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Abstract
1.	 Evolutionary history and adaptation to climate shape plant traits. Some include 
leaf traits that influence litter quality. Thus, evolutionary history should affect 
litter decomposition, a crucial ecosystem process. In addition, litter decomposi-
tion is directly influenced by climate. We consequently expect plant phylogeny, 
adaptation and climate to jointly influence litter decomposition. These effects and 
their interactions have yet to be untangled at a global scale.

2.	 Here we present an analysis of variation in litter decomposition rates in rivers and 
streams across 285 published studies for 239 species (from ferns to angiosperms) 
distributed at 494 locations world‐wide. We estimated the relative contributions 
of climatic conditions and phylogenetic heritage on litter decomposition rates, 
partitioning phylogenetic from climatic effects at the site and species levels using 
phylogenetic eigenvector analysis and phylogenetic linear mixed models. In ad-
dition, we modelled transitions in decomposition rates under a suite of multiple 
adaptive‐regime Ornstein–Uhlenbeck models to test the hypothesis that natural 
selection has shaped clade‐level litter decomposition rates.

3.	 Leaf litter decomposition rate exhibited a significant phylogenetic signal. Modelling 
decomposition rate as a function of location, climatic niche and phylogeny 
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1  | INTRODUC TION

The past 20  years have seen a dramatic increase in our under-
standing of the influence of biodiversity on ecosystem functioning 
(Hooper et al., 2005; Cardinale et al., 2012; Gessner et al., 2010; 
Weisser et al., 2017). Expanding beyond the early emphasis of spe-
cies richness effects on plant productivity, phylogenetic and genetic 
diversity have also been shown to influence ecosystem processes 
(Hughes, Inouye, Johnson, Underwood, & Vellend, 2008; Latzel 
et al., 2013; LeRoy, Whitham, Wooley, & Marks, 2007; Schweitzer 
et al., 2004; Sundqvist, Giesler, & Wardle, 2011). The exploration 
of the role of genetic patterns across species has generally taken 
one of two routes: (1) a diversity approach that uses phylogenetic 
diversity as a predictor of biodiversity–ecosystem function relation-
ships (Flynn, Mirotchnick, Jain, Palmer, & Naeem, 2011; Srivastava, 
Cadotte, MacDonald, Marushia, & Mirotchnick, 2012), or (2) a phy-
logenetic approach that investigates how the evolution of traits and 
species relationships may influence ecosystem functioning (Cadotte 
et al., 2017; Donovan, Mason, Bowsher, Goolsby, & Ishibashi, 2014; 
Edwards, Still, & Donoghue, 2007). Studies taking the first approach 
have demonstrated that plant phylogenetic diversity influences 
plant productivity (Cadotte, Cardinale, & Oakley, 2008; Gravel et al., 
2012), nutrient cycling (Cornelissen & Cornwell, 2014) and numer-
ous species traits that subsequently affect ecosystem functioning 
(e.g. Cavender‐Bares, Kozak, Fine, & Kembel, 2009; Díaz et al., 2013; 
Matthews et al., 2011; Senior et al., 2016). Despite a rapidly grow-
ing body of literature addressing these relationships, there have only 
been a few studies examining the influence of plant phylogenetic 
diversity on litter decomposition (Boyero et al., 2015; Cornwell et al., 
2008; Liu et al., 2014; Makkonen et al., 2012; Pan et al., 2014). Even 
fewer studies have taken the second approach.

Only two previous studies in terrestrial ecosystems have explic-
itly investigated how plant phylogeny (and thus evolutionary history) 

shapes litter decomposition (Liu et al., 2014; Pan et al., 2014). Liu 
et al. (2014) applied a Brownian motion model to analyse data col-
lected at a single site and found that mass loss was slower in basal 
angiosperms than in eudicot trees. Pan et al. (2014) compared three 
phylogenetic models for decomposition data also collected at a 
single site and found evidence that a constrained single‐optimum 
Ornstein–Uhlenbeck (OU) model best fit their data, suggesting that 
decomposition rate is under stabilizing selection. No phylogenetic 
approaches have attempted to address the question of how import-
ant evolutionary history is in explaining litter decomposition rates 
across multiple sites. Understanding the relative contributions of 
contemporary environment and evolutionary heritage to decompo-
sition rates globally has the potential to improve modelling carbon 
cycling on geological time‐scales, by allowing us to estimate the de-
composition rates characteristic of lineages that have variously dom-
inated different habitats over deep time.

Plant litter decomposition is a crucial ecosystem process that 
drives carbon cycling in many terrestrial and aquatic environ-
ments. Shaded headwater streams make up the vast majority of 
river lengths globally (73.2%, Leopold, Wolman, & Miller, 1964) and 
strongly rely on plant litter inputs as a resource (Wallace, Eggert, 
Meyer, & Webster, 1997), relative to all lotic habitats. Plant litter de-
composition at a global scale has been explained by both extrinsic 
(climate, latitude, altitude) and intrinsic (litter quality) factors (Aerts, 
1997), but most previous studies have focused on terrestrial de-
composition (Cornwell et al., 2008; Pietsch et al., 2014; Weedon et 
al., 2009). Results of these previous meta‐analyses have generally 
shown that intrinsic species‐level traits explain as much variation 
as extrinsic factors, if not more. Based on a review of 16 studies, 
Cornwell et al. (2008) found that species differences resulted in 
larger variation in decomposition rates than climatic differences. 
Specifically, litter traits like nitrogen and phosphorus concentra-
tions led to faster decomposition and traits like lignin content, leaf 

consistently recovered phylogeny alone as one of the top models in species‐level 
analyses. Since many previous studies have focused on the same species across 
many locations, we also conducted analyses at the species × site level. Both phylo-
genetic and climatic factors were favoured in models of this analysis, but the single 
most important predictor for angiosperms and for all taxa analysed together was 
phylogeny alone.

4.	 Synthesis. For plant species distributed globally at nearly 500 locations we found 
that plant phylogenetic history is a critically important predictor of litter decompo-
sition rate in rivers and streams, explaining more of the variance in decomposition 
than site or climatic regime. Thus, our study demonstrates the influence of evolu-
tionary history on suites of plant traits that shape a key ecosystem process.

K E Y W O R D S

climate, decomposition rate, ecosystem process, evolutionary ecology, global ecology, leaf 
litter, phylogenetic comparative methods
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mass area and the concentrations of water‐ and acid‐soluble poly-
saccharides were associated with slower decomposition (Cornwell 
et al., 2008). Weedon et al. (2009) examined wood decomposition 
globally and found a phylogenetic distinction between angiosperms 
and gymnosperms with lower lignin, and higher N and P in the for-
mer, and a higher lignin‐to‐N ratio in the latter. Pietsch et al. (2014) 
explored the relationships between litter and wood traits and de-
composition published in the two previous studies (Cornwell et al., 
2008; Weedon et al., 2009) and found that wood and leaf decom-
position rates were decoupled.

Despite decades of investigations into leaf litter decomposition 
in freshwaters, resulting in a wealth of information (Kaushik & Hynes, 
1971; Petersen & Cummins, 1974; Tank, Rosi‐Marshall, Griffiths, 
Entrekin, & Stephen, 2010; Webster & Benfield, 1986), previous 
global decomposition syntheses (Cornwell et al., 2008; Pietsch et 
al., 2014; Weedon et al., 2009) have until recently excluded aquatic 
studies. Recent global analyses of aquatic litter decomposition 
(Boyero et al., 2011, 2015; Follstad Shah et al., 2017; Handa et al., 
2014; Tiegs et al., 2019) provide a strong framework for new com-
parative studies. The oldest of these (Boyero et al., 2011) compared 
breakdown rates at 26 globally distributed sites and found increased 
decomposition rates with increasing temperature and, when ad-
justed for temperature effects, with increasing latitude as a result of 
higher detritivore abundance. A follow‐up study (Boyero et al., 2015) 
found an influence of phylogenetic diversity on breakdown rates of 
litter mixtures across 24 sites and 70 species. Follstad Shah et al. 
(2017) found that aquatic decomposition rates for hundreds of spe-
cies across the globe tend to increase with latitude when adjusted 
for temperature effects using a large meta‐analysis. Finally, using 
cotton strips as a standardized substrate at 514 stream and adjacent 
riparian sites world‐wide, Tiegs et al. (2019) found wide variation in 
in‐stream breakdown rates and decreased decomposition rates with 
increasing latitude.

