PHYSICAL REVIEW D 102, 016014 (2020)
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We studied the three-dimensional Thirring model in the limit of an infinite number of flavors at finite
temperature and density. We calculated the number density as a function of temperature and the density at
zero temperature serves as a relevant parameter. A three-dimensional free fermion gas behavior as the
density at zero temperature approaches zero smoothly crosses over to a two-dimensional free fermion gas
behavior as the density at zero temperature approaches infinity.
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I. INTRODUCTION AND SUMMARY

The three-dimensional Euclidean (two spatial and one
thermal) Thirring model with N flavors of two-component
fermions would have been deemed nonrenormalizable by a
standard power counting argument but it has been shown to
be renormalizable in a % expansion [1-5] implying that the
Thirring coupling is relevant in the limit of large N.
Recently, this strongly coupled theory at zero temperature
and density has been extensively studied at finite values of
N to explore the possibility of mass generation [6-20].
With the possible exception of the N =1 model, a
spontaneous generation of mass is most likely ruled out.
A numerical analysis of QED in three dimensions has also
resulted in similar observations [21-25] but monopoles
present in QED can become relevant [26].

In this paper, we explore the relevance of the Thirring
coupling in the large N limit at finite temperature and density.
We consider only the massless theory owing to the previous
analysis of spontaneous mass generation. The physics at zero
temperature has been briefly sketched out in [27]. The
effective action in the large N limit after introducing the
standard vector auxiliary field is complex for a nonzero
chemical potential and this leads us to perform a saddle point
analysis. There are several saddle points at a fixed chemical
potential and temperature but we will provide a graphical
proof that only one particular saddle point dominates at all
values of chemical potential and temperature.

Let T and p stand for the temperature and chemical
potential measured in units of inverse of the Thirring
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coupling per flavor, 1. We will show that the number
density at zero temperature in units of 4 is

n0:y+2ﬂ<1—m>, (1)

and can be used to set the chemical potential. The relevance
of the Thirring coupling is already seen by noticing that the
number density at zero temperature smoothly crosses over

from f“—; as 4 — 0 to u as pu — oco. Defining a reduced

temperature by 7 = \/4zngt and writing the number
density as a function of temperature as i(n, #)n,, we will
show that n(ny, 7) is the solution to

L+ /21— fi(ng. )]
ﬁ(no,t) = 8t2r2 ao s

2t
1 <n(ngt) <1+ i: 2)
where
ra(u.0) —’2’—;+“;—%2+ k:<_1>k <e‘2k“>223s<2ke>;
>0 —gse<g. )

This result for the number density is plotted as a function of
temperature in Fig. 1 and shows that it smoothly crosses
over from a three-dimensional free fermion gas as ny — 0
to a two-dimensional free fermion gas as ny — 0.

The rest of the paper is organized as follows. We set up
our notation for the three-dimensional Thirring model and
arrive at the saddle point equations in the limit of N — oo in
Sec. II. The saddle point that dominates at all chemical
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FIG. 1. Number density as a function of temperature for

different choices of density at zero temperature.

potentials and temperatures is analyzed in Sec. III to obtain
the main results stated above. Due to the involved inter-
dependencies of the different saddle points at a fixed
temperature and chemical potential, we revert to a graphical
analysis in Sec. IV to show that the saddle point discussed
in Sec. III dominates at all chemical potentials.

II. THE THREE-DIMENSIONAL CONTINUUM
THIRRING MODEL

The action for the continuum Thirring model in three
Euclidean dimensions is given by

SWiwisd) = /d3xZN:‘/_/iD(ﬂ)ll/l

where

3
= Z 010 + o3p (5)

k=1

is the Dirac operator acting on an irreducible two-
component fermion in a #? x 8 periodic box and y is
the chemical potential. The fermions obey periodic boun-
dary conditions in the spatial directions and antiperiodic
boundary conditions in the thermal direction. Upon intro-
duction of a vector auxiliary field, V;(x), to replace the
four-Fermi interaction and a subsequent integration of the
fermions results in

[( / d*xeﬂ) ~ Indet(D (vk))}, ()

S(VisA) =

where

D(V) = o0 +iVi) + o3p. (7)
k=1

With V, - -V, and x; - —x;, we see that gy — —pu.
Therefore, it is sufficient to consider a positive value for
the chemical potential in our analysis.

