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Structural, geometric and genetic factors predict
interregional brain connectivity patterns probed

by electrocorticography

Richard F. Betzel', John D. Medaglia? Ari E. Kahn
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13, Jonathan Soffer’, Daniel R. Schonhaut? and

Electrocorticography (ECoG) data can be used to estimate brain-wide connectivity patterns. Yet, the invasiveness of ECoG,
incomplete cortical coverage, and variability in electrode placement across individuals make the network analysis of ECoG data
challenging. Here, we show that the architecture of whole-brain ECoG networks and the factors that shape it can be studied
by analysing whole-brain, interregional and band-limited ECoG networks from a large cohort—in this case, of individuals with
medication-resistant epilepsy. Using tools from network science, we characterized the basic organization of ECoG networks,
including frequency-specific architecture, segregated modules and the dependence of connection weights on interregional
Euclidean distance. We then used linear models to explain variabilities in the connection strengths between pairs of brain
regions, and to highlight the joint role, in shaping the brain-wide organization of ECoG networks, of communication along white
matter pathways, interregional Euclidean distance and correlated gene expression. Moreover, we extended these models to
predict out-of-sample, single-subject data. Our predictive models may have future clinical utility; for example, by anticipating

the effect of cortical resection on interregional communication.

correlation structure of spontaneous activity recorded from

neurons, neuronal populations and brain areas'-*. These cor-
relations can be modelled as networks of functionally connected
neural elements and analysed using tools from network science*’.
While functional brain networks can be constructed at any spatial
scale, most applications have focused on the large-scale, where non-
invasive techniques such as functional magnetic resonance imaging
(fMRI), scalp electroencephalography and magnetoencephalogra-
phy make it possible to estimate and analyse whole-brain networks®.
At this scale, past studies have found that functional network orga-
nization varies systematically with cognitive state’, tracks disease
and development®’’, and is specific to individuals'"'?, showing its
potential for classification and diagnosis.

While large-scale network modelling has become commonplace®,
its application to electrocorticography (ECoG) data is less frequent.
ECoG uses electrodes to record electrical activity with high spatio-
temporal resolution at the exposed cortical surface, and remains an
essential tool for seizure localization and functional mapping'*-"°.
Although the number of studies investigating networks recon-
structed from ECoG recordings continues to grow'*>, the gener-
alizability of their findings is limited due to the restricted study of
epilepsy patients, incomplete brain coverage within individuals and
variable electrode placement across individuals. As a result, little is
known about the whole-brain organization of ECoG networks.

Mapping and characterizing the organization of ECoG functional
connectivity (FC) over the entire brain would directly advance both

| he functional organization of neural systems is reflected in the

theory and practice in neuroscience. At the most basic level, it would
further our understanding of how activity is organized across the
brain. Since ECoG directly records activity on the cortical surface,
mapping whole-brain ECoG connectivity would serve as a point of
comparison and validation for networks estimated using other non-
invasive techniques®. Second, it facilitates comparisons with other
imaging and molecular biomarkers, such as structural connectivity*
and gene co-expression patterns®, opening the possibility of con-
structing and studying cross-modal models of ECoG FC. This
approach would give us a better understanding of the factors that
contribute to shaping interregional patterns of ECoG FC. Finally,
because ECoG already has extensive clinical and translational use,
understanding its organization and function as a network could
inform new phenomenological models of disease, and predictive
models for interventions and outcomes®.

Here, we address the issues of sparse and inconsistent brain cov-
erage associated with the use of ECoG, and develop a modelling
framework for constructing whole-brain, parcellation-based and
band-limited FC networks through the consolidation of multisub-
ject recordings from a cohort of individuals with medication-resis-
tant epilepsy. We use these unique data to address two basic research
questions. First, we ask whether the organization of whole-brain
ECoG FC is similar to that of fMRI blood-oxygen-level-dependent
(BOLD) FC. We find that ECoG FC shares a topological correspon-
dence with networks reconstructed from fMRI BOLD, including
correlated connection weights, distance and frequency dependence,
as well as similar modular and system-level structures. Our second
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Fig. 1| Processing pipeline for group-level ECoG FC matrices. a, Schematic showing the overall processing and analysis structure. b, Raw ECoG data
were recorded from electrodes, the placement of which is shown by yellow circles. ¢, The recordings were preprocessed and, for each trial and frequency
band, we constructed a representative correlation matrix. d, We extracted connections that were consistently strong across all trials. e, The result of this
procedure was a set of single-subject, band-limited, inter-electrode ECoG FC networks. Note that in this schematic, the ‘hairball’ diagram of the network
is plotted in an arbitrary space where nodes’ (electrodes’) locations are determined by a network embedding algorithm. This depiction offers a clearer
view of the network'’s organization and heterogeneity of connections; these features are obscured and appear less salient in anatomical space due to the
regular spacing of electrodes. f, We mapped electrode locations to vertices on the brain's surface, and subsequently to brain regions (top). This procedure

resulted in an interregional ECoG FC representation (bottom) of each subject’s inter-electrode network. Again, the locations of nodes (brain areas) in

this layout were determined algorithmically and are not in any anatomical coordinate system. g, We aggregated the electrodes across the entire cohort
(the colour of electrodes indicates the brain region to which they were assigned). h, This procedure enabled us to combine interregional FC networks to
generate an estimate of whole-brain, interregional ECoG FC. i, From this aggregation procedure, we calculated each connection’s average weight across

those observations.

goal builds on our first. Given an estimate of whole-brain ECoG
FC, can we identify the factors responsible for its organization and
their relative contributions? To address this question, we used a
multilinear model (MLM) to explain the variability in ECoG con-
nection weights on the basis of three factors: anatomical connectiv-
ity, interregional distance and correlated gene expression patterns.
We show that the most parsimonious models require multiple fac-
tors, indicating that each factor uniquely contributes to explaining
the variability in ECoG FC. We also show that the performance of
these models can be improved by computing gene expression cor-
relation matrices using restricted subsets of genes. Importantly,
these subsets are enriched for maintenance and regulation of ion
channels and membrane potentials, suggesting genetic underpin-
nings of ECoG connectivity. Finally, we fit models to single-subject
ECoG networks and show that the best-fitting models exhibit both a
high degree of specificity (they generate the best predictions for the
subject they were fit to) and a high degree of generalizability (they
generate good out-of-sample predictions).

Results

Whole-brain ECoG FC networks. We analysed ECoG recordings
from 86 subjects recorded during resting periods between trials of
a free recall task (Fig. 1). The process of estimating whole-brain FC
from these recordings involved several steps. First, ECoG data were
preprocessed and filtered into 7 frequency bands (1-4, 4-8, 8-13,
13-25, 25-45, 85-115 and 140-165Hz). For each subject and trial,
we calculated the full matrix of inter-electrode correlations from the
filtered time series. This matrix was then transformed into an inter-
regional correlation matrix by mapping electrodes to n=114 brain
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regions based on their locations in Montreal Neurological Institute
(MNI) standard space”. Finally, interregional matrices were aver-
aged over trials and aggregated across subjects (see Supplementary
Figs. 1 and 2 for electrode and connectional coverage). This process
resulted in seven band-limited and group-representative correlation
matrices, A"°°° € R"", where each element A "°°C represented the
average correlation (that is, FC) of electrodes located near region i
with those located near region j. We refer to these matrices as ECoG
FC throughout this report (see Methods for more details of network
construction). Note that ECoG and fMRI BOLD assay the same
organ (the human brain), and that FCs estimated from these dif-
ferent recording modalities represent complementary views of the
same underlying networks.

ECoG and BOLD FC feature similar global architectures. Whole-
brain FC is thought to reflect the brain’s intrinsic architecture and to
vary systematically with cognitive state, disease and development.
While FC estimated from the fMRI BOLD signal is well studied,
little is known about the architecture of whole-brain ECoG FC.
From a practical perspective, it would be useful to compare BOLD
and ECoG FC to better understand their shared versus unique fea-
tures. We therefore compared the network organization of ECoG
FC directly with that of BOLD FC (see Methods for more informa-
tion on fMRI BOLD acquisition and network construction).

In Fig. 2a, we show the upper triangle of the BOLD and ECoG
FC (1-4Hz) matrices side by side. On the basis of visual inspection
alone, the two matrices have some commonalities, including evi-
dence of long-distance correlations. As a more quantitative assess-
ment of the similarity of BOLD and ECoG FC, we computed the
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Fig. 2 | Relationship between group-level ECoG and BOLD FC. a, Side-by-side comparison of ECoG FC (1-4 Hz) and BOLD FC. b, Scatterplot of ECoG
FC (1-4 Hz) with BOLD FC. The black line represents the best linear fit. ¢, Pearson correlation between ECoG and BOLD connectivity as a function of

frequency band.

