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The functional organization of neural systems is reflected in the 
correlation structure of spontaneous activity recorded from 
neurons, neuronal populations and brain areas1–3. These cor-

relations can be modelled as networks of functionally connected 
neural elements and analysed using tools from network science4,5. 
While functional brain networks can be constructed at any spatial 
scale, most applications have focused on the large-scale, where non-
invasive techniques such as functional magnetic resonance imaging 
(fMRI), scalp electroencephalography and magnetoencephalogra-
phy make it possible to estimate and analyse whole-brain networks6. 
At this scale, past studies have found that functional network orga-
nization varies systematically with cognitive state7,8, tracks disease 
and development9,10, and is specific to individuals11,12, showing its 
potential for classification and diagnosis.

While large-scale network modelling has become commonplace6, 
its application to electrocorticography (ECoG) data is less frequent. 
ECoG uses electrodes to record electrical activity with high spatio-
temporal resolution at the exposed cortical surface, and remains an 
essential tool for seizure localization and functional mapping13–15. 
Although the number of studies investigating networks recon-
structed from ECoG recordings continues to grow16–23, the gener-
alizability of their findings is limited due to the restricted study of 
epilepsy patients, incomplete brain coverage within individuals and 
variable electrode placement across individuals. As a result, little is 
known about the whole-brain organization of ECoG networks.

Mapping and characterizing the organization of ECoG functional 
connectivity (FC) over the entire brain would directly advance both 

theory and practice in neuroscience. At the most basic level, it would 
further our understanding of how activity is organized across the 
brain. Since ECoG directly records activity on the cortical surface, 
mapping whole-brain ECoG connectivity would serve as a point of 
comparison and validation for networks estimated using other non-
invasive techniques24. Second, it facilitates comparisons with other 
imaging and molecular biomarkers, such as structural connectivity25  
and gene co-expression patterns26, opening the possibility of con-
structing and studying cross-modal models of ECoG FC. This 
approach would give us a better understanding of the factors that 
contribute to shaping interregional patterns of ECoG FC. Finally, 
because ECoG already has extensive clinical and translational use, 
understanding its organization and function as a network could 
inform new phenomenological models of disease, and predictive 
models for interventions and outcomes23.

Here, we address the issues of sparse and inconsistent brain cov-
erage associated with the use of ECoG, and develop a modelling 
framework for constructing whole-brain, parcellation-based and 
band-limited FC networks through the consolidation of multisub-
ject recordings from a cohort of individuals with medication-resis-
tant epilepsy. We use these unique data to address two basic research 
questions. First, we ask whether the organization of whole-brain 
ECoG FC is similar to that of fMRI blood-oxygen-level-dependent 
(BOLD) FC. We find that ECoG FC shares a topological correspon-
dence with networks reconstructed from fMRI BOLD, including 
correlated connection weights, distance and frequency dependence, 
as well as similar modular and system-level structures. Our second 
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goal builds on our first. Given an estimate of whole-brain ECoG 
FC, can we identify the factors responsible for its organization and 
their relative contributions? To address this question, we used a 
multilinear model (MLM) to explain the variability in ECoG con-
nection weights on the basis of three factors: anatomical connectiv-
ity, interregional distance and correlated gene expression patterns. 
We show that the most parsimonious models require multiple fac-
tors, indicating that each factor uniquely contributes to explaining 
the variability in ECoG FC. We also show that the performance of 
these models can be improved by computing gene expression cor-
relation matrices using restricted subsets of genes. Importantly, 
these subsets are enriched for maintenance and regulation of ion 
channels and membrane potentials, suggesting genetic underpin-
nings of ECoG connectivity. Finally, we fit models to single-subject 
ECoG networks and show that the best-fitting models exhibit both a 
high degree of specificity (they generate the best predictions for the 
subject they were fit to) and a high degree of generalizability (they 
generate good out-of-sample predictions).

Results
Whole-brain ECoG FC networks. We analysed ECoG recordings 
from 86 subjects recorded during resting periods between trials of 
a free recall task (Fig. 1). The process of estimating whole-brain FC 
from these recordings involved several steps. First, ECoG data were 
preprocessed and filtered into 7 frequency bands (1–4, 4–8, 8–13, 
13–25, 25–45, 85–115 and 140–165 Hz). For each subject and trial, 
we calculated the full matrix of inter-electrode correlations from the 
filtered time series. This matrix was then transformed into an inter-
regional correlation matrix by mapping electrodes to n = 114 brain 

regions based on their locations in Montreal Neurological Institute 
(MNI) standard space27. Finally, interregional matrices were aver-
aged over trials and aggregated across subjects (see Supplementary 
Figs. 1 and 2 for electrode and connectional coverage). This process 
resulted in seven band-limited and group-representative correlation 
matrices, R∈ ×A n nECoG , where each element Aij

ECoG represented the 
average correlation (that is, FC) of electrodes located near region i 
with those located near region j. We refer to these matrices as ECoG 
FC throughout this report (see Methods for more details of network 
construction). Note that ECoG and fMRI BOLD assay the same 
organ (the human brain), and that FCs estimated from these dif-
ferent recording modalities represent complementary views of the 
same underlying networks.

ECoG and BOLD FC feature similar global architectures. Whole-
brain FC is thought to reflect the brain’s intrinsic architecture and to 
vary systematically with cognitive state, disease and development. 
While FC estimated from the fMRI BOLD signal is well studied, 
little is known about the architecture of whole-brain ECoG FC. 
From a practical perspective, it would be useful to compare BOLD 
and ECoG FC to better understand their shared versus unique fea-
tures. We therefore compared the network organization of ECoG 
FC directly with that of BOLD FC (see Methods for more informa-
tion on fMRI BOLD acquisition and network construction).

In Fig. 2a, we show the upper triangle of the BOLD and ECoG 
FC (1–4 Hz) matrices side by side. On the basis of visual inspection 
alone, the two matrices have some commonalities, including evi-
dence of long-distance correlations. As a more quantitative assess-
ment of the similarity of BOLD and ECoG FC, we computed the 
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Fig. 1 | Processing pipeline for group-level ECoG FC matrices. a, Schematic showing the overall processing and analysis structure. b, Raw ECoG data 
were recorded from electrodes, the placement of which is shown by yellow circles. c, The recordings were preprocessed and, for each trial and frequency 
band, we constructed a representative correlation matrix. d, We extracted connections that were consistently strong across all trials. e, The result of this 
procedure was a set of single-subject, band-limited, inter-electrode ECoG FC networks. Note that in this schematic, the ‘hairball’ diagram of the network 
is plotted in an arbitrary space where nodes’ (electrodes’) locations are determined by a network embedding algorithm. This depiction offers a clearer 
view of the network’s organization and heterogeneity of connections; these features are obscured and appear less salient in anatomical space due to the 
regular spacing of electrodes. f, We mapped electrode locations to vertices on the brain’s surface, and subsequently to brain regions (top). This procedure 
resulted in an interregional ECoG FC representation (bottom) of each subject’s inter-electrode network. Again, the locations of nodes (brain areas) in 
this layout were determined algorithmically and are not in any anatomical coordinate system. g, We aggregated the electrodes across the entire cohort 
(the colour of electrodes indicates the brain region to which they were assigned). h, This procedure enabled us to combine interregional FC networks to 
generate an estimate of whole-brain, interregional ECoG FC. i, From this aggregation procedure, we calculated each connection’s average weight across 
those observations.
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Pearson correlation coefficient between their connection weights 
(Fig. 2b; again, shown for the 1–4 Hz band). We note that this cor-
relation was computed using group-composite BOLD and ECoG 
FC, and based on the linear relationship between 2,908 points. 
These points represent the set of functional connections for which 
we obtained an estimate of ECoG FC. We observed statistically sig-
nificant correlations across all frequency bands (Fig. 2c; P < 10−15; 
false discovery rate controlled at q = 0.05 to account for multiple 
comparisons). The strongest correlation was observed in the slow-
est frequency band (1–4 Hz; Spearman rank correlation ρ = 0.37; 
P < 10−15; Fig. 2c), suggesting that slow, coherent fluctuations in the 
ECoG signal may contribute to observed patterns of BOLD FC. It is 
worth noting that the magnitude of the correlation between ECoG 
FC and BOLD FC, although statistically significant, was nonetheless 
quite modest.