However, none of these large‐scale studies of aquatic leaf litter 
decomposition explored how the evolutionary history of individual 
species has shaped leaf litter decomposition. Phylogenetic diversity 
of plant communities has been addressed, but phylogenetic history 
of the constituent species integrates leaf trait evolution—indeed, the 
evolution of all plant traits—and as such may provide improved pre-
dictions of decomposition rates globally in linked terrestrial–aquatic 
ecosystems, where connections are mitigated by traits we may not 
predict a priori. Phylogenetic diversity of communities alone tells 
only part of the story of how evolutionary history shapes ecosystem 
function.

Here, we explore how both plant phylogenetic history and cli-
matic variation among sites influence rates of leaf litter decom-
position in streams distributed across the globe. Since climatic 
variables (mean, maximum and minimum temperature; precipita-
tion; seasonality; isothermality) can influence both plant biogeog-
raphy and the decomposition environment directly, we detangle 
these two influences (Dodds, Gido, Whiles, Daniels, & Grudzinski, 
2015), testing the predictions that: (a) across broad spatial scales, 
decomposition rates will be strongly influenced by site × species 

interactions, with both factors influenced by climate, and (b) phy-
logenetic history will affect decomposition rates through its influ-
ences on species traits but also on the site × species interaction. 
As these predictions are not mutually exclusive, we tested them 
in a modelling framework that addresses the joint influences of 
phylogeny and climate at both levels of analysis, providing novel 
insights into how plant evolutionary history shapes stream eco-
system processes globally.

2  | MATERIAL S AND METHODS

2.1 | Plant litter decomposition database 
compilation

Data compiled for this study were extracted from values reported 
in the scientific literature as detailed in Follstad Shah et al. (2017). 
Briefly, we used search terms “(leaf OR litter) AND (breakdown OR 
decomposition OR processing) AND (stream OR river)” to identify 
studies. This provided us with an initial list of articles published on 
May 13, 2011, which was updated by articles cited in review pa-
pers on leaf litter decomposition in streams by Follstad Shah et al., 
(2017). Our final list included 636 papers published between 1966 
and 2011, of which 285 met our criteria that: (a) rates of leaf lit-
ter decomposition were measured in natural streams and rivers with 
perennial flow; and (b) stream temperature and decomposition rate 
constants were reported or could be calculated. We discarded stud-
ies including factors beyond local species differences (e.g. nutrient 
addition, predator exclusion, exotic species, long‐distance reciprocal 
transplantations). However, we included in our dataset a variety of 
leaf litter decomposition methods used across studies, particularly 
litter bags of various size and mesh size, deployment periods and 
processing methods, to ensure a large sample size. Studies may have 
also included measurements of water chemistry, velocity, shredder 
abundance and microbial measures, but the inconsistency of these 
measurements made it impossible to comprehensively address these 
other factors.

For each article, we recorded the scientific name of the plant 
yielding the  leaf litter and the corresponding decomposition rate 
constants as reported or calculated (see Follstad Shah et al., 2017 
and methods therein), where missing, as mt=m0e

−kDt, where mt is 
leaf litter mass remaining at time t and m0 is the initial leaf litter 
mass. Data compilation resulted in 3,189 records of leaf litter de-
composition from 494 sites (Figure 1) for 239 plant taxa from 124 
genera, 70 families and 34 orders. Decomposition rates ranged 
from 0.0002 to 0.7890 per day and resulted in a global, average 
in‐stream decomposition rate of 0.0240 per day (Follstad Shah et 
al., 2017) with a 95% confidence interval of 0.0227–0.0253, and a 
median rate of 0.0127 per day.

Latitude and longitude data were extracted from each paper 
and mapped to identify potential errors which were subsequently 
rectified. Many of the studies lacked detailed data on environ-
mental conditions (stream discharge, water chemistry, etc.), and a 
previous study exploring patterns in this dataset examined stream 
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temperature (Follstad Shah et al., 2017), so we focused on broad cli-
matic variables in this analysis. Climatic data were inferred for each 
site from the 10 min (~340 km2) resolution WorldClim v 2.0 dataset 
(Fick & Hijmans, 2017). All 19 of the WorldClim bioclimatic (“bioclim”) 
variables (https​://www.world​clim.org/bioclim) were downloaded 
and used individually or summarized as ordination axes (see methods 
for Comparing environmental and phylogenetic drivers below). R scripts 
for executing analyses and downloading data have been archived at 
(https​://github.com/andrew-hipp/decom​posit​ion-phylo​geny-2019).

2.2 | Plant phylogenetic data organization

We used Phylomatic (Beaulieu, Ree, Cavender‐Bares, Weiblen, & 
Donoghue, 2012; Webb & Donoghue, 2005) to assemble a base 
phylogenetic tree for all species for which we had litter decomposi-
tion rate data (Appendix S1), using Phylomatic base tree R20120829 
as the starting megatree, based on Angiosperm Phylogeny Group 
III (Haston, Richardson, Stevens, Chase, & Harris, 2009; Qian & Jin, 
2016). We normalized scientific names using the Taxonomic Name 
Resolution Service (Boyle et al., 2013) and corrected as needed 
with names used in published phylogenies (https​://github.com/
andrew-hipp/decom​posit​ion-phylo​geny-2019). Mesquite (Maddison 
& Maddison, 2018) was used to manually resolve branches within 
families, as the supertree is not fully resolved for all families, based 
on those same phylogenetic studies (Appendix S1). Node ages of the 
resulting tree were then calibrated using more recent angiosperm 
phylogenies (Bell, Soltis, & Soltis, 2010) and the simple branch length 
adjuster tool (BLADJ) to even out node spacing between calibration 
points. Initial analyses conducted on the tree with unmodified ages 
did not suggest different interpretations than analyses conducted on 
the Phylomatic tree with updated ages, suggesting that our results 

are robust to a range of branch length assumptions. Throughout the 
paper, we report analyses conducted on the tree with revised clade 
ages and results for the entire dataset as well as a dataset including 
just the angiosperms. The tree was visualized and exported for pub-
lication in R using the ggplot2 and ggtree packages (Yu et al., 2016) 
and custom scripts (https​://github.com/andrew-hipp/decom​posit​
ion-phylo​geny-2019). Site‐level phylogenetic diversity was calcu-
lated for all sites where more than one taxon occurred using mean 
pairwise distance (MPD) and mean nearest taxon distance (MNTD) 
in picante v. 1.7 for R (Kembel et al., 2010).

For analyses at the site level using generalized linear mixed 
models, we created a composite tree with one tip per species per 
site, creating a polytomy for each species with a depth of 1.5 Ma to 
ensure that all species polytomies were younger than the youngest 
node in the phylogeny. Thus, each species ×  site combination had 
one tip in the tree, allowing us to partition the site and phylogenetic 
contributions to variance in litter decomposition rates.

