g., LHS [45], antithetic variates [48], and randomized quasi-Monte198

Carlo [37, 27]. Similarly, across iterations ` = 1, 2, . . ., one can arrange for scenarios from previous199

iterations to be reused in subsequent iterations as in common random numbers [48]. Indeed, we will200

have to make certain assumptions on Q`m`(·), ` = 1, 2, . . . in Section 2.2 that will implicitly impose201

restrictions on the nature of sampling, to ensure that Q`m`(·) approximates q(·) well enough.202

2.1. Further Notation and Convention. We let S∗ denote the optimal solution set, z∗203

the optimal value, and S∗(ε) := {x ∈ X : c>x + q(x) − z∗ ≤ ε} the ε-optimal solution set of204

problem (P ). Analogously, S∗m` denotes the optimal solution set, z∗m` the optimal value, and205

S∗m`(ε) := {x ∈ X : c>x+Q`m`(x)− z∗m` ≤ ε} the ε-optimal solution set for problem (P`).206

The following definitions are used extensively throughout the paper. (i) R+ denotes the set207

of non-negative real numbers. (ii) For x = (x1, x2, . . . , xn) ∈ Rn, ‖x‖2 refers to the Euclidean208

norm ‖x‖2 =
√
x2

1 + x2
2 + · · ·+ x2

n. (iii) For a real-valued continuous function g : X → R defined209

on the compact set X , the sup-norm ‖g‖ is defined as ‖g‖ := maxx∈X |g(x)|. (iv) The distance210

between a point x ∈ Rn and a set X ⊆ Rn is defined as dist(x,X) := inf{‖x − z‖2 : z ∈ X},211

and the distance between two sets X,Y ⊆ Rn is defined as dist(X,Y ) := supx∈X{dist(x, Y )}. The212

definition we have used for dist(·, ·) suffices for our purposes even though it is not a metric since213

dist(X,Y ) 6= dist(Y,X) in general. (v) The diameter diam(X) of a set X ⊆ Rn is defined as214

diam(X) := supx,y∈X{‖x − y‖2}. (vi) The projection of a point x ∈ Rn onto a set X ⊆ Rn is215

defined as proj (x,X) := arg infz∈X{‖x − z‖2}. (vii) |X| denotes the cardinality of set X. (viii)216

For a sequence of Rd-valued random variables {Zn}, Z, we say Zn → Z a.s. to mean that {Zn}217

converges to Z almost surely, that is, with probability one. We say that Zn converges to Z in218
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L2-norm if E[‖Zn‖2] → E[‖Z‖2] as n → ∞. (See [7] for modes of convergence of sequences of219

random variables.)220

2.2. Assumptions. The following is a list of assumptions that we will use to prove various221

results in the paper. Assumption 1 and Assumption 2 are standing assumptions in that we will222

assume these to hold always. Assumption 3 will be invoked as and when needed.223

Assumption 1 (Condition on Relatively Complete Recourse). The first-stage feasible region224

X of problem (P ) is compact; furthermore, Problem (P ) has relatively complete recourse, that is,225

P
{(
y ∈ Rn2

+ : W (ξ) y ≥ h(ξ)− T (ξ)x
)

= ∅
}

= 0, ∀x ∈ X .226

Assumption 2 (Condition on Estimator Quality). The individual observations comprising227

the Monte Carlo estimator have finite variance, that is, for all ` ≥ 1,228

(2.3) sup
x∈X

Var(Q(x, ξ`) | F`−1) <∞ a.s.229

Moreover, the Monte Carlo estimator error decays at the canonical Monte Carlo rate, that is, there230

exists a constant κ0 <∞ such that for all ` ≥ 1,231

(2.4) E
[
‖ε̄m‖2 | F`−1

]
≤ κ0

m
a.s.,232

where the sample-mean error function ε̄m(x) := Q`m(x)− q(x) = m−1
∑m
j=1(Q(x, ξ`j)− q(x)). (The233

‖ · ‖ appearing in (2.4) is the sup-norm defined in Section 2.1).234

Assumption 3 (Condition on Growth Rate of Objective Function). The (true) objective
function exhibits γ0-first-order growth on X , that is,

γ0 := sup
s
{s : c>x+ q(x)− z∗ ≥ sdist(x,S∗) ∀x ∈ X} > 0.

Some form of regularity such as (2.3) in Assumption 2 is routinely made in the SP literature [3]235

and is generally easy to satisfy in 2SLPs when the feasible region X is compact.236

The condition (2.4) in Assumption 2 has been stated for generality, to subsume many contexts237

that involve dependent and biased sampling, and needs justification. To get a clear sense of the238

conditions under which (2.4) in Assumption 2 holds, let’s first observe that in the iid unbiased239

context, that is, when ξ`j , j = 1, 2, . . . are iid and E[Q(x, ξ`j)− q(x) | F`−1] = 0 a.s., the vast body of240

recent literature on concentration inequalities [12, 13, 38, 74] guarantees that (2.4) holds under a241

variety of moment conditions on Q(x, ξ`). For a general result that can be directly applied in the iid242

unbiased context, see [20, Proposition 3.1] established for Banach spaces. (Much of the literature243

on concentration inequalities is focused on sharp quantifications of the tail probabilities associated244

with ε̄m, and thus characterize the constant κ0 indirectly; our proposed algorithms do not rely on245

knowing κ0.)246

In the dependent but unbiased sampling context, that is, when E[Q(x, ξ`j)− q(x) | F`−1] = 0 a.s.247

but ξ`j , j = 1, 2, . . . are not necessarily independent, Assumption 2 holds in many popular settings248

where the estimator can be written as an alternate sum of iid unbiased random variables at each249

x ∈ X . For instance, consider using antithetic variates [48], where for even m we set ξ`j := U `j ∈250

(0, 1), ξ`j+1 = 1 − U `j , j = 1, 3, 5, . . . ,m − 1. Then, Q`m(x) can be written as the sample mean251

of m/2 (ignoring non-integrality) iid unbiased random variables, each of which is the sum of the252
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two dependent random variables Q(x, U `j ) and Q(x, 1 − U `j ), implying that Assumption 2 again253

holds. Similarly, if one chooses stratified sampling [27] as a variance reduction technique, then254

Q`m(x), x ∈ X can be written as a finite convex combination of sample means, each of which is255

composed of iid random variables that are unbiased with respect to the conditional means.256

Assumption 2 can be shown to hold in other dependent sampling settings such as LHS [45] as257

well. To see this, we “construct” a d-dimensional random variable ξ`j := (ξ`1j , ξ
`
2j , . . . , ξ

`
dj) ∈ [0, 1)d258

where ξ`ij = m−1(πij + Uij), πi = (πi1, πi2, . . . , πim), i = 1, 2, . . . , d is each a uniform random259

permutation of (0, 1, 2, . . . ,m − 1), Uij ∼ [0, 1), and Uij ’s and πi’s are independent. Under this260

setup, we see that ξ`ij ∼ U [0, 1), ξ`i ∼ U [0, 1)d, and that Q`m`(x) is an unbiased estimator of261

q(x) that is constructed from dependent random variables. Furthermore, under this setup, and as262

shown in [45, p. 245] and [52, Section 10.3], Var(Q(x, ξ)) < ∞ guarantees that Var(Q`m`(x)) =263

σ2
0/m` + o(m−1

` ) = O(m−1
` ), where σ2

0 = E[(Q(x, ξ)−Qadd(x, ξ))2] and Qadd(x, ξ)) is the additive264

approximation of Q(x, ξ) obtained using ANOVA. See also [72] for large sample properties in the265

LHS context.266

Randomized quasi-Monte Carlo (RQMC) is a broad class of variance reduction methods that267

subsumes various dependent sampling techniques, and where arguments similar to what we have268

outlined for LHS apply when considering the variance of the estimator Q`m` . See [36, Section 2],269

and the specific RQMC methods listed there, to see how RQMC yields estimators having variance270

at least as small as what is obtained using naive Monte Carlo, thus guaranteeing O(m−1
` ) variance.271

We recognize that we have limited all of the above discussion on dependent sampling by fixing272

x ∈ X . A complete treatment of Assumption 2 that involves dependence across x ∈ X will require273

us to consider the behavior of the random function Q`m`(·) by directly making assumptions on the274

vector (d(ξ),W (ξ), h(ξ), T (ξ)) appearing in the second-stage problem (2.2). In general, some sort of275

a stipulation on the quality of the Monte Carlo estimator is needed to provide reasonable guarantees276

relating to convergence and convergence rates. For example, in Chapter 5 of [68], we see that even277

for convergence of sample-path optimal values of SAA to the true optimal value, one needs uniform278

convergence (across x ∈ X ) of the sample-path functions.279

Finally, Assumption 3 is a standard regularity condition [68] having to do with the growth280

behavior of the true objective function. Specifically, Assumption 3 imposes a minimum growth281

condition on the true objective function c>x+ q(x).282

3. ADAPTIVE SEQUENTIAL SAA. In this section, we present the proposed adaptive283

sequential SAA algorithm. The proposed algorithm is based on the following three high-level ideas.284

(1) Instead of solving (to any given precision) a single sample-path problem that is generated285

with a large pre-specified sample size, solve (using a chosen Solver-A) a sequence of sample-286

path problems generated with increasing sample sizes according to a sample size schedule.287

(2) Use the solution information obtained from solving each sample-path problem as a warm288

start for solving the subsequent sample-path problem.289

(3) To ensure that no particular sample-path problem is over-solved, solve each generated290

sample-path problem only imprecisely to within an optimality tolerance parameter that is291

adaptively chosen by explicitly considering the inherent sampling error resulting from the292

choice of sample size.293

As can be seen through the listing for Algorithm 3.1, the iterative framework maintains outer294

iterations that are indexed by `, each of which is composed of inner iterations indexed by t. During295

the `-th outer iteration, the `-th sample-path problem (P`) with sample M` := {ξ`1, ξ`2, . . . , ξ`m`} is296

generated and solved inexactly up to precision ε` using an iterative optimization algorithm (gener-297

7

This manuscript is for review purposes only.



Algorithm 3.1 An adaptive sequential SAA framework.

1: Input: Solver-A, a sampling scheme, constants ν, σmin, σmax ∈ (0,∞), with σmin < σmax.
2: Set `← 0.
3: for ` = 1, 2, · · · do
4: Select sample size m` for outer iteration ` and draw a sample M` := {ξ`1, ξ`2, . . . , ξ`m`}.
5: for t = 1, 2, · · · do
6: Using Solver-A on (P`), execute t-th inner iteration.
7: Obtain candidate solution x̂`,t, gap estimate G`,t and variance parameter estimate σ̂`,t.

