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phylogeny alone.
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1 | INTRODUCTION

The past 20 years have seen a dramatic increase in our under-
standing of the influence of biodiversity on ecosystem functioning
(Hooper et al., 2005; Cardinale et al., 2012; Gessner et al., 2010;
Weisser et al., 2017). Expanding beyond the early emphasis of spe-
cies richness effects on plant productivity, phylogenetic and genetic
diversity have also been shown to influence ecosystem processes
(Hughes, Inouye, Johnson, Underwood, & Vellend, 2008; Latzel
et al., 2013; LeRoy, Whitham, Wooley, & Marks, 2007; Schweitzer
et al.,, 2004; Sundqvist, Giesler, & Wardle, 2011). The exploration
of the role of genetic patterns across species has generally taken
one of two routes: (1) a diversity approach that uses phylogenetic
diversity as a predictor of biodiversity-ecosystem function relation-
ships (Flynn, Mirotchnick, Jain, Palmer, & Naeem, 2011; Srivastava,
Cadotte, MacDonald, Marushia, & Mirotchnick, 2012), or (2) a phy-
logenetic approach that investigates how the evolution of traits and
species relationships may influence ecosystem functioning (Cadotte
et al., 2017; Donovan, Mason, Bowsher, Goolsby, & Ishibashi, 2014;
Edwards, Still, & Donoghue, 2007). Studies taking the first approach
have demonstrated that plant phylogenetic diversity influences
plant productivity (Cadotte, Cardinale, & Oakley, 2008; Gravel et al.,
2012), nutrient cycling (Cornelissen & Cornwell, 2014) and numer-
ous species traits that subsequently affect ecosystem functioning
(e.g. Cavender-Bares, Kozak, Fine, & Kembel, 2009; Diaz et al., 2013;
Matthews et al., 2011; Senior et al., 2016). Despite a rapidly grow-
ing body of literature addressing these relationships, there have only
been a few studies examining the influence of plant phylogenetic
diversity on litter decomposition (Boyero et al., 2015; Cornwell et al.,
2008; Liu et al., 2014; Makkonen et al., 2012; Pan et al., 2014). Even
fewer studies have taken the second approach.

Only two previous studies in terrestrial ecosystems have explic-
itly investigated how plant phylogeny (and thus evolutionary history)

consistently recovered phylogeny alone as one of the top models in species-level
analyses. Since many previous studies have focused on the same species across
many locations, we also conducted analyses at the species x site level. Both phylo-
genetic and climatic factors were favoured in models of this analysis, but the single

most important predictor for angiosperms and for all taxa analysed together was

4. Synthesis. For plant species distributed globally at nearly 500 locations we found
that plant phylogenetic history is a critically important predictor of litter decompo-
sition rate in rivers and streams, explaining more of the variance in decomposition
than site or climatic regime. Thus, our study demonstrates the influence of evolu-

tionary history on suites of plant traits that shape a key ecosystem process.

climate, decomposition rate, ecosystem process, evolutionary ecology, global ecology, leaf

litter, phylogenetic comparative methods

shapes litter decomposition (Liu et al., 2014; Pan et al., 2014). Liu
et al. (2014) applied a Brownian motion model to analyse data col-
lected at a single site and found that mass loss was slower in basal
angiosperms than in eudicot trees. Pan et al. (2014) compared three
phylogenetic models for decomposition data also collected at a
single site and found evidence that a constrained single-optimum
Ornstein-Uhlenbeck (OU) model best fit their data, suggesting that
decomposition rate is under stabilizing selection. No phylogenetic
approaches have attempted to address the question of how import-
ant evolutionary history is in explaining litter decomposition rates
across multiple sites. Understanding the relative contributions of
contemporary environment and evolutionary heritage to decompo-
sition rates globally has the potential to improve modelling carbon
cycling on geological time-scales, by allowing us to estimate the de-
composition rates characteristic of lineages that have variously dom-
inated different habitats over deep time.

Plant litter decomposition is a crucial ecosystem process that
drives carbon cycling in many terrestrial and aquatic environ-
ments. Shaded headwater streams make up the vast majority of
river lengths globally (73.2%, Leopold, Wolman, & Miller, 1964) and
strongly rely on plant litter inputs as a resource (Wallace, Eggert,
Meyer, & Webster, 1997), relative to all lotic habitats. Plant litter de-
composition at a global scale has been explained by both extrinsic
(climate, latitude, altitude) and intrinsic (litter quality) factors (Aerts,
1997), but most previous studies have focused on terrestrial de-
composition (Cornwell et al., 2008; Pietsch et al., 2014; Weedon et
al., 2009). Results of these previous meta-analyses have generally
shown that intrinsic species-level traits explain as much variation
as extrinsic factors, if not more. Based on a review of 16 studies,
Cornwell et al. (2008) found that species differences resulted in
larger variation in decomposition rates than climatic differences.
Specifically, litter traits like nitrogen and phosphorus concentra-

tions led to faster decomposition and traits like lignin content, leaf
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mass area and the concentrations of water- and acid-soluble poly-
saccharides were associated with slower decomposition (Cornwell
et al., 2008). Weedon et al. (2009) examined wood decomposition
globally and found a phylogenetic distinction between angiosperms
and gymnosperms with lower lignin, and higher N and P in the for-
mer, and a higher lignin-to-N ratio in the latter. Pietsch et al. (2014)
explored the relationships between litter and wood traits and de-
composition published in the two previous studies (Cornwell et al.,
2008; Weedon et al., 2009) and found that wood and leaf decom-
position rates were decoupled.

Despite decades of investigations into leaf litter decomposition
in freshwaters, resulting in a wealth of information (Kaushik & Hynes,
1971; Petersen & Cummins, 1974; Tank, Rosi-Marshall, Griffiths,
Entrekin, & Stephen, 2010; Webster & Benfield, 1986), previous
global decomposition syntheses (Cornwell et al., 2008; Pietsch et
al., 2014; Weedon et al., 2009) have until recently excluded aquatic
studies. Recent global analyses of aquatic litter decomposition
(Boyero et al., 2011, 2015; Follstad Shah et al., 2017; Handa et al.,
2014; Tiegs et al., 2019) provide a strong framework for new com-
parative studies. The oldest of these (Boyero et al., 2011) compared
breakdown rates at 26 globally distributed sites and found increased
decomposition rates with increasing temperature and, when ad-
justed for temperature effects, with increasing latitude as a result of
higher detritivore abundance. A follow-up study (Boyero et al., 2015)
found an influence of phylogenetic diversity on breakdown rates of
litter mixtures across 24 sites and 70 species. Follstad Shah et al.
(2017) found that aquatic decomposition rates for hundreds of spe-
cies across the globe tend to increase with latitude when adjusted
for temperature effects using a large meta-analysis. Finally, using
cotton strips as a standardized substrate at 514 stream and adjacent
riparian sites world-wide, Tiegs et al. (2019) found wide variation in
in-stream breakdown rates and decreased decomposition rates with
increasing latitude.