ECoG modules overlap with functional systems. Many stud-
ies have shown that BOLD FC can be decomposed into modules 
of densely interconnected brain regions28. These modules map 
closely onto patterns of task-induced activations and recapitulate 
the brain’s large-scale functional and cognitive systems1,29. Here, 
we asked whether it was possible to identify modules with similar 
topographical features by applying module detection algorithms to 
low-frequency (1–4 Hz) interregional ECoG FC, as it exhibited the 
strongest correlation with BOLD FC across preprocessing pipelines. 
To address this question, we first explored the space of possible 
ECoG FC modules using the well-known modularity maximization 
technique (see Methods)30 (see Supplementary Fig. 3 for a schematic 
illustration of this procedure). This procedure generated high-qual-
ity partitions of brain regions into non-overlapping modules, which 
were represented as indicator vectors (the ith element of a vector 
was equal to ‘1’ if brain region i belonged to that module, and was 
equal to ‘0’ otherwise). Next, we computed the spatial similarity of 
detected modules with seven canonical brain systems correspond-
ing to the dorsal attention, cognitive control, default mode, visual, 
limbic, somatomotor and salience networks1.

Of all detected modules, approximately 80% exhibited greater-
than-expected similarity to one or more brain systems (P < 0.05; 
permutation test), suggesting that there exists a broad correspon-
dence of ECoG FC modules and brain systems. Here, similarity 
was calculated using the Jaccard index, and the observed value was 
compared against a null distribution generated by randomly and 
uniformly permuting module and system labels (see Methods for 
more details). In Fig. 3a, we show module indicator vectors grouped 
according to the system with which they shared the greatest simi-
larity. In Fig. 3b, we show the average vector for each system. In 
addition to this quantitative analysis, we also visualized these data 
using two other approaches. In Fig. 3c, we show the results of a 
principal component analysis on the full set of indicator vectors, 

and we visualize the detected modules in a two-dimensional space. 
In this plot, each point represents a detected module whose colour 
measures that module’s ‘purity’ (grey points are modules that have 
no clear correspondence to a brain system, whereas modules with 
clearer mappings to brain systems are coloured brightly). Overall, 
we found that modules with high similarity to a given brain system 
are grouped close to one another, supporting the intuition that the 
detected modules had a strong correspondence with known cogni-
tive systems. Finally, we visualized a subset of the detected modules 
in anatomical space. We did this by identifying and averaging over 
the ten module indicator vectors with the greatest similarity to each 
cognitive system (Fig. 3d). We also show that, in general, these aver-
age vectors were uncorrelated with one another (Fig. 3e).

The correspondence of ECoG modules and canonical systems 
suggests that, despite differences in modality and small-scale fea-
tures (for example, the precise weights of connections), much of 
the large-scale structure of brain network organization observed 
in other neuroimaging modalities from which these canonical sys-
tems can be derived is preserved in ECoG FC. Moreover, the cor-
respondence of modules to the brain’s system-level architecture 
suggests that low-frequency ECoG FC might be especially useful 
for studying cognitive processes. Nonetheless, the correspondence 
between ECoG FC modules and canonical systems is imperfect 
(note that in Fig. 3d the posterior and lateral components of the 
default mode are poorly recapitulated by detected modules). The 
presence of such differences suggests that while whole-brain 
ECoG FC shares many features with BOLD FC, it nonetheless 
offers distinct and complementary perspectives on the brain’s 
functional architecture.

Functional connections are band specific and distance depen-
dent. The existence of strong modular structure that maps onto 
well-known cognitive systems motivates the question of what other 
principles might explain the architecture of ECoG FC. To probe this 
question, we began by examining the degree to which the physical 
distance separating brain regions might play a role in shaping the 
observed FC. Specifically, we hypothesized that long-distance coor-
dination of brain areas is supported by the correlation of frequency-
specific fluctuations31. This effect has been previously observed 
in inter-electrode FC networks32, although the extent to which it 
persists at the level of brain regions remains unclear. To test our 
hypothesis, we assessed whether the magnitude of ECoG FC was 
related to connection length as estimated by Euclidean distance. 
We observed a statistically significant inverse relationship between 
these two variables (P < 10−15), indicating that the correlation mag-
nitude of the ECoG signal within proximal regions tends to be 
stronger than that between distant regions, possibly as a reflection 
of cost and energetic constraints33 (Fig. 4a; as examples, we show the 
slowest and fastest frequency bands).
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Fig. 2 | Relationship between group-level ECoG and BOLD FC. a, Side-by-side comparison of ECoG FC (1–4 Hz) and BOLD FC. b, Scatterplot of ECoG 
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The strong inverse relationship between connection weight 
and distance has implications for the observed modular organi-
zation of ECoG FC. For every detected module, we computed its 
size along with its internal density and spatial extent (mean inter-
regional correlation and Euclidean distance, respectively). These 
last two measures served as indicators of a module’s cohesive-
ness and anatomical distribution over the cortex. For modules of 
a given size, we found that slower frequencies generally exhibited 
stronger connection weights and broader spatial extents compared 
with faster-frequency bands (Fig. 4b,c). We quantified this intuition 
using methods from functional data analysis, which are statistical 
tools for comparing continuous curves34. Specifically, for the slow-
est and fastest frequency bands, we computed test statistics as the 
summed point-wise difference in mean internal density and spatial 
extent as a function of module size. We compared these observed 
values against a null model in which modules of the same size were 
randomly reassigned to frequency bands. We observed the most 
profound differences between the slowest three frequency bands 

(1–13 Hz) and the fastest four frequency bands (13–165 Hz) (aver-
age: z = 21.5 ± 6.5 and corresponding P < 10−15). This result, which 
is in agreement with earlier studies31,35, suggests that high-frequency 
oscillations modulate local, short-range interactions, but that long-
distance correlations are driven by much slower rhythms. More 
broadly, these findings are consistent with previous reports showing 
that cognitive and psychological processes are underpinned by are-
ally and frequency-specific patterns of activity36–38.

Predicting whole-brain ECoG FC from geometry, structure and 
genetics. Despite the ease with which FC can be measured and 
accessed experimentally, it can be viewed epiphenomenally as the 
product of interacting structural, geometric and genetic processes. 
Structural connections, such as synapses, axonal projections and 
fibre bundles, constrain communication patterns among neural ele-
ments, and structure the propagation of activity across the brain and 
its correlation patterns25,39,40. Factors that influence anatomical con-
nectivity also play important, albeit indirect, roles in shaping FC. 
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Fig. 3 | Relationship between group-level ECoG modules and canonical systems. We wished to assess whether modules detected in ECoG FC mapped 
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and salience (SAL) networks). a, Each block depicts indicator vectors corresponding to detected modules (based on ECoG FC in the 1–4 Hz range) and 
the system to which they were most similar. Rows represent brain regions (the horizontal bars divide brain systems from one another) and columns 
represent different detected modules. b, Averaging over all modules assigned to a given system produced a mean assignment vector. c, We also performed 
a principal components analysis of all detected modules. We plotted the position of each module, using as coordinates only the values of the first two 
components (PC1 and PC2). In general, systems were localized in this low-dimensional space, so that modules with similar system assignments appeared 
near one another. d, As visual confirmation that the detected ECoG modules were similar to brain systems, we computed the average module assignment 
of the top ten modules most similar to each system, and plotted these assignments back onto the cortical surface. While imperfect, these assignments 
bore a striking resemblance to canonical systems. e, Finally, we computed the Pearson correlation of mean assignment vectors for each system and found 
that, as expected, these vectors were largely independent of one another and uncorrelated.
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The brain’s intrinsic geometry and its drive to reduce metabolic and 
material connection costs result in wiring patterns that favour short, 
low-cost connections over longer, more costly connections33,41. 
Similarly, genetic factors regulate dendritic arborization42, myelin 
integrity43,44 and even rhythmic oscillatory activity45. Understanding 
how these and other factors shape functional network organiza-
tion remains one of the overarching goals of network neurosci-
ence5. While a number of studies have investigated how they relate 
to BOLD FC, virtually nothing is known about the relationship of 
these factors to networks estimated from ECoG.

To better understand how brain structure, geometry and genet-
ics influence ECoG FC, we investigated a set of nested MLMs 
that generated predictions of ECoG FC connection weights, 
^ = ^A A[ ]ij

ECoG ECoG . Predictions were made based on a linear combi-
nation of three predictors, each representing a different neurobio-
logical mode capable of influencing ECoG FC: search information, 
S = [Sij], which is computed from the matrix of reconstructed white 
matter fibre pathways, measures the ‘hiddenness’ of the shortest 
anatomical path between region i and region j25,46; D = [Dij], the 
Euclidean distance between region i and region j; and G = [Gij], the 
Pearson correlation between region i and region j’s gene expression 
profiles (averaged across two donors) (see Methods). Model perfor-
mance was defined as the Pearson correlation between the ECoG 
FC generated by the model and the observed ECoG FC.

This modelling framework is built on the assumption that 
whole-brain FC, which is thought to underpin cognitive function, 
depends on spatial, structural and genetic factors. The relationship 
of spatial and structural factors to FC is intuitive—brain areas that 
are strongly connected structurally and/or located near one another 

are also likely to be connected by strong functional connections.  
In addition, we included a genetic factor, as gene expression levels 
are known to influence local cellular function47. In our model, and 
in line with recent work26,48, we hypothesize that brain areas with 
similar expression profiles (and presumed similar cellular function-
ality) are also likely to be functionally connected to one another.