Pearson correlation coefficient between their connection weights
(Fig. 2b; again, shown for the 1-4 Hz band). We note that this cor-
relation was computed using group-composite BOLD and ECoG
FC, and based on the linear relationship between 2,908 points.
These points represent the set of functional connections for which
we obtained an estimate of ECoG FC. We observed statistically sig-
nificant correlations across all frequency bands (Fig. 2¢; P< 107"
false discovery rate controlled at g=0.05 to account for multiple
comparisons). The strongest correlation was observed in the slow-
est frequency band (1-4Hz; Spearman rank correlation p=0.37;
P < 107" Fig. 2¢), suggesting that slow, coherent fluctuations in the
ECoG signal may contribute to observed patterns of BOLD FC. It is
worth noting that the magnitude of the correlation between ECoG
FCand BOLD FC, although statistically significant, was nonetheless
quite modest.

ECoG modules overlap with functional systems. Many stud-
ies have shown that BOLD FC can be decomposed into modules
of densely interconnected brain regions”. These modules map
closely onto patterns of task-induced activations and recapitulate
the brains large-scale functional and cognitive systems"”. Here,
we asked whether it was possible to identify modules with similar
topographical features by applying module detection algorithms to
low-frequency (1-4 Hz) interregional ECoG FC, as it exhibited the
strongest correlation with BOLD FC across preprocessing pipelines.
To address this question, we first explored the space of possible
ECoG FC modules using the well-known modularity maximization
technique (see Methods)* (see Supplementary Fig. 3 for a schematic
illustration of this procedure). This procedure generated high-qual-
ity partitions of brain regions into non-overlapping modules, which
were represented as indicator vectors (the ith element of a vector
was equal to ‘1’ if brain region i belonged to that module, and was
equal to ‘0’ otherwise). Next, we computed the spatial similarity of
detected modules with seven canonical brain systems correspond-
ing to the dorsal attention, cognitive control, default mode, visual,
limbic, somatomotor and salience networks'.

Of all detected modules, approximately 80% exhibited greater-
than-expected similarity to one or more brain systems (P<0.05;
permutation test), suggesting that there exists a broad correspon-
dence of ECoG FC modules and brain systems. Here, similarity
was calculated using the Jaccard index, and the observed value was
compared against a null distribution generated by randomly and
uniformly permuting module and system labels (see Methods for
more details). In Fig. 3a, we show module indicator vectors grouped
according to the system with which they shared the greatest simi-
larity. In Fig. 3b, we show the average vector for each system. In
addition to this quantitative analysis, we also visualized these data
using two other approaches. In Fig. 3¢, we show the results of a
principal component analysis on the full set of indicator vectors,
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and we visualize the detected modules in a two-dimensional space.
In this plot, each point represents a detected module whose colour
measures that module’s ‘purity’ (grey points are modules that have
no clear correspondence to a brain system, whereas modules with
clearer mappings to brain systems are coloured brightly). Overall,
we found that modules with high similarity to a given brain system
are grouped close to one another, supporting the intuition that the
detected modules had a strong correspondence with known cogni-
tive systems. Finally, we visualized a subset of the detected modules
in anatomical space. We did this by identifying and averaging over
the ten module indicator vectors with the greatest similarity to each
cognitive system (Fig. 3d). We also show that, in general, these aver-
age vectors were uncorrelated with one another (Fig. 3e).

The correspondence of ECoG modules and canonical systems
suggests that, despite differences in modality and small-scale fea-
tures (for example, the precise weights of connections), much of
the large-scale structure of brain network organization observed
in other neuroimaging modalities from which these canonical sys-
tems can be derived is preserved in ECoG FC. Moreover, the cor-
respondence of modules to the brains system-level architecture
suggests that low-frequency ECoG FC might be especially useful
for studying cognitive processes. Nonetheless, the correspondence
between ECoG FC modules and canonical systems is imperfect
(note that in Fig. 3d the posterior and lateral components of the
default mode are poorly recapitulated by detected modules). The
presence of such differences suggests that while whole-brain
ECoG FC shares many features with BOLD FC, it nonetheless
offers distinct and complementary perspectives on the brain’s
functional architecture.

Functional connections are band specific and distance depen-
dent. The existence of strong modular structure that maps onto
well-known cognitive systems motivates the question of what other
principles might explain the architecture of ECoG FC. To probe this
question, we began by examining the degree to which the physical
distance separating brain regions might play a role in shaping the
observed FC. Specifically, we hypothesized that long-distance coor-
dination of brain areas is supported by the correlation of frequency-
specific fluctuations®’. This effect has been previously observed
in inter-electrode FC networks®, although the extent to which it
persists at the level of brain regions remains unclear. To test our
hypothesis, we assessed whether the magnitude of ECoG FC was
related to connection length as estimated by Euclidean distance.
We observed a statistically significant inverse relationship between
these two variables (P < 107%), indicating that the correlation mag-
nitude of the ECoG signal within proximal regions tends to be
stronger than that between distant regions, possibly as a reflection
of cost and energetic constraints™ (Fig. 4a; as examples, we show the
slowest and fastest frequency bands).
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Fig. 3 | Relationship between group-level ECoG modules and canonical systems. We wished to assess whether modules detected in ECoG FC mapped
onto canonical brain systems (that is, dorsal attention (DAN), control (CONT), default mode (DMN), visual (VIS), limbic (LIM), somatomotor (SMN)
and salience (SAL) networks). a, Each block depicts indicator vectors corresponding to detected modules (based on ECoG FC in the 1-4 Hz range) and
the system to which they were most similar. Rows represent brain regions (the horizontal bars divide brain systems from one another) and columns
represent different detected modules. b, Averaging over all modules assigned to a given system produced a mean assignment vector. ¢, We also performed
a principal components analysis of all detected modules. We plotted the position of each module, using as coordinates only the values of the first two
components (PC1and PC2). In general, systems were localized in this low-dimensional space, so that modules with similar system assignments appeared
near one another. d, As visual confirmation that the detected ECoG modules were similar to brain systems, we computed the average module assignment
of the top ten modules most similar to each system, and plotted these assignments back onto the cortical surface. While imperfect, these assignments
bore a striking resemblance to canonical systems. e, Finally, we computed the Pearson correlation of mean assignment vectors for each system and found
that, as expected, these vectors were largely independent of one another and uncorrelated.

The strong inverse relationship between connection weight
and distance has implications for the observed modular organi-
zation of ECoG FC. For every detected module, we computed its
size along with its internal density and spatial extent (mean inter-
regional correlation and Euclidean distance, respectively). These
last two measures served as indicators of a module’s cohesive-
ness and anatomical distribution over the cortex. For modules of
a given size, we found that slower frequencies generally exhibited
stronger connection weights and broader spatial extents compared
with faster-frequency bands (Fig. 4b,c). We quantified this intuition
using methods from functional data analysis, which are statistical
tools for comparing continuous curves*. Specifically, for the slow-
est and fastest frequency bands, we computed test statistics as the
summed point-wise difference in mean internal density and spatial
extent as a function of module size. We compared these observed
values against a null model in which modules of the same size were
randomly reassigned to frequency bands. We observed the most
profound differences between the slowest three frequency bands
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(1-13Hz) and the fastest four frequency bands (13-165Hz) (aver-
age: z=21.5+6.5 and corresponding P <107**). This result, which
is in agreement with earlier studies’*, suggests that high-frequency
oscillations modulate local, short-range interactions, but that long-
distance correlations are driven by much slower rhythms. More
broadly, these findings are consistent with previous reports showing
that cognitive and psychological processes are underpinned by are-
ally and frequency-specific patterns of activity™—*.

Predicting whole-brain ECoG FC from geometry, structure and
genetics. Despite the ease with which FC can be measured and
accessed experimentally, it can be viewed epiphenomenally as the
product of interacting structural, geometric and genetic processes.
Structural connections, such as synapses, axonal projections and
fibre bundles, constrain communication patterns among neural ele-
ments, and structure the propagation of activity across the brain and
its correlation patterns*>**. Factors that influence anatomical con-
nectivity also play important, albeit indirect, roles in shaping FC.
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Fig. 4 | Distance dependence of ECoG FC and community properties. a, Edge weight, on average, decreases as a function of distance. We show examples
for the 1-4 Hz (top) and 140-165 Hz (bottom) frequency bands. On average, slower-frequency bands exhibited a greater proportion of strong, long-
distance correlations. This relationship was evident at the level of brain modules. b, For modules of a given size (number of nodes), slower-frequency
bands tended to have a greater spatial extent (mean interregional distance). As an example, we show scatterplots (left) of the spatial extent as a function
of size for modules detected using 1-4 and 140-165Hz ECoG FC. Each point represents an individual module, and the lines represent the mean spatial
extent as a function of distance. For completeness, we also show the mean spatial extent as a function of module size for all frequency bands (right).

¢, Similarly, for a given size, the module density was greater for ECoG FC computed in slower-frequency bands compared with faster-frequency bands.