However, none of these large-scale studies of aquatic leaf litter
decomposition explored how the evolutionary history of individual
species has shaped leaf litter decomposition. Phylogenetic diversity
of plant communities has been addressed, but phylogenetic history
of the constituent species integrates leaf trait evolution—indeed, the
evolution of all plant traits—and as such may provide improved pre-
dictions of decomposition rates globally in linked terrestrial-aquatic
ecosystems, where connections are mitigated by traits we may not
predict a priori. Phylogenetic diversity of communities alone tells
only part of the story of how evolutionary history shapes ecosystem
function.

Here, we explore how both plant phylogenetic history and cli-
matic variation among sites influence rates of leaf litter decom-
position in streams distributed across the globe. Since climatic
variables (mean, maximum and minimum temperature; precipita-
tion; seasonality; isothermality) can influence both plant biogeog-
raphy and the decomposition environment directly, we detangle
these two influences (Dodds, Gido, Whiles, Daniels, & Grudzinski,
2015), testing the predictions that: (a) across broad spatial scales,
decomposition rates will be strongly influenced by site x species

interactions, with both factors influenced by climate, and (b) phy-
logenetic history will affect decomposition rates through its influ-
ences on species traits but also on the site x species interaction.
As these predictions are not mutually exclusive, we tested them
in a modelling framework that addresses the joint influences of
phylogeny and climate at both levels of analysis, providing novel
insights into how plant evolutionary history shapes stream eco-

system processes globally.

2 | MATERIALS AND METHODS

2.1 | Plant litter decomposition database
compilation

Data compiled for this study were extracted from values reported
in the scientific literature as detailed in Follstad Shah et al. (2017).
Briefly, we used search terms “(leaf OR litter) AND (breakdown OR
decomposition OR processing) AND (stream OR river)” to identify
studies. This provided us with an initial list of articles published on
May 13, 2011, which was updated by articles cited in review pa-
pers on leaf litter decomposition in streams by Follstad Shah et al.,
(2017). Ouir final list included 636 papers published between 1966
and 2011, of which 285 met our criteria that: (a) rates of leaf lit-
ter decomposition were measured in natural streams and rivers with
perennial flow; and (b) stream temperature and decomposition rate
constants were reported or could be calculated. We discarded stud-
ies including factors beyond local species differences (e.g. nutrient
addition, predator exclusion, exotic species, long-distance reciprocal
transplantations). However, we included in our dataset a variety of
leaf litter decomposition methods used across studies, particularly
litter bags of various size and mesh size, deployment periods and
processing methods, to ensure a large sample size. Studies may have
also included measurements of water chemistry, velocity, shredder
abundance and microbial measures, but the inconsistency of these
measurements made it impossible to comprehensively address these
other factors.

For each article, we recorded the scientific name of the plant
yielding the leaf litter and the corresponding decomposition rate
constants as reported or calculated (see Follstad Shah et al., 2017
and methods therein), where missing, as m =mge~*!, where m, is
leaf litter mass remaining at time t and m, is the initial leaf litter
mass. Data compilation resulted in 3,189 records of leaf litter de-
composition from 494 sites (Figure 1) for 239 plant taxa from 124
genera, 70 families and 34 orders. Decomposition rates ranged
from 0.0002 to 0.7890 per day and resulted in a global, average
in-stream decomposition rate of 0.0240 per day (Follstad Shah et
al., 2017) with a 95% confidence interval of 0.0227-0.0253, and a
median rate of 0.0127 per day.

Latitude and longitude data were extracted from each paper
and mapped to identify potential errors which were subsequently
rectified. Many of the studies lacked detailed data on environ-
mental conditions (stream discharge, water chemistry, etc.), and a
previous study exploring patterns in this dataset examined stream
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FIGURE 1 Map of sampling locations and sample sizes, includes all 494 sites included in our study. The numbers of decomposition rate

values (samples) for each site ranges from 1 to 156

temperature (Follstad Shah et al., 2017), so we focused on broad cli-
matic variables in this analysis. Climatic data were inferred for each
site from the 10 min (~340 km?) resolution WorldClim v 2.0 dataset
(Fick & Hijmans, 2017). All 19 of the WorldClim bioclimatic (“bioclim”)
variables (https://www.worldclim.org/bioclim) were downloaded
and used individually or summarized as ordination axes (see methods
for Comparing environmental and phylogenetic drivers below). R scripts
for executing analyses and downloading data have been archived at
(https://github.com/andrew-hipp/decomposition-phylogeny-2019).

2.2 | Plant phylogenetic data organization

We used Phylomatic (Beaulieu, Ree, Cavender-Bares, Weiblen, &
Donoghue, 2012; Webb & Donoghue, 2005) to assemble a base
phylogenetic tree for all species for which we had litter decomposi-
tion rate data (Appendix S1), using Phylomatic base tree R20120829
as the starting megatree, based on Angiosperm Phylogeny Group
Il (Haston, Richardson, Stevens, Chase, & Harris, 2009; Qian & Jin,
2016). We normalized scientific names using the Taxonomic Name
Resolution Service (Boyle et al., 2013) and corrected as needed
with names used in published phylogenies (https://github.com/
andrew-hipp/decomposition-phylogeny-2019). Mesquite (Maddison
& Maddison, 2018) was used to manually resolve branches within
families, as the supertree is not fully resolved for all families, based
on those same phylogenetic studies (Appendix S1). Node ages of the
resulting tree were then calibrated using more recent angiosperm
phylogenies (Bell, Soltis, & Soltis, 2010) and the simple branch length
adjuster tool (BLADJ) to even out node spacing between calibration
points. Initial analyses conducted on the tree with unmodified ages
did not suggest different interpretations than analyses conducted on

the Phylomatic tree with updated ages, suggesting that our results

are robust to a range of branch length assumptions. Throughout the
paper, we report analyses conducted on the tree with revised clade
ages and results for the entire dataset as well as a dataset including
just the angiosperms. The tree was visualized and exported for pub-
lication in R using the cepLoT2 and ccTree packages (Yu et al., 2016)
and custom scripts (https://github.com/andrew-hipp/decomposit
ion-phylogeny-2019). Site-level phylogenetic diversity was calcu-
lated for all sites where more than one taxon occurred using mean
pairwise distance (MPD) and mean nearest taxon distance (MNTD)
in picante v. 1.7 for R (Kembel et al., 2010).