2.3 | Phylogenetic signal and phylogenetic 
transitions on decomposition rate

We estimated phylogenetic signal, defined as the “tendency for re-
lated species to resemble each other more than they resemble spe-
cies drawn at random from the tree”, (Blomberg & Garland, 2002) in 
litter decomposition rates using Blomberg's K (Blomberg, Garland, & 
Ives, 2003). Blomberg's K typically scales from 0 for a character with 
no phylogenetic autocorrelation to 1 for a character that has phylo-
genetic autocorrelation (i.e. similarity in trait value between close 
relatives) equivalent to expectations for a trait evolving according to 
a Brownian motion (random walk) process on the tree being evalu-
ated (Figure 2). K may range to greater than 1 for traits that exhibit 

F I G U R E  1  Map of sampling locations and sample sizes, includes all 494 sites included in our study. The numbers of decomposition rate 
values (samples) for each site ranges from 1 to 156

1−2
3−5
6−10
11−20
21−50
51−156

Samples per site

https://www.worldclim.org/bioclim
https://github.com/andrew-hipp/decomposition-phylogeny-2019
https://github.com/andrew-hipp/decomposition-phylogeny-2019
https://github.com/andrew-hipp/decomposition-phylogeny-2019
https://github.com/andrew-hipp/decomposition-phylogeny-2019
https://github.com/andrew-hipp/decomposition-phylogeny-2019


     |  5Journal of EcologyLEROY et al.

greater phylogenetic autocorrelation than expected under the as-
sumption of Brownian motion. Stated another way, K > 1 indicates 
that close relatives are more similar than expected if the trait being 
studied evolves according to a random walk. Significance was as-
sessed by permuting tip states 4,999 times, calculating K for each 
permutation, then calculating p as 2 × the rank position of Kobserved; 
thus yielding a two‐tailed p‐value, reflecting the fact that both clus-
tering (relatives more similar than expected) and overdispersion 
(close relatives less similar than expected) are possible evolution-
ary outcomes. These analyses were conducted with the package 
picante 1.7 (Kembel et al., 2010) in r 3.4.4 (R Core Team, 2018). For 
comparison with previous studies, we also calculated Pagel's lambda 
(Münkemüller et al., 2012; Pagel, 1999), a scalar of the off‐diagonal 
cells of the covariance matrix estimated from the tree, which scales 
from 0 to 1 (or a bit higher, depending on the tree structure). At λ = 0, 
the covariance is equivalent to a star‐shaped phylogeny, where all 
species are equally related, reflecting the case where phylogeny has 
no effect on litter decomposition rates. At λ = 1, the covariance be-
tween any pair of tips is predicted directly by the relative distance 
from the root of the tree to the most recent common ancestor of 
those tips; this models a Brownian motion process in which the 
branch lengths of the tree are known without error. The λ model was 
fitted using the fitContinuous function in the package geiger 2.0.6 
(Harmon, Weir, Brock, Glor, & Challenger, 2008) in r 3.4.4.

We identified phylogenetic shifts in litter decomposition rate 
by evaluating the relative support for alternative OU models, which 
model transitions in trait values as responses to shifting selective re-
gimes (Butler & King, 2004; Hansen, 1997; Martins & Hansen, 1997). 
Analysis was performed using the l1ou  +  IC method (Khabbazian, 
Kriebel, Rohe, & Ané, 2016), a stepwise model‐selection and eval-
uation approach implemented using the least absolute shrinkage 

and selection operator (lasso) (Tibshirani, 1996, 2011) method and a 
modified information criterion that accounts for clade sizes entailed 
by shifts in litter decomposition rate, modelled as shifting optima in 
trait space (where the trait is litter decomposition rate). We com-
pared results with an Expectation Maximization (EM) search algo-
rithm (Bastide, Ané, Robin, & Mariadassou, 2018), which generally 
searches parameter space more rapidly. Analyses were conducted 
in the l1ou (Khabbazian et al., 2016) and PhylogeneticEM (Bastide, 
Mariadassou, & Robin, 2017) packages of R 3.4.4.

We reconstructed phylogenetic transitions in the rate of evo-
lution of litter decomposition rate (i.e. the rate of evolution of 
log(k)) using reversible‐jump Markov‐chain Monte Carlo (rjMCMC; 
Green, 1995) as implemented in the rjmcmc.bm function of geiger 
2.0.6 (Eastman, Alfaro, Joyce, Hipp, & Harmon, 2011; Harmon et al., 
2008). In this method, every branch on the phylogeny was assigned 
to a class of rates, corresponding to presumed shifts in the rate of 
evolution on the phylogenetic tree. The relative rates of all branches 
within a taxonomic class were allowed to vary. The assignments of 
branches to classes were also allowed to vary by allowing transitions 
in rate to appear or disappear from the tree.

2.4 | Comparing environmental and 
phylogenetic drivers

We used two methods to compare phylogenetic and climatic mod-
els to predict global patterns of litter decomposition rates. First, 
we used an approach based on phylogenetic eigenvector regres-
sion (PVR; Diniz‐Filho, Sant’Ana, & Bini, 1998) to partition variance 
in litter decomposition rate into (a) an environmental component 
based on the four strongest bioclim variables (Bioclim1: annual mean 
temperature; Bioclim4: temperature seasonality; Bioclim12: annual 

F I G U R E  2  Conceptual diagram showing phylogenetic signal strength compared to ecosystem function. Two phylogenetic trees are 
shown with hypothetical decomposition rates plotted along the tips of the tree, ranging from slow (white squares) to fast (black squares) 
decomposition rates (k/day). If decomposition rates did not vary across the phylogenetic tree, all tips would be the same colour (null model—
not shown). If decomposition rates were distributed randomly across the phylogenetic tree, there would be a low phylogenetic signal as in 
the panel on the right. The panel on the left shows an example with a high phylogenetic signal for decomposition. Representative Pagel's 
lambda and Blomberg's K values for each scenario are included

Pagel's lambda = 0.9945,
Blomberg's K = 1.5183

High phylogenetic signal
Pagel's lambda = 0.2615,
Blomberg's K = 0.0434

Low phylogenetic signal
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TA B L E  1  Average in‐stream decomposition rate constants (k/day) for global plant families. N indicates number of species sampled per 
clade.