Assuming translational invariance to hold in the large N
limit,' we will analyze the action per flavor with the
auxiliary field restricted to constants,

- 271']’1] . 2ﬂ'h2 . -
Vl(x) = 7 s 7 > V3(x) -

27Th3

The minimum will occur at h; = hy, =0 in the £ - oo
limit. One can use standard formulas in [34] to perform the
sum over momentum in the f direction and the resulting
action density (per unit spatial volume) per flavor is

Va(x) = (8)

O
S(hy; T pu) =27°Th; —— dxxln
T Jo
4 cosh (x + inhy +45) cosh (x — inh; — )
x
e2x .

©)

The integration variable is related to the spatial momentum
by x = % = 47 and we have set T’ and y in units of 4.

The action density is complex and we will perform a

saddle point analysis. We elevate (2zh3) to a complex

variable z =y 4 i £ and define
u—2=0

= 178 =— 0e
o=u-+1I u T

z——21<a)—2M—T+lnﬂ>

The action density can be written in terms of polylogar-
ithms [35] as

nel. (10)

S(n,w;T,u) = St(n,0;T,p) + S (0; T, pu); (11)

2
St(n,w; T, pu) = —2T<a) —;—T—l— inn) :

2

SN w3 T, p) = o [Liz(=e*”) + Liz(=e™)].  (12)

The partition function is given by

Z(T, ) = Z /wae—NfS"wW (13)

n=—00

'This assumption is reasonable if one compares it to the
Gross-Neveu model where translational invariance holds in
three dimensions [28] even though it does not hold in two
dimensions [29-33].
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The saddle points are given by dS"d+T” = 0 which we will label by w, or (6, §,) with the possibility that more than one

saddle point exists at a fixed n.
The number density per flavor is given by

T dinZ(T, ,u) 1 - 5 dSy(n,o;T, ) ) .
T, - do—12" """/ ,-N¢ S(n,wT.p)
n(T.k) = 2oy du 2Z(T. u) Zm/ £ Ao €

1 z dS(n,w; T, u) 240
= do| 4T - N PP ) o NES(T ) | 14
“3ZT ) Z / w( (a) Tl m7r> + o e (14)

n=-—oo

A. Equations for saddle points

The complex valued equation for the saddle point using polylogarithm identities is

//l T @, 1 0]
o7 = @nHinT+ - [Liy(—e™29n) — Liy(—e?*n)]
% +w, + inw + sz + > (—1)F eiﬁ 5 u, >0
= k 2kwy (15)
— St o, +ing—Lop—L3 R (-1 u, <O0.
For the purpose of analysis, we separate the above equation into its real and imaginary part as
(0, + nx) _ e~ 2Klul sin(2k6),)
T (lun |Mn|0 +Z 22 . 5
T uy, 7w,
il .0
277 |u,| |: + 1o (|u| n):|
2wk 0 (e~ 2Klml) cos(2kA,)
0,)=—+——-— 1)k = 16
ralinl-00) = 3+ 5 =5+ 3G (16)

The real and imaginary parts of the action density needed to study the dominance of one saddle point over another are

2

2T

277 2\ |Ju & e~ 24l cos(2k@)
100.6:T. 1) = —— 9> ——_ ) - L E R e Sl
SR( » Uy ,ﬂ) T |:|I/l|( 12 3 + ( ) 2k3

St(n,0,8,T,u) = 25(0 + nn)