For analyses at the site level using generalized linear mixed
models, we created a composite tree with one tip per species per
site, creating a polytomy for each species with a depth of 1.5 Ma to
ensure that all species polytomies were younger than the youngest
node in the phylogeny. Thus, each species x site combination had
one tip in the tree, allowing us to partition the site and phylogenetic

contributions to variance in litter decomposition rates.

2.3 | Phylogenetic signal and phylogenetic
transitions on decomposition rate

We estimated phylogenetic signal, defined as the “tendency for re-
lated species to resemble each other more than they resemble spe-
cies drawn at random from the tree”, (Blomberg & Garland, 2002) in
litter decomposition rates using Blomberg's K (Blomberg, Garland, &
Ives, 2003). Blomberg's K typically scales from O for a character with
no phylogenetic autocorrelation to 1 for a character that has phylo-
genetic autocorrelation (i.e. similarity in trait value between close
relatives) equivalent to expectations for a trait evolving according to
a Brownian motion (random walk) process on the tree being evalu-

ated (Figure 2). K may range to greater than 1 for traits that exhibit
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High phylogenetic signal

Pagel's lambda = 0.9945,
Blomberg's K = 1.5183

Low phylogenetic signal

Pagel's lambda = 0.2615,
Blomberg's K = 0.0434

FIGURE 2 Conceptual diagram showing phylogenetic signal strength compared to ecosystem function. Two phylogenetic trees are
shown with hypothetical decomposition rates plotted along the tips of the tree, ranging from slow (white squares) to fast (black squares)
decomposition rates (k/day). If decomposition rates did not vary across the phylogenetic tree, all tips would be the same colour (null model—
not shown). If decomposition rates were distributed randomly across the phylogenetic tree, there would be a low phylogenetic signal as in
the panel on the right. The panel on the left shows an example with a high phylogenetic signal for decomposition. Representative Pagel's

lambda and Blomberg's K values for each scenario are included

greater phylogenetic autocorrelation than expected under the as-
sumption of Brownian motion. Stated another way, K > 1 indicates
that close relatives are more similar than expected if the trait being
studied evolves according to a random walk. Significance was as-
sessed by permuting tip states 4,999 times, calculating K for each
permutation, then calculating p as 2 x the rank position of K, ... eq
thus yielding a two-tailed p-value, reflecting the fact that both clus-
tering (relatives more similar than expected) and overdispersion
(close relatives less similar than expected) are possible evolution-
ary outcomes. These analyses were conducted with the package
pIcaNTE 1.7 (Kembel et al., 2010) in r 3.4.4 (R Core Team, 2018). For
comparison with previous studies, we also calculated Pagel's lambda
(Munkemdiller et al., 2012; Pagel, 1999), a scalar of the off-diagonal
cells of the covariance matrix estimated from the tree, which scales
from O to 1 (or a bit higher, depending on the tree structure). At A =0,
the covariance is equivalent to a star-shaped phylogeny, where all
species are equally related, reflecting the case where phylogeny has
no effect on litter decomposition rates. At A = 1, the covariance be-
tween any pair of tips is predicted directly by the relative distance
from the root of the tree to the most recent common ancestor of
those tips; this models a Brownian motion process in which the
branch lengths of the tree are known without error. The A model was
fitted using the fitContinuous function in the package GeiGer 2.0.6
(Harmon, Weir, Brock, Glor, & Challenger, 2008) inr 3.4.4.

We identified phylogenetic shifts in litter decomposition rate
by evaluating the relative support for alternative OU models, which
model transitions in trait values as responses to shifting selective re-
gimes (Butler & King, 2004; Hansen, 1997; Martins & Hansen, 1997).
Analysis was performed using the |1ou + IC method (Khabbazian,
Kriebel, Rohe, & Ané, 2016), a stepwise model-selection and eval-
uation approach implemented using the least absolute shrinkage

and selection operator (lasso) (Tibshirani, 1996, 2011) method and a
modified information criterion that accounts for clade sizes entailed
by shifts in litter decomposition rate, modelled as shifting optima in
trait space (where the trait is litter decomposition rate). We com-
pared results with an Expectation Maximization (EM) search algo-
rithm (Bastide, Ané, Robin, & Mariadassou, 2018), which generally
searches parameter space more rapidly. Analyses were conducted
in the L1ou (Khabbazian et al., 2016) and PHyLoGeNETICEM (Bastide,
Mariadassou, & Robin, 2017) packages of R 3.4.4.

We reconstructed phylogenetic transitions in the rate of evo-
lution of litter decomposition rate (i.e. the rate of evolution of
log(k)) using reversible-jump Markov-chain Monte Carlo (rjMCMC;
Green, 1995) as implemented in the rjmcmc.bm function of GeiGer
2.0.6 (Eastman, Alfaro, Joyce, Hipp, & Harmon, 2011; Harmon et al.,
2008). In this method, every branch on the phylogeny was assigned
to a class of rates, corresponding to presumed shifts in the rate of
evolution on the phylogenetic tree. The relative rates of all branches
within a taxonomic class were allowed to vary. The assignments of
branches to classes were also allowed to vary by allowing transitions
in rate to appear or disappear from the tree.

2.4 | Comparing environmental and
phylogenetic drivers

We used two methods to compare phylogenetic and climatic mod-
els to predict global patterns of litter decomposition rates. First,
we used an approach based on phylogenetic eigenvector regres-
sion (PVR; Diniz-Filho, Sant’Ana, & Bini, 1998) to partition variance
in litter decomposition rate into (a) an environmental component
based on the four strongest bioclim variables (Bioclim1: annual mean
temperature; Bioclim4: temperature seasonality; Bioclim12: annual
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TABLE 1 Average in-stream decomposition rate constants (k/day) for global plant families. N indicates number of species sampled per

clade.

Clade

Fern/fern allies
Fern/fern allies
Gymnosperm
Gymnosperm
Gymnosperm
Monocot
Monocot
Monocot
Monocot
Monocot
Monocot
Monocot
Magnoliid
Magnoliid
Magnoliid
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot
Eudicot

Order

eupolypod Il
Marattiales
Cupressales
Cupressales
Pinales
Alismatales
Arecales
Commelinales
Pandanales
Poales
Poales
Poales
Laurales
Laurales
Magnoliales
Apiales
Apiales
Aquifoliales
Asterales
Brassicales
Caryophyllales
Caryophyllales
Cornales
Cornales
Dipsacales
Ericales
Ericales
Fabales
Fagales
Fagales
Fagales
Fagales
Fagales
Fagales
Gentianales
Gentianales
Icacinales
Lamiales
Lamiales
Lamiales
Malpighiales
Malpighiales
Malpighiales

Malvales

Family
Blechnaceae
Marattiaceae
Cupressaceae
Podocarpaceae
Pinaceae
Potamogetonaceae
Arecaceae
Pontederiaceae
Pandanaceae
Cyperaceae
Poaceae