The full MLM including all three predictors is given by (Fig. 5a):

β β β β= + + +A S D G (1)S D G
ECoG

0

We tested all possible combinations of predictors, constituting 
seven models in total, and identified the optimal model for each 
frequency band based on the Akaike information criterion (AIC)49. 
For a given model, the AIC was calculated as:

















= +n
n

KAIC log RSS 2 (2)samp
samp

where nsamp, RSS and K are the total number of samples (pairs of 
brain regions for which ECoG FC information was available), the 
residual sum of squared errors and the total number of predictors 
(including the constant β0), respectively. The value of nsamp was the 
same for all models, but varied with frequency band; models dif-
fered from one another only in terms of RSS and K.

The models that we consider are simple in the sense that they 
predict the magnitude of ECoG FC given a small set of predictors. 
This class of models has the distinct advantage of interpretability; 
since the number of predictors is small and their relationship to 
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ECoG FC is linear, comparing the differential contributions of each 
factor is straightforward and tractable. However, these models are 
also amechanistic and do not offer process-based and neurophysi-
ological explanations for how structural, distance and genetic fac-
tors shape ECoG FC. In general, models of FC span a continuum 
from simple and predictive to mechanistic and causal. Our decision 
to focus on the simpler class of models is in line with recent cross-
modal studies relating structural and functional imaging modalities 
to one another25,39 and, critically, allows us to parse the contribu-
tions of structure, distance and genes in explaining the variability of 
ECoG FC connection weights.

Single-factor models. The simplest models we tested used single 
factors (S, D or G) to predict ECoG FC. Despite their simplicity, we 
found that in some cases they performed surprisingly well (Fig. 5b). 
Across all frequency bands, search information and Euclidean dis-
tance performed the best. The correlation of modelled and observed 
ECoG FC based on either of these factors never fell below r = 0.345, 
and in the highest-frequency bands reached a level of r = 0.654. In 
contrast, correlated gene expression consistently performed worst, 
achieving a maximum correlation of r = 0.156.

These observations prompted us to pursue two additional exper-
iments. First, because search information and Euclidean distance 
performed similarly, and due to ongoing debate over the role that 
distance plays in shaping anatomical connectivity (used to estimate 
search information), we wished to test whether search information 
generated statistically significant predictions of ECoG FC above 
and beyond that of Euclidean distance. As expected, we found that 
search information (derived from the network of white matter con-
nections) and distance were correlated with one another (r = 0.74; 
P < 10−15). To assess search information’s unique contribution to 

ECoG FC, we partialed out the effect of distance and used the resid-
uals to model ECoG FC. This analysis revealed that, while the over-
all magnitude of correlation is attenuated, the residuals nonetheless 
can account for some of the variance in ECoG FC (maximum P value 
(Pmax) = ~1.3 × 10−7; Supplementary Fig. 4). In showing a close cor-
respondence between structural connectivity and distance, these 
results corroborate past studies that documented similar relation-
ships. Also in line with past work, we show that search information 
(a measure based on structural connectivity) nonetheless makes a 
unique contribution in explaining the variability in ECoG FC con-
nection weights beyond that of distance alone.

Second, we wished to better understand why correlated gene 
expression performed so poorly in explaining ECoG FC. One 
hypothesis is that ECoG FC has little or no genetic basis. However, 
past studies have refuted this hypothesis26,48, consistently showing a 
non-trivial relationship between genetics and FC, although medi-
ated by a small subsets of genes. This evidence prompted the alterna-
tive hypothesis that ECoG FC could be better explained by shifting 
our focus away from the correlation patterns of >10,000 genes and 
narrowing our focus to the correlation patterns of small groups. 
Because the problem of identifying such groups is computationally 
intractable, we resorted to numerical methods for generating esti-
mates. Briefly, we used a simulated annealing algorithm to optimize 
model performance while varying the size of the gene group (from 
10–360 in increments of 10) and the membership of the gene group 
(see Methods section ‘Gene ECoG optimization’ for more details; 
Supplementary Fig. 5). We repeated this procedure separately for all 
seven frequency bands. With groups of 181 ± 23 genes (mean ± s.d. 
across frequency bands), we found that we could dramatically 
improve the model performance (Fig. 5b). Improvements were 
greatest in the slowest-frequency band, with the performance of the 
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genetics single-factor model increasing from r = 0.043 to r = 0.523. 
We refer to the correlation matrix of genes’ expression profiles as 
Gopt, indicating that the gene list was optimized to maximize its cor-
respondence with ECoG FC. Note that in all subsequent analyses we 
use these optimized lists of genes in place of the complete list.

Multifactor models. In addition to the single-factor models, we 
explored increasingly complex models, which included combi-
nations of multiple factors. Seeking a balance between a model’s 
explanatory power and its complexity, we used the AIC to iden-
tify the most parsimonious model for each frequency band. For 
the slowest frequency, the optimal model included two predic-
tors (search information and optimized gene co-expression). For 
all other bands, the optimal model included all three predictors 
(search information, Euclidean distance and optimized gene co-
expression), indicating that the brain’s functional architecture, 
when estimated as ECoG FC, is shaped by a plurality of factors 
(Fig. 5b). We show examples of ECoG FC generated by the model 
for the lowest (1–4 Hz) and highest (140–165 Hz) frequency bands 
(Fig. 5c,d). It should also be noted that while all models tested 
here were fit using connections from across the entire brain, this 
framework can easily be extended to the level of individual brain 
systems, and it can be fit based on specific subsets of connections 
(see Supplementary Materials section on system-level MLMs and 
Supplementary Figs. 6–8).

Predicting single-subject ECoG FC. To this point, we have dem-
onstrated that ECoG FC has properties similar to BOLD FC and 
that, with measures based on brain structure, geometry and genet-
ics, we can explain variability in the strength of ECoG FC between 
brain regions. These analyses were carried out using group-rep-
resentative data, which unfortunately makes it impossible to dis-
entangle the contributions of individual subjects. In contrast, 
subject-level predictive models have important clinical implica-
tions and open the possibility for predicting functional effects of 
neurosurgery or stimulation50.

In the following section, we extend the group-level modelling 
framework to the level of single-subject data. Our aim is to show 
that the same factors that combine to explain variance in group-
level ECoG FC are generalizable to the level of single subjects and 
vice versa, suggesting a common set of organizational principles 
acting at both levels. To achieve this aim, we show that the group-
level models make good predictions of single-subject, out-of-sam-
ple ECoG FC. We also confront the more challenging task of fitting 
the model to incomplete, single-subject data and, with the result-
ing models, predicting the ECoG FC of other subjects. We find that 
the single-subject models exhibit stereotypical differences unique 
to each individual, but nonetheless remain highly generalizable and 
can predict the ECoG FC of other subjects. At the same time, the 
generalizability of group-level models indicates that ECoG FC may 
be organized based on a shared set of principles.

First, we tested the group-level model’s robustness using a ‘leave-
one-subject-out’ procedure in which we estimated whole-brain 
ECoG FC matrices using data from n − 1 subjects (Table 1). Next, 
we fit the full model using these data, and used the regression coef-
ficients to predict the ECoG FC of the left-out subject (Fig. 6a). We 
repeated this procedure, holding out each subject, and found that 
generally we could predict single-subject ECoG FC with a high 
degree of accuracy using the group-estimated regression coeffi-
cients. Across all frequency bands, we observed that the interquar-
tile range of correlations between predicted and observed ECoG FC 
always excluded zero (Fig. 6b), showing that the MLM approach has 
utility in predicting subject-level ECoG FC.

Using n − 1 subjects to fit model parameters and estimate 
whole-brain ECoG FC is still relatively easy; the whole-brain, 
interregional ECoG FC matrix contains thousands of observations 

used to fit the MLM, meaning that the optimal parameters are not 
especially biased by any single subject (which contributes to only 
a subset of the observations). A more challenging task is to fit the 
model using single-subject data, which offer far fewer observa-
tions of ECoG FC and are limited by the placement of electrode 
grids in terms of which interregional observations are available. 
Nonetheless, we tested whether models fit to individual subject’s 
ECoG FC could be used to predict the ECoG FC of the remain-
ing n − 1 subjects (Fig. 6c). If so, this finding would support the 
hypothesis that ECoG FC is organized according to similar wiring 
rules across different subjects.

We found that even with far fewer observations, we were still 
able to make good predictions of subjects’ ECoG FC using param-
eters estimated from other subjects’ ECoG FC. As expected, the 
parameter fits were subject specific (that is, parameters best pre-
dicted ECoG FC of the subject whose data were used to estimate 
it (Fig. 6d)). Remarkably, however, the predictive capacity of these 
parameters did not immediately attenuate when they were applied 
to other subjects, with interquartile ranges excluding zero (Fig. 6d).  
These findings suggest excellent generalizability and the possibil-
ity that similar organizational principles explain ECoG FC net-
work architecture across subjects. Similar to the previous sections, 
we observed that the predictive capacity increased with frequency 
(Fig. 6e), suggesting that intersubject variability may be most pro-
nounced in slower-frequency bands.

