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We studied the three-dimensional Thirring model in the limit of an infinite number of flavors at finite
temperature and density. We calculated the number density as a function of temperature and the density at
zero temperature serves as a relevant parameter. A three-dimensional free fermion gas behavior as the
density at zero temperature approaches zero smoothly crosses over to a two-dimensional free fermion gas
behavior as the density at zero temperature approaches infinity.
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I. INTRODUCTION AND SUMMARY

The three-dimensional Euclidean (two spatial and one
thermal) Thirring model with N flavors of two-component
fermions would have been deemed nonrenormalizable by a
standard power counting argument but it has been shown to
be renormalizable in a 1

N expansion [1–5] implying that the
Thirring coupling is relevant in the limit of large N.
Recently, this strongly coupled theory at zero temperature
and density has been extensively studied at finite values of
N to explore the possibility of mass generation [6–20].
With the possible exception of the N ¼ 1 model, a
spontaneous generation of mass is most likely ruled out.
A numerical analysis of QED in three dimensions has also
resulted in similar observations [21–25] but monopoles
present in QED can become relevant [26].
In this paper, we explore the relevance of the Thirring

coupling in the largeN limit at finite temperature anddensity.
We consider only the massless theory owing to the previous
analysis of spontaneousmass generation.Thephysics at zero
temperature has been briefly sketched out in [27]. The
effective action in the large N limit after introducing the
standard vector auxiliary field is complex for a nonzero
chemical potential and this leads us to perform a saddle point
analysis. There are several saddle points at a fixed chemical
potential and temperature but we will provide a graphical
proof that only one particular saddle point dominates at all
values of chemical potential and temperature.
Let T and μ stand for the temperature and chemical

potential measured in units of inverse of the Thirring

coupling per flavor, λ. We will show that the number
density at zero temperature in units of λ is

n0 ¼ μþ 2π

�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

π

r �
; ð1Þ

and can be used to set the chemical potential. The relevance
of the Thirring coupling is already seen by noticing that the
number density at zero temperature smoothly crosses over

from μ2

4π as μ → 0 to μ as μ → ∞. Defining a reduced
temperature by T ¼ ffiffiffiffiffiffiffiffiffiffi

4πn0

p
t and writing the number

density as a function of temperature as n̄ðn0; tÞn0, we will
show that n̄ðn0; tÞ is the solution to

n̄ðn0; tÞ ¼ 8t2r2

 
1þ

ffiffiffiffi
n0

4π

q
½1 − n̄ðn0; tÞ�
2t

; 0

!
;

1 ≤ n̄ðn0; tÞ ≤ 1þ
ffiffiffiffiffiffi
4π

n0

s
; ð2Þ

where

r2ðu; θÞ ¼
π2

24
þ u2

2
−
θ2

2
þ
X∞
k¼1

ð−1Þk ðe
−2kuÞ cosð2kθÞ

2k2
;

u > 0; −
π

2
≤ θ <

π

2
: ð3Þ

This result for the number density is plotted as a function of
temperature in Fig. 1 and shows that it smoothly crosses
over from a three-dimensional free fermion gas as n0 → 0
to a two-dimensional free fermion gas as n0 → ∞.
The rest of the paper is organized as follows. We set up

our notation for the three-dimensional Thirring model and
arrive at the saddle point equations in the limit ofN → ∞ in
Sec. II. The saddle point that dominates at all chemical
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potentials and temperatures is analyzed in Sec. III to obtain
the main results stated above. Due to the involved inter-
dependencies of the different saddle points at a fixed
temperature and chemical potential, we revert to a graphical
analysis in Sec. IV to show that the saddle point discussed
in Sec. III dominates at all chemical potentials.