Clade Order Family N mean k/day SD SEM

Fern/fern allies eupolypod II Blechnaceae 1 0.0066 – –

Fern/fern allies Marattiales Marattiaceae 1 0.013 – –

Gymnosperm Cupressales Cupressaceae 1 0.008 – –

Gymnosperm Cupressales Podocarpaceae 1 0.016 – –

Gymnosperm Pinales Pinaceae 8 0.0058 0.0054 0.0019

Monocot Alismatales Potamogetonaceae 2 0.0091 0.0077 0.0054

Monocot Arecales Arecaceae 1 0.008 – –

Monocot Commelinales Pontederiaceae 1 0.0122 – –

Monocot Pandanales Pandanaceae 1 0.0144 – –

Monocot Poales Cyperaceae 3 0.0127 0.011 0.0063

Monocot Poales Poaceae 12 0.0108 0.0086 0.0025

Monocot Poales Typhaceae 1 0.0252 – –

Magnoliid Laurales Atherospermataceae 1 0.0072 – –

Magnoliid Laurales Lauraceae 4 0.006 0.0043 0.0022

Magnoliid Magnoliales Magnoliaceae 1 0.0155 – –

Eudicot Apiales Araliaceae 2 0.0291 0.01 0.0071

Eudicot Apiales Pittosporaceae 2 0.0296 0.0195 0.0138

Eudicot Aquifoliales Aquifoliaceae 2 0.0303 0.0293 0.0207

Eudicot Asterales Asteraceae 1 0.0216 – –

Eudicot Brassicales Brassicaceae 1 0.0845 – –

Eudicot Caryophyllales Polygonaceae 2 0.0078 0.0032 0.0023

Eudicot Caryophyllales Tamaricaceae 2 0.0064 0.0022 0.0016

Eudicot Cornales Cornaceae 3 0.04 0.0274 0.0158

Eudicot Cornales Nyssaceae 1 0.0313 – –

Eudicot Dipsacales Caprifoliaceae 1 0.1018 – –

Eudicot Ericales Ericaceae 3 0.004 0.0032 0.0019

Eudicot Ericales Primulaceae 1 0.007 – –

Eudicot Fabales Fabaceae 6 0.0311 0.035 0.0143

Eudicot Fagales Betulaceae 17 0.0229 0.0233 0.0057

Eudicot Fagales Casuarinaceae 1 0.0209 – –

Eudicot Fagales Fagaceae 18 0.0114 0.0055 0.0013

Eudicot Fagales Juglandaceae 3 0.0095 0.0039 0.0022

Eudicot Fagales Myricaceae 1 0.039 – –

Eudicot Fagales Nothofagaceae 4 0.0106 0.0071 0.0035

Eudicot Gentianales Apocynaceae 2 0.0237 0.0181 0.0128

Eudicot Gentianales Rubiaceae 2 0.0476 6.00E‐04 4.00E‐04

Eudicot Icacinales Icacinaceae 1 0.006 – –

Eudicot Lamiales Oleaceae 4 0.0182 0.0085 0.0042

Eudicot Lamiales Scrophulariaceae 1 0.1522 – –

Eudicot Lamiales Verbenaceae 1 0.0182 – –

Eudicot Malpighiales Euphorbiaceae 5 0.0411 0.023 0.0103

Eudicot Malpighiales Salicaceae 28 0.0158 0.0133 0.0025

Eudicot Malpighiales Violaceae 1 0.0477 – –

Eudicot Malvales Malvaceae 5 0.0858 0.1407 0.0629

(Continues)
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precipitation; and Bioclim14: precipitation of the driest month); (b) 
four non‐metric multidimensional scaling (NMDS) ordination axes 
created using a Euclidean distance measure from all 19 bioclim vari-
ables (https​://www.world​clim.org/bioclim) (and for comparison, four 
principle component analysis (PCA) axes created using Euclidean 
distance measures with all 19 variables); (c) a phylogenetic compo-
nent based on the first four eigenvectors from principal coordinate 
analysis (PCoA) of a pairwise phylogenetic distance matrix; and (d) 
site identity for analyses conducted at the site level. Site identity 
was added as a random effect to account for any aspects of site that 
are not directly measured; in this way, site identity in our model is 
analogous to plot or block in a designed experiment. A stepwise 
model selection process is generally employed to select phyloge-
netic eigenvectors for analysis (Diniz‐Filho et al., 2012; Gonçlaves‐
Souza, Diniz‐Filho, & Romero, 2014). However, the lack of an explicit 
evolutionary model underlying phylogenetic eigenvector analysis 
(Freckleton, Cooper, & Jetz, 2011) combined with the relative ar-
bitrariness of eigenvector selection—selecting all 238 eigenvectors 
would overfit the data, while selecting anything less than all fails to 
capture all phylogenetic data—makes PVR an approximate approach. 

Consequently, we used only four phylogenetic eigenvectors, which 
cumulatively explain 55% of the total variance in the phylogeny 
when the relative eigenvalues are used as estimates of the variance 
explained by each PCoA axis. Axes 2 and 3 of the angiosperm or-
dination recovered differences among broadly overlapping clades; 
consequently, we used PCoA axes 1, 2, 4 and 5 for model evalua-
tion in the angiosperms by species models, but this had a negligi-
ble effect on model ranking and support. These four eigenvectors 
were included in models with either four bioclim variables or four 
bioclim NMDS axes for a comparison of the relative predictive value 
of both climate and phylogeny. We selected the same number of 
axes, four, from both the phylogeny PCoA and the climatic NMDS to 
avoid biasing our linear regressions towards detecting either climate 
or phylogeny as a better predictor of decomposition rate. In both 
cases, the axes explain a fair amount of variation in the data. For 
the phylogenetic PCoA, the first four axes explain 33.0, 8.6, 8.0 and 
5.4% of variation respectively. For NMDS, variance partitioning is 
not the target of each axis, but ordination stress—a measure of the 
mismatch between the K‐dimensional ordination and the distance 
matrix used to generate it. Ordination stress drops from 0.214 at 

Clade Order Family N mean k/day SD SEM

Eudicot Myrtales Combretaceae 2 0.025 0.0198 0.014

Eudicot Myrtales Lythraceae 1 0.0333 – –

Eudicot Myrtales Melastomataceae 2 0.0064 0.0027 0.0019

Eudicot Myrtales Myrtaceae 20 0.0115 0.0091 0.002

Eudicot Myrtales Onagraceae 1 0.0165 – –

Eudicot Oxalidales Cunoniaceae 2 0.0363 0.0471 0.0333

Eudicot Oxalidales Elaeocarpaceae 2 0.0286 0.0369 0.0261

Eudicot Proteales Platanaceae 6 0.0057 0.0019 8.00E‐04

Eudicot Proteales Proteaceae 2 0.009 0.0022 0.0016

Eudicot Ranunculales Eupteleaceae 1 0.0133 – –

Eudicot Rosales Elaeagnaceae 1 0.024 – –

Eudicot Rosales Moraceae 6 0.0388 0.0308 0.0126

Eudicot Rosales Rhamnaceae 1 0.0286 – –

Eudicot Rosales Rosaceae 4 0.0394 0.0443 0.0222

Eudicot Rosales Ulmaceae 7 0.0705 0.0727 0.0275

Eudicot Rosales Urticaceae 1 0.02 – –

Eudicot Sapindales Anacardiaceae 2 0.0202 0.0078 0.0056

Eudicot Sapindales Burseraceae 2 0.0036 4.00E‐04 2.00E‐04

Eudicot Sapindales Hippocastanaceae 1 0.0066 – –

Eudicot Sapindales Meliaceae 1 0.023 – –

Eudicot Sapindales Rutaceae 1 0.019 – –

Eudicot Sapindales Sapindaceae 8 0.0232 0.0146 0.0052

Eudicot Sapindales Simaroubaceae 1 0.0945 – –

Eudicot Saxifragales Haloragaceae 1 0.025 – –

Eudicot Saxifragales Hamamelidaceae 2 0.0172 0.0029 0.002

Eudicot Vitales Vitaceae 1 0.0142 – –

Note: Standard deviation (SD) and standard error (SEM) are provided for families with N > 1.

TA B L E  1   (Continued)

https://www.worldclim.org/bioclim
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F I G U R E  3  Comparison of decomposition rates by plant family between Webster and Benfield (1986) and this study. Symbols represent 
mean decomposition rates (k/day) for both Webster and Benfield (1986; orange circles) and this study (green circles). Error bars represent 
standard error of the mean calculated by sample for Webster and Benfield (1986) and by species for this study
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K = 1 to 0.035 at K = 4; all dimensions above K = 4 reduce stress 
by less than 0.02 per increase in dimension. To assess the effect of 
ordination method on model support and parameter estimates, we 
replicated the analyses with the first four axes of a PCA using the 
19 bioclim climatic predictors and found that there is no difference 
in model support and negligible difference in the estimated regres-
sion parameters (Supplemental Table S1). Code to do all analyses is 

in the repository for this paper (https​://github.com/andrew-hipp/
decom​posit​ion-phylo​geny-2019). Linear regression models were 
compared based on Akaike's Information Criterion (AIC; Akaike, 
1974) and coefficients of determination (R2), and model confidence 
intervals were constructed using cumulative AIC weights (Burnham 
& Anderson, 2002; Burnham, Anderson, & Huyvaert, 2011). All anal-
yses were conducted using the ape (Paradis, Claude, & Strimmer, 

F I G U R E  4  Phylogeny of species included in our analyses, with natural‐log transformed global in‐stream leaf litter decomposition rates (k/
day = kd) and bioclimatic and phylogenetic predictors included in models. Tip states are scaled to range from 0.0 to 1.0. Transitions among 
clade‐level leaf litter decomposition rates were modelled using a multiple‐regime Ornstein–Uhlenbeck model with a phylogenetic lasso 
approach and expectation maximization (EM) algorithm for model fitting. The two approaches converged on all transitions represented here 
except the decrease in ln(kd) observed in Rhododendron, which was recovered using the phylogenetic lasso but not the EM algorithm (see 
Figure S2). Variables plotted along the tips include: decomposition rate, ln(kd); mean annual temperature (BIO1), mean precipitation (BIO12), 
temperature seasonality (BIO4), precipitation seasonality (BIO14) and four phylogenetic PCoA axis scores
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2004) and vegan (Oksanen, Blanchet, Kindt, Legendre, & O’Hara, 
2016) packages of R and custom scripts available at https​://github.
com/andrew-hipp/decom​posit​ion-phylo​geny-2019.