Gene Ontology analysis. In the previous section, we found that 
when we calculated the correlation of gene expression profiles 
across the brain using ~30,000 genes, the resulting matrix was 
weakly related to ECoG FC. Moreover, we found that by focusing on 
a small subset of genes we could dramatically improve this relation-
ship. These findings are in line with past studies, in which the cor-
related expression levels of small subsets of genes (~10–100) were 
found to be related to patterns of BOLD FC.

One risk associated with this approach is that, due to the number 
of genes, it might be trivial to find a small subset whose correlated 
expression profiles are similar to ECoG FC. In other words, optimiz-
ing an objective function could be effectively amplifying random 
fluctuations in a large dataset. One way to discount this possibility is 
to demonstrate that the genes, which constitute the optimized list are 
not randomly selected and that, collectively, they comprise compo-
nents of pathways that perform specific biological processes and cel-
lular functions, or that code for cellular components. To assess such 
biological specificity, we performed Gene Ontology analysis on the 
genes comprising the optimized list. We used the software GOrilla 
(http://cbl-gorilla.cs.technion.ac.il) to compare the optimized list of 

Table 1 | Results of the ‘leave-one-subject-out’ procedure

Percentile

Frequency (Hz) 5th 25th 50th 75th 95th

1–4 0.212 0.391 0.522 0.654 0.795

4–8 0.208 0.407 0.550 0.638 0.794

8–13 0.158 0.478 0.602 0.696 0.800

13–25 0.263 0.565 0.650 0.703 0.853

25–45 0.269 0.575 0.649 0.716 0.818

85–115 0.330 0.582 0.705 0.789 0.860

140–165 0.378 0.635 0.751 0.827 0.887

Each row represents one of seven frequency bands. The columns represent percentiles of 
correlation coefficient distributions. These distributions were obtained using a ‘leave-one-subject-
out’ procedure that entailed using the MLM fit built on data from n − 1 subjects to predict the 
interregional ECoG FC of a held-out subject. The correlation coefficients measure the magnitude 
of the correlation between that subject’s predicted and observed FC.
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genes against the complete list of background genes51,52. We focus 
our analysis on the slowest-frequency bands (1–4 and 4–8 Hz) 
because the ECoG FC generated by the linear models in these bands 
exhibited the greatest percentage increase as a result of replacing the 
co-expression matrix calculated from the full set of genes with the 
corresponding matrix calculated from the optimized list.

In general, the Gene Ontology analyses of both frequency bands 
resulted in similar findings, indicating that the optimized gene lists 
were enriched for biological functions related to the transport of 
ions across channels and cellular membranes. Near the top of both 
lists were ontology terms for ‘sodium ion transport’, ‘membrane 
depolarization during action potential’, ‘monovalent inorganic 
cation transport’, ‘regulation of transport’, ‘sodium ion transmem-
brane transport’ and ‘sodium ion transport’ (Pmax = 8.5 × 10−4). 
Similarly, in terms of molecular function, both frequency bands 
were enriched for ‘voltage-gated ion channel activity involved in 
regulation of postsynaptic membrane potential’ and ‘voltage-gated 
sodium channel activity’ (Pmax value = 4.79 × 10−4). Also, in terms 
of cellular components, the 4–8 Hz frequency band was enriched 
for terms related to membrane channels, including ‘cation chan-
nel complex’, ‘voltage-gated sodium channel complex’, ‘ion channel 
complex’, ‘transmembrane transporter complex’, ‘potassium chan-
nel complex’, ‘transporter complex’ and ‘sodium channel complex’ 
(Pmax value = 4.67 × 10−4) (see Supplementary Tables 4–8 for a com-
plete list of enriched terms).

In a previous section, we demonstrated that the correspondence 
of ECoG FC and patterns of correlated gene expression could be 

strengthened by narrowing our focus onto select subsets of genes. 
Here, we offer additional support to further strengthen this rela-
tionship, demonstrating that the optimized list of genes is enriched 
for terms associated with membrane channels and ion transport. 
These findings further suggest a molecular and genetic underpin-
ning of ECoG FC.

Robustness to methodological variation. The results presented 
here depended on a particular sequence of decisions concerning how 
to process, analyse and synthesize several multimodal brain imaging 
datasets. To ensure their robustness, we confirmed that our results 
hold under reasonable variation to this sequence. Specifically, we 
demonstrated the consistency of ECoG FC networks with respect to 
variation in the distance threshold used in the electrode-to-region 
mapping (Supplementary Fig. 9) and using different measures of 
FC, namely the phase-locking value and a lagged correlation mea-
sure (Supplementary Figs. 10 and 11). We also tested variants of the 
MLM in which we substituted the current gene expression correla-
tion matrix with one constructed from genes shown to be predic-
tive of BOLD FC in a previous study (Supplementary Fig. 12 and 
Supplementary Table 1), and in which we substituted the current 
search information matrix with one estimated from a second inde-
pendent structural connectivity dataset (Supplementary Fig. 13 and 
Supplementary Table. 2). We also fit models using a restricted subset 
of observations, namely the connections that were observed in all 
seven bands (Supplementary Table 3). In addition to methodological  
variation arising from the choice of parameters and processing 
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details, we also tested different strategies for modelling single-
subject ECoG FC other than the MLM framework. Briefly, these 
alternative procedures included directly computing the correlation 
between subject- and group-level ECoG FC, assigning connections 
to bins according to their weight and testing whether the model 
recovered the correct bins, as well as separately modelling connec-
tions that were observed (included in the group ECoG FC and used 
to fit the model) and unobserved (present in subject-level data but 
not in the group matrix) (Supplementary Fig. 14). Additionally, to 
reduce the possibility of overfitting using our gene optimization 
algorithm, we repeated the MLM analysis in its entirety, including 
model selection, with a gene co-expression matrix calculated using 
genes preselected based on those identified in ref. 26 (Supplementary 
Fig. 15). Finally, we demonstrate that our results are not qualita-
tively different after correcting our estimates of ECoG FC for pos-
sible autocorrelations. We report a close correspondence between 
the original and corrected ECoG FC (Supplementary Fig. 16) and 
we still find that ECoG FC and BOLD FC exhibit their closest cor-
respondence in the slowest (1–4 Hz) frequency band. However, we 
also report some diverging results; rather than a decrease in ECoG-
BOLD correspondence as a function of increasing frequency, we 
observe a ‘U-shaped’ curve, with the strongest correspondence in 
the slowest-frequency band and the next strongest correspondence 
in the fastest frequency band. Details concerning these additional 
analyses are included in the Supplementary Materials.

Discussion
In this report we propose a technique for estimating whole-brain 
FC from ECoG recordings aggregated across multiple subjects. 
This approach facilitated the construction of (near) whole-brain, 
band-limited ECoG networks that parsimoniously represented 
the functional interactions between cortical areas as measured by 
co-variation in regional estimates of sensor signals. Visually, these 
networks displayed similar topological properties to those observed 
in BOLD fMRI resting-state networks—an observation that we 
confirmed statistically to be particularly salient in the slowest-fre-
quency bands. We also observed modular architecture in ECoG FC 
that bore striking similarity to well-known cognitive systems, sug-
gesting that whole-brain ECoG FC could be a powerful approach 
for probing the neural substrate underlying cognitive processes. 
Our analysis of whole-brain ECoG FC was complemented by addi-
tional multimodal, multilinear modelling in which we modelled the 
variability in the magnitude of interregional ECoG FC based on the 
brain’s structural connectivity, its embedding in three-dimensional 
space, and correlations among brain regions’ gene expression pro-
files. We found that the optimal models included multiple predictors 
and were able to explain nearly half of the total variance in ECoG 
FC weights. Moreover, the models displayed utility in predicting 
single-subject FC patterns but, nonetheless, exhibited subject-spe-
cific variation, indicating that they were highly generalizable but 
also bore the ‘fingerprint’ of an individual.

ECoG network architecture and its drivers. Our study builds on 
recent work applying network analysis to study inter-electrode 
ECoG FC patterns16–20,22,23,53–55. Whereas these past studies focused 
on networks where nodes represented electrodes, which are not 
consistent across subjects nor do they cover the whole brain, we 
studied interregional ECoG networks. Our effort was similar in this 
capacity to another recent paper55. Unlike the other paper, which 
aimed in part to relate interregional ECoG FC to cognitive mea-
sures, our focus was on characterizing the basic topological princi-
ples of ECoG FC organization and predicting connectivity patterns 
using simple models. Our approach is in line with other models of 
FC25, although it has the distinct advantage of modelling FC derived 
from ECoG, which has clearer neural provenance24 and is less influ-
enced by motion and physiological artefacts than the BOLD signal56. 