8: if G`,t ≤ ε`,t := ν m
−1/2
` proj (σ̂`,t, [σmin, σmax]) then

9: Break the inner loop with a candidate solution x̂` := x̂`,t.
10: end if
11: end for
12: Set `← `+ 1.
13: end for

ically called Solver-A) for non-smooth convex programs, e.g., the subgradient method [46], level298

bundle method [39]. We will see later that any solver that satisfies a certain imposition on conver-299

gence rate can be used as Solver-A. The iterations of Solver-A thus constitute the inner iterations300

generating a sequence of inner solutions x̂`,t, t = 1, 2, . . .301

During each inner iteration t, an upper bound estimate G`,t of the optimality gap associated302

with x̂`,t is readily available for any variant of cutting plane algorithms, where a lower approxi-303

mation Q̌`,tm`(·) to Q`m`(·) is maintained and iteratively updated. Specifically, the objective value304

corresponding to x̂`,t, z̄`t := c>x̂`,t + Q`m`(x̂
`,t), gives an upper bound for z∗m` . The true optimal-305

ity gap associated with x̂`,t, z̄`t − z∗m` , can then be overestimated if a lower bound z`t for z∗m` is306

provided. Such a lower bound z`t can be obtained, e.g., by solving z`t = minx∈X
{
c>x+ Q̌`,tm`(x)

}
.307

This optimality gap estimate, G`,t := z̄`t − z`t, is then compared against an estimate of the sampling308

error of the true solution of the `-th sample-path problem calculated using x̂`,t. Precisely, the inner309

iterations terminate when310

(3.1) G`,t < ε`,t := ν m
−1/2
` proj (σ̂`,t, [σmin, σmax]) ,311

where σmin, σmax, ν > 0 are chosen constant parameters, and, as usual, the sample variance312

(3.2) σ̂2
`,t :=

1

m`

m∑̀
i=1

[
Q(x̂`,t, ξ`i )−Q`m`(x̂

`,t)
]2
.313

We informally call ε`,t appearing in (3.1) the error tolerance; notice that the condition in (3.1)314

is meant to keep the estimate of the solution error (as measured by the optimality gap G`,t) in315

balance with the sampling error, as measured by the error tolerance ε`,t. The constants σmin, σmax316

appearing in (3.1) have been introduced for practical purposes only, to hedge against the rare event317

that we generate scenarios resulting in an extremely large or extremely small value of the sample318

variance. Thus:319

– if G`,t ≥ ε`,t, that is, the upper bound estimate of the optimality gap for solving the current320

sample-path problem is no less than a factor of the sampling error estimate, continue to321

the next inner iteration t+ 1;322
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– otherwise, stop solving the current sample-path problem, that is, terminate the inner it-323

erations, define ε` := ε`,t, obtain a new scenario set M`+1 := {ξ`+1
1 , ξ`+1

2 , . . . , ξ`+1
m`+1
} with324

sample size m`+1 and continue to the next outer iteration `+ 1.325

When the inner termination condition (3.1) is achieved, we stop the inner iterations, record the326

solution x̂`,t at termination as the current candidate solution x̂`, obtain a new scenario set M`+1327

and start a new outer iteration `+1 with x̂` as the initial candidate solution. Additional information328

such as the optimal dual multipliers collected up to outer iteration ` can also be used to warm start329

the outer iteration ` + 1. The process is then repeated until a stopping criterion for the outer330

iteration of Algorithm 3.1 is satisfied by the candidate solution x̂`. We defer our specification of331

the outer stopping criterion to Section 6.332

Algorithm 3.1 is adaptive in that ε` is not pre-specified — it is a function of scenarios M` :=333

{ξ`1, ξ`2, . . . , ξ`m`} used in the `-th outer iteration. Adaptivity is crucial for practical efficiency and334

when incorporated in our way, avoids several mathematical complexities that otherwise manifest.335

We end this section with a result that quantifies the quality of estimators used within Algo-336

rthm 3.1. Specifically, Theorem 3.1 quantifies the quality of Q`m`(·) as an estimator of q(·).337

Theorem 3.1 (Monte Carlo Estimator Quality). Suppose Assumption 1 and Assumption 2338

hold, and the sequence of sample sizes (m`)`≥1 is chosen so that the following condition holds:339

(SS-A)

∞∑
`=1

1
√
m`

<∞, m` ≥ 1.340

Then supx∈X |Q`m`(x)− q(x)| = 0 a.s. as `→∞.341

Proof. We can write for t > 0, a.s.,342

P
{

sup
x∈X
|Q`m`(x)− q(x)| > t | F`−1

}
≤ t−1E

[
sup
x∈X
|Q`m`(x)− q(x)| | F`−1

]
343

= t−1 E

[(
sup
x∈X
|Q`m`(x)− q(x)|2

)1/2

| F`−1

]
344

≤ t−1

(
E
[
(sup
x∈X
|Q`m`(x)− q(x)|2 | F`−1

])1/2

≤
√
κ0 t
−1

√
m`

,(3.3)345

346

where the first line in (3.3) is from Markov’s inequality [7], the third from (concave) Jensen’s347

inequality [7], and the last from Assumption 2. Conclude from (3.3), the assumed bound (SS-A),348

and the filtered version of the Borel-Cantelli lemma [76], that the assertion of the theorem holds.349

We note that the condition in (SS-A) is weak — any sequence (m`)`≥1 that satisfies m` ≥ `2+ε350

for large enough ` and some ε > 0 satisfies the condition in (SS-A). The utility of Theorem 3.1 is351

that it connects uniform almost sure convergence of the Monte Carlo estimator with the moment as-352

sumption specified through Assumption 2. See [33] for analogous results for pointwise convergence.353

We are now ready to undertake the consistency of the iterates (x̂`)`≥1 generated by Algorithm 3.1.354

4. CONSISTENCY. In this section, we treat the consistency of the stochastic iterates gen-355

erated by the proposed algorithm. By consistency, we mean convergence guarantees (both almost356

sure and in expectation) associated with the true function values at the stochastic iterates, and the357

stochastic iterates themselves. This section also sets up the foundation for work complexity results358

of the subsequent section.359
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We begin with Lemma 4.1 — a result on the behavior of approximate minimizers of a sequence360

of convex functions that uniformly converge to a limit function. We emphasize that this result361

is stated in a deterministic setting and will become very useful in explaining the behavior of the362

sample paths in the stochastic context in the subsequent section. It also appears to be interesting363

in its own right due to applicability in the context of optimization with a deterministic inexact364

oracle. See [24, 59, 60] for more on such problems. A complete proof is provided in the appendix365

of the online supplementary document [57].366

Lemma 4.1. Let (fk)k≥1, fk : X ⊂ Rd → R be a sequence of real-valued convex functions defined
on the compact set X . Let f : X → R be a real-valued function such that fk uniformly converges to
f , that is,

lim
k→∞

sup
x∈X
|fk(x)− f(x)| = 0.

Denote δk+1 := sup
x∈X
|fk(x) − fk+1(x)|, S∗f := arg min

x∈X
{f(x)} and v∗ := min

x∈X
{f(x)}. The point xk367

is said to be εk-optimal to fk over X if xk satisfies |fk(xk) − v∗k| ≤ εk, where v∗k := min
x∈X
{fk(x)}.368

Suppose the sequences (δk)k≥1, (εk)k≥1 satisfy369

(SS-1)

∞∑
j=1

δj <∞;

∞∑
j=1

εj <∞.370

Then the following assertions hold.371

(a) f(xk)→ v∗ as k →∞;372

(b) for each k ≥ 1, f(xk)− v∗ ≤ 2
∑∞
j=k δj + 2

∑∞
j=k εj .373

If f obeys a growth rate condition, that is, there exist τ > 0, γ > 0 such that for all x ∈ X ,374

(4.1) f(x)− v∗ ≥ τ dist(x,S∗f )γ , then375

(c) for each k ≥ 1, dist(xk,S∗f ) ≤
(

2τ−1
(∑∞

j=k δj +
∑∞
j=k εj

)) 1
γ

.376

We emphasize that the postulates of Lemma 4.1 allow fk, f to be non-smooth convex functions377

without a unique minimizer. Moreover, Lemma 4.1 guarantees through assertion (a) that the378

function values at the iterates converge to the optimal value v∗ at a rate characterized in assertion379

(b). A corresponding rate guarantee on the distance between the k-th approximate solution xk and380

the true solution set S∗f can be given under a growth rate assumption on the objective function f .381

Notice that Lemma 4.1 does not assert that the sequence of approximate solutions (xk)k≥1382

converges to a point in the solution set S∗f , but only that the distance between the sequence (xk)k≥1383

and the set S∗f converges to zero. A guarantee such as convergence to a point is not possible as is,384

but may be possible by solving regularized versions of fk, assuming the regularization parameters385

are chosen appropriately. This question lies outside the scope of the current paper.386

We are now ready to characterize consistency in the stochastic context. The first (Theorem 4.2)387

of these results asserts that the true function values at the iterates generated by the proposed388

algorithm converge to the optimal value almost surely and in expectation. Furthermore, if the389

objective function q(·) satisfies a growth condition on X , then similar guarantees can be provided390

on the distance between the solutions (x̂`)`≥1 and the solution set S∗.391

Theorem 4.2 (Consistency). Suppose Assumption 1 and 2, and the sample size condition392

(SS-A) hold, the following assertions about the iterates (x̂`)`≥1 generated by Algorithm 3.1 are true.393
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(a) cT x̂` + q(x̂`)→ z∗ a.s. as `→∞;394

(b) E
[
cT x̂` + q(x̂`)

]
→ z∗ as `→∞.395

If Assumption 3 also holds, then the following assertions hold as well.396

(c) dist(x̂`,S∗)→ 0 a.s. as `→∞;397

(d) E[dist(x̂`,S∗)]→ 0 as `→∞.398

Proof. We will prove assertion (a) by demonstrating that the postulates for Lemma 4.1 (a) are399

satisfied except on a set (of sample-paths) of measure zero.400

We know that x̂` is ε`-optimal to problem (P`), that is, |cT x̂` +Q`m`(x̂
`)− z∗m` | ≤ ε`. We also401

know that Q`m`(·) is convex on X , and from Theorem 3.1, Q`m`(·) is uniformly convergent to q(·).402

In preparation to invoke Lemma 4.1, denote δ`+1 := supx∈X |Q`m`+1
(x)−Q`m`(x)| and notice that403

δ` ≤ sup
x∈X
|Q`+1

m`+1
(x)− q(x)|+ sup

x∈X
|Q`m`(x)− q(x)| := ζ`+1

m`+1
+ ζ`m` .404

405

The inequality in (2) and Assumption 2 imply that406

E

[
n∑
`=1

δ`

]
=

n∑
`=1

E [δ`] ≤
n∑
`=1

E
[(
ζ`+1
m`+1

+ ζ`m`

)]
≤
√
κ0

(
n∑
`=1

1
√
m`+1

+

n∑
`=1

1
√
m`

)
,(4.2)407

408

where the last inequality in (4.2) follows from Jensen’s inequality [22, Theorem 5.1.3] applied to409