Typhaceae

Atherospermataceae

Lauraceae
Magnoliaceae
Araliaceae
Pittosporaceae
Aquifoliaceae
Asteraceae
Brassicaceae
Polygonaceae
Tamaricaceae
Cornaceae
Nyssaceae
Caprifoliaceae
Ericaceae
Primulaceae
Fabaceae
Betulaceae
Casuarinaceae
Fagaceae
Juglandaceae
Myricaceae
Nothofagaceae
Apocynaceae
Rubiaceae
Icacinaceae
Oleaceae
Scrophulariaceae
Verbenaceae
Euphorbiaceae
Salicaceae
Violaceae

Malvaceae

=2

W P R RN O R R R R

[N
N P W R, P W NN PR P NDNDNR, DR RN

[ =
0 ~»

[ N N . ) S S T U S V)

N
[, o)

mean k/day

0.0066
0.013
0.008
0.016
0.0058
0.0091
0.008
0.0122
0.0144
0.0127
0.0108
0.0252
0.0072
0.006
0.0155
0.0291
0.0296
0.0303
0.0216
0.0845
0.0078
0.0064
0.04
0.0313
0.1018
0.004
0.007
0.0311
0.0229
0.0209
0.0114
0.0095
0.039
0.0106
0.0237
0.0476
0.006
0.0182
0.1522
0.0182
0.0411
0.0158
0.0477
0.0858

SD

0.0054
0.0077

0.011
0.0086

0.0043

0.01
0.0195
0.0293

0.0032
0.0022
0.0274

0.0032

0.035
0.0233

0.0055
0.0039
0.0071
0.0181
6.00E-04

0.0085

0.023
0.0133

0.1407

SEM

0.0019
0.0054

0.0063
0.0025

0.0022

0.0071
0.0138
0.0207

0.0023
0.0016
0.0158

0.0019

0.0143
0.0057

0.0013
0.0022
0.0035
0.0128
4.00E-04

0.0042

0.0103
0.0025

0.0629

(Continues)
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TABLE 1 (Continued)
Clade Order Family N mean k/day SD SEM
Eudicot Myrtales Combretaceae 2 0.025 0.0198 0.014
Eudicot Myrtales Lythraceae 1 0.0333 - -
Eudicot Myrtales Melastomataceae 2 0.0064 0.0027 0.0019
Eudicot Myrtales Myrtaceae 20 0.0115 0.0091 0.002
Eudicot Myrtales Onagraceae 1 0.0165 - -
Eudicot Oxalidales Cunoniaceae 2 0.0363 0.0471 0.0333
Eudicot Oxalidales Elaeocarpaceae 2 0.0286 0.0369 0.0261
Eudicot Proteales Platanaceae 6 0.0057 0.0019 8.00E-04
Eudicot Proteales Proteaceae 2 0.009 0.0022 0.0016
Eudicot Ranunculales Eupteleaceae 1 0.0133 - -
Eudicot Rosales Elaeagnaceae 1 0.024 - -
Eudicot Rosales Moraceae 6 0.0388 0.0308 0.0126
Eudicot Rosales Rhamnaceae 1 0.0286 - -
Eudicot Rosales Rosaceae 4 0.03%4 0.0443 0.0222
Eudicot Rosales Ulmaceae 7 0.0705 0.0727 0.0275
Eudicot Rosales Urticaceae 1 0.02 = =
Eudicot Sapindales Anacardiaceae 2 0.0202 0.0078 0.0056
Eudicot Sapindales Burseraceae 2 0.0036 4.00E-04 2.00E-04
Eudicot Sapindales Hippocastanaceae 1 0.0066 - -
Eudicot Sapindales Meliaceae 1 0.023 - -
Eudicot Sapindales Rutaceae 1 0.019 - -
Eudicot Sapindales Sapindaceae 8 0.0232 0.0146 0.0052
Eudicot Sapindales Simaroubaceae 1 0.0945 - -
Eudicot Saxifragales Haloragaceae 1 0.025 - -
Eudicot Saxifragales Hamamelidaceae 2 0.0172 0.0029 0.002
Eudicot Vitales Vitaceae 1 0.0142 = =

Note: Standard deviation (SD) and standard error (SEM) are provided for families with N > 1.

precipitation; and Bioclim14: precipitation of the driest month); (b)
four non-metric multidimensional scaling (NMDS) ordination axes
created using a Euclidean distance measure from all 19 bioclim vari-
ables (https://www.worldclim.org/bioclim) (and for comparison, four
principle component analysis (PCA) axes created using Euclidean
distance measures with all 19 variables); (c) a phylogenetic compo-
nent based on the first four eigenvectors from principal coordinate
analysis (PCoA) of a pairwise phylogenetic distance matrix; and (d)
site identity for analyses conducted at the site level. Site identity
was added as a random effect to account for any aspects of site that
are not directly measured; in this way, site identity in our model is
analogous to plot or block in a designed experiment. A stepwise
model selection process is generally employed to select phyloge-
netic eigenvectors for analysis (Diniz-Filho et al., 2012; Gonclaves-
Souza, Diniz-Filho, & Romero, 2014). However, the lack of an explicit
evolutionary model underlying phylogenetic eigenvector analysis
(Freckleton, Cooper, & Jetz, 2011) combined with the relative ar-
bitrariness of eigenvector selection—selecting all 238 eigenvectors
would overfit the data, while selecting anything less than all fails to

capture all phylogenetic data—makes PVR an approximate approach.

Consequently, we used only four phylogenetic eigenvectors, which
cumulatively explain 55% of the total variance in the phylogeny
when the relative eigenvalues are used as estimates of the variance
explained by each PCoA axis. Axes 2 and 3 of the angiosperm or-
dination recovered differences among broadly overlapping clades;
consequently, we used PCoA axes 1, 2, 4 and 5 for model evalua-
tion in the angiosperms by species models, but this had a negligi-
ble effect on model ranking and support. These four eigenvectors
were included in models with either four bioclim variables or four
bioclim NMDS axes for a comparison of the relative predictive value
of both climate and phylogeny. We selected the same number of
axes, four, from both the phylogeny PCoA and the climatic NMDS to
avoid biasing our linear regressions towards detecting either climate
or phylogeny as a better predictor of decomposition rate. In both
cases, the axes explain a fair amount of variation in the data. For
the phylogenetic PCoA, the first four axes explain 33.0, 8.6, 8.0 and
5.4% of variation respectively. For NMDS, variance partitioning is
not the target of each axis, but ordination stress—a measure of the
mismatch between the K-dimensional ordination and the distance