II. THE THREE-DIMENSIONAL CONTINUUM
THIRRING MODEL

The action for the continuum Thirring model in three
Euclidean dimensions is given by

Sðψ̄ i;ψ i; λÞ ¼
Z

d3x
XN
i¼1

ψ̄ iDðμÞψ i

þ 1

2Nλ

Z
d3x

X3
k¼1

�XN
i¼1

ψ̄ iσkψ i

�2

; ð4Þ

where

DðμÞ ¼
X3
k¼1

σk∂k þ σ3μ ð5Þ

is the Dirac operator acting on an irreducible two-
component fermion in a l2 × β periodic box and μ is
the chemical potential. The fermions obey periodic boun-
dary conditions in the spatial directions and antiperiodic
boundary conditions in the thermal direction. Upon intro-
duction of a vector auxiliary field, VkðxÞ, to replace the
four-Fermi interaction and a subsequent integration of the
fermions results in

SðVk; λÞ ¼ N

�
λ

2

�Z
d3x
X
k

V2
k

�
− ln detðDðVkÞÞ

�
; ð6Þ

where

DðVkÞ ¼
X2
k¼1

σkð∂k þ iVkÞ þ σ3μ: ð7Þ

With Vk → −Vk and xk → −xk, we see that μ → −μ.
Therefore, it is sufficient to consider a positive value for
the chemical potential in our analysis.
Assuming translational invariance to hold in the large N

limit,1 we will analyze the action per flavor with the
auxiliary field restricted to constants,

V1ðxÞ ¼
2πh1
l

; V2ðxÞ ¼
2πh2
l

; V3ðxÞ ¼
2πh3
β

: ð8Þ

The minimum will occur at h1 ¼ h2 ¼ 0 in the l → ∞
limit. One can use standard formulas in [34] to perform the
sum over momentum in the β direction and the resulting
action density (per unit spatial volume) per flavor is

Sðh3;T;μÞ ¼ 2π2Th23 −
2T2

π

Z
∞

0

dx x ln

×
4 cosh ðxþ iπh3 þ μ

2TÞ cosh ðx− iπh3 −
μ
2TÞ

e2x
:

ð9Þ
The integration variable is related to the spatial momentum
by x ¼ βp

2
¼ p

2T and we have set T and μ in units of λ.
The action density is complex and we will perform a

saddle point analysis. We elevate ð2πh3Þ to a complex
variable z ¼ γ þ i δT and define

ω ¼ uþ iθ; u ¼ μ − δ

2T
; θ ∈

�
−π
2

;
π

2

�
;

z ¼ −2i
�
ω −

μ

2T
þ inπ

�
; n ∈ I: ð10Þ

The action density can be written in terms of polylogar-
ithms [35] as

Sðn;ω;T; μÞ ¼ Sbðn;ω;T; μÞ þ Sfðω;T; μÞ; ð11Þ

Sbðn;ω;T; μÞ ¼ −2T
�
ω −

μ

2T
þ inπ

�
2

;

Sfðω;T; μÞ ¼ T2

2π
½Li3ð−e2ωÞ þ Li3ð−e−2ωÞ�: ð12Þ

The partition function is given by

ZðT; μÞ ¼
X∞
n¼−∞

Z iπ
2

−iπ
2

dωe−Nl2Sðn;ω;T;μÞ: ð13Þ
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FIG. 1. Number density as a function of temperature for
different choices of density at zero temperature.

1This assumption is reasonable if one compares it to the
Gross-Neveu model where translational invariance holds in
three dimensions [28] even though it does not hold in two
dimensions [29–33].
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The saddle points are given by dSðn;ω;T;μÞ
dω ¼ 0 which we will label by ωn or ðθn; δnÞ with the possibility that more than one

saddle point exists at a fixed n.
The number density per flavor is given by

nðT; μÞ ¼ T
l2N

d lnZðT; μÞ
dμ

¼ −
1

2ZðT; μÞ
X∞
n¼−∞

Z iπ
2

−iπ
2

dω
dSfðn;ω;T; μÞ

dω
e−Nl2Sðn;ω;T;μÞ

¼ −
1

2ZðT; μÞ
X∞
n¼−∞

Z iπ
2

−iπ
2

dω
�
4T
�
ω −

μ

2T
þ inπ

�
þ dSðn;ω;T; μÞ

dω

�
e−Nl2Sðz;T;μÞ: ð14Þ

A. Equations for saddle points

The complex valued equation for the saddle point using polylogarithm identities is