Our second approach used phylogenetic generalized linear 
mixed models (PGLMM; Hadfield & Nakagawa, 2010) in a Bayesian 
framework to quantify the effects of phylogeny, climate, and site 
on litter decomposition rate more precisely. This approach uses 
the phylogenetic covariance matrix as a predictor of covariance 
in trait value among tips, and it scales the importance of the phy-
logeny by rescaling the covariance matrix. For a species‐level 
analysis, this is analogous to fitting a phylogenetic generalized 
least squares model while simultaneously estimating a scalar of 
the off‐diagonal elements of the covariance matrix (i.e. Pagel's λ) 
(Housworth, Martins, & Lynch, 2004; Pagel, 1997, 1999; Revell, 
2010). In species‐level analyses, we treat phylogeny as a random 
effect and bioclim variables as fixed effects. For a site‐level anal-
ysis, PGLMM offers the flexibility of treating both phylogeny 
and site as random effects and bioclim variables as fixed effects. 
We compared PGLMM models based on Deviance Information 
Criterion (DIC; van der Linde, 2005; Spiegelhalter, Best, Carlin, 
& Linde, 2002) and residual model variance, and model intervals 
were constructed using DIC weights. Analyses were conducted 
in R using the MCMCglmm package (Hadfield, 2010) and custom 
scripts available at https​://github.com/andrew-hipp/decom​posit​
ion-phylo​geny-2019.

3  | RESULTS

Litter decomposition rates (k/day) in stream environments showed 
a wide range of variation across plant families (min–max: 0.0036–
0.1522) and plant orders globally (Table 1). Our results (averaged by 
plant family) are compared to an early synthesis of decomposition 
rates (Webster & Benfield, 1986; Figure 3) to provide a more com-
plete picture of global decomposition across plant families.

3.1 | Phylogenetic signal and phylogenetic 
transitions in litter decomposition rate

The litter decomposition rate data exhibited a significant phyloge-
netic signal in both the all‐taxa tree (Figure 4; K  =  0.177, p  =  .01; 
λ = 0.977) and the angiosperm tree (K = 0.376, p = .004; λ = 0.961; 
Table 2). Because plants are distributed non‐randomly across the 
globe, climatic variables averaged for each species all exhibited some 
phylogenetic signal. Mean annual temperature (BIO1) and tempera-
ture seasonality (BIO4) each exhibited significant phylogenetic signal 
(on the angiosperm tree, K = 0.230–0.266, p ≤ .002, λ = 0.59–0.70; 
on the all‐taxa tree, K = 0.097–0.117, p ≤ .006, λ = 0.74–0.83), and 
precipitation of the driest month (BIO14) exhibited significant phylo-
genetic signal on the angiosperm tree (K = 0.227, p = .038, λ = 0.23), 
but a non‐significant phylogenetic signal on the all‐taxa tree 
(K = 0.1, p = .054, λ = 0.0), while mean annual precipitation (BIO12) 
exhibited weak and, in our dataset, non‐significant phylogenetic 

signal (K  =  0.094–0.208, p  =  .078–0.112, λ  =  0.51–0.64; Table 2). 
Ordination of these data in four dimensions (Figure S1) was well‐sup-
ported (stress = 0.035), and axes 1 and 3 exhibited weak but signifi-
cant phylogenetic signal on the angiosperm tree (K = 0.200–0.255, 
p  <  .042, λ  =  0.35–0.70) and the all‐taxa tree (K  =  0.093–0.111, 
p < .032, λ = 0.52–0.83).

Analyses of alternative multiple‐regime OU models identified a 
significant increase in litter decomposition rate at the base of the eu-
dicots (Figure S2). Both inferred a relatively high rate of adaptation, 
corresponding to 5.0%–5.5% of the total tree length (for the phylo-
genetic lasso, α = 14.36 [t½ = 0.0483] on a tree arbitrarily rescaled to 
height 1.0; for the E‐M algorithm, α = 0.0305 [t½ = 22.73] on a tree 
spanning 432 million years, t½ = 5.26% of total tree depth). While 
interpreting the rate of adaptation (α) is not perfectly straightfor-
ward (Bastide et al., 2018), this rate of adaptation suggests that the 
transition to a higher litter decomposition rate at the base of the eu-
dicots occurred too rapidly to be explained by a purely random walk 
model, that is, by the variance we expected as lineages diverge from 
one another (Felsenstein, 1985). This in turn suggests that natural 
selection on leaf traits shaped this transition, driving accelerated 
rates of litter decomposition in the angiosperms. By contrast, analy-
sis of evolutionary rates using rjMCMC suggests that the evolution 
of litter decomposition rates is relatively homogeneous: no lineages 
were recovered as evolving at a significantly higher or lower rate 
than other clades (Figure S3).

TA B L E  2  Phylogenetic signal (Blomberg's K and Pagel's λ) 
for key decomposition variables (decomposition rate k/day = kd; 
natural log of decomposition rate k/day = ln kd), and bioclimatic 
variables: Bio1 (mean annual air temperature), Bio12 (mean annual 
precipitation), Bio4 (temperature seasonality), Bio14 (precipitation 
of the driest month), NMDS axes 1–4 (from ordination of all 19 
bioclim variables)

  Angiosperm tree All taxa tree

k (day−1) K = 0.376, p = 0.004, 
λ = 0.961

K = 0.177, p = 0.010, 
λ = 0.977

ln k (day−1) K = 0.226, p = 0.010, 
λ = 0.536

K = 0.122, p = 0.004, 
λ = 0.716

Bio1 K = 0.230, p = 0.002, 
λ = 0.587

K = 0.097, p = 0.006, 
λ = 0.743

Bio12 K = 0.208, p = 0.078, 
λ = 0.505

K = 0.094, p = 0.122, 
λ = 0.638

Bio4 K = 0.266, p < 0.001, 
λ = 0.703

K = 0.117, p < 0.001, 
λ = 0.833

Bio14 K = 0.227, p = 0.038, 
λ = 0.225

K = 0.100, p = 0.054, 
λ = 0.000

NMDS1 K = 0.255, p = 0.002, 
λ = 0.697

K = 0.111, p < 0.001, 
λ = 0.826

NMDS2 K = 0.186, p = 0.204, 
λ = 0.106

K = 0.080, p = 0.262, 
λ = 0.000

NMDS3 K = 0.200, p = 0.042, 
λ = 0.343

K = 0.093, p = 0.032, 
λ = 0.510

NMDS4 K = 0.192, p = 0.058, 
λ = 0.000

K = 0.090, p = 0.072, 
λ = 0.000

https://github.com/andrew-hipp/decomposition-phylogeny-2019
https://github.com/andrew-hipp/decomposition-phylogeny-2019
https://github.com/andrew-hipp/decomposition-phylogeny-2019
https://github.com/andrew-hipp/decomposition-phylogeny-2019
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3.2 | Comparing environmental and 
phylogenetic drivers

Top‐ranked linear models for both the species‐level and site‐
level analyses included phylogenetic PCoA axes, irrespective of 
whether the all‐taxa phylogeny or angiosperms‐only phylogeny 
was analysed (Table 3). Climatic predictors, whether included 
directly in the model as bioclim variables, or indirectly as the 
first four NMDS axes, appeared in the 95% model confidence 
set (based on cumulative AIC weight) only in combination with 
phylogeny, whereas phylogeny alone had the lowest AIC of any 
of the individual models in the species‐level analysis of the an-
giosperm dataset. The first axis of the phylogenetic PCoA had a 
stronger effect than climatic predictors in multiple regression as 
estimated using regression coefficients on rescaled data for the 
all‐taxa analyses and the angiosperm dataset analysed by spe-
cies. For the angiosperm dataset analysed by site, climatic pre-
dictors had a stronger effect (Table 3). Among all models in the 
95% confidence set, mean temperature (BIO1) had the strongest 
climatic effect on litter decomposition rate as estimated by nor-
malized partial regression coefficients, followed by either mean 
annual precipitation (BIO12) or temperature seasonality (BIO4) 
(Table 3).