As an example, we compare 1-4 with 140-165 Hz (left). Again, each point represents a single module and the lines represent the mean module density

as a function of size. For completeness, we also show the mean module density as a function of size for all frequency bands (right).

The brain’s intrinsic geometry and its drive to reduce metabolic and
material connection costs result in wiring patterns that favour short,
low-cost connections over longer, more costly connections™*'.
Similarly, genetic factors regulate dendritic arborization*’, myelin
integrity*>** and even rhythmic oscillatory activity*. Understanding
how these and other factors shape functional network organiza-
tion remains one of the overarching goals of network neurosci-
ence’. While a number of studies have investigated how they relate
to BOLD FC, virtually nothing is known about the relationship of
these factors to networks estimated from ECoG.

To better understand how brain structure, geometry and genet-
ics influence ECoG FC, we investigated a set of nested MLMs
that generated predictions of ECoG FC connection weights,
AECOG A ECoG
A =[A,
nation of three predictors, each representing a different neurobio-
logical mode capable of influencing ECoG FC: search information,
S=[S;], which is computed from the matrix of reconstructed white
matter fibre pathways, measures the ‘hiddenness’ of the shortest
anatomical path between region i and region j**'% D=[D,], the
Euclidean distance between region i and region j; and G=[G,], the
Pearson correlation between region i and region j’s gene expression
profiles (averaged across two donors) (see Methods). Model perfor-
mance was defined as the Pearson correlation between the ECoG
FC generated by the model and the observed ECoG FC.

I Predictions were made based on a linear combi-

This modelling framework is built on the assumption that
whole-brain FC, which is thought to underpin cognitive function,
depends on spatial, structural and genetic factors. The relationship
of spatial and structural factors to FC is intuitive—brain areas that
are strongly connected structurally and/or located near one another
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are also likely to be connected by strong functional connections.
In addition, we included a genetic factor, as gene expression levels
are known to influence local cellular function”. In our model, and
in line with recent work®**, we hypothesize that brain areas with
similar expression profiles (and presumed similar cellular function-
ality) are also likely to be functionally connected to one another.
The full MLM including all three predictors is given by (Fig. 5a):

ACC=p +BS+B,D+p.G (1)

We tested all possible combinations of predictors, constituting
seven models in total, and identified the optimal model for each
frequency band based on the Akaike information criterion (AIC)*.
For a given model, the AIC was calculated as:

RSS

nsamp

AIC=ng, log

samp

+2K )

where 1, RSS and K are the total number of samples (pairs of
brain regions for which ECoG FC information was available), the
residual sum of squared errors and the total number of predictors
(including the constant f,), respectively. The value of n,,, was the
same for all models, but varied with frequency band; models dif-
fered from one another only in terms of RSS and K.

The models that we consider are simple in the sense that they
predict the magnitude of ECoG FC given a small set of predictors.
This class of models has the distinct advantage of interpretability;
since the number of predictors is small and their relationship to
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genetics (gene expression correlation matrix or its optimized form, G or G*) are used to generate predictions of ECoG connectivity. The regression
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side for the lowest-frequency band (c; 1-4 Hz) and the highest-frequency band (d; 140-165Hz). The left half of each plot shows the observed pattern of

ECoG FC, while the right half shows the pattern generated by the model.

ECoG FC is linear, comparing the differential contributions of each
factor is straightforward and tractable. However, these models are
also amechanistic and do not offer process-based and neurophysi-
ological explanations for how structural, distance and genetic fac-
tors shape ECoG FC. In general, models of FC span a continuum
from simple and predictive to mechanistic and causal. Our decision
to focus on the simpler class of models is in line with recent cross-
modal studies relating structural and functional imaging modalities
to one another”*’ and, critically, allows us to parse the contribu-
tions of structure, distance and genes in explaining the variability of
ECoG FC connection weights.

Single-factor models. The simplest models we tested used single
factors (S, D or G) to predict ECoG FC. Despite their simplicity, we
found that in some cases they performed surprisingly well (Fig. 5b).
Across all frequency bands, search information and Euclidean dis-
tance performed the best. The correlation of modelled and observed
ECoG FC based on either of these factors never fell below r=0.345,
and in the highest-frequency bands reached a level of r=0.654. In
contrast, correlated gene expression consistently performed worst,
achieving a maximum correlation of r=0.156.

These observations prompted us to pursue two additional exper-
iments. First, because search information and Euclidean distance
performed similarly, and due to ongoing debate over the role that
distance plays in shaping anatomical connectivity (used to estimate
search information), we wished to test whether search information
generated statistically significant predictions of ECoG FC above
and beyond that of Euclidean distance. As expected, we found that
search information (derived from the network of white matter con-
nections) and distance were correlated with one another (r=0.74;
P<107"). To assess search information’s unique contribution to
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ECoG FC, we partialed out the effect of distance and used the resid-
uals to model ECoG FC. This analysis revealed that, while the over-
all magnitude of correlation is attenuated, the residuals nonetheless
can account for some of the variance in ECoG FC (maximum Pvalue
(Ppay) =~1.3X1077; Supplementary Fig. 4). In showing a close cor-
respondence between structural connectivity and distance, these
results corroborate past studies that documented similar relation-
ships. Also in line with past work, we show that search information
(a measure based on structural connectivity) nonetheless makes a
unique contribution in explaining the variability in ECoG FC con-
nection weights beyond that of distance alone.

Second, we wished to better understand why correlated gene
expression performed so poorly in explaining ECoG FC. One
hypothesis is that ECoG FC has little or no genetic basis. However,
past studies have refuted this hypothesis**, consistently showing a
non-trivial relationship between genetics and FC, although medi-
ated by a small subsets of genes. This evidence prompted the alterna-
tive hypothesis that ECoG FC could be better explained by shifting
our focus away from the correlation patterns of >10,000 genes and
narrowing our focus to the correlation patterns of small groups.
Because the problem of identifying such groups is computationally
intractable, we resorted to numerical methods for generating esti-
mates. Briefly, we used a simulated annealing algorithm to optimize
model performance while varying the size of the gene group (from
10-360 in increments of 10) and the membership of the gene group
(see Methods section ‘Gene ECoG optimization’ for more details;
Supplementary Fig. 5). We repeated this procedure separately for all
seven frequency bands. With groups of 181 +23 genes (mean +s.d.
across frequency bands), we found that we could dramatically
improve the model performance (Fig. 5b). Improvements were
greatest in the slowest-frequency band, with the performance of the
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genetics single-factor model increasing from r=0.043 to r=0.523.
We refer to the correlation matrix of genes’ expression profiles as
G, indicating that the gene list was optimized to maximize its cor-
respondence with ECoG FC. Note that in all subsequent analyses we
use these optimized lists of genes in place of the complete list.

Multifactor models. In addition to the single-factor models, we
explored increasingly complex models, which included combi-
nations of multiple factors. Seeking a balance between a model’s
explanatory power and its complexity, we used the AIC to iden-
tify the most parsimonious model for each frequency band. For
the slowest frequency, the optimal model included two predic-
tors (search information and optimized gene co-expression). For
all other bands, the optimal model included all three predictors
(search information, Euclidean distance and optimized gene co-
expression), indicating that the brain’s functional architecture,
when estimated as ECoG FC, is shaped by a plurality of factors
(Fig. 5b). We show examples of ECoG FC generated by the model
for the lowest (1-4 Hz) and highest (140-165Hz) frequency bands
(Fig. 5¢,d). It should also be noted that while all models tested
here were fit using connections from across the entire brain, this
framework can easily be extended to the level of individual brain
systems, and it can be fit based on specific subsets of connections
(see Supplementary Materials section on system-level MLMs and
Supplementary Figs. 6-8).

Predicting single-subject ECoG FC. To this point, we have dem-
onstrated that ECoG FC has properties similar to BOLD FC and
that, with measures based on brain structure, geometry and genet-
ics, we can explain variability in the strength of ECoG FC between
brain regions. These analyses were carried out using group-rep-
resentative data, which unfortunately makes it impossible to dis-
entangle the contributions of individual subjects. In contrast,
subject-level predictive models have important clinical implica-
tions and open the possibility for predicting functional effects of
neurosurgery or stimulation®.

In the following section, we extend the group-level modelling
framework to the level of single-subject data. Our aim is to show
that the same factors that combine to explain variance in group-
level ECoG FC are generalizable to the level of single subjects and
vice versa, suggesting a common set of organizational principles
acting at both levels. To achieve this aim, we show that the group-
level models make good predictions of single-subject, out-of-sam-
ple ECoG FC. We also confront the more challenging task of fitting
the model to incomplete, single-subject data and, with the result-
ing models, predicting the ECoG FC of other subjects. We find that
the single-subject models exhibit stereotypical differences unique
to each individual, but nonetheless remain highly generalizable and
can predict the ECoG FC of other subjects. At the same time, the
generalizability of group-level models indicates that ECoG FC may
be organized based on a shared set of principles.