matrix used to generate it. Ordination stress drops from 0.214 at
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Arecaceae
Cyperaceae
Pandanaceae
Poaceae
Pontederiaceae
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Typhaceae
Atherospermataceae
Lauraceae
Magnoliaceae
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Apocynaceae
Aquifoliaceae
Araliaceae
Asteraceae
Betulaceae
Brassicaceae
Burseraceae
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Combretaceae
Cornaceae
Cunoniaceae
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Ericaceae
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Fagaceae
Haloragaceae
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Icacinaceae
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Meliaceae
Moraceae
Myricaceae
Myrtaceae
Nothofagaceae
Nyssaceae
Oleaceae
Onagraceae
Pittosporaceae
Platanaceae
Polygonaceae
Primulaceae
Proteaceae
Rhamnaceae
Rosaceae
Rubiaceae
Rutaceae
Salicaceae
Sapindaceae
Scrophulariaceae
Simaroubaceae
Tamaricaceae
Ulmaceae
Urticaceae
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Violaceae
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Magnoliids I
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FIGURE 3 Comparison of decomposition rates by plant family between Webster and Benfield (1986) and this study. Symbols represent
mean decomposition rates (k/day) for both Webster and Benfield (1986; orange circles) and this study (green circles). Error bars represent
standard error of the mean calculated by sample for Webster and Benfield (1986) and by species for this study
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K =1 to 0.035 at K = 4; all dimensions above K = 4 reduce stress in the repository for this paper (https://github.com/andrew-hipp/

by less than 0.02 per increase in dimension. To assess the effect of decomposition-phylogeny-2019). Linear regression models were
ordination method on model support and parameter estimates, we compared based on Akaike's Information Criterion (AIC; Akaike,
replicated the analyses with the first four axes of a PCA using the 1974) and coefficients of determination (R?), and model confidence
19 bioclim climatic predictors and found that there is no difference intervals were constructed using cumulative AIC weights (Burnham
in model support and negligible difference in the estimated regres- & Anderson, 2002; Burnham, Anderson, & Huyvaert, 2011). All anal-
sion parameters (Supplemental Table S1). Code to do all analyses is yses were conducted using the ape (Paradis, Claude, & Strimmer,
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FIGURE 4 Phylogeny of species included in our analyses, with natural-log transformed global in-stream leaf litter decomposition rates (k/
day = kd) and bioclimatic and phylogenetic predictors included in models. Tip states are scaled to range from 0.0 to 1.0. Transitions among
clade-level leaf litter decomposition rates were modelled using a multiple-regime Ornstein-Uhlenbeck model with a phylogenetic lasso
approach and expectation maximization (EM) algorithm for model fitting. The two approaches converged on all transitions represented here
except the decrease in In(kd) observed in Rhododendron, which was recovered using the phylogenetic lasso but not the EM algorithm (see
Figure S2). Variables plotted along the tips include: decomposition rate, In(kd); mean annual temperature (BIO1), mean precipitation (BIO12),
temperature seasonality (BIO4), precipitation seasonality (BIO14) and four phylogenetic PCoA axis scores
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2004) and vegan (Oksanen, Blanchet, Kindt, Legendre, & O’Hara,
2016) packages of R and custom scripts available at https://github.
com/andrew-hipp/decomposition-phylogeny-2019.

Our second approach used phylogenetic generalized linear
mixed models (PGLMM; Hadfield & Nakagawa, 2010) in a Bayesian
framework to quantify the effects of phylogeny, climate, and site
on litter decomposition rate more precisely. This approach uses
the phylogenetic covariance matrix as a predictor of covariance
in trait value among tips, and it scales the importance of the phy-
logeny by rescaling the covariance matrix. For a species-level
analysis, this is analogous to fitting a phylogenetic generalized
least squares model while simultaneously estimating a scalar of
the off-diagonal elements of the covariance matrix (i.e. Pagel's \)
(Housworth, Martins, & Lynch, 2004; Pagel, 1997, 1999; Revell,
2010). In species-level analyses, we treat phylogeny as a random
effect and bioclim variables as fixed effects. For a site-level anal-
ysis, PGLMM offers the flexibility of treating both phylogeny
and site as random effects and bioclim variables as fixed effects.
We compared PGLMM models based on Deviance Information
Criterion (DIC; van der Linde, 2005; Spiegelhalter, Best, Carlin,
& Linde, 2002) and residual model variance, and model intervals
were constructed using DIC weights. Analyses were conducted
in R using the MCMCcLmMm package (Hadfield, 2010) and custom
scripts available at https://github.com/andrew-hipp/decomposit
ion-phylogeny-2019.

3 | RESULTS

Litter decomposition rates (k/day) in stream environments showed
a wide range of variation across plant families (min-max: 0.0036-
0.1522) and plant orders globally (Table 1). Our results (averaged by
plant family) are compared to an early synthesis of decomposition
rates (Webster & Benfield, 1986; Figure 3) to provide a more com-
plete picture of global decomposition across plant families.

3.1 | Phylogenetic signal and phylogenetic
transitions in litter decomposition rate

The litter decomposition rate data exhibited a significant phyloge-
netic signal in both the all-taxa tree (Figure 4; K = 0.177, p = .01,
A = 0.977) and the angiosperm tree (K = 0.376, p = .004; A = 0.961;
Table 2). Because plants are distributed non-randomly across the
globe, climatic variables averaged for each species all exhibited some
phylogenetic signal. Mean annual temperature (BIO1) and tempera-
ture seasonality (BIO4) each exhibited significant phylogenetic signal
(on the angiosperm tree, K = 0.230-0.266, p < .002, A = 0.59-0.70;
on the all-taxa tree, K = 0.097-0.117, p < .006, A = 0.74-0.83), and
precipitation of the driest month (BIO14) exhibited significant phylo-
genetic signal on the angiosperm tree (K = 0.227, p = .038, A = 0.23),
but a non-significant phylogenetic signal on the all-taxa tree
(K=0.1, p = .054, » = 0.0), while mean annual precipitation (BIO12)
exhibited weak and, in our dataset, non-significant phylogenetic

signal (K = 0.094-0.208, p = .078-0.112, » = 0.51-0.64; Table 2).
Ordination of these data in four dimensions (Figure S1) was well-sup-
ported (stress = 0.035), and axes 1 and 3 exhibited weak but signifi-
cant phylogenetic signal on the angiosperm tree (K = 0.200-0.255,
p < .042, » = 0.35-0.70) and the all-taxa tree (K = 0.093-0.111,
p <.032,1=0.52-0.83).