Nonetheless, it is important to note that while ECoG and BOLD 
record different signatures of brain activity, they both record from 
the same organ and assay the same underlying networks, offering 
both corroborative and complementary views of their architecture. 
These results and the system-level analyses in the Supplementary 
Materials suggest that structure, geometry and genetics each play 
critical roles in shaping whole-brain patterns of ECoG FC, and that 
these roles vary across the brain and are probably system specific.

Cross-modal topological signatures of brain function. One of 
the hallmarks of brain networks is their structural, functional and 
cross-modal modular organization28. Modules are thought to be 
critical for both development and evolution by compartmentalizing 
brain areas that perform similar functions57. Much emphasis of late 
has been placed on modules in BOLD FC networks, whose bound-
aries overlap with known cognitive systems, suggesting a possible 
network-level correlate of psychological and cognitive processes29. 
Here, we demonstrated that interregional ECoG FC networks also 
exhibit modular architecture, although the overlap with cognitive 
systems is inexact—a finding that is in line with past studies based 
on scalp electroencephalography and magnetoencephalography58,59. 
An important question, then, is why the modules appear different. 
One possibility is that the ECoG signal carries unique information 
about patterns of coupling among neuronal populations. Compared 
with the BOLD signal, ECoG represents a more direct measure 
of neural activity, and with increased temporal resolution it can 
resolve in greater detail the boundaries of putative modules. More 
broadly, this mismatch re-emphasizes the brain’s multiplex organi-
zation, in which brain areas are linked to one another via different 
connection modalities (for example, structure, correlated activity or 
gene expression)60.

We also observed that the spatio-topological organization of 
ECoG FC varied with frequency. As a result, the association of 
ECoG and BOLD FC was also frequency dependent, with slower 
frequencies generally exhibiting stronger associations, in agreement 
with other recent studies of ECoG FC61. This finding is of particular 
importance, as it suggests an electrophysiological basis for BOLD 
FC. Nonetheless, the precise mapping of fluctuations in voltage 
traces and broadband power of the ECoG signal (and other electro-
physiological signatures of population activity) to BOLD remains 
unclear, with studies reporting associations across a range of fre-
quencies62–65. Future work could be directed toward teasing apart 
these frequency-specific contributions to both BOLD and FC in 
greater detail.

Basic and clinical utility of prediction. In addition to identifying 
factors underpinning ECoG FC, the predictive modelling frame-
work has other advantages. Specifically, it makes predictions about 
the magnitude of ECoG FC between brain regions for which we 
have no data, complementing previous efforts developing methods 
to predict missing data in structural connectomes66 and biomarker 
data in clinical populations67. This capability is a particularly useful 
feature for a neuroimaging technique whose coverage is inversely 
related to the patient’s safety: greater coverage is associated with 
greater risk for inflammation and infection68. Moreover, the predic-
tion goes beyond abstract topological predictors of missing data in 
complex networks69,70 by incorporating actual physiological con-
straints in gene and geometry. While an important methodological 
contribution, these predictions also have potential clinical utility in 
predicting neurosurgical outcomes in future studies. For example, 
one could potentially simulate the effect of cortical resection as 
in ref. 22 by selectively ‘lesioning’ structural connections, thereby 
changing the search information matrix leading to an updated 
ECoG FC prediction. The new and original predictions could then 
be compared to identify connections whose ECoG FC magnitude  
is expected to increase or decrease as a consequence of the lesion. 
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In future work, it would be of interest to test the hypothesis that this 
prediction could be used as a biomarker to guide surgeries, offer-
ing an additional quantitative statistic linked to surgical outcomes; 
for example, to predict the effect of cortical resection. Note that  
the clinical utility of this approach is prospective, as the validation 
of this approach in a clinical context is beyond the scope of the  
present study.

Functional organization of the cerebral cortex. Understanding the 
principles that guide the functional organization of neural systems 
remains a major neuroscientific goal. Towards this end, we identi-
fied a set of structural, geometric and genetic factors that, collec-
tively, explained variability in the correlation magnitude of electrical 
activity recorded from distant brain areas. Our findings suggest that 
the brain’s spatial layout and large-scale structural connectivity have 
especially strong predictive capacity and (presumably) play impor-
tant roles in determining whether the activity of two brain regions 
is likely to become coupled. This notion is in agreement with studies 
reporting distance-dependent variation of functional connections71 
and close (but not exact) correspondence of interregional correla-
tion to the topology of the underlying structural network40,72–74.

Interestingly, we found that gene expression correlations had 
the least explanatory capacity of all three factors. That interregional 
correlations are related, in any way, to the expression levels of spe-
cific genes and transcripts is a relatively recent finding26, and the 
mechanisms by which these genetic factors can enhance or suppress 
the synchrony of neural activity are not well understood. One possi-
bility is that, like gene–gene co-expression networks in which genes 
are connected to one another if their expression levels are correlated 
across samples, interregional correlations of gene expression pro-
files are driven by sets of functionally related genes26,75. Allowing for 
speculation, these groups of genes might perform similar functions, 
such as ion channel regulation, thereby shaping electrophysiological 
activity at a low level76. Indeed, studies of gene polymorphisms and 
variants and their role in disease have reported differences in seed-
based FC (estimated from fMRI BOLD) between groups77,78.

Another possibility is that cytoarchitectural and morphologi-
cal patterning, both of which influence large-scale structural79 
and (BOLD) FC80, are genetically regulated81, and thereby have 
the capacity to influence correlated interregional electrical activ-
ity. Genetic regulation of structural covariance matrices has been 
reported over the course of development82, and differential gene 
expression across the adult human cerebral cortex reflects the 
spatial distribution of cell types83. In the present study, we did not 
include an estimate of structural covariance in our predictive model 
and, to our knowledge, a quantitative large-scale map of cortical 
cytoarchitecture is unavailable. Future studies could work towards 
addressing these shortcomings.

Simple models of complex systems. Collectively these findings 
build on past investigations into the singular roles played by struc-
ture, geometry and genetics in shaping BOLD and ECoG FC26,84. 
While single-predictor models offered reasonable first approxima-
tions of ECoG FC, more complex models offered superior perfor-
mance while maintaining parsimony. Interestingly, we found that 
the search information and Euclidean distance had much greater 
explanatory power than the correlation pattern of all genes’ expres-
sion levels. However, we also showed that the co-expression pat-
terns of select subsets of genes were robustly related to ECoG FC, in 
agreement with past studies26,48.

The models we study here are exceedingly simple. Nonetheless, 
they attempt to identify the organizational principles and neuro-
biological factors that shape ECoG FC. These results are a natural 
extension of past studies that used similar techniques to model 
BOLD FC. However, while the BOLD signal is prone to motion56, 
as well as respiratory85 and vascular86 artefacts, the ECoG signal is 

a relatively unimpeded measure of electrical activity, affording us 
greater confidence that the FC patterns we analyse are, indeed, of 
neuronal provenance.

Methodological considerations. Despite its utility, the predictive 
framework we develop is correlative in nature26,87. In contrast, the 
spontaneous activity of neural elements (and, by extension, FC) 
arises from their interactions with one another, which serve to con-
strain some of the observed neurophysiological dynamics88. A truly 
mechanistic model, then, is one that incorporates structure and 
dynamics to generate synthetic neural activity, which can then be 
compared with observed activity and its FC39,40. Future work could 
be directed towards incorporating both distance dependence and 
gene expression levels into mechanistic models.

The data that we analysed (ECoG recordings and each of the 
predictors) are themselves accompanied by several potential limi-
tations. Despite aggregating recordings from many subjects, there 
were nonetheless pairs of brain regions for which we had no estimate 
of ECoG FC. This shortcoming could be addressed in the near term 
(for example, by defining larger brain regions) and in the long term 
with increased cohort size. In addition, the correlation matrices of 
brain regions’ gene expression profiles are limited, in that they were 
estimated using data acquired from only two subjects89,90. It is there-
fore unclear to what extent such matrices are, in fact, representative 
of the average individual. There are also limitations associated with 
the calculation of search information, which is based on a structural 
network of interregional, white matter fibre bundles reconstructed 
from diffusion-weighted images. The reconstruction procedure 
is, however, susceptible to false positives and negatives91,92. While 
our use of a consistency-based, group-representative set of tracts 
reduces this uncertainty, advances in imaging and reconstruction 
techniques are necessary to mitigate its effect.

Another limitation is that the cohort studied here included sub-
jects with medication-resistant epilepsy. While the results of our 
models indicate that there was a good deal of within-cohort consis-
tency, whether our results generalize more broadly and to healthy 
populations remains unclear. Additionally, it should be noted 
that while the data aggregation process enabled us to obtain near 
whole-brain estimates of connectivity, it also washed over poten-
tially meaningful intersubject variability. This variability could, in 
future studies, be investigated more carefully. Finally, it is worth 
noting that the experimental conditions under which the data were 
acquired were not strictly resting conditions. Specifically, ECoG 
data were recorded during intertrial intervals of a free recall task. 
While subjects were not explicitly performing the tasks, they may 
have been anticipating their future responses.