First, we tested the group-level model’s robustness using a ‘leave-
one-subject-out’ procedure in which we estimated whole-brain
ECoG FC matrices using data from n—1 subjects (Table 1). Next,
we fit the full model using these data, and used the regression coef-
ficients to predict the ECoG FC of the left-out subject (Fig. 6a). We
repeated this procedure, holding out each subject, and found that
generally we could predict single-subject ECoG FC with a high
degree of accuracy using the group-estimated regression coeffi-
cients. Across all frequency bands, we observed that the interquar-
tile range of correlations between predicted and observed ECoG FC
always excluded zero (Fig. 6b), showing that the MLM approach has
utility in predicting subject-level ECoG FC.

Using n—1 subjects to fit model parameters and estimate
whole-brain ECoG FC is still relatively easy; the whole-brain,
interregional ECoG FC matrix contains thousands of observations
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Table 1| Results of the ‘leave-one-subject-out’ procedure

Percentile
Frequency (Hz) 5th 25th 50th 75th 95th
1-4 0.212 0.391 0.522 0.654 0.795
4-8 0.208 0.407 0.550 0.638 0.794
8-13 0.158 0.478 0.602 0.696 0.800
13-25 0.263 0.565 0.650 0.703 0.853
25-45 0.269 0.575 0.649 0.716 0.818
85-115 0.330 0.582 0.705 0.789 0.860
140-165 0.378 0.635 0.751 0.827 0.887

Each row represents one of seven frequency bands. The columns represent percentiles of
correlation coefficient distributions. These distributions were obtained using a ‘leave-one-subject-
out’ procedure that entailed using the MLM fit built on data from n—1 subjects to predict the
interregional ECoG FC of a held-out subject. The correlation coefficients measure the magnitude
of the correlation between that subject’s predicted and observed FC.

used to fit the MLM, meaning that the optimal parameters are not
especially biased by any single subject (which contributes to only
a subset of the observations). A more challenging task is to fit the
model using single-subject data, which offer far fewer observa-
tions of ECoG FC and are limited by the placement of electrode
grids in terms of which interregional observations are available.
Nonetheless, we tested whether models fit to individual subject’s
ECoG FC could be used to predict the ECoG FC of the remain-
ing n—1 subjects (Fig. 6¢). If so, this finding would support the
hypothesis that ECoG FC is organized according to similar wiring
rules across different subjects.

We found that even with far fewer observations, we were still
able to make good predictions of subjects’ ECoG FC using param-
eters estimated from other subjects’ ECoG FC. As expected, the
parameter fits were subject specific (that is, parameters best pre-
dicted ECoG FC of the subject whose data were used to estimate
it (Fig. 6d)). Remarkably, however, the predictive capacity of these
parameters did not immediately attenuate when they were applied
to other subjects, with interquartile ranges excluding zero (Fig. 6d).
These findings suggest excellent generalizability and the possibil-
ity that similar organizational principles explain ECoG FC net-
work architecture across subjects. Similar to the previous sections,
we observed that the predictive capacity increased with frequency
(Fig. 6e), suggesting that intersubject variability may be most pro-
nounced in slower-frequency bands.

Gene Ontology analysis. In the previous section, we found that
when we calculated the correlation of gene expression profiles
across the brain using ~30,000 genes, the resulting matrix was
weakly related to ECoG FC. Moreover, we found that by focusing on
a small subset of genes we could dramatically improve this relation-
ship. These findings are in line with past studies, in which the cor-
related expression levels of small subsets of genes (~10-100) were
found to be related to patterns of BOLD FC.

One risk associated with this approach is that, due to the number
of genes, it might be trivial to find a small subset whose correlated
expression profiles are similar to ECoG FC. In other words, optimiz-
ing an objective function could be effectively amplifying random
fluctuations in a large dataset. One way to discount this possibility is
to demonstrate that the genes, which constitute the optimized list are
not randomly selected and that, collectively, they comprise compo-
nents of pathways that perform specific biological processes and cel-
lular functions, or that code for cellular components. To assess such
biological specificity, we performed Gene Ontology analysis on the
genes comprising the optimized list. We used the software GOrilla
(http://cbl-gorilla.cs.technion.ac.il) to compare the optimized list of
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Median values are also displayed numerically above the box plots.

genes against the complete list of background genes®*2. We focus
our analysis on the slowest-frequency bands (1-4 and 4-8Hz)
because the ECoG FC generated by the linear models in these bands
exhibited the greatest percentage increase as a result of replacing the
co-expression matrix calculated from the full set of genes with the
corresponding matrix calculated from the optimized list.

In general, the Gene Ontology analyses of both frequency bands
resulted in similar findings, indicating that the optimized gene lists
were enriched for biological functions related to the transport of
ions across channels and cellular membranes. Near the top of both
lists were ontology terms for ‘sodium ion transport, ‘membrane
depolarization during action potential, ‘monovalent inorganic
cation transport, ‘regulation of transport, ‘sodium ion transmem-
brane transport’ and ‘sodium ion transport’ (P, = 8.5 X 107).
Similarly, in terms of molecular function, both frequency bands
were enriched for ‘voltage-gated ion channel activity involved in
regulation of postsynaptic membrane potential’ and ‘voltage-gated
sodium channel activity’ (P,,,value=4.79x107*). Also, in terms
of cellular components, the 4-8 Hz frequency band was enriched
for terms related to membrane channels, including ‘cation chan-
nel complex;, ‘voltage-gated sodium channel complex] ‘ion channel
complex, ‘transmembrane transporter complex, ‘potassium chan-
nel complex; ‘transporter complex’ and ‘sodium channel complex’
(Prax value=4.67x107*) (see Supplementary Tables 4-8 for a com-
plete list of enriched terms).

In a previous section, we demonstrated that the correspondence
of ECoG FC and patterns of correlated gene expression could be

NATURE BIOMEDICAL ENGINEERING | VOL 3 | NOVEMBER 2019 | 902-916 | www.nature.com/natbiomedeng

strengthened by narrowing our focus onto select subsets of genes.
Here, we offer additional support to further strengthen this rela-
tionship, demonstrating that the optimized list of genes is enriched
for terms associated with membrane channels and ion transport.
These findings further suggest a molecular and genetic underpin-
ning of ECoG FC.

Robustness to methodological variation. The results presented
here depended on a particular sequence of decisions concerning how
to process, analyse and synthesize several multimodal brain imaging
datasets. To ensure their robustness, we confirmed that our results
hold under reasonable variation to this sequence. Specifically, we
demonstrated the consistency of ECoG FC networks with respect to
variation in the distance threshold used in the electrode-to-region
mapping (Supplementary Fig. 9) and using different measures of
FC, namely the phase-locking value and a lagged correlation mea-
sure (Supplementary Figs. 10 and 11). We also tested variants of the
MLM in which we substituted the current gene expression correla-
tion matrix with one constructed from genes shown to be predic-
tive of BOLD FC in a previous study (Supplementary Fig. 12 and
Supplementary Table 1), and in which we substituted the current
search information matrix with one estimated from a second inde-
pendent structural connectivity dataset (Supplementary Fig. 13 and
Supplementary Table. 2). We also fit models using a restricted subset
of observations, namely the connections that were observed in all
seven bands (Supplementary Table 3). In addition to methodological
variation arising from the choice of parameters and processing
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details, we also tested different strategies for modelling single-
subject ECoG FC other than the MLM framework. Briefly, these
alternative procedures included directly computing the correlation
between subject- and group-level ECoG FC, assigning connections
to bins according to their weight and testing whether the model
recovered the correct bins, as well as separately modelling connec-
tions that were observed (included in the group ECoG FC and used
to fit the model) and unobserved (present in subject-level data but
not in the group matrix) (Supplementary Fig. 14). Additionally, to
reduce the possibility of overfitting using our gene optimization
algorithm, we repeated the MLM analysis in its entirety, including
model selection, with a gene co-expression matrix calculated using
genes preselected based on those identified in ref. *° (Supplementary
Fig. 15). Finally, we demonstrate that our results are not qualita-
tively different after correcting our estimates of ECoG FC for pos-
sible autocorrelations. We report a close correspondence between
the original and corrected ECoG FC (Supplementary Fig. 16) and
we still find that ECoG FC and BOLD FC exhibit their closest cor-
respondence in the slowest (1-4 Hz) frequency band. However, we
also report some diverging results; rather than a decrease in ECoG-
BOLD correspondence as a function of increasing frequency, we
observe a ‘U-shaped’ curve, with the strongest correspondence in
the slowest-frequency band and the next strongest correspondence
in the fastest frequency band. Details concerning these additional
analyses are included in the Supplementary Materials.