Sb(n,0,8;T,u) = 2T(0 + nx)? —

: u 2T [0 %0 o ekl sin(2k0
S10.8;T. u) = Tl T [§—3+u29+;(—1)k#} (17)
|
Referring to Eq. (A3), we note that the derivative of Assuming the saddle point at » = 0 dominates, the result
ri(Jul,0) with respect to 6 at @ =0 is negative. The  for the number density will be
derivative can become zero at most once for || <3, if
n(T,u) = . (18)

u| < ug =5In3H2 3“/— Referring to Eq. (Al), we conclude
that r{(|ul,0) is posmve for —Z < 0 < 0 and negative for ~ Let us assume we have a solution to the saddle point
0 < 0 < 7. There is always a saddle point with n = 0 and it equations given by (6,,5,) with n > 0. Since

has 6, = 0. For n # 0, the saddle point, if one exists, will be =6,) = —r1(Ju,].6,):

in the region —£ < 6, < 0if n > 0 and will be in the region 8 meene

0<a0, S%lf”l < 0. _Hn) :rZ( 6,,), U_p = Uy, (19)
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we can conclude that (6_,,6_,) = (-0,,6,) is a saddle
point with —n < 0. It follows from Eq. (17) that

SR(n7 enﬂ 6}1; Tvﬂ) = SR(—I’l, 9_’1, 5—11; Tv/’l);
SI(”? en’ 511; T, /'l) = —S](—I’l, 9—}1? 5—n; T, ,Lt) (20)

If this pair of saddle points were to dominate over the
solitary one at n = 0, the number density will be

n(T,pu) =5, —2(0, + nn)T tan[N£2S;(n, 0,,5,; T, u)]
(21)

which does not have a smooth N — oo limit.

III. ANALYSIS ASSUMING THE SADDLE
POINT AT n=0 DOMINATES

The only equation is

mu g [xluo]
— = ,0)]. 22
o [l o). @)
Referring to Eq. (A2), we have ry(|ug|,0) > 0 which
results in
PN A (23)
; =—r .
Uy > 0 z 2\
Rewriting the saddle point equation as
U 2u 2 u—20
F—TO_ rz(uo,O), Uy = ZTO > 0, (24)

we see there is one and only one solution for u, such that
0 <uy <37 (0 <8 < p). Using Eq. (A3),we obtain

08y _ 2T 2ry(up. 0) + upd, (1o, 0)
or =« 1 =24, (up,0)

(25)

We note from Eqs. (A2) and (A3) that

d(uy,0) < 0;
2r5(uo, 0) + uod; (ug, 0)

= Uy ln(] + 6—2’40) —+ 4/”0 dxﬁ > 0. (26)
0

Therefore we conclude that %iTO > 0 and §, is a monoton-
ically increasing function of temperature at a fixed chemi-
cal potential.

Assuming that the saddle point at » = 0 dominates at all
chemical potentials and temperatures, the number density is
given by n = 9. Since

217 (1 —80)*
lim — ,0) = ———, 27
lim —— (19, 0) . (27)

the saddle point equation as 7 — 0 is

(u— 110)2

flo = 4z

(28)

which results in the number density at 7 = 0 to be

n0=u+2n(1—m>. (29)

We can trade the chemical potential for n, using

U =Ny + / 47[1'10. (30)

To see the relevance of the Thirring coupling, we
define a reduced temperature by T = \/4znyt and write
the number density at any temperature as [A(ng,?)ng),
noting that n will depend on n; in addition to ¢. It is this
dependence that shows the relevance of the Thirring
coupling. Referring to Egs. (23) and (30) we arrive at

1 B —fa(ng,
ﬁ(no,t):8t2r2< +\/;[2t (Ot)],o) (31)

One can either use Eq. (16) or Eq. (A2) and see that the
above equation reduces to a free fermion behavior in
three dimensions as ny — 0. Using Eqs. (A2) and (24),
the asymptotic behavior in ¢ at a fixed n is

i(ng,t) =1+ \/E—”(l ’ \/% L o(r2). (32)

ng (In2)\/4zn, t

Since the number density monotonically increases with
temperature at a fixed ng, it is bounded by

A

1 <nng,t) <1+ /—. (33)

The density does not change with temperature in the limit
n, — oo and this is the free fermion behavior in two
dimensions. The subleading term for small ¢ is

fi(ng 1) =1+2

A plot of n(ng,7) as a function of ¢ has already been
shown in Fig. 1 at several different values of mn; to
demonstrate the crossover from three-dimensional free
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fermion behavior as ny — 0 to two-dimensional free
fermion behavior as ny — .