We have reported several features of ECoG FC that appeared 
to be modulated by frequency content, including the presence of 
long-distance correlations and the strength of association with 
BOLD FC. While we attribute these effects to meaningful variation 
in regional co-fluctuations of the ECoG signal, it is worth noting 
that the ECoG signal itself exhibits frequency-specific properties. 
Among these properties is a more or less monotonic decrease in 
power as a function of frequency. As a result, power tends to be 
greatest in the slower-frequency bands, implying that the signal-to-
noise ratio in that range probably exceeds that of faster frequencies. 
Consequently, a possible alternative explanation for the frequency-
specific modulation of ECoG FC is the variation in the signal-to-
noise ratio of ECoG. Future work could investigate this possibility 
in greater detail.

A final limitation concerns the use of the Pearson correlation 
as a measure of both ECoG and BOLD FC. FC is always defined 
loosely as a statistical association of activity recorded from distinct 
neural elements or locations. The number of measures that satisfy 
this criteria is quite large. In fact, there are many examples in the 
literature where measures of coherence93, mutual information94, 
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phase-locking95, synchronization likelihood96 and others have been 
used to measure the strength of FC97. Despite this wide range of pos-
sibilities, the most common choice remains the Pearson correlation. 
Because we aimed to maintain continuity with previous literature, 
because it is infeasible to compare all measures of FC and because we 
already compared three of the more popular measures, we did not 
consider computing FC based on fluctuations in broadband power. 
Future work can be directed to investigate the relative advantages 
and disadvantages of alternative FC metrics in studying ECoG data.

Outlook
In summary, we present a methodological framework for aggregat-
ing single-subject ECoG FC into a cohesive, whole-brain network. 
Our work opens the door for future studies to move beyond inter-
electrode networks and investigate properties of interregional FC 
in ECoG, ultimately documenting how it is modulated with cogni-
tive state and altered in disease. We further show that ECoG FC 
may be underpinned by a combination of structural, geometric and 
genetic factors, and that the contributions made by these factors are 
relatively consistent across individuals, suggesting a common set of 
organizational principles.

Methods
Functional network reconstruction. Subject-specific, inter-electrode ECoG FC. We 
analysed ECoG recordings from 86 subjects with medication-resistant epilepsy 
(83 of whom had usable data) who were performing multiple trials of a ‘free 
recall’ experiment (mean ± s.d. number of trials = 41.9 ± 25.6). Research protocols 
were approved by the institutional review boards of the participating centres and 
hospitals (Columbia University, Dartmouth College, Emory University, Thomas 
Jefferson University, Mayo Clinic, National Institutes of Health, University of 
Texas Southwestern, Lawrence Livermore National Laboratory and University 
of Pennsylvania), and informed consent was obtained from all participants and 
guardians. In this experiment, subjects were presented with a list of words and 
were later asked to recall as many as possible from the original list. Rather than 
focus on word presentation or recall periods, we analysed recordings during 
the intertrial intervals when subjects were given no explicit cognitive task. This 
task-free or quasi-resting state is common in analysis of fMRI BOLD data, where 
the correlation structure of whole-brain spontaneous activity is organized into 
subnetworks that reflect the brain’s functional systems98. Specifically, we extracted 
10 s of ECoG recordings (epochs) before the beginning of each trial. All ECoG 
data were resampled to 512 Hz. Artefactual channels were discarded, and the 
remaining channels were referenced to the average signal, prewhitened by retaining 
the residuals after fitting a first-order autoregressive model to the referenced 
time series, stop-filtered to remove line noise and its harmonics, and filtered into 
canonical frequency bands of 1–4, 4–8, 8–13, 13–25, 25–45, 85–115 and 140–
165 Hz. To reduce boundary effects and to help ensure stationarity, we discarded 
2.5 and 5.0 s of data from the beginning and end of each window, resulting in a 
2.5 s epoch. For each subject and each trial, we computed inter-electrode FC as a 
zero-lag Pearson correlation99–101. Note that we explore other FC measures in the 
Supplementary Material, specifically the subsection entitled ‘Alternative measures 
of FC’. Pairs of electrodes whose correlation magnitude was inconsistent across 
trials (that is, the interquartile range included a value of zero) were excluded from 
subsequent analyses. We retained those correlations that maintained a consistent 
sign across trials and therefore were more likely to be representative of the brain’s 
intrinsic functional architecture rather than task-induced fluctuations.

Mapping electrodes to the cortical surface. Electrode locations were manually 
digitized using OsiriX software102 and stored as voxels in each subject’s native 
coordinate space. These locations were subsequently mapped to the MNI standard 
coordinate system using the FSL function img2stdcoord. We compared each 
electrode’s location in MNI space with points (vertices) on the fsaverage pial 
surface, and assigned each vertex to an electrode if the Euclidean distance between 
the two was ≤d mm. In the main text, we focus on the case where d = 3 mm,  
but we explore d = 1, 2, 4 and 5 in the Supplementary Material (Supplementary  
Figs. 17 and 18). Each surface vertex was also assigned to one of n = 114 brain 
regions according to an atlas27, thereby making it possible to map electrodes  
to brain regions. We show single-subject electrode-to-surface mappings  
in Supplementary Fig. 1.

Group-representative, interregional ECoG FC. For every pair of brain regions (i 
and j) and each subject independently, we identified all electrode pairs, u and v, 
where electrode u was assigned to region i and electrode v was assigned to region 
j, and we estimated their average connection weights, generating a subject-specific 
interregional ECoG FC matrix. We estimated the connection weight, Aij

ECoG, in the 

group-representative matrix as the average connection weight over all subjects. 
We repeated this procedure for each of the seven frequency bands, resulting in 
band-limited, whole-brain, interregional ECoG FC matrices. In general, because 
of the finite number of subjects and limited cortical coverage, the whole-brain 
connectivity matrices still included pairs of regions for which we had no observed 
connectivity data. The fraction of observed connections varied across frequency 
bands. In order of frequency band, starting with the slowest, these fractions were 
45.2, 47.0, 45.0, 45.0, 47.3, 54.6 and 60.9% (note that these fractions are with 
d = 3 mm). Note that the synthesis of multisubject ECoG data to generate a whole-
brain estimate of interregional ECoG FC is a non-standard procedure. To our 
knowledge, this procedure has been performed in only one other instance55.

Group-representative, interregional correlation matrix of gene expression 
profiles. The correlation matrix of brain regions’ gene expression profiles was 
reconstructed using a similar approach. We downloaded normalized microarray 
data from the Allen Brain Institute (http://human.brain-map.org/static/
download)83,89,90. The full dataset includes 6 donor brains (aged 18–68 years) for 
which spatially mapped microarray data were obtained (~60,000 RNA probes). 
We focused on donors 10,021 and 9,861, which included samples (893 and 946 
sites, respectively) from both the left and right hemispheres. Subsequently, we 
retained only those samples that were located in the cerebral cortex. Next, we 
extracted expression profiles for each sample, averaged over duplicate genes, 
and standardized expression levels across samples as z scores. The standardized 
measure of any sample was used to assess the extent to which a particular gene 
was differentially expressed at that cortical location relative to the other cortical 
locations in both hemispheres.

In addition to microarray data, the Allen Brain Institute also provided 
coordinates representing the location in MNI coordinates where each sample was 
collected. This information facilitated the mapping of sample sites to brain regions 
in a procedure exactly analogous to our approach for mapping ECoG electrodes. 
As a result, we obtained representative expression profiles for each brain region 
(provided that there were nearby samples). For each of the two donor brains, 
we calculated the region-by-region correlation matrix of standarized expression 
profiles. Due to the overall density of the whole-brain sampling, we were able to 
generate an estimate of gene expression correlation (a measure of similarity) for 
6,286 of 6,441 possible region pairs (~97.6%).

Note that in the absence of a specific hypothesis about which genes were 
of particular relevance, we included all genes in our construction of the initial 
correlation matrices. In ‘Variants of the gene expression correlation matrix’ in 
the Supplementary Material, we follow26 and construct correlation matrices using 
the same procedures as those described above, but focusing on subsets of genes 
identified in that paper. For our procedures related to identifying the set of genes 
that optimized the prediction of ECoG FC, see section ‘Gene ECoG optimization’ 
in the Methods.