Discussion

In this report we propose a technique for estimating whole-brain
FC from ECoG recordings aggregated across multiple subjects.
This approach facilitated the construction of (near) whole-brain,
band-limited ECoG networks that parsimoniously represented
the functional interactions between cortical areas as measured by
co-variation in regional estimates of sensor signals. Visually, these
networks displayed similar topological properties to those observed
in BOLD fMRI resting-state networks—an observation that we
confirmed statistically to be particularly salient in the slowest-fre-
quency bands. We also observed modular architecture in ECoG FC
that bore striking similarity to well-known cognitive systems, sug-
gesting that whole-brain ECoG FC could be a powerful approach
for probing the neural substrate underlying cognitive processes.
Our analysis of whole-brain ECoG FC was complemented by addi-
tional multimodal, multilinear modelling in which we modelled the
variability in the magnitude of interregional ECoG FC based on the
brain’s structural connectivity, its embedding in three-dimensional
space, and correlations among brain regions’ gene expression pro-
files. We found that the optimal models included multiple predictors
and were able to explain nearly half of the total variance in ECoG
FC weights. Moreover, the models displayed utility in predicting
single-subject FC patterns but, nonetheless, exhibited subject-spe-
cific variation, indicating that they were highly generalizable but
also bore the ‘fingerprint’ of an individual.

ECoG network architecture and its drivers. Our study builds on
recent work applying network analysis to study inter-electrode
ECoG FC patterns'®2*?»?*-%5 Whereas these past studies focused
on networks where nodes represented electrodes, which are not
consistent across subjects nor do they cover the whole brain, we
studied interregional ECoG networks. Our effort was similar in this
capacity to another recent paper™. Unlike the other paper, which
aimed in part to relate interregional ECoG FC to cognitive mea-
sures, our focus was on characterizing the basic topological princi-
ples of ECoG FC organization and predicting connectivity patterns
using simple models. Our approach is in line with other models of
FC?, although it has the distinct advantage of modelling FC derived
from ECoG, which has clearer neural provenance* and is less influ-
enced by motion and physiological artefacts than the BOLD signal™.
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Nonetheless, it is important to note that while ECoG and BOLD
record different signatures of brain activity, they both record from
the same organ and assay the same underlying networks, offering
both corroborative and complementary views of their architecture.
These results and the system-level analyses in the Supplementary
Materials suggest that structure, geometry and genetics each play
critical roles in shaping whole-brain patterns of ECoG FC, and that
these roles vary across the brain and are probably system specific.

Cross-modal topological signatures of brain function. One of
the hallmarks of brain networks is their structural, functional and
cross-modal modular organization®. Modules are thought to be
critical for both development and evolution by compartmentalizing
brain areas that perform similar functions”’. Much emphasis of late
has been placed on modules in BOLD FC networks, whose bound-
aries overlap with known cognitive systems, suggesting a possible
network-level correlate of psychological and cognitive processes®.
Here, we demonstrated that interregional ECoG FC networks also
exhibit modular architecture, although the overlap with cognitive
systems is inexact—a finding that is in line with past studies based
on scalp electroencephalography and magnetoencephalography™.
An important question, then, is why the modules appear different.
One possibility is that the ECoG signal carries unique information
about patterns of coupling among neuronal populations. Compared
with the BOLD signal, ECoG represents a more direct measure
of neural activity, and with increased temporal resolution it can
resolve in greater detail the boundaries of putative modules. More
broadly, this mismatch re-emphasizes the brain’s multiplex organi-
zation, in which brain areas are linked to one another via different
connection modalities (for example, structure, correlated activity or
gene expression)®.

We also observed that the spatio-topological organization of
ECoG FC varied with frequency. As a result, the association of
ECoG and BOLD FC was also frequency dependent, with slower
frequencies generally exhibiting stronger associations, in agreement
with other recent studies of ECoG FC*. This finding is of particular
importance, as it suggests an electrophysiological basis for BOLD
FC. Nonetheless, the precise mapping of fluctuations in voltage
traces and broadband power of the ECoG signal (and other electro-
physiological signatures of population activity) to BOLD remains
unclear, with studies reporting associations across a range of fre-
quencies®*°. Future work could be directed toward teasing apart
these frequency-specific contributions to both BOLD and FC in
greater detail.

Basic and clinical utility of prediction. In addition to identifying
factors underpinning ECoG FC, the predictive modelling frame-
work has other advantages. Specifically, it makes predictions about
the magnitude of ECoG FC between brain regions for which we
have no data, complementing previous efforts developing methods
to predict missing data in structural connectomes® and biomarker
data in clinical populations®”. This capability is a particularly useful
feature for a neuroimaging technique whose coverage is inversely
related to the patient’s safety: greater coverage is associated with
greater risk for inflammation and infection®. Moreover, the predic-
tion goes beyond abstract topological predictors of missing data in
complex networks®”" by incorporating actual physiological con-
straints in gene and geometry. While an important methodological
contribution, these predictions also have potential clinical utility in
predicting neurosurgical outcomes in future studies. For example,
one could potentially simulate the effect of cortical resection as
in ref. ** by selectively ‘lesioning’ structural connections, thereby
changing the search information matrix leading to an updated
ECoG FC prediction. The new and original predictions could then
be compared to identify connections whose ECoG FC magnitude
is expected to increase or decrease as a consequence of the lesion.
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In future work, it would be of interest to test the hypothesis that this
prediction could be used as a biomarker to guide surgeries, offer-
ing an additional quantitative statistic linked to surgical outcomes;
for example, to predict the effect of cortical resection. Note that
the clinical utility of this approach is prospective, as the validation
of this approach in a clinical context is beyond the scope of the
present study.

Functional organization of the cerebral cortex. Understanding the
principles that guide the functional organization of neural systems
remains a major neuroscientific goal. Towards this end, we identi-
fied a set of structural, geometric and genetic factors that, collec-
tively, explained variability in the correlation magnitude of electrical
activity recorded from distant brain areas. Our findings suggest that
the brain’s spatial layout and large-scale structural connectivity have
especially strong predictive capacity and (presumably) play impor-
tant roles in determining whether the activity of two brain regions
is likely to become coupled. This notion is in agreement with studies
reporting distance-dependent variation of functional connections”
and close (but not exact) correspondence of interregional correla-
tion to the topology of the underlying structural network*>>-"*,

Interestingly, we found that gene expression correlations had
the least explanatory capacity of all three factors. That interregional
correlations are related, in any way, to the expression levels of spe-
cific genes and transcripts is a relatively recent finding®, and the
mechanisms by which these genetic factors can enhance or suppress
the synchrony of neural activity are not well understood. One possi-
bility is that, like gene-gene co-expression networks in which genes
are connected to one another if their expression levels are correlated
across samples, interregional correlations of gene expression pro-
files are driven by sets of functionally related genes**”*. Allowing for
speculation, these groups of genes might perform similar functions,
such as ion channel regulation, thereby shaping electrophysiological
activity at a low level”. Indeed, studies of gene polymorphisms and
variants and their role in disease have reported differences in seed-
based FC (estimated from fMRI BOLD) between groups’”’®.

Another possibility is that cytoarchitectural and morphologi-
cal patterning, both of which influence large-scale structural”
and (BOLD) FC®, are genetically regulated®’, and thereby have
the capacity to influence correlated interregional electrical activ-
ity. Genetic regulation of structural covariance matrices has been
reported over the course of development®™, and differential gene
expression across the adult human cerebral cortex reflects the
spatial distribution of cell types®. In the present study, we did not
include an estimate of structural covariance in our predictive model
and, to our knowledge, a quantitative large-scale map of cortical
cytoarchitecture is unavailable. Future studies could work towards
addressing these shortcomings.

Simple models of complex systems. Collectively these findings
build on past investigations into the singular roles played by struc-
ture, geometry and genetics in shaping BOLD and ECoG FC**.
While single-predictor models offered reasonable first approxima-
tions of ECoG FC, more complex models offered superior perfor-
mance while maintaining parsimony. Interestingly, we found that
the search information and Euclidean distance had much greater
explanatory power than the correlation pattern of all genes’ expres-
sion levels. However, we also showed that the co-expression pat-
terns of select subsets of genes were robustly related to ECoG FC, in
agreement with past studies®®**.

The models we study here are exceedingly simple. Nonetheless,
they attempt to identify the organizational principles and neuro-
biological factors that shape ECoG FC. These results are a natural
extension of past studies that used similar techniques to model
BOLD FC. However, while the BOLD signal is prone to motion™,
as well as respiratory® and vascular® artefacts, the ECoG signal is

a relatively unimpeded measure of electrical activity, affording us
greater confidence that the FC patterns we analyse are, indeed, of
neuronal provenance.

Methodological considerations. Despite its utility, the predictive
framework we develop is correlative in nature’>". In contrast, the
spontaneous activity of neural elements (and, by extension, FC)
arises from their interactions with one another, which serve to con-
strain some of the observed neurophysiological dynamics®. A truly
mechanistic model, then, is one that incorporates structure and
dynamics to generate synthetic neural activity, which can then be
compared with observed activity and its FC**. Future work could
be directed towards incorporating both distance dependence and
gene expression levels into mechanistic models.