Assumption 2. Thus,410

(4.3) E

[ ∞∑
`=1

δ`

]
=

∞∑
`=1

E [δ`] ≤
√
κ0

( ∞∑
`=1

1
√
m`+1

+

∞∑
`=1

1
√
m`

)
,411

where the equality is due to the monotone convergence theorem [7, Theorem 16.2] and the inequality412

is due to (4.2). The inequality in (4.3) together with the sample size condition (SS-A) implies that413

E [
∑∞
`=1 δ`] < ∞, and hence that

∑∞
`=1 δ` < ∞ a.s. Also, recall that the error tolerance sequence414

(ε`)`≥1 in Algorithm 3.1 has been chosen as ε` = ν 1√
m`

proj(σ̂`, [σmin, σmax]). This choice implies415

that
∑∞
`=1 ε` < ∞ a.s. The two inequalities above imply that all postulates leading to assertions416

(a) and (b) in Lemma 4.1 are satisfied on a set (of sample-paths) of measure one; we thus conclude417

that the assertion (a) of the theorem holds. The assertion in (b) follows from the assertion in (a)418

since the function q(·) is continuous on the compact set X and is hence bounded.419

If Assumption 3 is satisfied, we know that420

(4.4) dist(x̂`,S∗) ≤ γ−1
0

(
cT x̂` + q(x̂`)− z∗

)
.421

Use assertion (a) and (4.4) to conclude that assertion (c) holds. Furthermore, since X is compact,422

dist(x̂`,S∗) is bounded and hence assertion (d) holds as well.423

Theorem 4.2 gives strong guarantees on the consistency of the objective function value at the424

iterates generated by Algorithm 3.1. However, as is implied by assertion (c) of Theorem 4.2, the425

solutions (x̂`)`≥1 can be guaranteed to only “converge into” the true solution set S∗ in the sense426

that the distance between x̂` and the set S∗ converges to zero almost surely and in expectation,427

and not that the sequence (x̂`)`≥1 is guaranteed to converge to a point. We are now ready to treat428

convergence rates in the stochastic context.429
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5. ITERATION AND WORK COMPLEXITY GUARANTEES. Theorem 4.2 guar-430

antees that the sequence of iterates (x̂`)`≥1 generated by Algorithm 3.1 are such that the corre-431

sponding objective function values converge to the optimal value almost surely and in expectation,432

and the iterates converge “into” the true solution set S∗, that is, their distance from S∗ converges433

to zero almost surely and in expectation. In this section, we will provide a rigorous sense of how434

fast such convergence happens. Specifically, we provide complexity results that characterize the435

rate at which the optimality gap and the distance (from S∗) converge to zero as a function of the436

iteration number and the total workload incurred through a specific iteration.437

The first result characterizes the sample-path iteration complexity of the proposed algorithm,438

that is, the rate at which the convergence (as specified through Theorem 4.2) happens as a function439

of iteration `.440

Theorem 5.1 (Iteration Complexity). Suppose that Assumption 1 and Assumption 2 hold,441

and that the sample size sequence obeys the following geometric increase for ` ≥ 1:442

(SS-C) m` = c1m`−1, c1 ∈ (1,∞).443

Then,444

(5.1)

E
[
cT x̂` + q(x̂`)− z∗

]
≤ 2κ2 c

−`/2
1 , where κ2 :=

√
c1
m1

1
√
c1 − 1

(
√
κ0(
√
c1 + 1) + σmax

√
c1ν) .445

If Assumption 3 holds as well, then446

(5.2) E
[
dist(x̂`,S∗)

]
≤ 2 τ−1

0 κ2 c
−`/2
1 .447

Proof. Recall δ`+1 := supx∈X |Q`m`+1
(x)−Q`m`(x)| and that the error tolerance sequence (ε`)`≥1448

in Algorithm 3.1 has been chosen as ε` = ν 1√
m`

proj(σ̂`, [σmin, σmax]). From arguments in the proof449

of Theorem 4.2, we know that
∑∞
`=1 δ` < ∞ a.s., and that

∑∞
`=1 ε` < ∞ a.s. This means that we450

can invoke assertion (b) of Lemma 4.1 on a set of measure one, that is, we have for each ` ≥ 1,451

(5.3) c>x̂` + q(x̂`)− z∗ ≤ 2

∞∑
k=`

δ` + 2

∞∑
k=`

ε` a.s.452

From the monotone convergence theorem [7, Theorem 16.2], Assumption 2, and the sample size453

choice (SS-C), we see that454

E

[ ∞∑
k=`

δk

]
=

∞∑
k=`

E [δk] ≤
√
κ0

( ∞∑
k=`

1
√
mk+1

+

∞∑
k=`

1
√
mk

)
≤ c−`/21

√
κ0c1
m1

√
c1 + 1
√
c1 − 1

.(5.4)455

456

Also, since ε` = ν 1√
m`

proj(σ̂`, [σmin, σmax]), we see that457

(5.5) E [ε`] ≤
√

ν

m`
σ2

max,458

and hence459

E

[ ∞∑
k=`

εk

]
:= lim

n→∞
E

[
n∑
k=`

εk

]
= lim
n→∞

n∑
k=`

E [εk] ≤ c−`/21

√
ν σ2

maxc1
m1

√
c1√

c1 − 1
,(5.6)460

461
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where the inequality in (5.6) is due to (5.5) and the sample size choice (SS-C). From (5.4), (5.6)462

and (5.3), we conclude that the first assertion of the theorem (appearing in (5.1)) holds. The second463

assertion of the theorem (appearing in (5.2)) follows trivially from the growth condition and the464

first assertion.465

Iteration complexity results such as that in Theorem 5.1 are generally of limited value (especially466

by themselves) in sampling contexts because they characterize the convergence rate in terms of467

the iteration number, which is not reflective of the total computational work done. A more useful468

characterization of the convergence rate is what has been called work complexity, which is essentially469

the error (in function value or distance from solution set) expressed as a function of the total470

computational work done, which for the current context includes the total number of second stage471

LPs solved. We take up this question next.472

Towards characterizing the work complexity of the proposed algorithm, recall the iterative473

process: during iteration `, a chosen solver that we generically call Solver-A uses the solution x̂`−1474

from the previous iteration as well as the dual vector information collected so far (for the special475

case of fixed recourse [1, 31]) as “warm start,” and solves the sample-path problem (P`) generated476

with sample M` := {ξ`1, ξ`2, . . . , ξ`m`} to within tolerance ε`, that is, find x̂` ∈ S∗m`(ε`). Given this477

structure, it makes sense then that the rapidity with which a point x̂` is identified will play a central478

role in determining the overall work complexity of the proposed algorithm. Accordingly, we now479

make an assumption on the nature of Solver-A being used to solve the sample-path problem (P`).480

Assumption 4. The Solver-A executed on the problem (P`) having a piecewise linear convex ob-481

jective, and with an initial solution x̂`−1 ∈ X , exhibits iteration complexity Λ2
` dist2

(
x̂`−1, S∗m`

)
ε−2482

to obtain an ε-optimal solution, that is,483

(5.7)
(
cT x̂`,t +Qm`(x̂

`,t)
)
− z∗m` ≤ Λ`

dist
(
x̂`−1, S∗m`

)
√
t

, t = 1, 2, . . . ,484

where x̂`,t is the t-th iterate returned by Solver-A, and S∗m` is the set of optimal solutions corre-485

sponding to problem (P`). Denote the growth-rate γ` of the sample-path function486

(5.8) γ` := sup
s

{
s : cTx+Q`m`(x)− z∗m` ≥ sdist(x, S∗m`) ∀x ∈ X

}
,487

there exists λ <∞ such that488

(5.9) E

[(
Λ`
γ`

)2

| F`−1

]
≤ λ2 <∞ a.s.489

Assumption 4 has been stated in a way that preserves generality of our theory, with the intent of490

allowing any choice of Solver-A as long as the stipulation of Assumption 4 is met. Furthermore,491

we emphasize that Assumption 4 has been stated for piecewise linear convex objectives, since the492

objective function of the sample-path problem (P`) is piecewise linear convex. For instance, a493

number of well-known subgradient algorithms provide a guaranteed iteration complexity of the494

sort stipulated in (5.7) of Assumption 4 even for convex non-smooth objectives. For example, the495

standard subgradient descent algorithm having the iterative structure xt+1 = xt − αt∂h(xt), t =496

0, 1, 2, . . . for solving the convex optimization problem minx∈X {h(x)}, when executed with constant497

step size αt = ε/M2 and ‖∂h(x)‖ ≤ M, ∀x ∈ X , satisfies the complexity requirement stated in498

Assumption 4. Another recent example is a variant of the level bundle method [6] under an idealized499
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assumption. In our numerical experiments presented in Section 7, we use an implementable variant500

of the level bundle method as Solver-A, which is described in greater detail in the appendix of the501

online supplementary document [57]502

The assumption appearing in (5.9) on the finiteness of the second moment of the ratio Λ`/γ`503

is a stipulation on the extent of the “ill-conditioning” of the sample-path problems. To see this,504

consider using the level method [49, Chapter 3] as Solver-A in the proposed algorithm. It follows505

from a well-known result [49, pp. 163] that Λ` then satisfies506

(5.10) Λ` ≤
M`√

α(1− α)2(2− α)
, α ∈ (0, 1)507

where α ∈ (0, 1) is a user-chosen constant within the level method, and M` := supx∈X {‖c +508

∂Qm`(x)‖} is the supremum norm (taken over the fixed compact set X ) of the sub-gradient asso-509

ciated with the sample-path function. It follows from (5.10) then that510

(5.11)
Λ`
γ`
≤ 1√

α(1− α)2(2− α)

M`

γ`
,511

where the ratio M`/γ` has the interpretation of the “condition number” of the `-th sample-path512

problem. It is in this sense that the condition appearing in (5.9) can be violated in pathological513

settings where, persistently, the sample-path function remains “steep” in certain directions but514

“flat” in others. Also, notice that from the Cauchy-Schwarz inequality, the condition in (5.9) is515

satisfied, e.g., if the fourth moments of Λ` and γ−1
` exist, i.e., E[Λ4

` | F`−1] <∞ and E[γ−4
` | F`−1] <516

∞ a.s. The following lemma is an obvious consequence of Assumption 4.517

Lemma 5.2. Suppose Assumption 1 and 4 hold. Let N` denote the number of iterations by518

Solver-A to solve problem (P`) to within optimality gap ε` > 0 starting at x̂`−1, i.e., N` :=519

inf
{
t̄ :
(
c>x̂`,t +Q`m`(x̂

`,t)
)
− z∗m` ≤ ε` for all t ≥ t̄, x̂`,0 := x̂`−1

}
. Then, ∃Λ` ∈ F`:520

P

{
N` > Λ2

`

(
dist(x̂`−1,S∗m`)