Diffusion spectrum image (DSI) connectome data. We analysed a group-
representative, whole-brain structural connectivity network or connectome 
generated by combining single-subject data from a cohort of 30 healthy adult 
participants. Each participant’s network was reconstructed from DSIs in 
conjunction with state-of-the-art tractography algorithms to estimate the location 
and strength of large-scale interregional white matter pathways. Study procedures 
were approved by the Institutional Review Board of the University of Pennsylvania, 
and all participants provided informed consent in writing. Details of the 
acquisition and reconstruction have been described elsewhere103–105. We studied a 
division of the brain into n = 114 cortical regions27. On the basis of this division, we 
constructed for each individual an undirected and weighted connectivity matrix, 

R∈ ×A n n, whose edge weights were equal to the number of streamlines detected 
between region i and region j, normalized by the geometric mean of their volumes: 

=Aij
S

VV( )
ij

i j
The resulting network was undirected; that is, Aij = Aji. These individual-level 

networks were then aggregated to form a group-representative network. This 
procedure can be viewed as a distance-dependent consistency thresholding of 
connectome data, and the details have been described elsewhere104,106. The resulting 
group-representative network has the same number of binary connections as 
the average individual and the same edge-length distribution. This type of non-
uniform consistency thresholding has been shown to be superior to other, more 
commonly used forms107. Note that the construction of structural brain networks 
from diffusion imaging data using tractography is a fairly standardized process, 
and is the only procedure for mapping white matter fibre tracts non-invasively108.

fMRI BOLD data. fMRI BOLD images were acquired during the same scanning 
session as the DSI data on a 3.0 T Siemens Tim Trio whole-body scanner with a 
whole-head elliptical coil by means of a single-shot gradient-echo T2* (repetition 
time = 1,500 ms; echo time = 30 ms; flip angle = 60°; field of view = 19.2 cm; 
resolution 3 mm × 3 mm × 3 mm). Preprocessing was performed using FEAT 
version 6.0 (fMRI Expert Analysis Tool)109. Images underwent the following 
preprocessing steps: skull-stripping with BET, motion correction with MCFLIRT 
(FMRIB’s Linear Image Registration Tool109), slice timing correction (interleaved), 
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spatial smoothing with a 6 mm 3D Gaussian kernel, and high-pass temporal 
filtering to reduce low-frequency artefacts. We also performed EPI unwarping 
with fieldmaps to improve subject registration to standard space. Images were 
transformed to a standard template using FSL’s affine registration tool FLIRT109. 
Subject-specific images were co-registered to their corresponding anatomical 
images with Boundary Based Registration110 and subsequently registered to the 
standard MNI-152 structural template via a 12-parameter linear transformation. 
Lastly, participants’ individual anatomical images were segmented into grey matter, 
white matter and CSF using the binary segmentation function of FAST version 4.0 
(FMRIBs Automated Segmentation Tool111). White matter and CSF masks for each 
participant were then transformed to native functional space and average time 
series were extracted. Images were spatially smoothed using a kernel with a full 
width at half maximum of 6 mm. These values were used as confound regressors 
on our time series, along with 18 translation and rotation parameters, as estimated 
by MCFLIRT112.

The average time course for each of the 114 cortical regions was extracted, and 
whole-brain, interregional BOLD FC was computed as the Pearson correlation 
among all region pairs. Note that the global signal was not regressed out of 
regional time series, as past studies have shown that the global signal contains 
neurophysiologically and behaviourally relevant information (for example, tracking 
relative states of arousal)113,114. The full matrix was subsequently averaged across 
all subjects to obtain a group-representative estimate (although this averaging 
procedure can sometimes introduce unwanted biases at the group level115). We 
denote this BOLD FC matrix as ABOLD. Note that, as with the network construction 
from diffusion imaging data, the process of estimating FC from fMRI BOLD data 
is fairly standardized and widely used.

Network statistics. Modularity maximization. Real-world networks can be 
partitioned into node-level clusters called modules by selecting the cluster 
assignments that optimize a particular objective function. The most popular 
class are modularity functions, which measure the total within-module weight 
of connections minus that which would be expected by chance30. Maximizing 
modularity, which results in an estimate of network modules, begins by first 
defining a modularity matrix, B, whose elements are given by Bij = Aij − Pij, where 
Aij and Pij are, respectively, the observed and expected weights between nodes i and j.  
Given B and a classification of each node into one of K modules, σI ∈ {1, …, K}, we 
can define modularity to be:

∑ δ σσ=Q B ( ) (3)
ij

ij i j

Maximizing modularity is accomplished by assigning nodes to communities so 
that as many positive elements of B fall within modules as possible.

Here, we set γ= −B A Cij ij ij
ECoG

, where γ is a free parameter and Cij is equal to 
either 1 or 0 depending on whether a connection was or was not observed between 
nodes i and j. We adopted this formulation for two reasons. First, it means that in 
effect the null model for existing connections is simply a constant free parameter, γ, 
whose value can be tuned to detect smaller or larger modules116. Second,  
it ignores pairs of nodes for which no connectivity data were available and sets 
their values in the modularity matrix to 0. In this way, those elements neither 
increase nor decrease the objective function, Q, and therefore have minimal 
influence on the detected modules.

Rather than focus on ‘definitive’ modules obtained with a single-resolution 
parameter, we used a sampling procedure to obtain estimates of differently sized 
modules by varying γ over a range from 0 to max(A), where max(A) is the largest 
observed interregional correlation across all frequency bands. Between these 
extremes, we selected 99 additional values of γ corresponding to the 1st through 
99th percentiles of interregional correlation values. Next, we iterated over all 101 
values of γ, obtaining a partition at each value, extracting the modules within that 
partition and aggregating the unique modules. We repeated this procedure until 
sequential repetitions uncovered less than 1% of new modules. We repeated the 
full procedure independently for ECoG FC estimated from each frequency band, 
detecting 8,075, 7,948, 2,872, 1,122, 958, 1,359 and 1,451 modules in the 1–4, 4–8, 
8–13, 13–25, 25–45, 85–115 and 140–165 Hz bands, respectively.

Note that whereas the broader modularity maximization framework is used 
frequently in network neuroscience applications28, our modification to make 
the modularity equation compatible with networks containing unobserved 
connections is new. In addition, the module sampling procedure described above 
is also non-standard; the typical approach involves fixing γ at a single value, 
optimizing modularity and using heuristics to identify a single ‘representative’  
set of modules. Our approach allows us to explore a wide range of modules, 
making it possible to characterize their variability, and also to study modules  
of different sizes117.

Module and system overlap. We assessed the similarity of modules detected using 
modularity maximization and canonical cognitive systems with an overlap score. 
Let x = [x1, …, xn] be a binary module vector whose element xi is equal to 1 if 
region i is assigned to that module, and 0 otherwise. Similarity, let y = [y1,…,yn] be 
a binary system vector whose element yi is equal to 1 if region i is assigned to that 

system, and 0 otherwise. The overlap of x and y is given by = ∩
∪

∣ ∣
∣ ∣

s x y( , ) x y
x y

, and the 
standardized version of this measure is:

μ
σ

= −
z

s
x y

x y
( , )

( , )
, (4)

where μ and σ are the mean and standard deviation of s(x, y) estimated by 
randomly permuting the elements of x and y (1,000 repetitions). Large and positive 
values of z(x, y) therefore indicate greater overlap than expected by chance, given 
the module’s and system’s sizes. For convenience, each module was assigned to the 
system with which it exhibited the greatest standardized overlap.

Each module was associated with seven overlap scores (one to each of the seven 
systems): S = [s1, …, s7], where si is the overlap of the module with the ith system. 
The purity of that module quantifies the extent to which it overlaps with many 
systems (low purity) or few systems (high purity). We define module purity by first 
normalizing S so that its elements sum to 1. Then, we compute an entropy over 
these elements as = − ∑ ′ ′s spurity log [ ]i i i2

, where ′si  is the normalized overlap of a 
module with the ith system.

Search information. Anatomical connectivity matrices obtained from diffusion 
imaging data and reconstructed using deterministic tractography are usually 
sparse, meaning that only a fraction of all possible connections exist87,118. Rather 
than use the sparse connectivity matrix to model ECoG FC, we generated a full 
matrix, S, whose element Sij indicates the information (in bits) required to follow 
the shortest path from node i to node j46. Let πs→t = {Asi, Aij, …, Akt} be the series of 
structural edges that are traversed along the shortest path from a source node, s, 
to a different target node, t, and let Ωs→t = {s, i, j, …, k, t} be the sequence of nodes 
along the same path. The probability of following this path under random walk 

dynamics is given by π = ∏ π
→ ∈Ω →

→P( ) *s t i ss t
i t

i

(1)

, where = ∑s Ai j ij is the weighted 
degree of node i, π →i t

(1)  is the first edge on the shortest path from node i to node t, 
and Ω = …→ s i j k* { , , , , }s t  is the shortest path node sequence excluding the target 
node. The amount of information (in bits) required to access this shortest path, 
then, is given by π π=→ →S P( ) log [ ( )]s t s t2

. We can treat every pair of nodes {i, j} as 
the source and target, respectively, and (provided that there exists a unique shortest 
path from node i to node j) we can compute S(πi→j) for all such pairs. The resulting 
matrix, S, termed ‘search information’, has been shown to be a good predictor of 
BOLD FC25 and may be modulated in certain neurological disorders119.