μ

2T
¼ ωn þ inπ þ T

4π
½Li2ð−e−2ωnÞ − Li2ð−e2ωnÞ�

¼
(

πT
24
þ ωn þ inπ þ T

2π ω
2
n þ T

2π

P∞
k¼1ð−1Þk e−2kωn

k2 ; un > 0

− πT
24
þ ωn þ inπ − T

2π ω
2
n − T

2π

P∞
k¼1ð−1Þk e2kωn

k2 ; un < 0:
ð15Þ

For the purpose of analysis, we separate the above equation into its real and imaginary part as

πðθn þ nπÞ
T

¼ r1ðjunj; θnÞ ¼ −junjθn þ
X∞
k¼1

ð−1Þk e
−2kjunj sinð2kθnÞ

2k2
;

πμ

2T2
¼ un

junj
�
πjunj
T

þ r2ðjunj; θnÞ
�

r2ðjunj; θnÞ ¼
π2

24
þ u2n

2
−
θ2n
2
þ
X∞
k¼1

ð−1Þk ðe
−2kjunjÞ cosð2kθnÞ

2k2
: ð16Þ

The real and imaginary parts of the action density needed to study the dominance of one saddle point over another are

SbRðn; θ; δ;T; μÞ ¼ 2Tðθ þ nπÞ2 − δ2

2T

SfRðθ; δ;T; μÞ ¼
2T2

π

�
juj
�
θ2 −

π2

12

�
−
juj3
3

þ
X∞
k¼1

ð−1Þk e
−2kjuj cosð2kθÞ

2k3

�

SbI ðn; θ; δ;T; μÞ ¼ 2δðθ þ nπÞ

SfI ðθ; δ;T; μÞ ¼ −
u
juj

2T2

π

�
θ3

3
−
π2θ

12
þ u2θ þ

X∞
k¼1

ð−1Þk e
−2kjuj sinð2kθÞ

2k3

�
: ð17Þ

Referring to Eq. (A3), we note that the derivative of
r1ðjuj; θÞ with respect to θ at θ ¼ 0 is negative. The
derivative can become zero at most once for jθj < π

2
, if

juj < u0 ¼ 1
2
ln 3þ ffiffi

5
p
2

. Referring to Eq. (A1), we conclude
that r1ðjuj; θÞ is positive for − π

2
≤ θ < 0 and negative for

0 < θ ≤ π
2
. There is always a saddle point with n ¼ 0 and it

has θ0 ¼ 0. For n ≠ 0, the saddle point, if one exists, will be
in the region − π

2
≤ θn < 0 if n > 0 and will be in the region

0 < θn ≤ π
2
if n < 0.

Assuming the saddle point at n ¼ 0 dominates, the result
for the number density will be

nðT; μÞ ¼ δ0: ð18Þ
Let us assume we have a solution to the saddle point
equations given by ðθn; δnÞ with n > 0. Since

r1ðjunj;−θnÞ ¼ −r1ðjunj; θnÞ;
r2ðjunj;−θnÞ ¼ r2ðjunj; θnÞ; u−n ¼ un; ð19Þ
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we can conclude that ðθ−n; δ−nÞ ¼ ð−θn; δnÞ is a saddle
point with −n < 0. It follows from Eq. (17) that

SRðn; θn; δn;T; μÞ ¼ SRð−n; θ−n; δ−n;T; μÞ;
SIðn; θn; δn;T; μÞ ¼ −SIð−n; θ−n; δ−n;T; μÞ: ð20Þ

If this pair of saddle points were to dominate over the
solitary one at n ¼ 0, the number density will be

nðT; μÞ ¼ δn − 2ðθn þ nπÞT tan½Nl2SIðn; θn; δn;T; μÞ�
ð21Þ

which does not have a smooth N → ∞ limit.