IV. NONDOMINANCE OF THE SADDLE
POINTS AT n #0

We will only consider n > 0 since we have shown at
the end of Sec. IT A that saddle points at n and (—n) are
paired. Then every solution has to satisfy —7 < 6, < 0. We
will fix the temperature and use 0, instead of chemical
potential since it is more convenient from the viewpoint of
solving the saddle point equations. We will graphically
demonstrate the nondominance of the saddle points at
n # 0 by defining

A(n,0,,T)

_ SR(”7 en’ 5n (en);.u(en)’ T) - SR(Ov 0’ 50(911>;M(011)7 T)
2Tn*n?

(35)

and showing that it remains positive at all n, T and allowed
values of 6, € [-5.,0]. To this end we will use the
following steps:

(1) We will show that u — oo as 6, — 0 at all temper-
atures.
There exists a temperature 7 (n) above which a cer-
tain region given by —5 < 0,(T) <6, < 6,(T) <0
has no solution to the saddle point equations. The
chemical potential will monotonically increase from
0 to oo as 6, increases from 6,(7) to O and it will
monotonically increase from 0 to a finite nonzero
value as 6, decreases from 6,(T) to —Z. Further-
more, 6,(To(n)) = 0,(To(n)) = G(n).
There exists a temperature 7';(n) below which the
chemical potential will monotonically decrease from
oo to a finite nonzero value as 6, decreases from
0 to —7. In other words there will be a region
of chemical potential given by 0 < u < u,(T) for

(@)

3

minimum at 6 = —7 at all n and temperatures. We
will study A(n,—%,T) as a function of T and show
that the minimum at each » is larger than zero for
all n.

A, - 0_=>pu—>x

Keeping terms to relevant orders in 6, and using
Eq. (A3), the first equation in Eq. (16) results in

nn’ & 1
_Z o
7o, T+0(e ).

(36)

|un| ==

Inserting this into the second equation in Eq. (16) results in

n?n’

zT?
u, >0; =

?—FE—H—F 0(9%’)

(37)
If we use the diverging chemical potential with the leading
correction into Eq. (24), we find that uy, = u,, up to the two
correction terms. Therefore, we arrive at

A(n,0_,T) =1, (38)
and the saddle point at n = 0 dominates as u — oo for all
values of temperature.

B. To(n)

Noting that d,(|u|,8) >0 for —% < @ <0, the right-
hand side of the first equation in Eq. (16) monotonically
increases with |u| at a fixed 8. Therefore, at every value of
0, the lowest value of the right-hand side is given by
r1(0, ). If the temperature is above a certain value, we will
have a region of # where there is no solution to the first
equation in Eq. (16). This transition temperature is the
solution to

which there is no solution to the saddle point i (0y(n) + nz) = r,(0,6y(n));
equations. Furthermore, p(T;(n)) = 0. To(n)
(4) We will explicitly study the case of zero temperature T _1nl2cosd 39
and the case of zero chemical potential. To(n) n[2cos G (n)]; (39)
(5) Even though A(n, 8,, T') will not be monotonic in 8,
at a fixed n and temperature, it reaches an absolute which results in
|
0y(1) = —0.3726908097; 00(2) = —0.350144201x; 0y(5) = —0.339555189%
To(1) = 12.563174152; Ty(2) =2 x 16.123729198; To(5) =5 x 18.139848147, (40)
and
z . Ty(n) 7’
0 == 1 =——+=19.448615248. 41
b(c0) =7 (X (41)

Since u,, = 0 at this temperature, T(n), and 6y(n) we have r,(0,0y(n)) = 0 and x = 0 at this point.
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FIG. 2. The action at the n = 5 saddle point is taken as a typical
example since it has all the features for a generic n and it is
compared with the n = 0 saddle point to show that the n =0
saddle point dominates at all temperatures and chemical potential.
This plot shows the comparison at some specific values of
temperature and also at zero chemical potential.