Analyses of alternative multiple-regime OU models identified a
significant increase in litter decomposition rate at the base of the eu-
dicots (Figure S2). Both inferred a relatively high rate of adaptation,
corresponding to 5.0%-5.5% of the total tree length (for the phylo-
genetic lasso, a = 14.36 [t,, = 0.0483] on a tree arbitrarily rescaled to
height 1.0; for the E-M algorithm, o = 0.0305 [t,, = 22.73] on a tree
spanning 432 million years, t,, = 5.26% of total tree depth). While
interpreting the rate of adaptation () is not perfectly straightfor-
ward (Bastide et al., 2018), this rate of adaptation suggests that the
transition to a higher litter decomposition rate at the base of the eu-
dicots occurred too rapidly to be explained by a purely random walk
model, that is, by the variance we expected as lineages diverge from
one another (Felsenstein, 1985). This in turn suggests that natural
selection on leaf traits shaped this transition, driving accelerated
rates of litter decomposition in the angiosperms. By contrast, analy-
sis of evolutionary rates using rjMCMC suggests that the evolution
of litter decomposition rates is relatively homogeneous: no lineages
were recovered as evolving at a significantly higher or lower rate
than other clades (Figure S3).

TABLE 2 Phylogenetic signal (Blomberg's K and Pagel's \)

for key decomposition variables (decomposition rate k/day = kd;
natural log of decomposition rate k/day = In kd), and bioclimatic
variables: Biol (mean annual air temperature), Bio12 (mean annual
precipitation), Bio4 (temperature seasonality), Bio14 (precipitation
of the driest month), NMDS axes 1-4 (from ordination of all 19
bioclim variables)

Angiosperm tree All taxa tree

k (day™) K =0.376, p = 0.004, K=0.177,p = 0.010,
A =0.961 r=0.977

In k (day™) K=0.226,p = 0.010, K=0.122,p = 0.004,
A =0.536 A=0.716

Biol K=0.230,p =0.002, K'=0.097,p = 0.006,
A =0.587 A =0.743

Bio12 K=0.208, p = 0.078, K=0.094,p =0.122,
A =0.505 1 =0.638

Bio4 K =0.266,p < 0.001, K =0.117,p < 0.001,
2 =0.703 1 =0.833

Bio14 K=0.227,p =0.038, K '=0.100, p = 0.054,
A =0.225 A =0.000

NMDS1 K=0.255,p = 0.002, K=0.111,p < 0.001,
A =0.697 1 =0.826

NMDS2 K=0.186, p = 0.204, K=0.080,p =0.262,
A =0.106 A =0.000

NMDS3 K'=0.200, p = 0.042, K=0.093,p =0.032,
A =0.343 1 =0.510

NMDS4 K=0.192,p = 0.058, K'=0.090, p = 0.072,

A =0.000

A =0.000
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3.2 | Comparing environmental and
phylogenetic drivers

Top-ranked linear models for both the species-level and site-
level analyses included phylogenetic PCoA axes, irrespective of
whether the all-taxa phylogeny or angiosperms-only phylogeny
was analysed (Table 3). Climatic predictors, whether included
directly in the model as bioclim variables, or indirectly as the
first four NMDS axes, appeared in the 95% model confidence
set (based on cumulative AIC weight) only in combination with
phylogeny, whereas phylogeny alone had the lowest AIC of any
of the individual models in the species-level analysis of the an-
giosperm dataset. The first axis of the phylogenetic PCoA had a
stronger effect than climatic predictors in multiple regression as
estimated using regression coefficients on rescaled data for the
all-taxa analyses and the angiosperm dataset analysed by spe-
cies. For the angiosperm dataset analysed by site, climatic pre-
dictors had a stronger effect (Table 3). Among all models in the
95% confidence set, mean temperature (BIO1) had the strongest
climatic effect on litter decomposition rate as estimated by nor-
malized partial regression coefficients, followed by either mean
annual precipitation (BIO12) or temperature seasonality (BIO4)
(Table 3).

Including phylogeny as a random effect in analyses by species
reduced the residual variance by approximately 40% in the lin-
ear mixed models (Table 4). Including just site as a random effect
reduced residual variance from 1.0 to 0.58-0.59 in analyses con-
ducted by site; including just phylogeny (also as a random effect)
reduced residual variance from 1.0 to 0.62 or 0.65 (Table 4). The
single most important predictor in both sets of taxa and both anal-
ysis levels was phylogeny, which was for all sets of analyses the
lowest-DIC single-predictor model (Table 4). Including climate as
a suite of fixed effects did not improve model fit over that of the
model including only phylogeny as a random effect in analyses
conducted by species. In analyses conducted by site, the model
including site and phylogeny as random effects and climate as a
suite of fixed effects was by far the best fit model, with phylog-
eny explaining ca. 6 x the variance explained by site in the all taxa
dataset, and ca. 2 x the variance explained by site in the angio-
sperm dataset (Table 4, site var. and phylo var. columns). In both
datasets, mean annual temperature (BIO1) had approximately
twice the effect size of mean annual rainfall (BIO12), but neither
effect was significant (Table 4). Using ordination to determine the
influence of climatic factors on species-specific decomposition
rates (239 species plotted in climatic space, Figure 5), demon-
strated that climate is a relatively poor predictor of decomposition
rates at a global scale.

Average phylogenetic MNTD for the sites where more than one
taxon occurred (N = 179) was 210.4 Ma, and average phylogenetic
MPD was 232.5 Ma. Eight sites showed significant MPD and 10
showed significant MNTD (two-tailed test, p < .01, Figure S4). Forty-
one sites sampled had at least one eudicot and one species from a

different major clade.

4 | DISCUSSION

The analyses presented here demonstrate that phylogenetic his-
tory—the evolutionary history that led to the plants we observe
across the globe today—is a more powerful predictor of global vari-
ation in rates of in-stream leaf litter decomposition than site or the
range of climate variables considered in this study. While this is per-
haps not surprising at the species level, where we might expect in-
trinsic properties of species to swamp climatic conditions at the sites
where individual plants are collected, it is remarkable that even data
analysed at the site level suggests that phylogeny explains 2.2-5.8
times the variation explained by site (Table 4). This is only possible
because sites are phylogenetically diverse: of the 179 sites in our
study where two or more taxa were measured, the average phylo-
genetic MNTD and average phylogenetic MPD corresponded to di-
vergence times of 105 and 116 Ma respectively, demonstrating that
sites captured large swaths of phylogenetic history. In fact, 41 sites
sampled had at least one eudicot and one species from a different
major clade. As the major evolutionary transition in decomposition
rates appears to have been on the branch leading to the eudicots,
this co-occurrence of eudicots with non-eudicot lineages is key to
the fact that site conditions as well as climatic conditions predicted
less variance than even the relatively small proportion of phyloge-
netic variance captured by four phylogenetic eigenvectors (Table 3).
Evolutionary history explains variation in traits that are highly rel-
evant to explaining global litter decomposition rates.