III. ANALYSIS ASSUMING THE SADDLE
POINT AT n= 0 DOMINATES

The only equation is

πμ

2T2
¼ u0

ju0j
�
πju0j
T

þ r2ðju0j; 0Þ
�
: ð22Þ

Referring to Eq. (A2), we have r2ðju0j; 0Þ > 0 which
results in

u0 > 0; δ0 ¼
2T2

π
r2

�
μ − δ0
2T

; 0

�
: ð23Þ

Rewriting the saddle point equation as

μ

T2
−
2u0
T

¼ 2

π
r2ðu0; 0Þ; u0 ¼

μ − δ0
2T

> 0; ð24Þ

we see there is one and only one solution for u0 such that
0 ≤ u0 ≤

μ
2T (0 ≤ δ0 ≤ μ). Using Eq. (A3),we obtain

∂δ0
∂T ¼ 2T

π

2r2ðu0; 0Þ þ u0d1ðu0; 0Þ
1 − T

π d1ðu0; 0Þ
: ð25Þ

We note from Eqs. (A2) and (A3) that

d1ðu0; 0Þ < 0;

2r2ðu0; 0Þ þ u0d1ðu0; 0Þ

¼ u0 lnð1þ e−2u0Þ þ 4

Z
u0

0

dx
x

1þ e2x
> 0: ð26Þ

Therefore we conclude that ∂δ0∂T > 0 and δ0 is a monoton-
ically increasing function of temperature at a fixed chemi-
cal potential.
Assuming that the saddle point at n ¼ 0 dominates at all

chemical potentials and temperatures, the number density is
given by n ¼ δ0. Since

lim
T→0

2T2

π
r2ðu0; 0Þ ¼

ðμ − δ0Þ2
4π

; ð27Þ

the saddle point equation as T → 0 is

n0 ¼
ðμ − n0Þ2

4π
; ð28Þ

which results in the number density at T ¼ 0 to be

n0 ¼ μþ 2π

�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

π

r �
: ð29Þ

We can trade the chemical potential for n0 using

μ ¼ n0 þ
ffiffiffiffiffiffiffiffiffiffi
4πn0

p
: ð30Þ

To see the relevance of the Thirring coupling, we
define a reduced temperature by T ¼ ffiffiffiffiffiffiffiffiffiffi

4πn0

p
t and write

the number density at any temperature as ½n̄ðn0; tÞn0�,
noting that n̄ will depend on n0 in addition to t. It is this
dependence that shows the relevance of the Thirring
coupling. Referring to Eqs. (23) and (30) we arrive at

n̄ðn0; tÞ ¼ 8t2r2

 
1þ

ffiffiffiffi
n0

4π

q
½1 − n̄ðn0; tÞ�
2t

; 0

!
: ð31Þ

One can either use Eq. (16) or Eq. (A2) and see that the
above equation reduces to a free fermion behavior in
three dimensions as n0 → 0. Using Eqs. (A2) and (24),
the asymptotic behavior in t at a fixed n0 is

n̄ðn0; tÞ ¼ 1þ
ffiffiffiffiffiffi
4π

n0

s
−
π
�
1þ

ffiffiffiffi
4π
n0

q �
ðln 2Þ ffiffiffiffiffiffiffiffiffiffi

4πn0

p 1

t
þOðt−2Þ: ð32Þ

Since the number density monotonically increases with
temperature at a fixed n0, it is bounded by

1 ≤ n̄ðn0; tÞ ≤ 1þ
ffiffiffiffiffiffiffiffi
4π

jn0j

s
: ð33Þ

The density does not change with temperature in the limit
n0 → ∞ and this is the free fermion behavior in two
dimensions. The subleading term for small t is

n̄ðn0; tÞ ¼ 1þ π2

3

1

1þ
ffiffiffiffi
n0

π

q t2 þOðt3Þ: ð34Þ

A plot of n̄ðn0; tÞ as a function of t has already been
shown in Fig. 1 at several different values of n0 to
demonstrate the crossover from three-dimensional free
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fermion behavior as n0 → 0 to two-dimensional free
fermion behavior as n0 → ∞.

IV. NONDOMINANCE OF THE SADDLE
POINTS AT n ≠ 0

We will only consider n > 0 since we have shown at
the end of Sec. II A that saddle points at n and (−n) are
paired. Then every solution has to satisfy − π

2
≤ θn ≤ 0. We

will fix the temperature and use θn instead of chemical
potential since it is more convenient from the viewpoint of
solving the saddle point equations. We will graphically
demonstrate the nondominance of the saddle points at
n ≠ 0 by defining