Network null model. We counted the number of jointly strong and long connections 
for ECoG FC networks that represented different frequency bands. In Fig. 2g,h, 
we compared those counts across frequency bands. To demonstrate the statistical 
significance of these findings, we also compared counts for random networks 
generated under a particular null model. This null model preserved the binary 
topology and spatial embedding of each frequency-specific network, but otherwise 
scrambled edge weights across frequencies. Given a pair of nodes i and j whose 
connection weights across frequency bands are specified by Aij

f , where f = {1,…,7}, 
we generated random networks by randomly permuting the order of those 
weights across frequencies and repeating this process for all pairs of nodes. It was 
sometimes the case that for certain pairs of nodes a connection was only observed 
in a subset of frequencies. In this event, the permutation was only carried out over 
those frequency bands in which the connection was observed.

Gene ECoG optimization. In the main text, we briefly describe a procedure for 
identifying genes that are related to ECoG FC. In general, we sought the list of 
K genes, ΓK = {g1, …, gK} whose brain-wide co-expression matrix was maximally 
correlated with ECoG FC. While the exact solution of this optimization problem is 
computationally intractable (the full list included 29,130 genes), we could define an 
objective function and use numerical methods to obtain an approximate solution.

The objective function we sought to minimize was defined as follows. Let 
G1(Γ) and G2(Γ) be the gene co-expression matrices for each of the two donor 
brains calculated using the gene list, Γ. We can then vectorize each matrix by 
extracting its upper triangle of non-zero elements and, after doing the same for 
the ECoG FC matrix, AECoG, we calculate the correlation of gene expression with 
ECoG FC, resulting in two correlation coefficients ρ1 and ρ2. In general, we want 
the magnitudes of ρ1 and ρ2 to be as large as possible. Accordingly, we defined our 
objective function to be F(ρ1, ρ2) = min(ρ1, ρ2), so that the correspondence of  
any gene list, Γ, with ECoG FC is only as good as the worse of the two donor  
brain correlations.

As noted earlier, optimizing this function exactly is intractable, so we used a 
simulated annealing algorithm to generate estimates of the solution. In general, 
simulated annealing works by proposing initial estimates of the solution (that are 
usually poor), making small changes to these estimates and evaluating whether 
or not these changes improve the estimate. The algorithm begins in a ‘high-
temperature’ phase, during which even changes that result in inferior estimates 
can be accepted, making it possible to explore the landscape of possible solutions. 
Gradually, a temperature parameter is reduced so that in later phases only solutions 
that result in improvements are accepted.

In our case, the algorithm was initialized with a temperature of t0 = 2.5 and a 
randomly generated list of K genes, Γ, which represented our initial estimate of 
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the solution. From this list, we constructed matrices G1(Γ) and G2(Γ), calculated 
ρ1 and ρ2, and then evaluated the objective function, F(ρ1, ρ2). With each iteration, 
the temperature was reduced slightly (ti = ti−1 × 0.99975) and one gene randomly 
selected from Γ was replaced with a new gene. We then used this new list, Γ′, to 
construct G1(Γ)′ and G2(Γ)′, from which we eventually obtained a new value of 
the objective function, ρ ρ′ ′F( , )1 2 . If ρ ρ ρ ρ′ ′ >F F( , ) ( , )1 2 1 2 , we replaced Γ with Γ′ and 
the algorithm proceeded to the next iteration. Otherwise, we accepted the Γ′ with 

probability − ′ρ ρ ρ ρ− ′( )exp F F
t

[ ( , ) ( , ) ]

i
1 2 1 2 , where ti is the temperature at the current 

iteration. The algorithm continued for either 200,000 total iterations or 10,000 
consecutive iterations with no change in Γ.

The result of simulated annealing will usually vary somewhat from run to run. 
Accordingly, we repeated the algorithm 50 times. We also varied the number of 
genes, K, from 10–360 in increments of 10. We chose the optimal K to be the value 
at which the objective function was on average greatest over the 50 repetitions. 
Rather than treat any of the 50 estimated solutions as representative, we calculated 
how frequently each gene appeared across the ensemble of all 50 solutions, and we 
compared this frequency with what we would expect in 50 samples of K genes.  
We retained only those genes that appeared more frequently than expected  
(the false discovery rate was controlled at q = 0.05). These genes represented  
the ‘optimized list’ and were submitted to the ontology analysis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results of this study are available within the paper 
and its Supplementary Information files. All source data collected from the subjects 
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The data has been made available upon request by the Restoring Active Memory (RAM) consortium (http://memory.psych.upenn.edu/
RAM_Public_Data). OsiriX DICOM viewer (http://osirix-viewer.com) was used to digitize electrode locations, which were subsequently 
mapped to locations in standardized space. This process had already been implemented by the time we accessed the dataset.

Data analysis Network construction, analysis, and predictive modeling was carried out by using custom MATLAB code. All code is available upon 
request. Gene ontology analysis was performed by using GOrilla (http://cbl-gorilla.cs.technion.ac.il). This software is not associated with 
any explicit version number, although the most recent update to GOrilla software was made on March 8, 2013 (http://cbl-
gorilla.cs.technion.ac.il/news.html).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The authors declare that the main data supporting the results in this study are available within the paper and its Supplementary Information. All source data 
collected from the subjects are available upon request via http://memory.psych.upenn.edu/RAM_Public_Data.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The population consisted of 86 individuals with medication resistant epilepsy.

Data exclusions We excluded 3 subjects whose data did not include electrode coordinates. As a result, we analyzed data from 83 individuals.

Replication We did not have a replication dataset. However, to ensure robustness of modeling results, we performed two cross-validation analyses: the 
first involved fitting model parameters to 82 subjects and using fit model to predict connectivity of held-out subject. We also fit the model 
using data from a single subject and used the model to predict connectivity of remaining 82 subjects.

Randomization There was no group allocation in this study.

Blinding There was no group allocation in this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Subjects had medication resistant epilepsy.

Recruitment Patients were being monitored as part of clinical treatment of epilepsy and were recruited to participate in the study.

Ethics oversight Research protocols were approved by the Institutional Review Boards of participating centers and hospitals (Columbia University, 
Dartmouth College, Emory University, Thomas Jefferson University, Mayo Clinic, National Institutes of Health, University of Texas 
Southwestern, Lawrence Livermore National Labs, University of Pennsylvania).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging
Experimental design

Design type We analyzed three different MRI datasets; resting functional MRI; and two diffusion MRI data (one reported in the main 
Article, the other reported in the Supplementary Information).

Design specifications Functional MRI data was collected at rest.

Behavioral performance measures n/a
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Acquisition

Imaging type(s) Functional and diffusion MRI

Field strength 3T

Sequence & imaging parameters Resting fMRI: TR = 1500 ms; TE = 30 ms; Flip Angle = 60 degrees; FOV = 19.2 cm; resolution 3 mm isotropic 
 
Diffusion MRI (see below)

Area of acquisition Whole-brain

Diffusion MRI Used Not used

Parameters Diffusion MRI (main text): Q5 half-shell; 257 directions; b-value = 5000; TR = 5 s; TE = 138 ms; 
 
Diffusion MRI (Supplementary Methods): 730 directions; maximum b-value = 5010; TR = 4300 ms; TE = 102 ms; 21 interspersed b0 
images.

Preprocessing

Preprocessing software Functional MRI processed with FSL using FEAT (v.6.0). Skull-stripping with BET; Motion correction with MCFLIRT; slice-
timing correction (interleaved); spatial smoothing with 6mm 3D Gaussian kernel; high-pass filter to reduce low-
frequency drift. 

Normalization EPI unwarping with fieldmaps. Images registered to standard space using FLIRT. Subject images co-registered to 
anatomical (T1) images using BBR.

Normalization template MNI-152 via 12-parameter linear transform.

Noise and artifact removal White-matter time series, CSF time series, and 18 translational/rotational parameters (estimated using MCFLIRT) 
included as regressors.

Volume censoring None

Statistical modeling & inference

Model type and settings n/a

Effect(s) tested n/a

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

n/a

Correction n/a

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Functional connectivity measured as inter-regional correlations. Structural connectivity between regions i 
and j measured as streamline count divided by geometric mean of i's and j's total volume.

Graph analysis Graph analyses were carried out on weighted networks. In the case of functional connectivity, we used a 
modified version of the modularity heuristic to detect modules. The modification allowed modularity 
maximization to be applied to networks with missing connection weights and involved setting elements of 
the modularity matrix to zero if no connection was present. 
 
Using the structural connectivity, we computed the measure 'search information', which quantifies the 
information needed (in units of bits) to follow the shortest path from region i to j. We repeated this for all 
pairs of brain regions.
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