)2
ε2`

| F`−1

}
= 0, and E

[(
Λ`
γ`

)2

| F`−1

]
<∞ a.s.521

We will now combine the iteration complexities characterized in Theorem 5.1 and Lemma 5.2522

to characterize the work complexity of the proposed Algorithm 3.1.523

Theorem 5.3. Suppose Assumption 1, 2 and 4 hold. Define WL :=
∑L
`=1 W̃`, where W̃` is524

the number of second-stage LPs solved during the `-th outer iteration of Algorithm 3.1. Suppose525

(m`)`≥1 satisfies the geometric increase sampling condition in (SS-C). Then, for L ≥ 1,526

(5.12) E
[(
cT x̂L + q(x̂L)− z∗

)]
≤ τ0/E[

√
WL], where τ0 is a constant independent of L.527

If Assumption 3 also holds, then for L ≥ 1,528

(5.13) E
[
dist(x̂L,S∗)

]
≤ τ0γ−1

0 /E[
√
WL], where γ0 is the growth-rate constant in Assumption 3.529

Proof. According to Lemma 5.2, and recalling that up to m` second-stage LPs are solved in530

each iteration (e.g., when one employs a scenario decomposition algorithm), for every ` ≥ 1:531

E
[√

W̃`

]
= E

[√
N`m`

]
≤ E

[
E

[
Λ`

(
dist(x̂`−1,S∗m`)

)
ε`

√
m`

∣∣∣∣F`−1

]]
.(5.14)532

533
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Using (5.14) and ε` := ν m
−1/2
` proj(σ̂`, [σmin, σmax]), we get for large enough ` that534

E
[√

W̃`

]
≤ m`

νσmin
E
[
E
[
Λ` dist(x̂`−1,S∗m`) | F`−1

]]
535

≤ m`

νσmin
E

(E[(Λ`
γ`

)2

| F`−1

]) 1
2 (

E
[(
cT x̂`−1 +Q`m`(x̂

`−1)− z∗m`
)2 | F`−1

]) 1
2

536

≤ m`λ

νσmin
E
[(

E
[(
cT x̂`−1 +Q`m`(x̂

`−1)− z∗m`
)2 | F`−1

]) 1
2

]
537

≤ m`λ

νσmin

(
E
(
E
[(
cT x̂`−1 +Q`m`(x̂

`−1)− z∗m`
)2 | F`−1

])) 1
2

538

≤ m`λ

νσmin

(
E
[(
δ` + ε`−1 + |z∗m`−1

− z∗m` |
)2
]) 1

2

,(5.15)539
540

where the second inequality in (5.15) uses the Cauchy-Schwarz inequality (conditionally) and the541

definition in (5.8) of the sample-path growth rate, the third inequality uses the finite second moment542

assumption in (5.9) of Assumption 4, the fourth inequality uses the concavity of the square root543

function, and the last inequality uses δ` := supx∈X {|Q`m`(x)−Q`−1
m`−1

(x)|} and the fact that x̂`−1 ∈544

F`−1 is ε`−1-optimal to cTx + Q`−1
m`−1

(x) over the set X . Next, let x∗` ∈ S∗m` , x
∗
`−1 ∈ S∗m`−1

and545

observe that546

|z∗m`−1
− z∗m` | ≤ (cTx∗` +Q`−1

m`−1
(x∗` )− z∗m`) + (cTx∗`−1 +Q`m`(x

∗
`−1)− z∗m`−1

)547

≤ 2 sup
x∈X

{
|Q`m`(x)−Q`−1

m`−1
(x)|

}
= 2δ`.(5.16)548

549

Using (5.16) in (5.15), we get for large enough `,550

(5.17) E
[√

W̃`

]
≤ λ m`

νσmin

(
E
[
(3δ` + ε`−1)

2
]) 1

2 ≤ λ m`

νσmin

(
E
[
18δ2

` + 2ν2 σ
2
max

m`−1

]) 1
2

,551

where the second inequality above uses (a+ b)2 ≤ 2a2 +2b2 and ε` := ν m
−1/2
` proj(σ̂`, [σmin, σmax]).552

Observing that WL =
∑L
`=1 W̃`, (5.17) implies that553

E[
√
WL] ≤

L∑
`=1

E
[√

W̃`

]
≤

L∑
`=1

λ
m`

νσmin

(
18E

[
δ2
`

]
+ 2ν2 σ

2
max

m`−1

) 1
2

554

≤
L∑
`=1

λ
m`

νσmin

(
18
κ0(1 + c1 + 2

√
c1)

m`
+ 2ν2c1

σ2
max

m`

) 1
2

555

≤ λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

L∑
`=1

√
m`556

=
λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

√
m1√
c1 − 1

(
c
L/2
1 − 1

)
,(5.18)557

558
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where the third inequality follows since E[δ2
` ] ≤ κ0

(
m
−1/2
` +m

−1/2
`−1

)2

holds from Assumption 2,559

and from further algebra (also see from the proof of Theorem 4.2). Also, we know from (5.3) that560

for each L ≥ 1, cT x̂L + q(x̂L)− z∗ ≤ 2
∑∞
`=L (δ` + ε`) a.s., and hence, for L ≥ 1,561

E
(
cT x̂L + q(x̂L)− z∗

)2 ≤ 4E

( lim
n→∞

n∑
`=L

(δ` + ε`)

)2
 = 4 lim

n→∞
E

( n∑
`=L

(δ` + ε`)

)2
562

≤ 4

∞∑
`=L

E
[
(δ` + ε`)

2
]

+ 8

∞∑
`=L

(
E
[
(δ` + ε`)

2
])1/2 ∞∑

j=`+1

(
E
[
(δj + εj)

2
])1/2

,(5.19)563

564

where the equality is from the monotone convergence theorem [7, Theorem 16.2], and the last565

inequality follows from the repeated application of the Hölder’s inequality [7, p. 242]. Let’s now566

bound each term appearing on the right-hand side of (5.19). Notice that567

∞∑
j=`+1

(
E
[
(δj + εj)

2
])1/2 ≤ ∞∑

j=`+1

(
2E[δ2

j ] + 2E[ε2j ]
)1/2

568

≤
∞∑

j=`+1

1
√
mj

(
2κ0(1 + c1 + 2

√
c1) + 2ν2σ2

max

)1/2 ≤ κ̃1 c
−`/2
1 ,(5.20)569

570

where κ̃1 :=
(

1√
m1

√
c1√
c1−1

) (
2κ0(1 + c1 + 2

√
c1) + 2ν2σ2

max

)1/2
, the second inequality in (5.20) fol-571

lows from Assumption 2 and the definition ε` := ν m
−1/2
` proj(σ̂`, [σmin, σmax]), and the last inequal-572

ity follows from using the assumed sample size increase (SS-C). Similarly, we also get573

∞∑
`=L

(
E
[
(δj + εj)

2
])
≤ κ̃2 c

−L
1 ,(5.21)574

575

where κ̃2 :=
(

1
m1

c21
c1−1

) (
2κ0(1 + c1 + 2

√
c1) + 2ν2σ2

max

)
. Use (5.20) and (5.21) in (5.19) to get:576

E
[(
cT x̂L + q(x̂L)− z∗

)2] ≤ 4

∞∑
`=L

E
[
(δ` + ε`)

2
]

+ 8

∞∑
`=L

(
E
[
(δ` + ε`)

2
])1/2 ∞∑

j=`+1

(
E
[
(δj + εj)

2
])1/2

577

≤ 4κ̃2c
−L
1 + 8

∞∑
`=L

(
E
[
(δ` + ε`)

2
])1/2

κ̃1c
−`/2
1578

≤ 4κ̃2c
−L
1 + 8(

√
c1 − 1) κ̃2

1

∞∑
`=L

c−`1 = c−L1

(
4κ̃2 +

8c1κ̃
2
1√

c1 + 1

)
.(5.22)579

580
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Finally, we put it all together to get581

E
[√

WL

]
E
[(
cT x̂L + q(x̂L)− z∗

)]
582

≤ λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

√
m1√
c1 − 1

(
1− 1

c
L/2
1

)(
4κ̃2 +

8c1κ̃
2
1√

c1 + 1

)1/2

583

≤ λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

√
m1√
c1 − 1

(
4κ̃2 +

8c1κ̃
2
1√

c1 + 1

)1/2

=: τ0,584

(5.23)
585586

where the first and second inequalities above follow from applying the bounds in (5.22) and (5.18)587

and simplifying. This proves the first assertion of the theorem. The second assertion follows simply588

from the first assertion and the assumed minimum growth rate of the objective function as expressed589

through Assumption 3.590

The following observations on Theorem 5.3 are noteworthy.591

(a) The assertions in Theorem 5.3 should be seen as the analogue of the O(1/ε2) complexity592

result in non-smooth convex optimization that is known to be optimal [50] to within a593

constant factor.594

(b) The complexity result in Theorem 5.3 has been stated in the general population context.595

So, the result equally applies for the finite-population scenario |Ξ| <∞, although there is596

strong evidence that in the finite and the countably infinite populations, the best achievable597

complexity rates may be much faster due to the existence of sharp minima of the sort598

discussed in [70].599

(c) The theorem assumes that the sample size schedule (m`)`≥1 increases geometrically with600

common ratio c1. Importantly, the result can be generalized in a straightforward manner to601

a sample size schedule having a stochastic common ratio C1 that is allowed to vary between602

two deterministic bounds c0 and ch such that 1 < c0 ≤ ch <∞ (see Section 7).603

Recall again that the complexity result in Theorem 5.3 has been obtained assuming that the604

sample sizes increase geometrically, that is, m`/m`−1 = c1 ∈ (1,∞), ignoring non-integrality. Can605

a similar complexity be achieved using other sample size schedules? The following negative result606

explains why using a slower sample size schedule is bound to result in an inferior complexity.607

Theorem 5.4. Suppose Assumption 1–3 hold. Also, suppose there exists η̃ such that608

(5.24) E
[(

dist(S∗m` ,S
∗)
)]
≥ η̃
√
m`

.609

If the sample size schedule is polynomial, that is,610

(SS-D) m` = c0 `
p, c0 ∈ (0,∞), p ∈ [1,∞).611

Then there exists τ1 > 0 such that for L ≥ 3,612

(5.25) E
[
dist(x̂L,S∗)

]
≥ τ1

E
[
W

1
2−

1
2(1+p)

L

] .613
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Proof. The structure of the algorithm is such that each outer iteration consists of at least one614

inner iteration. Hence W̃` ≥ m`, implying that615

(5.26) WL ≥
L∑
`=1

c0`
p ≥

∫ L

1

c0(`− 1)pd` =
c0

p+ 1

(
(L− 1)p+1 − 1

)
.616

Since (SS-D) has been assumed, mL = c0L
p and (5.26) implies, after some algebra, that for L ≥ 3,617