Including phylogeny as a random effect in analyses by species 
reduced the residual variance by approximately 40% in the lin-
ear mixed models (Table 4). Including just site as a random effect 
reduced residual variance from 1.0 to 0.58–0.59 in analyses con-
ducted by site; including just phylogeny (also as a random effect) 
reduced residual variance from 1.0 to 0.62 or 0.65 (Table 4). The 
single most important predictor in both sets of taxa and both anal-
ysis levels was phylogeny, which was for all sets of analyses the 
lowest‐DIC single‐predictor model (Table 4). Including climate as 
a suite of fixed effects did not improve model fit over that of the 
model including only phylogeny as a random effect in analyses 
conducted by species. In analyses conducted by site, the model 
including site and phylogeny as random effects and climate as a 
suite of fixed effects was by far the best fit model, with phylog-
eny explaining ca. 6 × the variance explained by site in the all taxa 
dataset, and ca. 2 ×  the variance explained by site in the angio-
sperm dataset (Table 4, site var. and phylo var. columns). In both 
datasets, mean annual temperature (BIO1) had approximately 
twice the effect size of mean annual rainfall (BIO12), but neither 
effect was significant (Table 4). Using ordination to determine the 
influence of climatic factors on species‐specific decomposition 
rates (239 species plotted in climatic space, Figure 5), demon-
strated that climate is a relatively poor predictor of decomposition 
rates at a global scale.

Average phylogenetic MNTD for the sites where more than one 
taxon occurred (N = 179) was 210.4 Ma, and average phylogenetic 
MPD was 232.5 Ma. Eight sites showed significant MPD and 10 
showed significant MNTD (two‐tailed test, p < .01, Figure S4). Forty‐
one sites sampled had at least one eudicot and one species from a 
different major clade.

4  | DISCUSSION

The analyses presented here demonstrate that phylogenetic his-
tory—the evolutionary history that led to the plants we observe 
across the globe today—is a more powerful predictor of global vari-
ation in rates of in‐stream leaf litter decomposition than site or the 
range of climate variables considered in this study. While this is per-
haps not surprising at the species level, where we might expect in-
trinsic properties of species to swamp climatic conditions at the sites 
where individual plants are collected, it is remarkable that even data 
analysed at the site level suggests that phylogeny explains 2.2–5.8 
times the variation explained by site (Table 4). This is only possible 
because sites are phylogenetically diverse: of the 179 sites in our 
study where two or more taxa were measured, the average phylo-
genetic MNTD and average phylogenetic MPD corresponded to di-
vergence times of 105 and 116 Ma respectively, demonstrating that 
sites captured large swaths of phylogenetic history. In fact, 41 sites 
sampled had at least one eudicot and one species from a different 
major clade. As the major evolutionary transition in decomposition 
rates appears to have been on the branch leading to the eudicots, 
this co‐occurrence of eudicots with non‐eudicot lineages is key to 
the fact that site conditions as well as climatic conditions predicted 
less variance than even the relatively small proportion of phyloge-
netic variance captured by four phylogenetic eigenvectors (Table 3). 
Evolutionary history explains variation in traits that are highly rel-
evant to explaining global litter decomposition rates.

Phylogenetic effects observed in this study may be related to 
variation in whole suites of plant traits that influence microbial de-
composers and invertebrate litter consumers and that act across 
ecosystems, from the terrestrial environments where the plants 
evolved to the aquatic ecosystems where their leaves decompose. 
Leaf litter decomposability is influenced by a plant's position on the 
leaf economics spectrum (Díaz et al., 2016; Wright et al., 2004). In 
terrestrial systems, plant traits have been found to explain the de-
composition rate of leaves (Cornwell et al., 2008) and wood (Hu et 
al., 2018) more than climatic factors. We were unable to include spe-
cific leaf traits as explanatory variables in our study due to inconsis-
tent reporting of leaf traits in the published studies. However, plant 
traits are phylogenetically heritable (Cavender‐Bares et al., 2018; 
Flores et al., 2014; Hao, Kuang, & Kang, 2015; Pearse & Hipp, 2012; 
Schmerler et al., 2012; Zanne et al., 2014), and plant phylogeny is 
thus expected to integrate across the entire suite of litter quality 
traits. Hence, our study implies that the traits that predict leaf de-
composability track phylogenetic history more closely than climatic 
transitions among species. Our results demonstrate that phylogeny 
explains an important fraction of variance in plant traits similar to 
other studies where they were either correlated with a subset of 
climatic predictors (e.g. Willis, Ruhfel, Primack, Miller‐Rushing, & 
Davis, 2008) or incompletely explained by the full set of climatic 
predictors expected to explain them (Li, Ives, & Waller, 2017; Pearse 
& Hipp, 2009).

The phylogenetic effect we find in this study is among the 
strongest reported to date for decomposition rates. Phylogenetic 
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heritability of leaf decomposition in streams analysed in this study 
(Pagel's λ = 0.977 for 239 species globally) is higher than λ values 
found for the decomposability of angiosperm species studied in ter-
restrial environments in the UK (45 species; λ  = 0.32) and central 

Argentina (24 species; λ = 0.70) (Díaz et al., 2013), the eastern US 
(λ = 0.39 for 78 leaf species, Jo, Fridley, & Frank, 2016), and Ecuador (17 
species; λ = 0.80, for undamaged leaves; Cárdenas, Hättenschwiler, 
Valencia, Argot, & Dangles, 2015). These smaller studies had lower 

TA B L E  3  Phylogenetic eigenvector regression model results including both phylogenetic and bioclimatic predictors  
of decomposition rates

Taxon set
Analysis 
level Model R2 AIC delta AIC Sum AICw bio1 bio12 bio14 bioclim4 NMDS1 NMDS2 NMDS3 NMDS4 phylo Axis1 phylo Axis2 phylo Axis3 phylo Axis4 phylo Axis5

allTaxa bySp NMDS & phyloPCOA 0.114 668.205 0 0.394 – – – – 0.137 
(p = .033)

0.006 
(p = .929)

0.075 
(p = .238)

−0.105 
(p = .093)

−0.213 
(p = .001)

0.13 
(p = .042)

0.113 
(p = .074)

0.022 
(p = .727)

–

allTaxa bySp bioclim & phyloPCOA 0.114 668.302 0.097 0.77 0.129 
(p = .224)

0.164 
(p = .205)

−0.008  
(p = .939)

0.122 
(p = .198)

– – – – −0.22 
(p = .001)

0.13 
(p = .043)

0.118 
(p = .062)

0.019 
(p = .771)

–

allTaxa bySp phyloPCOA 0.08 669.303 1.098 0.998 – – – – – – – – −0.236 
(p < .001)

0.112 
(p = .075)

0.101 
(p = .109)

0.038 
(p = .544)

–

allTaxa bySp NMDS 0.04 679.394 11.189 0.999 – – – – 0.143 
(p = .026)

−0.005 
(p = .937)

0.051 
(p = .428)

−0.131 
(p = .041)

– – – – –

allTaxa bySp bioclim 0.035 680.678 12.473 1 0.13  
(p = .222)

0.131 
(p = .325)

0.032  
(p = .775)

0.11 (p = .256) – – – – – – – – –

allTaxa bySpxSite bioclim & phyloPCOA 0.096 2,523.736 0 1 0.131 
(p = .012)

0.047 
(p = .41)

0.002  
(p = .958)

−0.077 
(p = .111)

– – – – −0.197 
(p < .001)

0.032 
(p = .39)

0.046 
(p = .206)

−0.039 
(p = .23)

–

allTaxa bySpxSite bioclim 0.048 2,562.93 39.194 1 0.12  
(p = .019)

0.05 
(p = .387)

−0.015  
(p = .757)

−0.084 
(p = .085)