After fixing the temperature, we choose a 6, in the
allowed region and solve for |u,| using the first equation in
Eq. (16) and then solve for the chemical potential using the
second equation. Referring to Eq. (A3), we note that
d,(|u[,0) remains non-negative in —% <6, <0 and we
conclude that r,(|ul,6) is a monotonically increasing
function in —% <6, <0. Since we are only considering
u >0, we can conclude from the second equation in
Eq. (16) that u,, > 0 if "%l + r,(|u,],6,)] > 0 and u, <0
if [@4— ro(|u,l,8,)] < 0. Furthermore, we can have a
solution to the saddle point equations withn > Qand u = 0
only if [%—l— ra(|u,|.0)] = 0. We have used n =5 as a
typical value of n and plotted A(5;05,Ty(5)) as a blue
curve in Fig. 2. We see it remains positive in the entire
range of 05 showing that the saddle at » = 0 dominates
over n =5 at Ty(5).

C. Ti(n)

Consider moving down from 6, = 0. Noting that u,, is
positive to start with and noting that d, (|u|, 0) is positive in
—% <6, <0, we conclude from Eq. (AS) that u decreases
as 0,, moves down from zero as long as u,, remains positive.
At 0, = —7, the first equation in Eq. (16) reduces to

(2n—1)x

] ==

(42)

and the condition for [@ + ry(|u,
itive is

—g)] to remain pos-

o _20n-1kx

71'2 e
F(4"2_1)_€+ZT>0‘ (43)

This gives the condition for u =0 to occur for
T > T,(n) with

T,(1) = 4.654727000; T1(2) =2 x4.987847524;

T
fim 21"
n

n—oo

T,(5) =5 x5.044788571; = 5.028967463.

(44)

We have plotted A(5;0s,T,(5)) as ared curve in Fig. 2. We
see it remains positive in the entire range of 5 showing that
the saddle at n = 0 dominates over n =5 at T(5).

D.T=0

Let us consider the limit 7 — 0. The two saddle point
equations in Eq. (16) sequentially result in

2]
limT|u,| = — 20 £17).
T-0 9,,
o [l -6y
}}L%T T +r2(|un|7€n) - 29% > O’ (45)
and we obtain
. n(n*n* - 62) 5 — 7(0, + nr)? (46)

9 ’
O;

With this choice of y, the saddle point solution with n = 0
is given by

, 7(0, + nx) z(0, + nn)?
;I%TMO = ——an S 50 - 9,% ) (47)
and we conclude
0,
A(n,0,,0)=1+-—"2. (48)
nr

We have plotted A(5,65,0) for reference in Fig. 2 as a
brown line.

E.u=0
If T > T,(n) we have a saddle point solution with x4 = 0
and n > 0. Setting u = 0, we first note by referring to
Eq. (23) that the saddle point with n = 0 corresponds to
uy = 0 and therefore §, = 0 and the real part of the action
at the n = 0 saddle point is [referring to Eq. (17)]

2T S (= 1) 3¢(3)
S(0,0,0;0,T :—§ =— T2. (49
#( ) T = 2k3 4r (49)

Referring to Eq. (16), the solution to the saddle points at
n > 0 is given by

016014-6
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f(|un|’0n) = |un|r1(|un|v€n) + (gn + n”)FZ(‘unlvgn) =0.
(50)

Viewing the above equation as a function of |u,,| at a fixed
0, we note that |u,| = 0 is a solution to the above equation.
In this case, §, = 0 and the temperature as a function of 4,
from the first equation in Eq. (16) is

10 ="t (51)
and
A0 T,0) = |22+ 1] + 220 1,0,
1) =S DL sy

k=1

Noting that

VA

and noting that

dJ ()
do

— 2Cl, (7 - 26) <0, (54)

where Cl, is the Clausen function of order 2, we conclude
that J (@) is non-negative in — % < 6, < 0. Therefore, these
saddle points at n > 0 and u = 0 do not dominate over
n = 0. We have plotted A(5, 05, T) fory = 0 and 55 = 0 as
ared curve in Fig. 2. Note that the divergence in A(5, 05, T)
as 5 — —7Z can be seen from Egs. (52) and (53).