Δðn; θn; TÞ

¼ SRðn; θn; δnðθnÞ; μðθnÞ; TÞ − SRð0; 0; δ0ðθnÞ; μðθnÞ; TÞ
2Tn2π2

ð35Þ

and showing that it remains positive at all n, T and allowed
values of θn ∈ ½− π

2
; 0�. To this end we will use the

following steps:
(1) We will show that μ → ∞ as θn → 0 at all temper-

atures.
(2) There exists a temperature T0ðnÞ above which a cer-

tain region given by − π
2
< θlðTÞ < θn < θrðTÞ < 0

has no solution to the saddle point equations. The
chemical potential will monotonically increase from
0 to ∞ as θn increases from θrðTÞ to 0 and it will
monotonically increase from 0 to a finite nonzero
value as θn decreases from θlðTÞ to − π

2
. Further-

more, θlðT0ðnÞÞ ¼ θrðT0ðnÞÞ ¼ θ0ðnÞ.
(3) There exists a temperature T1ðnÞ below which the

chemical potential will monotonically decrease from
∞ to a finite nonzero value as θn decreases from
0 to − π

2
. In other words there will be a region

of chemical potential given by 0 ≤ μ < μ1ðTÞ for
which there is no solution to the saddle point
equations. Furthermore, μ1ðT1ðnÞÞ ¼ 0.

(4) We will explicitly study the case of zero temperature
and the case of zero chemical potential.

(5) Even thoughΔðn; θn; TÞ will not be monotonic in θn
at a fixed n and temperature, it reaches an absolute

minimum at θ ¼ − π
2
at all n and temperatures. We

will study Δðn;− π
2
; TÞ as a function of T and show

that the minimum at each n is larger than zero for
all n.

A. θn → 0− ⇒ μ → ∞
Keeping terms to relevant orders in θn and using

Eq. (A3), the first equation in Eq. (16) results in

junj ¼ −
nπ2

Tθn
−
π

T
þOðe 1

θnÞ: ð36Þ

Inserting this into the second equation in Eq. (16) results in

un > 0; μ ¼ n2π3

θ2n
þ πT2

12
− π þOðθ2nÞ: ð37Þ

If we use the diverging chemical potential with the leading
correction into Eq. (24), we find that u0 ¼ un up to the two
correction terms. Therefore, we arrive at

Δðn; 0−; TÞ ¼ 1; ð38Þ

and the saddle point at n ¼ 0 dominates as μ → ∞ for all
values of temperature.

B. T0ðnÞ
Noting that d2ðjuj; θÞ > 0 for − π

2
< θ < 0, the right-

hand side of the first equation in Eq. (16) monotonically
increases with juj at a fixed θ. Therefore, at every value of
θ, the lowest value of the right-hand side is given by
r1ð0; θÞ. If the temperature is above a certain value, we will
have a region of θ where there is no solution to the first
equation in Eq. (16). This transition temperature is the
solution to

π

T0ðnÞ
ðθ0ðnÞ þ nπÞ ¼ r1ð0; θ0ðnÞÞ;

π

T0ðnÞ
¼ − ln½2 cos θ0ðnÞ�; ð39Þ

which results in

θ0ð1Þ ¼ −0.372690809π; θ0ð2Þ ¼ −0.350144201π; θ0ð5Þ ¼ −0.339555189π

T0ð1Þ ¼ 12.563174152; T0ð2Þ ¼ 2 × 16.123729198; T0ð5Þ ¼ 5 × 18.139848147; ð40Þ
and

θ0ð∞Þ ¼ π

3
; lim

n→∞

T0ðnÞ
n

¼ π2

r1ð0; π3Þ
¼ 19.448615248: ð41Þ

Since un ¼ 0 at this temperature, T0ðnÞ, and θ0ðnÞ we have r2ð0; θ0ðnÞÞ ¼ 0 and μ ¼ 0 at this point.
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After fixing the temperature, we choose a θn in the
allowed region and solve for junj using the first equation in
Eq. (16) and then solve for the chemical potential using the
second equation. Referring to Eq. (A3), we note that
d2ðjuj; θÞ remains non-negative in − π

2
≤ θn ≤ 0 and we

conclude that r2ðjuj; θÞ is a monotonically increasing
function in − π

2
≤ θn ≤ 0. Since we are only considering

μ > 0, we can conclude from the second equation in
Eq. (16) that un > 0 if ½πjunjT þ r2ðjunj; θnÞ� > 0 and un < 0

if ½πjunjT þ r2ðjunj; θnÞ� < 0. Furthermore, we can have a
solution to the saddle point equations with n > 0 and μ ¼ 0

only if ½πjunjT þ r2ðjunj; θÞ� ¼ 0. We have used n ¼ 5 as a
typical value of n and plotted Δð5; θ5; T0ð5ÞÞ as a blue
curve in Fig. 2. We see it remains positive in the entire
range of θ5 showing that the saddle at n ¼ 0 dominates
over n ¼ 5 at T0ð5Þ.