WL ≥
c0

p+ 1

(
mL

c0

)1+1/p
(1−

(
c0
mL

)1/p
)p+1

−
(
c0
mL

)1+1/p
618

≥ c0
p+ 1

(
mL

c0

)1+1/p ((
1− L−1

)p+1 − L−(p+1)
)
≥ τp

c0
p+ 1

(
mL

c0

)1+1/p

,(5.27)619
620

where τp :=
(

2
3

)p+1 −
(

1
3

)p+1
. Continuing from (5.27), we get621

(5.28) W
1
2−

1
2(1+p)

L ≥
(
τp

c0
p+ 1

) p
2(p+1)

√
mL

c0
.622

Use (5.24) and (5.28) to get, for L ≥ 3, that E
[
W

1
2−

1
2(1+p)

L

]
E
[
dist(x̂L,S∗)

]
≥
(
τp

c0
p+1

) p
2(p+1) η̃√

c0
,623

thus proving the assertion in the theorem.624

We observe from Theorem 5.4 that no matter how large p ∈ [1,∞) is chosen when choosing a625

polynomial sample size schedule, the resulting complexity (5.25) is inferior to the complexity (5.13)626

implied by a geometric sample size schedule, with the inferiority characterized by the deviation627

(2(p+ 1))−1. A similar result has been proved by [63] in a different context.628

While the results of Theorem 5.4 show the superiority of a geometric sequence for the sample629

size schedule, we emphasize two caveats. First, the lower bound on the (implicit) quality of the630

sample-path solution set may be violated in, e.g., “non-quantitative,” contexts where the underlying631

probability space generating the random variables naturally consists of only a finite number of632

outcomes. The question of what is the best sample size schedule in such contexts is open. Second,633

we make the obvious observation that during implementation, considerations other than those634

included in our analysis, e.g., storage and wall-clock computation time limits, might influence the635

sample size choice. The conclusions of Theorem 5.3 and Theorem 5.4 should thus be judged within636

the purview of the analysis considered here.637

The condition in (5.24) might appear cryptic but we believe that this condition will hold under638

mild conditions. General sufficient conditions under which the sequence
√
m` dist(Sm` ,S∗) will639

“stabilize” to a non-degenerate distribution are well-known [67, 21]. Such conditions, along with640

assuming the random variables
√
m` dist(Sm` ,S∗) exhibit uniform integrability, will ensure that the641

condition in (5.24) is guaranteed to hold asymptotically.642

6. STOPPING IN FINITE TIME. The results we have presented thus far have implied a643

non-terminating algorithm, as can be seen in the listing of Algorithm 3.1. Our intent in this section644

is to demonstrate that the iterates generated by Algorithm 3.1 can be stopped in finite-time while645

providing a solution with a probabilistic guarantee on the optimality gap. For this, we rely heavily646

on the finite-stopping results in [5]. We first describe a simple stopping procedure which is almost647
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identical to what is called FSP in [5], and then argue that the stipulations laid out in [5] hold here,648

thereby allowing to invoke the main results of [5]. We note that alternative finite stopping rules649

have also been studied in the literature, see, e.g., [66] for a sequential sampling based approach650

based on the variance associated with 2SLP solutions rather than their corresponding objective651

values.652

Suppose we wish to stop our procedure with a solution whose optimality gap is within ε > 0653

with probability exceeding 1 − α, α > 0. Recall that upon terminating the `-th outer iteration of654

Algorithm 6.1, we have at our disposal an F`-measurable candidate solution x̂`. To construct a655

one-sided 100(1−α) percent confidence interval on the true gap c>x̂`+q(x̂`)−z∗, we independently656

generate an iid sample N` = {ξ̃`1, ξ̃`2, . . . , ξ̃`n`}. Assume that the sequence {n`} of “testing” sample657

sizes is non-decreasing; the random objects ξ̃`i , i ≥ 1, ` ≥ 1 can be re-used across iterations, that658

is, ξ̃`i can be chosen so that if i < j then ξ̃ik = ξ̃jk for k = 1, 2, . . . , ni. We then use the set N` to659

calculate a gap estimate G̃`n`(x̂
`) and sample variance s̃2

n`
(x̂`) as follows:660

G̃`n`(x̂
`) = c>(x̂` − x̃∗` ) +

1

n`

n∑̀
i=1

[Q(x̂`, ξ̃`i )−Q(x̃∗` , ξ̃
`
i )];661

s̃2
n`

(x̂`) =
1

n`

n∑̀
i=1

[
Q(x̂`, ξ̃`i )−Q(x̃∗` , ξ̃

`
i )−

1

n`

n∑̀
i=1

[Q(x̂`, ξ̃`i )−Q(x̃∗` , ξ̃
`
i )]

]2

,(6.1)662

663

where x̃∗` is an optimal solution to the sample-path problem (P`) generated with sample N`, and664

δ > 0 is the thresholding constant from Algorithm 3.1.665

Algorithm 6.1 An adaptive sequential SAA framework with a finite stopping criterion.

1: Input: Solver-A, a sampling policy, a constant ν > 0, and a constant σmax > 0. Set `← 0.

2: while G̃`n`(x̂
`) + zα

max(s̃n` (x̂
`),σmax)√
n`

> ε do

3: Select the sample size m` and draw a random sample M` := {ξ`1, ξ`2, . . . , ξ`m`}.
4: for t = 1, 2, · · · do
5: Use Solver-A, e.g., the adaptive partition-based level decomposition [1], to execute the t-th

inner iteration for solving the sample-path problem.

6: If G`,t ≤ ε`,t := νmax
{

ŝe`,t,
σmax√
m`

}
, break the inner loop with a candidate solution x̂`.

7: end for
8: Generate a Monte Carlo sample N` := {ξ̃`1, ξ̃`2, . . . , ξ̃`n`} (independent from M`) of sample

size n`, solve the corresponding sample-path problem (P`), and calculate G̃`n`(x̂
`) and s̃2

n`
(x̂`)

according to (6.1), respectively.
9: end while

The proposed one-sided 100(1− α) percent confidence interval on µ(x̂`) = c>x̂` + q(x̂`)− z∗ is666 [
0, G̃`n`(x̂

`) + zα
max(s̃n`(x̂

`), σmax)
√
n`

]
,667

where zα = Φ−1(1−α) is the 1−α quantile of the standard normal distribution, implying that the
finite-time procedure stops at iteration

L(ε) := arginf
`≥1

{
` : G̃`n`(x̂

`) + zα
max(s̃n`(x̂

`), σmax)
√
n`

≤ ε
}
.
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Algorithm 6.1 lists a terminating version of Algorithm 3.1 (modulo setting σmin = 0) based on668

the proposed confidence interval. The factor σmax n
−1/2
` is a thresholding term that is common in669

sequential settings [16] and plays the same role as the term h(nk) in [5], ensuring that L(ε) → ∞670

as ε → 0. To analyze the behavior of the coverage probability obtained from Algorithm 6.1, the671

following three assumptions are made in [5].672

(A1) Event An` = {Sn` ⊆ S∗} happens with probability 1 as `→∞.673

(A3) lim`→∞ P
{

supx∈X |G̃`n`(x̂
`)− µ(x)| > β

}
= 0 for any β > 0.674

(A4) lim`→∞ P
{

supx∈X n
−1/2
` max(s̃n`(x̂

`), σmax) > β
}

= 0 for any β > 0.675

(We have omitted (A2) above to preserve the numbering in [5].) Theorem 2.3 in [70] implies that676

Assumption (A1) is satisfied if the support Ξ is finite, in addition to Assumptions 1–3. Also, it is677

seen that Assumption (A3) and (A4) hold if the standing Assumption 2 holds. The following result678

characterizes the behavior of the iterates obtained from Algorithm 6.1, along with a probabilistic679

guarantee. We provide a proof only for the third part of the theorem since proofs for the rest either680

follow trivially or are almost identical to that in [5].681

Theorem 6.1. Suppose Assumptions 1–3 hold. Furthermore, let |Ξ| < ∞. Let m` and n` be682

positive nondecreasing sequences such that m` → ∞ and n` → ∞ as ` → ∞. Then the following683

assertions hold.684

1. L(ε) <∞ a.s. for all ε > 0 and L(ε)→∞ a.s. as ε→ 0.685

2. Recalling the optimality gap µ(x) := c>x+ q(x)− z∗,686

(6.2) lim
ε→0

P
{
µ(x̂L(ε)) ≤ ε

}
= 1.687

3. Suppose {n`} is chosen so that lim inf`→∞ n`−1/n` > 0. Then we have that

lim
ε→0+

ε2nL(ε) = O(1).

Proof. (Proof of 3.) Following the proof of Lemma 5 in [5], we see that there exists ε0 > 0 such688

that for all 0 < ε < ε0,689

(6.3) G̃L(ε)
nL(ε)

(x̂L(ε)) = 0; s̃2
nL(ε)

(x̂L(ε)) = 0,690

where G̃
L(ε)
nL(ε)

(x̂L(ε)) and s̃2
nL(ε)

(x̂L(ε)) are from (6.1) at stopping. According to the stopping criterion691

of Algorithm 6.1, we have that:692

ε2nL(ε) ≥
(√

nL(ε)G̃
L(ε)
nL(ε)

(x̂L(ε)) + zαmax(s̃nL(ε)
(x̂L(ε)), δ)

)2

;693

ε2nL(ε)−1 ≤
(√

nL(ε)−1G̃
L(ε)−1
nL(ε)−1

(x̂L(ε)−1) + zαmax(s̃nL(ε)−1
(x̂L(ε)−1), δ)

)2

.(6.4)694
695

Now notice that since lim inf`→∞ n`−1/n` > 0 and L(ε)→∞ as ε→ 0 a.s., there exists β̃ > 0 such696

that for small enough ε, we have697

(6.5) nL(ε)−1 ≥ β̃ nL(ε) a.s.698

Using (6.5), (6.4), and (6.3), we get, a.s., zαδ
2 ≤ limε→0+

nL(ε)

1/ε2 ≤
zα
β̃
δ2.699
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It is worth noting that the main probabilistic guarantee appearing in (6.2) is stronger than700

classical guarantees in sequential testing such as those in [16]. This deviation from a classical701

stopping result is primarily because of the fast convergence assured by (A1). It is possible and702

likely that when (A1) is relaxed, a more classical result such as what one encounters in [16] holds,703

but we are not aware of the existence of such a result.704

The condition lim inf`→∞ n`−1/n` > 0 stipulated by the third assertion of Theorem 6.1 is705

satisfied by a wide variety of sequences. For instance, if q0, q1 ∈ (0,∞), any logarithmic increase706

schedule n` = q0 + q1 log `, any polynomial increase schedule n` = q0 + q1`
p, p ∈ (0,∞), and any707

geometric increase schedule n`/n`−1 = q1 satisfy the condition lim inf`→∞ n`−1/n` > 0.708