There is another solution to Eq. (50) with |u,| > 0 if
Ti(n) <T < Ty(n) and 8, < 6y(n). To see this note that
the derivative of Eq. (50) with respect to |u,| gives us

Of ([ual. 01)

a|un| :rl(|un|’9n)+|un|d2(|un|’9n)

— (0, + nm)dy(|u,|. 6,). (55)

The first two terms are positive in the range — < 6, < 0.
Furthermore, d, (|u,|, 6,) is positive only if -5 < 6, < —£.

We can see that f(0,6,) =0 and f(|u,|.0,) goes as

250 3] as uy| = oo, 1t 204

> ( the only solution to

Eq. (50) is |u,| = 0. The condition for %G = 0 is the

same as Eq. (39) and therefore we conclude that —7 <
0, < 6y(n) for a solution to Eq. (50) to exist with |u,| # 0.
We have plotted A(5, 05, T) for 4 = 0 and 65 # 0 as a black
curve in Fig. 2 and it meets the red curve at 6,(5). Note that
the temperature along the black curve changes from 7" =
T\(5) at Os = =5 to T =Ty(5) at €5 = 6y(5). A generic

098 — —
i -~
096 — —
094 — —
& L
&
0921 —
< 0<T< TI(S)
i — T=T,5
09r= T=0 n
088 -
086 -
| | L | |
0.5 04 -03 0.2 0.1 0
6/n
1
095~ -
&
& L
©
3 - TG <T<T5)
T>Ty(5)
09 — u=0,8=0 N
— T=T,()
— T=T,5)
— u=0,13/>0
0385 ‘ \ ‘ \ ‘ \ ‘ \ ‘
05 0.4 03 02 0.1 0
o/n
FIG. 3. The top plot shows that the difference between 7' = 0

and T = T (5) is bounded by the two extremes. The bottom plot
shows that the difference between T = T,(5) and T = T(5)
moves smoothly from one end to the other but there is a
temperature in between the two ends where the difference is
smallest as a function of 8,,. On the other hand, the difference for
T > Ty(5) is bounded from below by T = T(5).

feature of the curves shown in Fig. 2 is the intersection
of the black curve (1 =0 and 65 # 0) with the green
curve (T(5)) at a value of 6, away from —Z. The
temperature and chemical potential on the two curves at
the intersection point are different but yield the same value

for A(n,0,,T).

F. Analysis at 0, = -5

The two plots in Fig. 3 show the behavior of A(5,05,T)
as a function of 65 over the entire range of 7. For
T < T(n), we find a solution in the entire range of 0,
with ¢ monotonically increasing from a positive finite value
atf, = —7to adivergence at 6, = 0. The gray points in the
top plot of Fig. 3 show A(1,6,,T) for T < Ty(n) and all
points lie between the line at 7 =0 and 7 = T,(1) and
moves continuously from one to the other as 7 changes.
For T,(n) < T < Ty(n), we again find a solution in the
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08

A(n,-n/2,T)

ER=N-N-I)

D= N =
S o

0.6

| \ \
04

0
/T, (n)

FIG. 4. The difference in the action between n > O and n = 0 at
0, = —% is plotted as a function of 7/T(n).