Phylogenetic effects observed in this study may be related to
variation in whole suites of plant traits that influence microbial de-
composers and invertebrate litter consumers and that act across
ecosystems, from the terrestrial environments where the plants
evolved to the aquatic ecosystems where their leaves decompose.
Leaf litter decomposability is influenced by a plant's position on the
leaf economics spectrum (Diaz et al., 2016; Wright et al., 2004). In
terrestrial systems, plant traits have been found to explain the de-
composition rate of leaves (Cornwell et al., 2008) and wood (Hu et
al., 2018) more than climatic factors. We were unable to include spe-
cific leaf traits as explanatory variables in our study due to inconsis-
tent reporting of leaf traits in the published studies. However, plant
traits are phylogenetically heritable (Cavender-Bares et al., 2018;
Flores et al., 2014; Hao, Kuang, & Kang, 2015; Pearse & Hipp, 2012;
Schmerler et al., 2012; Zanne et al., 2014), and plant phylogeny is
thus expected to integrate across the entire suite of litter quality
traits. Hence, our study implies that the traits that predict leaf de-
composability track phylogenetic history more closely than climatic
transitions among species. Our results demonstrate that phylogeny
explains an important fraction of variance in plant traits similar to
other studies where they were either correlated with a subset of
climatic predictors (e.g. Willis, Ruhfel, Primack, Miller-Rushing, &
Davis, 2008) or incompletely explained by the full set of climatic
predictors expected to explain them (Li, Ives, & Waller, 2017; Pearse
& Hipp, 2009).

The phylogenetic effect we find in this study is among the
strongest reported to date for decomposition rates. Phylogenetic
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TABLE 3 Phylogenetic eigenvector regression model results including both phylogenetic and bioclimatic predictors
of decomposition rates
Analysis
Taxon set level Model R? AlC delta AIC  Sum AICw  biol bio12 bio14
allTaxa bySp NMDS & phyloPCOA 0.114 668.205 0 0.394 - - -
allTaxa bySp bioclim & phyloPCOA 0.114 668.302 0.097 0.77 0.129 0.164 -0.008
(p =.224) (p=.205) (p=.939)
allTaxa bySp phyloPCOA 0.08 669.303 1.098 0.998 - - -
allTaxa bySp NMDS 0.04 679.394 11.189 0.999 = = -
allTaxa bySp bioclim 0.035 680.678  12.473 1 0.13 0.131 0.032
(p =.222) (p =.325) (p =.775)
allTaxa bySpxSite  bioclim & phyloPCOA 0.096 2,523.736 0 1 0.131 0.047 0.002
(p=.012) (p=.41) (p =.958)
allTaxa bySpxSite  bioclim 0.048 2,562.93 39.194 1 0.12 0.05 -0.015
(p =.019) (p=.387) (p=.757)
allTaxa bySpxSite  phyloPCOA 0.047 2,563.876 40.14 1 - - -
allTaxa bySpxSite  NMDS & phyloPCOA 0.052 2,566.611  42.875 1 - - -
allTaxa bySpxSite NMDS 0.005 2,603.493  79.757 1 - - -
angio- bySp NMDS & phyloPCOA 0.082 643.89 0 0.356 - - -
sperms
angio- bySp phyloPCOA 0.047 644.313 0.423 0.643 - - =
sperms
angio- bySp bioclim & phyloPCOA 0.08 644.384 0.494 0.921 0.13 0.122 0.023
sperms (p =.245) (p=.387) (p=.842)
angio- bySp NMDS 0.031 648.027 4137 0.966 - - -
sperms
angio- bySp bioclim 0.029 648.583 4.693 1 0.074 0.132 0.036
sperms (p =.505) (p=.341) (p =.757)
angio- bySpxSite  bioclim & phyloPCOA 0.076 2,484.951 0 1 0.156 0.032 0.024
sperms (p =.004) (p=.576) (p=.618)
angio- bySpxSite  bioclim 0.047 2,504.595  19.644 1 0.089 0.04 0.002
sperms (p =.089) (p=.499) (p=.959)
angio- bySpxSite  phyloPCOA 0.02 2,529.733 44,782 1 - - -
sperms
angio- bySpxSite  NMDS & phyloPCOA 0.027 2,531.992 47.041 1 - - -
sperms
angio- bySpxSite NMDS 0.005 2,543.133 58.182 1 = = =
sperms

Note: All predictors used in the models are indicated by the presence of a regression coefficient; parameters not included in each model are
indicated by blanks in the table. Models were run using two sets of data: (a) all taxa in the dataset, and (b) just the angiosperms in the dataset.
Analyses were conducted by species and by species x site. Results include coefficients of determination (R?), Akaike's Information Criterion (AIC),
differences between the top-ranked model and others (delta AIC), and the cumulative AIC weight (Sum AICw), with lowest AIC scores reported at
the top. Regression coefficients are all estimated on data rescaled to unit variance and mean of O and are highlighted in bold when p-values are less
than 0.05. "NMDS" in the model name indicates that nonmetric multidimensional scaling axes for the Bioclim data were used in lieu of individual

Bioclim variables.

heritability of leaf decomposition in streams analysed in this study
(Pagel's A = 0.977 for 239 species globally) is higher than A values
found for the decomposability of angiosperm species studied in ter-
restrial environments in the UK (45 species; A = 0.32) and central

Argentina (24 species; A = 0.70) (Diaz et al., 2013), the eastern US
(L=0.39for 78 leaf species, Jo, Fridley, & Frank,2016),and Ecuador (17
species; A = 0.80, for undamaged leaves; Cardenas, Hattenschwiler,
Valencia, Argot, & Dangles, 2015). These smaller studies had lower
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bioclim4 NMDS1 NMDS2 NMDS3 NMDS4
- 0.137 0.006 0.075 -0.105
(p =.033) (p=.929) (p=.238) (p =.093)
0.122 - - - -
(p =.198)
- 0.143 -0.005 0.051 -0.131
(p =.026) (p =.937) (p = .428) (p =.041)
0.11 (p =.256) - - - -
-0.077 - - - -
(p=.111)
-0.084 - - - -
(p=.085)
- 0.074 -0.029 0.011 -0.014
(p=.031) (p =.395) (p =.733) (p =.664)
- 0.068 -0.019 -0.001 -0.016
(p =.044) (p=.578) (p =.984) (p =.635)
- 0.149 0.003 0.055 -0.103
(p =.027) (b =.963) (p =.421) (p=.116)
0.087 - - - -
(p =.396)
- 0.13 -0.031 0.04 -0.108
(p =.051) (p =.639) (p = .545) (p =.102)
0.072 - - - -
(p = .476)
-0.076 - - - -
(p=.129)
-0.117 - - - -
(p =.018)