7. COMPUTATIONAL EXPERIMENTS. In this section, we present computational re-709

sults of the proposed adaptive sequential sampling framework for solving 2SLPs with fixed recourse710

and fixed second-stage objective coefficients. We chose problems instances of this type to enable711

a “warm starting” procedure, where the initial solution and an initial second-stage value function712

approximation for every sample-path problem at each outer iteration can be obtained using in-713

formation gained from previous iterations. (This procedure is summarized in Algorithm C.1 in714

the appendix of the online supplementary document [57].) For the purpose of benchmarking, we715

consider finite-sample instances of such problems, that is, problems where |Ξ| < ∞, so that we716

get access to the true optimal value z∗ up to a pre-specified precision by solving these instances717

using a deterministic solver. In particular, we apply the adaptive partition-based level decompo-718

sition method [1], which has shown to be a competitive state-of-the-art solution approach. Five719

finite-sample instances of each problem in a selected problem class are generated; 20 replications720

of each competing sequential SAA algorithm are performed on each of the generated problem in-721

stances (except for the ssn instances, where only 10 replications are performed due to the extensive722

computational effort for solving these instances). We implemented all algorithms in C++ using723

the commercial solver CPLEX, version 12.8. All tests are conducted on an iMac desktop with four724

4.00GHz processors and 16Gb memory. The number of threads is set to be one.725

We run the adaptive sequential SAA framework according to Algorithm 6.1, and record the726

total number of outer iterations as L, the final candidate solution at the L-th iteration as x̂L, and727

the sample size used in the final iteration L as NL; c>x̂L+q(x̂L) then gives the true objective value728

of final candidate solution x̂L. We report in column “CI” the ratio between the width of the reported729

confidence interval (at stopping) for the optimality gap and the true objective value corresponding730

to x̂L. The threshold ε is chosen to be small enough relative to the objective value corresponding731

to the candidate solution obtained from the outer iteration, e.g., 10−3 ×
(
c>x̂1 +Q1

m1
(x̂1)

)
. After732

Algorithm 6.1 terminates with a final solution x̂L, we verify whether or not the true optimal733

objective value z∗ is in the reported confidence interval. Since the confidence interval at stopping is734

guaranteed to cover z∗ only asymptotically (see Theorem 6.1), we report the coverage probability735

at stopping in the column titled “cov.”, using results obtained from the 20 replications for each test736

instance except ssn and 20term, where 10 replications are used.737

We set the sample size m` for the `-th sample-path problem to be twice as large as the sample738

size n` for validating the quality of candidate solution x̂`, i.e., m` = 2 × n`, ∀` = 1, 2, . . .. This739

choice is motivated by the practical guideline [4] that the computational effort expended to find740

candidate solutions should be higher than that expended to compare candidate solutions. The741

following additional notation is used in the tables that follow.742

• Time: computational time (recorded in seconds)743

• M : total number of inner iterations.744

• L: total number of outer iterations.745
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• nL: the sample size used in the final outer iteration L.746

7.1. Implementation details. The following five algorithms are implemented in our com-747

putational study. The procedures described in (iii), (iv), and (v) use Algorithm 6.1 with different748

sample size schedules. The procedure listed in (i) has been shown to be very competitive recently;749

the procedure in (ii) is proposed in [5].750

(i) PILD-ODA. This algorithm is the adaptive partition-based level decomposition algorithm751

with on-demand accuracy as proposed in [1], which is used to solve each instance with the752

full set of scenarios up to a relative optimality gap of 10−4. Note that z∗ for each instance753

is also obtained by this algorithm using a smaller relative optimality gap threshold of 10−6.754

(ii) Sequential-BP-L(∆). This algorithm follows the sampling schedules in [5] while solving755

individual sample-path problems to high precision. Specifically, each sample-path problem756

(with a sample size of m`) is solved up to a relative optimality gap of 10−6 in each outer757

iteration `, using a standard level decomposition approach for solving 2SLPs [25]. Note that758

our implementation of this approach does not incorporate the warm starting functionality.759

The obtained candidate solution x̂` is then evaluated using a sample of size n`. To obtain760

x∗n` that appears in G̃`n` and s̃2
n`

in (6.1), we solve the corresponding sample-path problem761

up to a relative optimality gap of 10−4, as suggested by [5]. By default, we use a linear762

sample size schedule where ∆ = 100 additional scenarios are sampled from one iteration to763

the next, starting with an initial sample size m1 = 2 × n1 = 100. We use the same initial764

sample size for all variants of the sequential sampling approaches that we describe below,765

although one may tune this parameter for further enhancements.766

(iii) Adaptive-seq-BP-L(∆). This is Algorithm 6.1 implemented with the linearly increasing767

sample size schedule proposed in [5], that is, m`+1 = m` + ∆. For “warm starting” the ini-768

tial solution and an initial second-stage value function approximation for every sample-path769

problem at each outer iteration, we use Algorithm C.1 in the appendix of the online sup-770

plementary document [57]. We use parameter α = 0.1 and safeguard parameter δ = 10−5771

in defining the adaptive optimality tolerance ε` according to (3.1). PILD-ODA is applied772

to solve each sample-path problem with the aforementioned warm starting functionality.773

(iv) Adaptive-seq-fixed (c1). This is Algorithm 6.1 implemented with a geometric sample774

size schedule. The setting is nearly identical to (iii) except that we use a fixed rate c1 as775

the geometric increase rate, that is, m`+1 = c1m`.776

(v) Adaptive-seq-dyn(c0, ch). Like in (iv), this is Algorithm 6.1 implemented with a geomet-777

ric sample size schedule ensuring that m`+1 = C1m`. However, unlike in (iv), the rate C1 is778

dynamic (and hence, listed in uppercase) within chosen bounds c0, ch. Specifically, starting779

from some initial value of C1, if the inner loop finishes after a single iteration, implying780

that the problem with the current sample size does not deviate much from the one solved in781

the previous outer iteration, we increase the deviation of C1 from 1 by a factor of 2 subject782

to C1 not exceeding ch. Formally, we set C1 ← min(2C1 − 1, ch). If, on the other hand,783

the inner loop takes more than four iterations, we shrink the deviation of C1 from 1 by a784

factor of 2, subject to C1 reaching a minimum of c0, that is, we set C1 ← max(c0,
1
2C1 + 1

2 ).785

While our theory does not explicitly cover this “dynamic C1” context, an extension of our786

theory to this case is straightforward. See comment (c) appearing after Theorem 5.3.787

In all algorithms that we tested except “PILD-ODA,” we use a time limit of two hours (7200788

seconds). When the stopping criterion is not met by the time limit, we report the smallest value789

G̃`n`(x̂
`) + zα

max(s̃n` (x̂
`),σmax)√
n`

encountered during all completed outer iterations `, and accordingly790
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Table 1
Profiles of test instances from the literature. Notation (na, nb) means that the number of variables is given by

na and the number of constraints is given by nb.

Instance First-stage size Second-stage size Reference

DEAK40×20 (40,20) (30,20) [18]
DEAK40×40 (40,20) (60,40) -
DEAK40×60 (40,20) (90,60) -
DEAK60×20 (60,30) (30,20) -
DEAK60×40 (60,30) (60,40) -
DEAK60×60 (60,30) (90,60) -

LandS (4,2) (12,7) [40]
gbd (17,4) (10,5) [26]

4node (52,14) (186,74) [2]
pgp2 (4,2) (16,7) [32]
retail (7,0) (70,22) [30]
cep (8,5) (15,7) [32]

baa99-20 (20,0) (250,40) [66]
20-term (63,3) (764,124) [43]

ssn (89,1) (706,175) [65]

consider this quantity the width of the confidence interval on the optimality gap of x̂`. The profiles791

of test instances used in our computational experiments are summarized in Table 1, where the set792

of DEAK instances are randomly generated test instances from [18], and other instances are taken793

from existing literature that are linked to certain “real-world” applications. For the purpose of794

benchmarking, we also create an additional family of instances based on the DEAK instances by795

increasing the variance of the underlying random variables generating the test instances. We use796

“High” to label this new set of DEAK instances with higher variance in Table 2, 3, and 4.797

7.2. Numerical results. We first investigate the empirical performance of “Sequential-BP-798

L(∆)”, and its adaptation “Adaptive-seq-BP-L(∆)” into our proposed framework, against “PILD-799

ODA” which is arguably a state-of-the-art approach for solving 2SLPs with fixed recourse and fixed800

second-stage objective coefficients using the full set of scenarios [1]. Table 2 summarizes the results801

on our test instances. We recall that for all the sequential SAA approaches, the numbers shown in802

each row are calculated by taking the average of the corresponding values over 20 replications (10803

replications for ssn and 20term) of algorithm instantiation on five finite-sample instances.804

7.2.1. Computational results on the DEAK instance family. We first present the per-805

formance of aforementioned algorithms on the DEAK instance family. Instances within this family806

share the same structure and vary by the problem sizes in terms of the number of variables and807

constraints. Experiments on these different instances allow us to see how the algorithms behave as808

the problem sizes change given the same underlying problem structure.809

From Table 2, we see that sequential SAA algorithms “Sequential-BP-L(100)” and “Adaptive-810

seq-BP-L(100)” are clearly favored over the direct approach “PILD-ODA.” The sequential SAA811

approaches finish in much less computational time at a low price in terms of optimality gap —812

around 0.1%. The coverage probabilities of these approaches are also satisfactory. The majority of813

the computational savings come from the fact that sequential SAA approaches expend much less814

effort in each inner iteration, since only a (small) sample is taken at each early outer iteration `.815

In comparing “Sequential-BP-L(∆)” against “Adaptive-seq-BP-L(∆),” notice from Table 2 that816

the computational time for “Adaptive-seq-BP-L(∆)” is lower in most cases, while the total number817

23

This manuscript is for review purposes only.



Table 2
Computational results of the adaptive partition-based level decomposition approach [1] (“PILD-ODA”), the

sequential sampling procedure by [5] (“Sequential-BP-L”), and Algorithm 6.1 with the stopping criterion and sample
size schedule proposed in [5] (“Adaptive-seq-BP-L (100)”) on our test instances DEAK and DEAK-H.

Ins N PILD-ODA Sequential-BP-L(100) Adaptive-seq-BP-L(100)
Time M Time M(L, nL) CI (cov.) Time M(L, nL) CI (cov.)