entire range of @,. But we find a 0,(7) at which u = 0.
The chemical potential monotonically decreases from a
positive finite value at 6, = —% to zero at 6, = 6,(T) and
then monotonically increases to a divergence at 9, = 0.
Furthermore, 6,(T(n)) = =5 and 6y(T(n)) = y(n).
These features are shown in the bottom plot of Fig. 3.
The curves for A(5,05,7) at a fixed T in T((5) <T <
Ty(5) are shown by violet points. Note that there is a range
of T starting from 7,(5) where the curve intersects the
black curve (u = 0 and J5 # 0) at two points. Only one of
the intersection points has the same temperature and
chemical potential. Initially, it is the intersection point
closer to 05 = —7 until the violet curve is tangential to the
black curve. After that, the intersection point closer to 6,(5)
is where the temperature and chemical potential matches.
For T > T(5), there will be a solution only if 05 does not
belong to the interval (6,(T), 6,(T)) which can be obtained
by setting the left-hand side to 7 in Eq. (51). The chemical
potential will monotonically decrease from a positive finite
value at 6, = —7 to zero at 6,(7) and then monotonically
increase from zero at 6,.(T) to a divergence at 6, = 0.
These features are also shown in the bottom plot of Fig. 3
and we see that A(5,05,T) for T > T(5) shown by cyan
points lies above the curve at T = Ty(5) and has two parts.
The boundary of the two parts is the red curve with 4 = 0
and 6 = 0.

The graphical analysis discussed before specifically for
n =15 enables us to conclude that A(5,05,T) reaches a
minimum at 65 = —7 at any fixed temperature. We there-
fore plot A(n,—%,T) as a function of 7 for n = 1,2, 5, 10,
50 in Fig. 4. The minimum occurs very close to T = T (1)
but moves to a higher temperature with respect to 7' (n) as
n is increased. The global minimum occurs at a finite
value of T/T,(n) even as n — oco. This plot along with
the analysis done specifically for n =5 in Figs. 2 and 3
serves to graphically prove our main point—the saddle

point at n = 0 dominates at all chemical potentials and
temperatures.

V. CONCLUSIONS

We have studied the three-dimensional (two spatial and
one thermal) Euclidean Thirring model at finite temperature
and chemical model in the limit of infinite number of
flavors and our aim was to understand the relevance of
the Thirring coupling. The effective action is complex
and we had to perform an extensive graphical analysis to
show that one particular saddle point dominates over all
other possible saddle points at all chemical potential and
temperature. The relevance of the Thirring coupling is seen
in the dependence of the behavior of the number density as
a function of temperature on different values of the number
density at zero temperature. The number density as a
function of temperature behaves like a three-dimensional
free fermion gas as the number density at zero temperature
approaches zero and it behaves like a two-dimensional free
fermion gas as the number density at zero temperature
approaches infinity. The number density at a fixed nonzero
value at zero temperature is a monotonically increasing
function of temperature reaching a finite value at infinite
temperature. The function for any given nonzero value of
density at zero temperature smoothly interpolates between
the two extremal behaviors at zero number density and
infinite number density at zero temperature.
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APPENDIX: SOME USEFUL PROPERTIES
OF r{(u,0) AND r,(u.0)

We note that

T 7|u|
,i—) — 1
2) =T

,0) =0;

r1(|u

Using Riemann and Dirchlet zeta function formulas [35],
we also note that

ri(ju (A1)

72(

T
7:|:_
r2<|u| 2>

The derivatives of r;(|u
|u| and @ are

dxIn (1 + e™);

)
/ dxIn (1 —e™%).

(A2)

,0) ul,0) with respect to
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Or\(|u],0) __ 9ry(lul,0)

00 0ul

= —%ln [2(cosh(2u) + cos(20))] = d,(u, 0),

Ory(|ul,0) _ Ora(jul.0) _
ol o0 tan~' (tanh |u/| tan 6)
= d,(|ul,0). (A3)

Referring to the solutions as 8, (u), &, () and u, (1) we
compute expressions for the derivative of §, with respect
to u. Noting that

1 1)
alul’llz un_ 1_8}1 , (A4)
o |u,|2T o
and referring to Eq. (16), we obtain
90, _ u, rd, )
a:u |un|2T2[(%_dl(|un ven))2+dé(|un ven)]’
06
aﬂn =1= & B[ 6,) (A3)
T — Td1(|l/£n ,Hn) + TW
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