C. T1ðnÞ
Consider moving down from θn ¼ 0. Noting that un is

positive to start with and noting that d2ðjuj; θÞ is positive in
− π

2
≤ θn ≤ 0, we conclude from Eq. (A5) that μ decreases

as θn moves down from zero as long as un remains positive.
At θn ¼ − π

2
, the first equation in Eq. (16) reduces to

junj ¼
ð2n − 1Þπ

T
ð42Þ

and the condition for ½πjunjT þ r2ðjunj;− π
2
Þ� to remain pos-

itive is

π2

T2
ð4n2 − 1Þ − π2

6
þ
X∞
k¼1

e−
2ð2n−1Þkπ

T

k2
> 0: ð43Þ

This gives the condition for μ ¼ 0 to occur for
T > TnðnÞ with

T1ð1Þ ¼ 4.654727000; T1ð2Þ ¼ 2 × 4.987847524;

T1ð5Þ ¼ 5 × 5.044788571; lim
n→∞

T1ðnÞ
n

¼ 5.028967463:

ð44Þ

We have plottedΔð5; θ5; T1ð5ÞÞ as a red curve in Fig. 2. We
see it remains positive in the entire range of θ5 showing that
the saddle at n ¼ 0 dominates over n ¼ 5 at T1ð5Þ.

D. T = 0

Let us consider the limit T → 0. The two saddle point
equations in Eq. (16) sequentially result in

lim
T→0

Tjunj ¼ −
πðθn þ nπÞ

θn
;

lim
T→0

T2

�
πjunj
T

þ r2ðjunj; θnÞ
�
¼ π2ðn2π2 − θ2nÞ

2θ2n
> 0; ð45Þ

and we obtain

μ ¼ πðn2π2 − θ2nÞ
θ2n

; δn ¼
πðθn þ nπÞ2

θ2n
: ð46Þ

With this choice of μ, the saddle point solution with n ¼ 0
is given by

lim
T→0

Tu0 ¼ −
πðθn þ nπÞ

θn
; δ0 ¼

πðθn þ nπÞ2
θ2n

; ð47Þ

and we conclude

Δðn; θn; 0Þ ¼ 1þ θn
nπ

: ð48Þ

We have plotted Δð5; θ5; 0Þ for reference in Fig. 2 as a
brown line.

E. μ = 0

If T > T1ðnÞ we have a saddle point solution with μ ¼ 0
and n > 0. Setting μ ¼ 0, we first note by referring to
Eq. (23) that the saddle point with n ¼ 0 corresponds to
u0 ¼ 0 and therefore δ0 ¼ 0 and the real part of the action
at the n ¼ 0 saddle point is [referring to Eq. (17)]

SRð0; 0; 0; 0; TÞ ¼
2T2

π

X∞
k¼1

ð−1Þk
2k3

¼ −
3ζð3Þ
4π

T2: ð49Þ

Referring to Eq. (16), the solution to the saddle points at
n > 0 is given by

-0.5 -0.4 -0.3 -0.2 -0.1 0
���

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
�

(5
,�

5,T
)

����	
�����
�	
����	
�����	
T = T

1
(5)

T = T
0
(5)

T = 0

FIG. 2. The action at the n ¼ 5 saddle point is taken as a typical
example since it has all the features for a generic n and it is
compared with the n ¼ 0 saddle point to show that the n ¼ 0
saddle point dominates at all temperatures and chemical potential.
This plot shows the comparison at some specific values of
temperature and also at zero chemical potential.
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fðjunj; θnÞ ¼ junjr1ðjunj; θnÞ þ ðθn þ nπÞr2ðjunj; θnÞ ¼ 0:

ð50Þ
Viewing the above equation as a function of junj at a fixed
θn we note that junj ¼ 0 is a solution to the above equation.
In this case, δn ¼ 0 and the temperature as a function of θn
from the first equation in Eq. (16) is

TnðθnÞ ¼
πðθn þ nπÞ
r1ð0; θnÞ

; ð51Þ

and

Δðn; θn; TnðθnÞÞ ¼
�
θn
nπ

þ 1

�
2

þ TnðθnÞ
2n2π3

JfðθnÞ;

JfðθÞ ¼
X∞
k¼1

ð−1Þk cosð2kθÞ − 1

k3
: ð52Þ

Noting that

Jf

�
−
π

2

�
¼ 7ζð3Þ

4
> 0; Jfð0Þ ¼ 0; ð53Þ

and noting that

dJfðθÞ
dθ

¼ 2Cl2ðπ − 2θÞ ≤ 0; ð54Þ

where Cl2 is the Clausen function of order 2, we conclude
that JfðθÞ is non-negative in− π

2
< θn < 0. Therefore, these

saddle points at n > 0 and μ ¼ 0 do not dominate over
n ¼ 0. We have plotted Δð5; θ5; TÞ for μ ¼ 0 and δ5 ¼ 0 as
a red curve in Fig. 2. Note that the divergence inΔð5; θ5; TÞ
as θ5 → − π

2
can be seen from Eqs. (52) and (53).

There is another solution to Eq. (50) with junj > 0 if
T1ðnÞ < T < T0ðnÞ and θn < θ0ðnÞ. To see this note that
the derivative of Eq. (50) with respect to junj gives us

∂fðjunj; θnÞ
∂junj ¼ r1ðjunj; θnÞ þ junjd2ðjunj; θnÞ

− ðθn þ nπÞd1ðjunj; θnÞ: ð55Þ

The first two terms are positive in the range − π
2
< θn < 0.

Furthermore, d1ðjunj; θnÞ is positive only if − π
2
< θn < − π

6
.

We can see that fð0; θnÞ ¼ 0 and fðjunj; θnÞ goes as

½nπ−θn
2

u2n� as junj → ∞. If ∂fð0;θnÞ∂junj > 0 the only solution to

Eq. (50) is junj ¼ 0. The condition for ∂fð0;θnÞ∂junj ¼ 0 is the

same as Eq. (39) and therefore we conclude that − π
2
<

θn < θ0ðnÞ for a solution to Eq. (50) to exist with junj ≠ 0.
We have plottedΔð5; θ5; TÞ for μ ¼ 0 and δ5 ≠ 0 as a black
curve in Fig. 2 and it meets the red curve at θ0ð5Þ. Note that
the temperature along the black curve changes from T ¼
T1ð5Þ at θ5 ¼ − π

2
to T ¼ T0ð5Þ at θ5 ¼ θ0ð5Þ. A generic

feature of the curves shown in Fig. 2 is the intersection
of the black curve (μ ¼ 0 and δ5 ≠ 0) with the green
curve (T1ð5Þ) at a value of θn away from − π

2
. The

temperature and chemical potential on the two curves at
the intersection point are different but yield the same value
for Δðn; θn; TÞ.

F. Analysis at θn = − π
2

The two plots in Fig. 3 show the behavior of Δð5; θ5; TÞ
as a function of θ5 over the entire range of T. For
T < T1ðnÞ, we find a solution in the entire range of θn
with μmonotonically increasing from a positive finite value
at θn ¼ − π

2
to a divergence at θn ¼ 0. The gray points in the

top plot of Fig. 3 show Δð1; θ1; TÞ for T < T1ðnÞ and all
points lie between the line at T ¼ 0 and T ¼ T1ð1Þ and
moves continuously from one to the other as T changes.
For T1ðnÞ < T < T0ðnÞ, we again find a solution in the
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-0.5 -0.4 -0.3 -0.2 -0.1 0
���

0.85

0.9

0.95

1

�
(5

,�
5,T

)
T

1
(5) < T < T

0
(5)

T > T
0
(5)

����	
�����	
T = T

1
(5)