– – – – – – – – –

allTaxa bySpxSite phyloPCOA 0.047 2,563.876 40.14 1 – – – – – – – – −0.202 
(p < .001)

0.008 
(p = .839)

0.045 
(p = .225)

0.001 
(p = .978)

–

allTaxa bySpxSite NMDS & phyloPCOA 0.052 2,566.611 42.875 1 – – – – 0.074 
(p = .031)

−0.029 
(p = .395)

0.011 
(p = .733)

−0.014 
(p = .664)

−0.203 
(p < .001)

0.012 
(p = .748)

0.048 
(p = .203)

−0.015 
(p = .66)

–

allTaxa bySpxSite NMDS 0.005 2,603.493 79.757 1 – – – – 0.068 
(p = .044)

−0.019 
(p = .578)

−0.001 
(p = .984)

−0.016 
(p = .635)

– – – – –

angio-
sperms

bySp NMDS & phyloPCOA 0.082 643.89 0 0.356 – – – – 0.149 
(p = .027)

0.003 
(p = .963)

0.055 
(p = .421)

−0.103 
(p = .116)

−0.249 
(p = .088)

−0.03 
(p = .837)

– 0.023 
(p = .729)

−0.04 
(p = .555)

angio-
sperms

bySp phyloPCOA 0.047 644.313 0.423 0.643 – – – – – – – – −0.249 
(p = .09)

−0.047 
(p = .747)

– 0.044 
(p = .506)

−0.035 
(p = .591)

angio-
sperms

bySp bioclim & phyloPCOA 0.08 644.384 0.494 0.921 0.13  
(p = .245)

0.122 
(p = .387)

0.023  
(p = .842)

0.087 
(p = .396)

– – – – −0.252 
(p = .085)

−0.03 
(p = .837)

– 0.018 
(p = .786)

−0.033 
(p = .623)

angio-
sperms

bySp NMDS 0.031 648.027 4.137 0.966 – – – – 0.13 
(p = .051)

−0.031 
(p = .639)

0.04 
(p = .545)

−0.108 
(p = .102)

– – – – –

angio-
sperms

bySp bioclim 0.029 648.583 4.693 1 0.074 
(p = .505)

0.132 
(p = .341)

0.036  
(p = .757)

0.072 
(p = .476)

– – – – – – – – –

angio-
sperms

bySpxSite bioclim & phyloPCOA 0.076 2,484.951 0 1 0.156 
(p = .004)

0.032 
(p = .576)

0.024  
(p = .618)

−0.076 
(p = .129)

– – – – 0.068 
(p = .045)

−0.061 
(p = .071)

0.123 
(p < .001)

0.085 
(p = .009)

–

angio-
sperms

bySpxSite bioclim 0.047 2,504.595 19.644 1 0.089 
(p = .089)

0.04 
(p = .499)

0.002  
(p = .959)

−0.117 
(p = .018)

– – – – – – – – –

angio-
sperms

bySpxSite phyloPCOA 0.02 2,529.733 44.782 1 – – – – – – – – 0.046 
(p = .175)

−0.011 
(p = .745)

0.087 
(p = .011)

0.095 
(p = .004)

–

angio-
sperms

bySpxSite NMDS & phyloPCOA 0.027 2,531.992 47.041 1 – – – – 0.083 
(p = .022)

−0.022 
(p = .523)

0.002 
(p = .945)

−0.031 
(p = .382)

0.054 
(p = .132)

−0.032 
(p = .359)

0.103 
(p = .004)

0.087 
(p = .01)

–

angio-
sperms

bySpxSite NMDS 0.005 2,543.133 58.182 1 – – – – 0.064 
(p = .061)

−0.05 
(p = .145)

0.0 
(p = .994)

0.001 
(p = .975)

– – – – –

Note: All predictors used in the models are indicated by the presence of a regression coefficient; parameters not included in each model are  
indicated by blanks in the table. Models were run using two sets of data: (a) all taxa in the dataset, and (b) just the angiosperms in the dataset.  
Analyses were conducted by species and by species × site. Results include coefficients of determination (R2), Akaike's Information Criterion (AIC),  
differences between the top‐ranked model and others (delta AIC), and the cumulative AIC weight (Sum AICw), with lowest AIC scores reported at  
the top. Regression coefficients are all estimated on data rescaled to unit variance and mean of 0 and are highlighted in bold when p‐values are less  
than 0.05. "NMDS" in the model name indicates that nonmetric multidimensional scaling axes for the Bioclim data were used in lieu of individual  
Bioclim variables.
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power to detect divergence from Brownian motion processes of trait 
evolution (Boettiger, Coop, & Ralph, 2012) and are biased towards 
reporting high λ values by the long average length of their terminal 
branches. Therefore, our results are particularly remarkable in the 

light of the fact that the high species density of our phylogenetic 
tree and resultant relative shortening of terminal branches increases 
statistical power to detect divergence from Brownian motion (com-
pare, for example, Figure 4 of the present study with Figure 4 of 

TA B L E  3  Phylogenetic eigenvector regression model results including both phylogenetic and bioclimatic predictors  
of decomposition rates

Taxon set
Analysis 
level Model R2 AIC delta AIC Sum AICw bio1 bio12 bio14 bioclim4 NMDS1 NMDS2 NMDS3 NMDS4 phylo Axis1 phylo Axis2 phylo Axis3 phylo Axis4 phylo Axis5

allTaxa bySp NMDS & phyloPCOA 0.114 668.205 0 0.394 – – – – 0.137 
(p = .033)

0.006 
(p = .929)

0.075 
(p = .238)

−0.105 
(p = .093)

−0.213 
(p = .001)

0.13 
(p = .042)

0.113 
(p = .074)

0.022 
(p = .727)

–

allTaxa bySp bioclim & phyloPCOA 0.114 668.302 0.097 0.77 0.129 
(p = .224)

0.164 
(p = .205)

−0.008  
(p = .939)

0.122 
(p = .198)

– – – – −0.22 
(p = .001)

0.13 
(p = .043)

0.118 
(p = .062)

0.019 
(p = .771)

–

allTaxa bySp phyloPCOA 0.08 669.303 1.098 0.998 – – – – – – – – −0.236 
(p < .001)

0.112 
(p = .075)

0.101 
(p = .109)

0.038 
(p = .544)

–

allTaxa bySp NMDS 0.04 679.394 11.189 0.999 – – – – 0.143 
(p = .026)

−0.005 
(p = .937)

0.051 
(p = .428)

−0.131 
(p = .041)

– – – – –

allTaxa bySp bioclim 0.035 680.678 12.473 1 0.13  
(p = .222)

0.131 
(p = .325)

0.032  
(p = .775)

0.11 (p = .256) – – – – – – – – –

allTaxa bySpxSite bioclim & phyloPCOA 0.096 2,523.736 0 1 0.131 
(p = .012)

0.047 
(p = .41)

0.002  
(p = .958)

−0.077 
(p = .111)

– – – – −0.197 
(p < .001)

0.032 
(p = .39)

0.046 
(p = .206)

−0.039 
(p = .23)

–

allTaxa bySpxSite bioclim 0.048 2,562.93 39.194 1 0.12  
(p = .019)

0.05 
(p = .387)

−0.015  
(p = .757)

−0.084 
(p = .085)

– – – – – – – – –

allTaxa bySpxSite phyloPCOA 0.047 2,563.876 40.14 1 – – – – – – – – −0.202 
(p < .001)

0.008 
(p = .839)

0.045 
(p = .225)

0.001 
(p = .978)

–

allTaxa bySpxSite NMDS & phyloPCOA 0.052 2,566.611 42.875 1 – – – – 0.074 
(p = .031)

−0.029 
(p = .395)

0.011 
(p = .733)

−0.014 
(p = .664)

−0.203 
(p < .001)

0.012 
(p = .748)

0.048 
(p = .203)

−0.015 
(p = .66)

–

allTaxa bySpxSite NMDS 0.005 2,603.493 79.757 1 – – – – 0.068 
(p = .044)

−0.019 
(p = .578)