40x20
50K 53.4 19 5.4 14(5,1070) (0.1,97) 1.5 20(5,1094) (0.1,97)
100K 101.8 18 5.1 13(5,1032) (0.1,99) 1.3 19(5,1014) (0.1,97)

40x40
50K 74.6 12 4.3 19(3,584) (0.0,83) 1.2 12(3,630) (0.1,80)
100K 134.1 12 5.6 20(3,660) (0.1,90) 1.3 13(3,676) (0.1,82)

40x60
50K 206.2 19 4.3 20(2,374) (0.1,96) 1.7 21(2,396) (0.1,100)
100K 413.1 20 4.1 20(2,360) (0.1,99) 1.6 21(2,366) (0.1,100)

60x20
50K 114.4 56 86.1 41(13,2540) (0.1,100) 18.5 64(13,2596) (0.1,100)
100K 252.2 60 87.8 42(13,2584) (0.1,100) 19.1 64(13,2636) (0.1,100)

60x40
50K 502.0 65 23.2 32(4,824) (0.1,100) 12.3 70(4,834) (0.1,100)
100K 929.4 67 25.1 33(4,864) (0.1,100) 13.5 70(4,876) (0.1,100)

60x60
50K 333.8 24 5.9 22(2,414) (0.1,100) 2.2 25(2,424) (0.1,100)
100K 622.3 24 6.5 22(2,436) (0.1,100) 2.3 25(2,436) (0.1,100)

40x20 50K 63.9 17 18.6 27(9,1776) (0.1,96) 4.4 23(8,1698) (0.1,98)
High 100K 139.2 18 18.2 27(9,1772) (0.1,96) 5.3 24(9,1854) (0.1,95)
40x40 50K 58.9 9 4.5 17(3,580) (0.0,83) 1.3 10(3,640) (0.0,70)
High 100K 117.0 9 4.0 17(3,556) (0.1,88) 1.3 10(3,646) (0.1,80)
40x60 50K 711.5 25 60.8 42(6,1140) (0.1,99) 22.4 29(6,1132) (0.1,93)
High 100K 1520.0 24 55.5 41(6,1102) (0.1,100) 20.8 29(6,1130) (0.1,93)
60x20 50K 162.6 46 139.4 53(16,3194) (0.1,99) 78.9 52(16,3280) (0.1,100)
High 100K 263.2 43 132.9 54(16,3160) (0.1,100) 73.5 52(16,3230) (0.1,100)
60x40 50K 432.8 31 112.6 55(9,1824) (0.1,99) 127.4 42(10,1920) (0.1,98)
High 100K 958.5 32 124.0 56(9,1834) (0.1,99) 122.4 42(10,1940) (0.1,98)
60x60 50K 673.5 23 96.6 48(6,1290) (0.1,100) 38.2 31(6,1282) (0.1,90)
High 100K 1591.9 25 107.2 49(7,1316) (0.1,96) 42.3 31(7,1362) (0.1,89)

of outer iterations L, inner iterations M , and the final sample size nL are similar. This is again818

explainable since in “Sequential-BP-L,” the sample-path problems in each outer iteration are solved819

to a high precision, whereas in “Adaptive-seq-BP-L(∆),” the sample-path problems are only solved820

up to a factor of the sampling error as detailed in Algorithm 6.1. Furthermore, a warm start821

functionality and an adaptive scenario aggregation technique are leveraged in “Adaptive-seq-BP-822

L(∆),” by using Algorithm C.1 in the appendix of the online supplementary document [57] and823

PILD-ODA [1], respectively.824

Table 2 provides clear evidence of the effectiveness of the sequential SAA framework and the825

use of warm starts. In an attempt to investigate the effect of geometric sampling schemes, which826

assuredly preserve the Monte Carlo canonical rate by Theorem 5.3, we next compare in Table 3 the827

computational results of the adaptive sequential SAA with a geometric sample size schedule having a828

fixed increase rate c1 = 1.5 (option “Adaptive-seq-fixed(1.5)”) against a dynamically chosen geomet-829

ric increase rate with c0 = 1.05, ch = 3 and C1 starting at 1.5 (option “Adaptive-seq-dyn(1.05, 3)”),830

when employed with a finite-time stopping criterion. We see that similar results are obtained by831

the two alternative options in terms of the computational time. “Adaptive-seq-dyn(1.05, 3)” ex-832

hibits slightly fewer inner and outer iterations, whereas the sample sizes seem significantly larger.833

Also, comparing Table 2 against Table 3, it seems clear that a geometrically increasing sample size834

schedule results in a large sample size at stopping but generally fewer outer iterations than the835

linear increasing rate employed in “Adaptive-seq-BP-L”. In “Adaptive-seq-dyn,” the sample size at836
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Table 3
Computational results of the adaptive partition-based level decomposition approach [1] - “PILD-ODA”, Algo-

rithm 6.1 with a fixed increasing rate “Adaptive-seq-fixed(1.5),” and Algorithm 6.1 with a dynamic increase rate
“Adaptive-seq-dyn(1.05, 3),” and with C1 starting at 1.5 on our test instances DEAK and DEAK-H.

Ins N PILD-ODA Adaptive-seq-fixed(1.5) Adaptive-seq-dyn(1.05, 3)
Time M Time M(L, nL) CI(cov.) Time M(L, nL) CI(cov.)

40x20
50K 53.4 19 1.5 21(7,1377) (0.1,96) 1.6 19(4,2892) (0.1,100)
100K 101.8 18 1.5 21(7,1438) (0.1,99) 1.6 19(4,2886) (0.1,100)

40x40
50K 74.6 12 1.2 13(4,568) (0.1,71) 1.8 13(4,1662) (0.0,75)
100K 134.1 12 1.2 14(4,595) (0.1,72) 1.7 13(3,1489) (0.0,75)

40x60
50K 206.2 19 1.9 23(3,318) (0.1,100) 1.9 22(3,454) (0.1,100)
100K 413.1 20 1.9 23(3,308) (0.1,100) 1.9 23(3,458) (0.1,100)

60x20
50K 114.4 56 10.7 60(9,3675) (0.1,100) 9.2 56(5,6048) (0.1,100)
100K 252.2 60 11.0 60(9,3673) (0.1,100) 9.5 56(5,6264) (0.1,100)

60x40
50K 502.0 65 14.1 73(6,921) (0.1,100) 13.8 69(4,1620) (0.1,100)
100K 929.4 67 14.7 73(6,959) (0.1,100) 13.4 68(4,1566) (0.1,100)

60x60
50K 333.8 24 2.7 28(4,374) (0.1,100) 2.8 27(3,617) (0.1,100)
100K 622.3 24 2.7 28(4,374) (0.1,100) 2.7 27(3,580) (0.1,100)

40x20 50K 63.9 17 4.4 23(9,3034) (0.1,97) 4.0 19(5,5400) (0.1,99)
High 100K 139.2 18 4.4 23(9,3013) (0.1,95) 5.3 20(5,7066) (0.0,98)
40x40 50K 58.9 9 1.3 11(4,617) (0.0,69) 1.8 11(4,1485) (0.0,65)
High 100K 117.0 9 1.3 11(4,601) (0.0,61) 1.7 10(3,1366) (0.0,65)
40x60 50K 711.5 25 24.6 31(7,1535) (0.1,93) 28.1 27(4,3240) (0.1,96)
High 100K 1520.0 24 22.0 31(7,1427) (0.1,92) 27.0 27(4,3046) (0.1,93)
60x20 50K 162.6 46 38.0 46(10,5558) (0.1,100) 34.3 43(6,9720) (0.1,100)
High 100K 263.2 43 42.4 46(10,6086) (0.1,100) 33.1 43(6,9720) (0.1,100)
60x40 50K 432.8 31 70.4 40(9,2866) (0.1,99) 78.1 33(5,5706) (0.1,99)
High 100K 958.5 32 78.6 40(9,2894) (0.1,98) 75.3 33(5,5688) (0.1,96)
60x60 50K 673.5 23 42.3 32(7,1878) (0.1,92) 42.2 27(5,3831) (0.1,94)
High 100K 1591.9 25 38.4 32(7,1808) (0.1,85) 50.9 27(5,4078) (0.1,89)

stopping is even larger, but the number of outer iterations and the number of inner iterations are837

reduced, leading to less computational time in general. All options share similar behavior from the838

standpoint of the width of the confidence interval and its coverage.839

We next investigate the sensitivity of chosen parameters such as the sample size increase rate840

for the proposed approaches. We observe from Table 2 and Table 3 that, as opposed to what has841

been suggested in theory (Theorem 5.3), Algorithm 6.1 with a linear sample size schedule performs842

competitively with the one with a geometric sample size schedule in our test instances. This may843

be because the algorithm “Sequential-BP-L(∆)” in Table 2 with a value ∆ = 100 mimics the844

behavior of a geometric sequence. To validate this suspicion, Table 4 presents the performance of845

“Adaptive-seq-BP-L(∆)” implemented with a linear sample size schedule having a smaller increase846

∆ = 10 and “Adaptive-seq-fixed(c1)” with a smaller geometric increase rate c1 = 1.1. We also847

display the performance of “Adaptive-seq-dyn(c0, ch)” with c0 = 1.05, ch = 2 and with C1 starting848

at 1.1, alongside these algorithms.849

Comparing between Table 4 and Table 3, we see that the performance of “Adaptive-seq-BP-850

L(10),” where the sample size increases by 10 in each iteration, is significantly worse than “Adaptive-851

seq-BP-L(100),” where the sample size increases by 100 in each iteration. Although the final sample852

size nL is lower at stopping when a slower linear sample size schedule is utilized, this comes at the853

price of a larger number of outer and inner iterations, leading to substantially more computational854

time. The same effect happens to option “Adaptive-seq-fixed(c1)” as well, but at a much less855
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Table 4
Computational results of Algorithm 6.1 with the fixed-width stopping criterion and linear sample size schedule

proposed in [5] with an increase of 10 scenarios per iteration (“Adaptive-seq-BP-L(10)”), Algorithm 6.1 with a
geometrically increasing sample size schedule with rate c1 = 1.1 (“Adaptive-seq-fixed(1.1)”), and Algorithm 6.1
with a geometrically increasing sample size schedule having a dynamic rate (“Adaptive-seq-dyn(1.05, 3)”), with C1

starting at 1.1, on our test instances DEAK and DEAK-H.