The data that we analysed (ECoG recordings and each of the
predictors) are themselves accompanied by several potential limi-
tations. Despite aggregating recordings from many subjects, there
were nonetheless pairs of brain regions for which we had no estimate
of ECoG FC. This shortcoming could be addressed in the near term
(for example, by defining larger brain regions) and in the long term
with increased cohort size. In addition, the correlation matrices of
brain regions’ gene expression profiles are limited, in that they were
estimated using data acquired from only two subjects®. It is there-
fore unclear to what extent such matrices are, in fact, representative
of the average individual. There are also limitations associated with
the calculation of search information, which is based on a structural
network of interregional, white matter fibre bundles reconstructed
from diffusion-weighted images. The reconstruction procedure
is, however, susceptible to false positives and negatives’*>. While
our use of a consistency-based, group-representative set of tracts
reduces this uncertainty, advances in imaging and reconstruction
techniques are necessary to mitigate its effect.

Another limitation is that the cohort studied here included sub-
jects with medication-resistant epilepsy. While the results of our
models indicate that there was a good deal of within-cohort consis-
tency, whether our results generalize more broadly and to healthy
populations remains unclear. Additionally, it should be noted
that while the data aggregation process enabled us to obtain near
whole-brain estimates of connectivity, it also washed over poten-
tially meaningful intersubject variability. This variability could, in
future studies, be investigated more carefully. Finally, it is worth
noting that the experimental conditions under which the data were
acquired were not strictly resting conditions. Specifically, ECoG
data were recorded during intertrial intervals of a free recall task.
While subjects were not explicitly performing the tasks, they may
have been anticipating their future responses.

We have reported several features of ECoG FC that appeared
to be modulated by frequency content, including the presence of
long-distance correlations and the strength of association with
BOLD FC. While we attribute these effects to meaningful variation
in regional co-fluctuations of the ECoG signal, it is worth noting
that the ECoG signal itself exhibits frequency-specific properties.
Among these properties is a more or less monotonic decrease in
power as a function of frequency. As a result, power tends to be
greatest in the slower-frequency bands, implying that the signal-to-
noise ratio in that range probably exceeds that of faster frequencies.
Consequently, a possible alternative explanation for the frequency-
specific modulation of ECoG FC is the variation in the signal-to-
noise ratio of ECoG. Future work could investigate this possibility
in greater detail.

A final limitation concerns the use of the Pearson correlation
as a measure of both ECoG and BOLD FC. FC is always defined
loosely as a statistical association of activity recorded from distinct
neural elements or locations. The number of measures that satisfy
this criteria is quite large. In fact, there are many examples in the
literature where measures of coherence”, mutual information®,
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phase-locking”, synchronization likelihood™ and others have been
used to measure the strength of FC”. Despite this wide range of pos-
sibilities, the most common choice remains the Pearson correlation.
Because we aimed to maintain continuity with previous literature,
because it is infeasible to compare all measures of FC and because we
already compared three of the more popular measures, we did not
consider computing FC based on fluctuations in broadband power.
Future work can be directed to investigate the relative advantages
and disadvantages of alternative FC metrics in studying ECoG data.

Outlook

In summary, we present a methodological framework for aggregat-
ing single-subject ECoG FC into a cohesive, whole-brain network.
Our work opens the door for future studies to move beyond inter-
electrode networks and investigate properties of interregional FC
in ECoG, ultimately documenting how it is modulated with cogni-
tive state and altered in disease. We further show that ECoG FC
may be underpinned by a combination of structural, geometric and
genetic factors, and that the contributions made by these factors are
relatively consistent across individuals, suggesting a common set of
organizational principles.

Methods

Functional network reconstruction. Subject-specific, inter-electrode ECoG FC. We
analysed ECoG recordings from 86 subjects with medication-resistant epilepsy
(83 of whom had usable data) who were performing multiple trials of a ‘free
recall’ experiment (mean + s.d. number of trials =41.9 +25.6). Research protocols
were approved by the institutional review boards of the participating centres and
hospitals (Columbia University, Dartmouth College, Emory University, Thomas
Jefferson University, Mayo Clinic, National Institutes of Health, University of
Texas Southwestern, Lawrence Livermore National Laboratory and University

of Pennsylvania), and informed consent was obtained from all participants and
guardians. In this experiment, subjects were presented with a list of words and
were later asked to recall as many as possible from the original list. Rather than
focus on word presentation or recall periods, we analysed recordings during

the intertrial intervals when subjects were given no explicit cognitive task. This
task-free or quasi-resting state is common in analysis of fMRI BOLD data, where
the correlation structure of whole-brain spontaneous activity is organized into
subnetworks that reflect the brain’s functional systems”. Specifically, we extracted
10s of ECoG recordings (epochs) before the beginning of each trial. All ECoG
data were resampled to 512 Hz. Artefactual channels were discarded, and the
remaining channels were referenced to the average signal, prewhitened by retaining
the residuals after fitting a first-order autoregressive model to the referenced

time series, stop-filtered to remove line noise and its harmonics, and filtered into
canonical frequency bands of 1-4, 4-8, 8-13, 13-25, 25-45, 85-115 and 140—

165 Hz. To reduce boundary effects and to help ensure stationarity, we discarded
2.5 and 5.0s of data from the beginning and end of each window, resulting in a
2.5 epoch. For each subject and each trial, we computed inter-electrode FC as a
zero-lag Pearson correlation”""". Note that we explore other FC measures in the
Supplementary Material, specifically the subsection entitled ‘Alternative measures
of FC Pairs of electrodes whose correlation magnitude was inconsistent across
trials (that is, the interquartile range included a value of zero) were excluded from
subsequent analyses. We retained those correlations that maintained a consistent
sign across trials and therefore were more likely to be representative of the brain’s
intrinsic functional architecture rather than task-induced fluctuations.

Mapping electrodes to the cortical surface. Electrode locations were manually
digitized using OsiriX software'** and stored as voxels in each subject’s native
coordinate space. These locations were subsequently mapped to the MNI standard
coordinate system using the FSL function img2stdcoord. We compared each
electrode’s location in MNI space with points (vertices) on the fsaverage pial
surface, and assigned each vertex to an electrode if the Euclidean distance between
the two was <dmm. In the main text, we focus on the case where d=3mm,

but we explore d=1, 2, 4 and 5 in the Supplementary Material (Supplementary
Figs. 17 and 18). Each surface vertex was also assigned to one of n=114 brain
regions according to an atlas”, thereby making it possible to map electrodes

to brain regions. We show single-subject electrode-to-surface mappings

in Supplementary Fig. 1.

Group-representative, interregional ECoG FC. For every pair of brain regions (i

and j) and each subject independently, we identified all electrode pairs, 1 and v,
where electrode u was assigned to region i and electrode v was assigned to region
j» and we estimated their average connection weights, generating a subject-specific
interregional ECoG FC matrix. We estimated the connection weight, Ai)F:C"G, in the

group-representative matrix as the average connection weight over all subjects.
We repeated this procedure for each of the seven frequency bands, resulting in
band-limited, whole-brain, interregional ECoG FC matrices. In general, because
of the finite number of subjects and limited cortical coverage, the whole-brain
connectivity matrices still included pairs of regions for which we had no observed
connectivity data. The fraction of observed connections varied across frequency
bands. In order of frequency band, starting with the slowest, these fractions were
45.2,47.0, 45.0, 45.0, 47.3, 54.6 and 60.9% (note that these fractions are with
d=3mm). Note that the synthesis of multisubject ECoG data to generate a whole-
brain estimate of interregional ECoG FC is a non-standard procedure. To our
knowledge, this procedure has been performed in only one other instance™.

Group-representative, interregional correlation matrix of gene expression
profiles. The correlation matrix of brain regions” gene expression profiles was
reconstructed using a similar approach. We downloaded normalized microarray
data from the Allen Brain Institute (http://human.brain-map.org/static/
download)***. The full dataset includes 6 donor brains (aged 18-68 years) for
which spatially mapped microarray data were obtained (~60,000 RNA probes).
We focused on donors 10,021 and 9,861, which included samples (893 and 946
sites, respectively) from both the left and right hemispheres. Subsequently, we
retained only those samples that were located in the cerebral cortex. Next, we
extracted expression profiles for each sample, averaged over duplicate genes,
and standardized expression levels across samples as zscores. The standardized
measure of any sample was used to assess the extent to which a particular gene
was differentially expressed at that cortical location relative to the other cortical
locations in both hemispheres.

In addition to microarray data, the Allen Brain Institute also provided
coordinates representing the location in MNI coordinates where each sample was
collected. This information facilitated the mapping of sample sites to brain regions
in a procedure exactly analogous to our approach for mapping ECoG electrodes.
As a result, we obtained representative expression profiles for each brain region
(provided that there were nearby samples). For each of the two donor brains,
we calculated the region-by-region correlation matrix of standarized expression
profiles. Due to the overall density of the whole-brain sampling, we were able to
generate an estimate of gene expression correlation (a measure of similarity) for
6,286 of 6,441 possible region pairs (~97.6%).