−0.001 
(p = .984)

−0.016 
(p = .635)

– – – – –

angio-
sperms

bySp NMDS & phyloPCOA 0.082 643.89 0 0.356 – – – – 0.149 
(p = .027)

0.003 
(p = .963)

0.055 
(p = .421)

−0.103 
(p = .116)

−0.249 
(p = .088)

−0.03 
(p = .837)

– 0.023 
(p = .729)

−0.04 
(p = .555)

angio-
sperms

bySp phyloPCOA 0.047 644.313 0.423 0.643 – – – – – – – – −0.249 
(p = .09)

−0.047 
(p = .747)

– 0.044 
(p = .506)

−0.035 
(p = .591)

angio-
sperms

bySp bioclim & phyloPCOA 0.08 644.384 0.494 0.921 0.13  
(p = .245)

0.122 
(p = .387)

0.023  
(p = .842)

0.087 
(p = .396)

– – – – −0.252 
(p = .085)

−0.03 
(p = .837)

– 0.018 
(p = .786)

−0.033 
(p = .623)

angio-
sperms

bySp NMDS 0.031 648.027 4.137 0.966 – – – – 0.13 
(p = .051)

−0.031 
(p = .639)

0.04 
(p = .545)

−0.108 
(p = .102)

– – – – –

angio-
sperms

bySp bioclim 0.029 648.583 4.693 1 0.074 
(p = .505)

0.132 
(p = .341)

0.036  
(p = .757)

0.072 
(p = .476)

– – – – – – – – –

angio-
sperms

bySpxSite bioclim & phyloPCOA 0.076 2,484.951 0 1 0.156 
(p = .004)

0.032 
(p = .576)

0.024  
(p = .618)

−0.076 
(p = .129)

– – – – 0.068 
(p = .045)

−0.061 
(p = .071)

0.123 
(p < .001)

0.085 
(p = .009)

–

angio-
sperms

bySpxSite bioclim 0.047 2,504.595 19.644 1 0.089 
(p = .089)

0.04 
(p = .499)

0.002  
(p = .959)

−0.117 
(p = .018)

– – – – – – – – –

angio-
sperms

bySpxSite phyloPCOA 0.02 2,529.733 44.782 1 – – – – – – – – 0.046 
(p = .175)

−0.011 
(p = .745)

0.087 
(p = .011)

0.095 
(p = .004)

–

angio-
sperms

bySpxSite NMDS & phyloPCOA 0.027 2,531.992 47.041 1 – – – – 0.083 
(p = .022)

−0.022 
(p = .523)

0.002 
(p = .945)

−0.031 
(p = .382)

0.054 
(p = .132)

−0.032 
(p = .359)

0.103 
(p = .004)

0.087 
(p = .01)

–

angio-
sperms

bySpxSite NMDS 0.005 2,543.133 58.182 1 – – – – 0.064 
(p = .061)

−0.05 
(p = .145)

0.0 
(p = .994)

0.001 
(p = .975)

– – – – –

Note: All predictors used in the models are indicated by the presence of a regression coefficient; parameters not included in each model are  
indicated by blanks in the table. Models were run using two sets of data: (a) all taxa in the dataset, and (b) just the angiosperms in the dataset.  
Analyses were conducted by species and by species × site. Results include coefficients of determination (R2), Akaike's Information Criterion (AIC),  
differences between the top‐ranked model and others (delta AIC), and the cumulative AIC weight (Sum AICw), with lowest AIC scores reported at  
the top. Regression coefficients are all estimated on data rescaled to unit variance and mean of 0 and are highlighted in bold when p‐values are less  
than 0.05. "NMDS" in the model name indicates that nonmetric multidimensional scaling axes for the Bioclim data were used in lieu of individual  
Bioclim variables.
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Díaz et al., 2013). In fact, the phylogenetic signal we observed for 
in‐stream decomposition is greater than the phylogenetic signals for 
all leaf traits (λ = 0.15–0.70 for chlorophyll, P, Ca, tannins, phenols, 
cellulose, N and lignin, in increasing order of λ) in a tropical forest 
for a recent analysis of 184 species (McManus et al., 2016) and a 
number of leaf traits (λ = 0.27–0.76 for leaf area, chlorophyll and leaf 
thickness) across 229 species in tropical and subtropical China (Yang 
et al., 2014).

Our large‐scale synthesis demonstrates that phylogenetic vari-
ation shapes a fundamental ecosystem process across terrestrial–
aquatic ecosystem boundaries, despite the fact that the species 
being studied evolved in one ecosystem while the process of in-
terest—in‐stream decomposition rate—is measured in another. This 
phylogenetic effect is detectable even at a significant distance from 
the source of the leaf litter and despite a broad set of environmen-
tal factors that also influence decomposition rates—water velocity, 
water temperature, microbial colonization and macroinvertebrate 
shredders. The patterns we observe here are thus not a conse-
quence of phylogenetic niche conservatism; rather, the entire suite 
of phylogenetically heritable plant traits (e.g. leaf chemistry, tough-
ness) that shape in‐stream litter decomposition rates.

Our study further illustrates that the tree of life is not simply a 
product of adaptation to changing environments, but that evolution-
ary history of species and, presumably, their traits drive ecosystem 
processes (Cornelissen & Cornwell, 2014). The analyses presented 
here highlight the central role of phylogenetic history's influence on 
litter decomposition at a global scale and this work represents an 
important merger of ecosystem science with evolutionary history 

(Mouquet et al., 2012; Narwani, Matthews, Fox, & Venail, 2015). 
The result that phylogenetic signals can be observed across terres-
trial–aquatic boundaries is novel and strengthens evidence for the 
organizing power of genes on communities and ecosystems (Jackrel 
& Wootton, 2014; LeRoy & Fischer, 2019; LeRoy, Whitham, Keim, & 
Marks, 2006; LeRoy et al., 2007; LeRoy, Wooley, & Lindroth, 2012; 
Whitham et al., 2006).

This study also provides further context for our continued ex-
ploration of how climate change and global warming are predicted to 
increase rates of aquatic decomposition through increased stream 
temperatures (Boyero et al., 2011; Follstad Shah et al., 2017; Tiegs et 
al., 2019). There are both direct and indirect influences of tempera-
ture on this key ecosystem process. Temperature can directly in-
crease rates of decomposition through accelerated microbial growth 
and litter consumption; however, elevated CO2 concentrations 
driving temperature increases could also lower leaf litter quality 
via higher C:nutrient ratios and thus suppress decomposition rates 
(Boyero et al., 2017; Tuchman, Wetzel, Rier, Wahtera, & Teeri, 2002). 
Temperature can also indirectly affect decomposition through 
plant species’ plastic responses to climate change in terms of ex-
pressed phenotypes, adaptation in situ and shifts in species ranges 
(Christmas, Breed, & Lowe, 2016; Hooper et al., 2012; Kominoski et 
al., 2013). How these indirect changes may influence stream eco-
systems is not well understood. Finally, there may be feedbacks be-
tween climate change and in‐stream decomposition through carbon 
evasion from streams. Riverine ecosystems are important contrib-
utors to the breakdown of terrestrially derived carbon (Cole et al., 
2007), and as a result, streams and rivers have been identified as 
major sources of carbon dioxide in the atmosphere (Raymond et al., 
2013).

Streams are influenced by the biomes they are embedded in 
(Dodds et al., 2015; Tiegs et al., 2019), but biomes and the species 
assemblages within them will both shift under predicted climate 
change models. The selective pressures on plants that might influ-
ence litter decomposition rates (e.g. predation, defences against 
microbial attack, desiccation resistance) are decoupled from the 
physical, chemical and biological processes occurring in streams. 
In spite of these complexities, our study highlights the importance 
of riparian plant community composition on stream litter decom-
position. Thus, the interactive changes in phenotypic expression, 
phenology and species range shifts could directly and indirectly 
influence global litter decomposition rates. Taken as a whole, this 
work highlights the significant effect of phylogenetic history on key 
ecosystem processes.
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