Ins N Adaptive-seq-BP-L(10) Adaptive-seq-fixed(1.1) Adaptive-seq-dyn(1.05, 3)
Time M(L, nL) Time M(L, nL) Time M(L, nL)

40x20
50K 3.2 37(23,551) 2.8 36(22,760) 1.7 21(6,2797)
100K 3.5 39(24,579) 2.7 35(21,721) 1.7 21(6,2711)

40x40
50K 1.4 17(8,249) 1.4 19(9,250) 1.7 14(5,1319)
100K 1.3 17(7,239) 1.4 19(9,252) 1.5 14(5,1143)

40x60
50K 2.5 27(6,204) 2.6 29(7,188) 2.3 25(4,421)
100K 2.1 26(5,186) 2.7 30(7,193) 2.1 25(4,369)

60x20
50K 102.5 144(93,1945) 30.8 87(36,2760) 10.2 58(7,6383)
100K 103.8 143(93,1936) 31.1 87(36,2768) 10.5 58(7,6435)

60x40
50K 47.9 92(24,560) 38.2 90(21,682) 15.5 73(6,1578)
100K 51.3 92(24,572) 37.1 88(21,665) 16.7 72(6,1733)

60x60
50K 3.9 35(7,233) 4.4 38(9,235) 3.0 30(4,459)
100K 3.7 34(7,230) 4.1 37(9,222) 3.3 30(5,539)

40x20 50K 11.6 53(39,875) 7.9 42(28,1410) 4.2 21(7,5371)
High 100K 12.9 54(40,891) 9.5 44(30,1612) 5.1 21(7,6229)
40x40 50K 1.4 14(8,246) 1.4 15(9,231) 1.5 11(5,1030)
High 100K 1.5 14(8,251) 1.5 15(9,238) 1.4 11(5,956)
40x60 50K 263.4 77(30,683) 78.0 65(24,940) 32.8 30(6,3237)
High 100K 200.6 73(28,646) 68.3 63(23,859) 29.3 31(6,2904)
60x20 50K 337.7 128(94,1951) 101.6 73(38,3413) 34.5 45(8,9523)
High 100K 341.5 130(96,1988) 97.6 72(37,3271) 26.8 45(7,7979)
60x40 50K 2283.2 141(59,1271) 268.1 85(31,1758) 97.6 37(7,5817)
High 100K 2075.0 133(55,1196) 261.0 83(30,1710) 78.8 36(7,5363)
60x60 50K 742.6 88(35,793) 134.3 69(26,1106) 53.0 31(7,3987)
High 100K 621.0 82(32,735) 144.6 67(25,1052) 51.0 31(7,3593)

significant level, where utilizing a smaller c1 ends up with a larger number of outer iterations and856

slightly more computational time. On the other hand, the performance of Algorithm 6.1 with a857

dynamic increase rate (option “Adaptive-seq-dyn(1.05, 3)”) does not appear to be impacted much858

from the choice of the starting increasing rate C1.859

7.2.2. Computational results on other test instances. Finally, we present the perfor-860

mance of the best adaptive sequential SAA options (according to the above experiments on DEAK861

and DEAK-H instances) on an additional set of test instances that have a background in “real-862

world” applications. In particular, we consider Algorithm “Adaptive-seq-BP-L(100)” and Algo-863

rithm “Adaptive-seq-fixed(1.5)”. We consider Algorithm “Adaptive-seq-fixed(1.5)” rather than the864

one with dynamic rate, “Adaptive-seq-dyn(1.05, 3)”, as we find in our experiments that the parame-865

ters c0 and ch need to be fine tuned for specific instances in order to yield competitive performance.866

From Table 5, we see that our conclusions made based on the results from the DEAK instances867

also stand for most of this additional set of test instances, except instances ssn and 20-term, which we868

discuss separately since they serve as interesting negative examples. In particular, we see that both869

sequential sampling algorithms Adaptive-seq-BP-L(100) and Adaptive-seq-fixed(1.5) yield high-870

quality solutions and their solution quality validation much more efficiently than PILD-ODA in most871

cases. Using a geometric sequence for the sample size schedule (Adaptive-seq-fixed(1.5) as opposed872
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Table 5
Computational results of the adaptive partition-based level decomposition approach [1] (“PILD-ODA”), Al-

gorithm 6.1 with the fixed-width stopping criterion and sample size schedule proposed in [5] (“Adaptive-seq-BP-
L(100)”) and Algorithm 6.1 with a geometrically increasing sample size schedule with rate c1 = 1.5 (“Adaptive-seq-
fixed(1.5)”) on an additional set of “real-world” test instances.

Ins N PILD-ODA Adaptive-seq-BP-L(100) Adaptive-seq-fixed(1.5)
Time M Time M(L, nL) CI (cov.) Time M(L, nL) CI (cov.)

LandS
50K 18.8 12 0.2 10(2,364) (0.1,100) 0.3 11(3,292) (0.1,100)
100K 35.6 12 0.2 10(2,366) (0.1,100) 0.3 11(3,298) (0.1,100)

gbd
50K 37.5 32 0.5 24(3,602) (0.0,89) 0.5 25(4,545) (0.0,94)
100K 75.9 29 0.5 24(3,582) (0.0,94) 0.5 25(4,576) (0.0,94)

cep
20K 6.9 5 0.1 4(1,280) (0.0,99) 0.1 4(1,145) (0.0,99)
50K 17.1 4 0.1 4(1,292) (0.0,100) 0.1 4(2,151) (0.0,100)

pgp2
20K 13.7 20 2.1 65(4,700) (0.1,66) 2.7 87(5,892) (0.1,64)
50K 31.0 22 2.3 68(4,732) (0.1,53) 2.2 77(4,727) (0.1,49)

4node
20K 211.5 54 2.2 64(1,146) (0.0,80) 2.1 65(1,114) (0.0,75)
50K 487.4 51 2.2 64(1,144) (0.0,80) 1.9 63(1,111) (0.0,82)

retail
20K 82.4 54 140.0 503(16,3136) (0.1,80) 87.0 305(10,6704) (0.1,91)
50K 179.3 53 123.9 469(15,3040) (0.1,78) 91.9 302(10,6998) (0.1,86)

baa99-20
20K 735.3 187 593.3 347(12,2346) (0.1,98) 383.4 354(9,3454) (0.1,100)
50K 1670.4 184 659.7 366(12,2344) (0.1,100) 380.4 356(9,3349) (0.1,100)

20-term
2K 1367.9 616 2451.3 596(2,212) (0.1,82) 1889.8 657(2,148) (0.1,82)
5K 1617.0 726 2571.0 554(2,280) (0.1,62) 2687.5 696(2,188) (0.1,82)

ssn 5K 6482.9 804 - 2028(6,1104) (17.0,100) - 2477(7,1586) (16.2,100)

to Adaptive-seq-BP-L(100)), further computational enhancements are obtained. The sequential873

sampling algorithms usually end up with a larger number of inner iterations than the deterministic874

algorithm PILD-ODA that employs the full set of samples. However, the computational savings875

brought by the smaller sample sizes used in the sequential sampling algorithms, which are reflected876

in the amount of work involved per inner iteration, turn out to offset the increase in the number of877

inner iterations on these instances. This is consistent with what our theoretical results presented878

in Section 5. In addition, we can observe some “undercoverage” phenomenon for pgp2 instances879

(as shown in column “cov.”), which is somewhat expected as the variance associated with their880

solutions is quite large [3]. Procedures that employ more than a single replication, such as A2RP881

proposed in [3], can be used to address the issue of “undercoverage”.882

As noted earlier, the problem instances ssn and 20-term are interesting as negative examples,883

where the proposed sequential sampling algorithms do not yield gains realized in other problem884

instances. Instance ssn is challenging most probably due to the high inherent variance of the885

underlying random variables and the associated computational challenge in solving the second-stage886

problems while also reporting solution accuracy. For instance, observe from Table 5 that both887

options Adaptive-seq-BP-L(100) and Adaptive-seq-fixed(1.5) fail to provide confidence intervals888

with a satisfactory width within the stipulated time limit. We suspect that the variance associated889

with the second-stage optimal cost, along with the strict nature of the stopping criterion, contributes890

to ssn being in contrast with other test instances appearing in Table 5. The negative effect of such891

high variance can be mitigated, at least in principle, by directly using variance reduction techniques,892

or through alternative stopping ideas such as that proposed in [66].893

The negative context presented by the instance 20-term appears to be different in spirit than894

ssn. Specifically, observe that Adaptive-seq-BP-L(100) and Adaptive-seq-fixed(1.5) exhibit longer895

computational times than the deterministic algorithm PILD-ODA on instances 20-term despite896

having a small number of outer iterations and small sample sizes used in each outer iteration. In897

fact, most of the computational effort is expended on solving the master problem, while the second-898

stage subproblems can be solved efficiently. The increased effort in solving the master problem could899
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be because the “warmstart” feature that worked well for other instances is not as effective here,900

since “recovering” a lower cutting-plane approximation using the dual vector information stored901

from previous iterations, although “generated on the fly,” requires the problem to be re-solved902

with a new right-hand-side at every re-start, and whenever any new first-stage decision vector is903

generated by the algorithm. This special feature of 20-term — time-consuming master problems904

alongside easily solved second-stage problems — means that our implementation’s premise of the905

total computational burden being dominated by the task of solving second-stage LPs is not true in906

the 20-term context. The clear lesson from 20-term is then to adapt the implementation to explicitly907

account for the cost of solving the master problem alongside the cost of solving the second-stage908

problems, potentially leading to the use of a larger constant c1 in such contexts. In addition,909

alternative “warmstarting” techniques for sequential sampling algorithms, such as those arising in910

stochastic decomposition [31, 32] and stochastic dual dynamic programming algorithms [44], may911

be more effective in relieving the computational challenges in repeatedly solving the master problem912

on these instances.913

8. CONCLUDING REMARKS. We propose an adaptive sequential SAA algorithm to914

solve 2SLPs. During each iteration of the proposed framework, a piecewise linear convex opti-915

mization sample-path problem is generated with a scenario set having a specified size, and solved916

imprecisely to within a tolerance that is chosen to balance statistical and computational errors. We917

find that (i) the use of an appropriate solver to solve the sample-path problems, (ii) solving each918

sample-path problem only imprecisely to an appropriately chosen error tolerance, and (iii) the use919

of warm starts when solving sample-path problems, are crucial for efficiency.920

Our theoretical results suggest that the optimality gap and the distance from the true solu-921

tion set (of the generated stochastic iterates) converges to zero almost surely and in expectation.922

Moreover, when the sample sizes are increased according to a geometric rate, the fastest possible923

convergence rate under iid Monte Carlo sampling is preserved. This result is analogous to the924

O(ε−2) optimal complexity rate for deterministic non-smooth convex optimization. Slower sample925

size increases result in a poorer convergence rate. Interestingly, the proposed framework also fa-926

cilitates the use of dependent sampling schemes such as LHS, antithetic variates, and quasi-Monte927

Carlo without affecting convergence or the lower bound on the rate results. The use of such variance928

reduction ideas have been shown to be effective.929

Our extensive numerical studies indicate that the proposed adaptive sequential SAA frame-930

work is able to produce high-quality solutions to 2SLPs significantly more efficiently than existing931

decomposition approaches that solve a single sample-path problem generated using a large sample932

size. Such gains are principally due to the sequential framework, the progressive increase in sample933

sizes in an optimal way, and the use of “warm starts” in solving the sample-path problems. Our934

numerical experience has also revealed problem instances having certain challenging features that935

are not directly addressed by the implementations that we have used for illustration. These chal-936

lenges could be mitigated by using alternative solvers that exploit particular problem structures937

and/or other termination criteria such as that proposed in [66].938

We believe that similarly efficient sequential SAA algorithms are possible for large-scale multi-939

stage convex stochastic programs, and possibly even stochastic integer programs. The key appears940

to be principled choices for adaptive sample sizes, solver for the sample-path problems, and adaptive941

optimality tolerance parameters. Ongoing research efforts are accordingly directed.942
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[20] L. Dümbgen, S. A. van de Geer, M. C. Veraar, and J. A. Wellner, Nemirovski’s inequalities revisited,987

The American Mathematical Monthly, 117 (2010), pp. 138–160.988
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