- 0.083 -0.022 0.002 -0.031
(p=.022) (p=.523) (p =.945) (p=.382)
= 0.064 -0.05 0.0 0.001

(p =.061) (p =.145) (p =.994) (p =.975)

power to detect divergence from Brownian motion processes of trait
evolution (Boettiger, Coop, & Ralph, 2012) and are biased towards
reporting high A values by the long average length of their terminal
branches. Therefore, our results are particularly remarkable in the

phylo Axisl1  phylo Axis2 phylo Axis3 phylo Axis4 phylo Axis5

-0.213 0.13 0.113 0.022 -
(p =.001) (p =.042) (p =.074) (p=.727)

-0.22 0.13 0.118 0.019 =
(p =.001) (p =.043) (p=.062) (p=.771)

-0.236 0.112 0.101 0.038 -

(p <.001) (p =.075) (p =.109) (p =.544)

-0.197 0.032 0.046 -0.039 -

(p <.001) (p=.39) (p =.206) (p =.23)
-0.202 0.008 0.045 0.001 -

(p < .001) (p=.839) (p=.225) (p = .978)
-0.203 0.012 0.048 -0.015 -

(p <.001) (p =.748) (p =.203) (p=.66)
-0.249 -0.03 - 0.023 -0.04

(p =.088) (p =.837) (p=.729) (p =.555)
-0.249 -0.047 - 0.044 -0.035

(p =.09) (p=.747) (p =.506) (p =.591)
-0.252 -0.03 - 0.018 -0.033

(p =.085) (p=.837) (p=.786) (p =.623)
0.068 -0.061 0.123 0.085 -

(p =.045) (p=.071) (p <.001) (p=.009)

0.046 -0.011 0.087 0.095 =
(p=.175) (p =.745) (p =.011) (p =.004)

0.054 -0.032 0.103 0.087 -
(p=.132) (p =.359) (p =.004) (p=.01)

light of the fact that the high species density of our phylogenetic
tree and resultant relative shortening of terminal branches increases
statistical power to detect divergence from Brownian motion (com-

pare, for example, Figure 4 of the present study with Figure 4 of
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Diaz et al., 2013). In fact, the phylogenetic signal we observed for
in-stream decomposition is greater than the phylogenetic signals for
all leaf traits (A = 0.15-0.70 for chlorophyll, P, Ca, tannins, phenols,
cellulose, N and lignin, in increasing order of A) in a tropical forest
for a recent analysis of 184 species (McManus et al., 2016) and a
number of leaf traits (A = 0.27-0.76 for leaf area, chlorophyll and leaf
thickness) across 229 species in tropical and subtropical China (Yang
et al,, 2014).

Our large-scale synthesis demonstrates that phylogenetic vari-
ation shapes a fundamental ecosystem process across terrestrial-
aquatic ecosystem boundaries, despite the fact that the species
being studied evolved in one ecosystem while the process of in-
terest—in-stream decomposition rate—is measured in another. This
phylogenetic effect is detectable even at a significant distance from
the source of the leaf litter and despite a broad set of environmen-
tal factors that also influence decomposition rates—water velocity,
water temperature, microbial colonization and macroinvertebrate
shredders. The patterns we observe here are thus not a conse-
quence of phylogenetic niche conservatism; rather, the entire suite
of phylogenetically heritable plant traits (e.g. leaf chemistry, tough-
ness) that shape in-stream litter decomposition rates.

Our study further illustrates that the tree of life is not simply a
product of adaptation to changing environments, but that evolution-
ary history of species and, presumably, their traits drive ecosystem
processes (Cornelissen & Cornwell, 2014). The analyses presented
here highlight the central role of phylogenetic history's influence on
litter decomposition at a global scale and this work represents an

important merger of ecosystem science with evolutionary history

NMDS 2

o

-2

-4
|

1
o

NMDS 1

FIGURE 5 Ordination of 239 species in climatic space. Point
size corresponds to natural log decomposition rate (k/day). Isoclines
represent mean annual air temperature in degrees centigrade
(BIO1/10). The first two axes of climatic niche space (using all

19 bioclim climatic variables from WorldClim) demonstrate that
climate is a relatively poor predictor of decomposition rates, at least
in our study

(Mouquet et al.,, 2012; Narwani, Matthews, Fox, & Venail, 2015).
The result that phylogenetic signals can be observed across terres-
trial-aquatic boundaries is novel and strengthens evidence for the
organizing power of genes on communities and ecosystems (Jackrel
& Wootton, 2014; LeRoy & Fischer, 2019; LeRoy, Whitham, Keim, &
Marks, 2006; LeRoy et al., 2007; LeRoy, Wooley, & Lindroth, 2012;
Whitham et al., 2006).

This study also provides further context for our continued ex-
ploration of how climate change and global warming are predicted to
increase rates of aquatic decomposition through increased stream
temperatures (Boyero et al., 2011; Follstad Shah et al., 2017; Tiegs et
al., 2019). There are both direct and indirect influences of tempera-
ture on this key ecosystem process. Temperature can directly in-
crease rates of decomposition through accelerated microbial growth
and litter consumption; however, elevated CO, concentrations
driving temperature increases could also lower leaf litter quality
via higher C:nutrient ratios and thus suppress decomposition rates
(Boyero et al., 2017; Tuchman, Wetzel, Rier, Wahtera, & Teeri, 2002).
Temperature can also indirectly affect decomposition through
plant species’ plastic responses to climate change in terms of ex-
pressed phenotypes, adaptation in situ and shifts in species ranges
(Christmas, Breed, & Lowe, 2016; Hooper et al., 2012; Kominoski et
al., 2013). How these indirect changes may influence stream eco-
systems is not well understood. Finally, there may be feedbacks be-
tween climate change and in-stream decomposition through carbon
evasion from streams. Riverine ecosystems are important contrib-
utors to the breakdown of terrestrially derived carbon (Cole et al.,
2007), and as a result, streams and rivers have been identified as
major sources of carbon dioxide in the atmosphere (Raymond et al.,
2013).

Streams are influenced by the biomes they are embedded in
(Dodds et al., 2015; Tiegs et al., 2019), but biomes and the species
assemblages within them will both shift under predicted climate
change models. The selective pressures on plants that might influ-
ence litter decomposition rates (e.g. predation, defences against
microbial attack, desiccation resistance) are decoupled from the
physical, chemical and biological processes occurring in streams.
In spite of these complexities, our study highlights the importance
of riparian plant community composition on stream litter decom-
position. Thus, the interactive changes in phenotypic expression,
phenology and species range shifts could directly and indirectly
influence global litter decomposition rates. Taken as a whole, this
work highlights the significant effect of phylogenetic history on key
ecosystem processes.
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