Note that in the absence of a specific hypothesis about which genes were
of particular relevance, we included all genes in our construction of the initial
correlation matrices. In ‘Variants of the gene expression correlation matrix’ in
the Supplementary Material, we follow” and construct correlation matrices using
the same procedures as those described above, but focusing on subsets of genes
identified in that paper. For our procedures related to identifying the set of genes
that optimized the prediction of ECoG FC, see section ‘Gene ECoG optimization’
in the Methods.

Diffusion spectrum image (DSI) connectome data. We analysed a group-
representative, whole-brain structural connectivity network or connectome
generated by combining single-subject data from a cohort of 30 healthy adult
participants. Each participant’s network was reconstructed from DSIs in
conjunction with state-of-the-art tractography algorithms to estimate the location
and strength of large-scale interregional white matter pathways. Study procedures
were approved by the Institutional Review Board of the University of Pennsylvania,
and all participants provided informed consent in writing. Details of the
acquisition and reconstruction have been described elsewhere'*'*°. We studied a
division of the brain into n =114 cortical regions®. On the basis of this division, we
constructed for each individual an undirected and weighted connectivity matrix,
A€ R™ whose edge weights were equal to the number of streamlines detected
betweersl region i and region j, normalized by the geometric mean of their volumes:

— i
A= vy

The resulting network was undirected; that is, A;= A;. These individual-level
networks were then aggregated to form a group-representative network. This
procedure can be viewed as a distance-dependent consistency thresholding of
connectome data, and the details have been described elsewhere'**'*. The resulting
group-representative network has the same number of binary connections as
the average individual and the same edge-length distribution. This type of non-
uniform consistency thresholding has been shown to be superior to other, more
commonly used forms'””. Note that the construction of structural brain networks
from diffusion imaging data using tractography is a fairly standardized process,
and is the only procedure for mapping white matter fibre tracts non-invasively'*.

fMRI BOLD data. fMRI BOLD images were acquired during the same scanning
session as the DSI data on a 3.0 T Siemens Tim Trio whole-body scanner with a
whole-head elliptical coil by means of a single-shot gradient-echo T2* (repetition
time = 1,500 ms; echo time =30 ms; flip angle =60°; field of view=19.2 cm;
resolution 3mm X 3 mm X 3 mm). Preprocessing was performed using FEAT
version 6.0 (fMRI Expert Analysis Tool)'”. Images underwent the following
preprocessing steps: skull-stripping with BET, motion correction with MCFLIRT
(FMRIB’s Linear Image Registration Tool'”?), slice timing correction (interleaved),
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spatial smoothing with a 6mm 3D Gaussian kernel, and high-pass temporal
filtering to reduce low-frequency artefacts. We also performed EPI unwarping
with fieldmaps to improve subject registration to standard space. Images were
transformed to a standard template using FSLs affine registration tool FLIRT'”.
Subject-specific images were co-registered to their corresponding anatomical
images with Boundary Based Registration'"” and subsequently registered to the
standard MNI-152 structural template via a 12-parameter linear transformation.
Lastly, participants” individual anatomical images were segmented into grey matter,
white matter and CSF using the binary segmentation function of FAST version 4.0
(FMRIBs Automated Segmentation Tool'""). White matter and CSF masks for each
participant were then transformed to native functional space and average time
series were extracted. Images were spatially smoothed using a kernel with a full
width at half maximum of 6 mm. These values were used as confound regressors
on our time series, along with 18 translation and rotation parameters, as estimated
by MCFLIRT'",

The average time course for each of the 114 cortical regions was extracted, and
whole-brain, interregional BOLD FC was computed as the Pearson correlation
among all region pairs. Note that the global signal was not regressed out of
regional time series, as past studies have shown that the global signal contains
neurophysiologically and behaviourally relevant information (for example, tracking
relative states of arousal)''>'"*. The full matrix was subsequently averaged across
all subjects to obtain a group-representative estimate (although this averaging
procedure can sometimes introduce unwanted biases at the group level'”). We
denote this BOLD FC matrix as A®°'P. Note that, as with the network construction
from diffusion imaging data, the process of estimating FC from fMRI BOLD data
is fairly standardized and widely used.

Network statistics. Modularity maximization. Real-world networks can be
partitioned into node-level clusters called modules by selecting the cluster
assignments that optimize a particular objective function. The most popular

class are modularity functions, which measure the total within-module weight

of connections minus that which would be expected by chance®. Maximizing
modularity, which results in an estimate of network modules, begins by first
defining a modularity matrix, B, whose elements are given by B;=A;— P;, where
A; and P; are, respectively, the observed and expected weights between nodes i and j.
Given B and a classification of each node into one of K modules, 6,€{1, ..., K}, we
can define modularity to be:

Q= z B,6(op) 3)

Maximizing modularity is accomplished by assigning nodes to communities so

that as many positive elements of B fall within modules as possible.
ECoG

Here, we set Bj=4; " =rC;, where y is a free parameter and Cj is equal to
either 1 or 0 depending on whether a connection was or was not observed between
nodes i and j. We adopted this formulation for two reasons. First, it means that in
effect the null model for existing connections is simply a constant free parameter, 7,
whose value can be tuned to detect smaller or larger modules''®. Second,
it ignores pairs of nodes for which no connectivity data were available and sets
their values in the modularity matrix to 0. In this way, those elements neither
increase nor decrease the objective function, Q, and therefore have minimal
influence on the detected modules.

Rather than focus on ‘definitive’ modules obtained with a single-resolution
parameter, we used a sampling procedure to obtain estimates of differently sized
modules by varying y over a range from 0 to max(A), where max(A) is the largest
observed interregional correlation across all frequency bands. Between these
extremes, we selected 99 additional values of y corresponding to the 1st through
99th percentiles of interregional correlation values. Next, we iterated over all 101
values of y, obtaining a partition at each value, extracting the modules within that
partition and aggregating the unique modules. We repeated this procedure until
sequential repetitions uncovered less than 1% of new modules. We repeated the
full procedure independently for ECoG FC estimated from each frequency band,
detecting 8,075, 7,948, 2,872, 1,122, 958, 1,359 and 1,451 modules in the 1-4, 4-8,
8-13, 13-25, 25-45, 85-115 and 140-165 Hz bands, respectively.

Note that whereas the broader modularity maximization framework is used
frequently in network neuroscience applications*, our modification to make
the modularity equation compatible with networks containing unobserved
connections is new. In addition, the module sampling procedure described above
is also non-standard; the typical approach involves fixing y at a single value,
optimizing modularity and using heuristics to identify a single ‘representative’
set of modules. Our approach allows us to explore a wide range of modules,
making it possible to characterize their variability, and also to study modules
of different sizes'"”

Module and system overlap. We assessed the similarity of modules detected using
modularity maximization and canonical cognitive systems with an overlap score.
Letx=[x,, ..., x,] be a binary module vector whose element x; is equal to 1 if
region i is assigned to that module, and 0 otherwise. Similarity, let y=[y,,...,y,] be
a binary system vector whose element y, is equal to 1 if region i is assigned to that

system, and 0 otherwise. The overlap of x and y is given by s(x,y) = "”"' , and the

standardized version of this measure is:
2x,y)= m, (4)

c
where y and o are the mean and standard deviation of s(x, y) estimated by
randomly permuting the elements of x and y (1,000 repetitions). Large and positive
values of z(x, y) therefore indicate greater overlap than expected by chance, given
the module’s and system’s sizes. For convenience, each module was assigned to the
system with which it exhibited the greatest standardized overlap.

Each module was associated with seven overlap scores (one to each of the seven
systems): S=[s,, ..., s,], where s, is the overlap of the module with the ith system.
The purity of that module quantifies the extent to which it overlaps with many
systems (low purity) or few systems (high purity). We define module purity by first
normalizing S so that its elements sum to 1. Then, we compute an entropy over
these elements as purity = — 37, s/log,[s/], where s/ is the normalized overlap of a
module with the ith system.

Search information. Anatomical connectivity matrices obtained from diffusion
imaging data and reconstructed using deterministic tractography are usually
sparse, meaning that only a fraction of all possible connections exist*''. Rather
than use the sparse connectivity matrix to model ECoG FC, we generated a full
matrix, S, whose element S; indicates the information (in bits) required to follow
the shortest path from node itonodej*. Let z,_,={A,, A;, ..., A} be the series of
structural edges that are traversed along the shortest path from a source node, s,
to a different target node, t, and let Q,_,={s, i, j, ..., k, t} be the sequence of nodes
along the same path. The probability of following thls path under random walk

( )
dynamics is given by P(7,_.;) = H,EQHI G L, where s;= Z Aj;is the weighted
degree of node i, z®,is the first edge on the shortest path from node i to node ¢,
and QF,=1s,i,j,...k}is the shortest path node sequence excluding the target
node. The amount of information (in bits) required to access this shortest path,
then, is given by S(z,_,,) =log [P(z,_,,)]. We can treat every pair of nodes {i, j} as
the source and target, respectively, and (provided that there exists a unique shortest
path from node i to node j) we can compute S(z,_,)) for all such pairs. The resulting
matrix, S, termed ‘search information, has been shown to be a good predictor of
BOLD FC” and may be modulated in certain neurological disorders'"’.

Network null model. We counted the number of jointly strong and long connections
for ECoG FC networks that represented different frequency bands. In Fig. 2g,h,

we compared those counts across frequency bands. To demonstrate the statistical
significance of these findings, we also compared counts for random networks
generated under a particular null model. This null model preserved the binary
topology and spatial embedding of each frequency-specific network, but otherwise
scrambled edge weights across frequencies. Given a pair of nodes i and j whose
connection weights across frequency bands are specified by Af where f={1,...,7},
we generated random networks by randomly permuting the order of those

weights across frequencies and repeating this process for all pairs of nodes. It was
sometimes the case that for certain pairs of nodes a connection was only observed
in a subset of frequencies. In this event, the permutation was only carried out over
those frequency bands in which the connection was observed.

Gene ECoG optimization. In the main text, we briefly describe a procedure for
identifying genes that are related to ECoG FC. In general, we sought the list of

K genes, I'*={g,, ..., gg} whose brain-wide co-expression matrix was maximally
correlated with ECoG FC. While the exact solution of this optimization problem is
computationally intractable (the full list included 29,130 genes), we could define an
objective function and use numerical methods to obtain an approximate solution.

The objective function we sought to minimize was defined as follows. Let
G,(I") and G,(I") be the gene co-expression matrices for each of the two donor
brains calculated using the gene list, I". We can then vectorize each matrix by
extracting its upper triangle of non-zero elements and, after doing the same for
the ECoG FC matrix, A¥9, we calculate the correlation of gene expression with
ECoG FC, resulting in two correlation coefficients p, and p,. In general, we want
the magnitudes of p, and p, to be as large as possible. Accordingly, we defined our
objective function to be F(p,, p,) =min(p,, p,), so that the correspondence of
any gene list, I', with ECoG FC is only as good as the worse of the two donor
brain correlations.

As noted earlier, optimizing this function exactly is intractable, so we used a
simulated annealing algorithm to generate estimates of the solution. In general,
simulated annealing works by proposing initial estimates of the solution (that are
usually poor), making small changes to these estimates and evaluating whether
or not these changes improve the estimate. The algorithm begins in a ‘high-
temperature’ phase, during which even changes that result in inferior estimates
can be accepted, making it possible to explore the landscape of possible solutions.
Gradually, a temperature parameter is reduced so that in later phases only solutions
that result in improvements are accepted.

In our case, the algorithm was initialized with a temperature of {,=2.5and a
randomly generated list of K genes, I, which represented our initial estimate of
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the solution. From this list, we constructed matrices G,(I') and G,(I'), calculated
p, and p,, and then evaluated the objective function, F(p,, p,). With each iteration,
the temperature was reduced slightly (t,=t,_, X 0.99975) and one gene randomly
selected from I" was replaced with a new gene. We then used this new list, I/, to
construct G,(I')" and G,(I')’, from which we eventually obtained a new value of
the objective function, F(p,, p,). If F(p/, p,) > F(p,, p,), we replaced T with T and
the algorithm proceeded to the next iteration. Otherwise, we accepted the I'" with

[Fpppy) = Flpypy) ]
probability €Xp ( M , where t, is the temperature at the current

iteration. The algorithm contlnued for either 200,000 total iterations or 10,000
consecutive iterations with no change in I".

The result of simulated annealing will usually vary somewhat from run to run.
Accordingly, we repeated the algorithm 50 times. We also varied the number of
genes, K, from 10-360 in increments of 10. We chose the optimal K to be the value
at which the objective function was on average greatest over the 50 repetitions.
Rather than treat any of the 50 estimated solutions as representative, we calculated
how frequently each gene appeared across the ensemble of all 50 solutions, and we
compared this frequency with what we would expect in 50 samples of K genes.

We retained only those genes that appeared more frequently than expected
(the false discovery rate was controlled at g=0.05). These genes represented
the ‘optimized list’ and were submitted to the ontology analysis.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The main data supporting the results of this study are available within the paper
and its Supplementary Information files. All source data collected from the subjects
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Software and code
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Data collection The data has been made available upon request by the Restoring Active Memory (RAM) consortium (http://memory.psych.upenn.edu/
RAM_Public_Data). OsiriX DICOM viewer (http://osirix-viewer.com) was used to digitize electrode locations, which were subsequently
mapped to locations in standardized space. This process had already been implemented by the time we accessed the dataset.

Data analysis Network construction, analysis, and predictive modeling was carried out by using custom MATLAB code. All code is available upon
request. Gene ontology analysis was performed by using GOrilla (http://cbl-gorilla.cs.technion.ac.il). This software is not associated with
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The population consisted of 86 individuals with medication resistant epilepsy.
Data exclusions  We excluded 3 subjects whose data did not include electrode coordinates. As a result, we analyzed data from 83 individuals.

Replication We did not have a replication dataset. However, to ensure robustness of modeling results, we performed two cross-validation analyses: the
first involved fitting model parameters to 82 subjects and using fit model to predict connectivity of held-out subject. We also fit the model
using data from a single subject and used the model to predict connectivity of remaining 82 subjects.

Randomization  There was no group allocation in this study.

Blinding There was no group allocation in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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[] Eukaryotic cell lines
[] Palaeontology

[] Flow cytometry
[ 1IBX| MRI-based neuroimaging

[ ] Animals and other organisms
Human research participants
[] Clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics Subjects had medication resistant epilepsy.
Recruitment Patients were being monitored as part of clinical treatment of epilepsy and were recruited to participate in the study.

Ethics oversight Research protocols were approved by the Institutional Review Boards of participating centers and hospitals (Columbia University,
Dartmouth College, Emory University, Thomas Jefferson University, Mayo Clinic, National Institutes of Health, University of Texas
Southwestern, Lawrence Livermore National Labs, University of Pennsylvania).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type We analyzed three different MRI datasets; resting functional MRI; and two diffusion MRI data (one reported in the main
Article, the other reported in the Supplementary Information).

Design specifications Functional MRI data was collected at rest.

Behavioral performance measures  n/a
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Acquisition
Imaging type(s)
Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI X] Used

Functional and diffusion MRI

3T

Resting fMRI: TR = 1500 ms; TE = 30 ms; Flip Angle = 60 degrees; FOV = 19.2 cm; resolution 3 mm isotropic
Diffusion MRI (see below)

Whole-brain

[ ] Not used

Parameters Diffusion MRI (main text): Q5 half-shell; 257 directions; b-value = 5000; TR =5 s; TE = 138 ms;

Diffusion MRI (Supplementary Methods): 730 directions; maximum b-value = 5010; TR = 4300 ms; TE = 102 ms; 21 interspersed b0

images.

Preprocessing

Preprocessing software

Normalization

Normalization template

Noise and artifact removal

Volume censoring

Statistical modeling & inference

Model type and settings

Effect(s) tested

Functional MRI processed with FSL using FEAT (v.6.0). Skull-stripping with BET; Motion correction with MCFLIRT; slice-
timing correction (interleaved); spatial smoothing with 6mm 3D Gaussian kernel; high-pass filter to reduce low-
frequency drift.

EPI unwarping with fieldmaps. Images registered to standard space using FLIRT. Subject images co-registered to
anatomical (T1) images using BBR.

MNI-152 via 12-parameter linear transform.

White-matter time series, CSF time series, and 18 translational/rotational parameters (estimated using MCFLIRT)
included as regressors.

None

n/a

n/a

Specify type of analysis:  [X] Whole brain [ | ROI-based [ ] Both

Statistic type for inference
(See Eklund et al. 2016)

Correction

Models & analysis

n/a | Involved in the study

n/a

n/a

|:| |X| Functional and/or effective connectivity

|:| El Graph analysis

Xl |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity measured as inter-regional correlations. Structural connectivity between regions i

Graph analysis

and j measured as streamline count divided by geometric mean of i's and j's total volume.

Graph analyses were carried out on weighted networks. In the case of functional connectivity, we used a
modified version of the modularity heuristic to detect modules. The modification allowed modularity
maximization to be applied to networks with missing connection weights and involved setting elements of
the modularity matrix to zero if no connection was present.

Using the structural connectivity, we computed the measure 'search information', which quantifies the
information needed (in units of bits) to follow the shortest path from region i to j. We repeated this for all
pairs of brain regions.
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