T = T
0
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FIG. 3. The top plot shows that the difference between T ¼ 0
and T ¼ T1ð5Þ is bounded by the two extremes. The bottom plot
shows that the difference between T ¼ T1ð5Þ and T ¼ T0ð5Þ
moves smoothly from one end to the other but there is a
temperature in between the two ends where the difference is
smallest as a function of θn. On the other hand, the difference for
T > T0ð5Þ is bounded from below by T ¼ T0ð5Þ.
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entire range of θn. But we find a θ0ðTÞ at which μ ¼ 0.
The chemical potential monotonically decreases from a
positive finite value at θn ¼ − π

2
to zero at θn ¼ θ0ðTÞ and

then monotonically increases to a divergence at θn ¼ 0.
Furthermore, θ0ðT1ðnÞÞ ¼ − π

2
and θ0ðT0ðnÞÞ ¼ θ0ðnÞ.

These features are shown in the bottom plot of Fig. 3.
The curves for Δð5; θ5; TÞ at a fixed T in T1ð5Þ < T <
T0ð5Þ are shown by violet points. Note that there is a range
of T starting from T1ð5Þ where the curve intersects the
black curve (μ ¼ 0 and δ5 ≠ 0) at two points. Only one of
the intersection points has the same temperature and
chemical potential. Initially, it is the intersection point
closer to θ5 ¼ − π

2
until the violet curve is tangential to the

black curve. After that, the intersection point closer to θ0ð5Þ
is where the temperature and chemical potential matches.
For T > T0ð5Þ, there will be a solution only if θ5 does not
belong to the interval ðθlðTÞ; θrðTÞÞ which can be obtained
by setting the left-hand side to T in Eq. (51). The chemical
potential will monotonically decrease from a positive finite
value at θn ¼ − π

2
to zero at θlðTÞ and then monotonically

increase from zero at θrðTÞ to a divergence at θn ¼ 0.
These features are also shown in the bottom plot of Fig. 3
and we see that Δð5; θ5; TÞ for T > T0ð5Þ shown by cyan
points lies above the curve at T ¼ T0ð5Þ and has two parts.
The boundary of the two parts is the red curve with μ ¼ 0
and δ ¼ 0.
The graphical analysis discussed before specifically for

n ¼ 5 enables us to conclude that Δð5; θ5; TÞ reaches a
minimum at θ5 ¼ − π

2
at any fixed temperature. We there-

fore plot Δðn;− π
2
; TÞ as a function of T for n ¼ 1, 2, 5, 10,

50 in Fig. 4. The minimum occurs very close to T ¼ T1ð1Þ
but moves to a higher temperature with respect to T1ðnÞ as
n is increased. The global minimum occurs at a finite
value of T=T1ðnÞ even as n → ∞. This plot along with
the analysis done specifically for n ¼ 5 in Figs. 2 and 3
serves to graphically prove our main point—the saddle

point at n ¼ 0 dominates at all chemical potentials and
temperatures.

V. CONCLUSIONS

We have studied the three-dimensional (two spatial and
one thermal) Euclidean Thirring model at finite temperature
and chemical model in the limit of infinite number of
flavors and our aim was to understand the relevance of
the Thirring coupling. The effective action is complex
and we had to perform an extensive graphical analysis to
show that one particular saddle point dominates over all
other possible saddle points at all chemical potential and
temperature. The relevance of the Thirring coupling is seen
in the dependence of the behavior of the number density as
a function of temperature on different values of the number
density at zero temperature. The number density as a
function of temperature behaves like a three-dimensional
free fermion gas as the number density at zero temperature
approaches zero and it behaves like a two-dimensional free
fermion gas as the number density at zero temperature
approaches infinity. The number density at a fixed nonzero
value at zero temperature is a monotonically increasing
function of temperature reaching a finite value at infinite
temperature. The function for any given nonzero value of
density at zero temperature smoothly interpolates between
the two extremal behaviors at zero number density and
infinite number density at zero temperature.
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APPENDIX: SOME USEFUL PROPERTIES
OF r1ðu;θÞ AND r2ðu;θÞ

We note that

r1ðjuj; 0Þ ¼ 0; r1
�
juj;� π

2

�
¼∓ πjuj

2
: ðA1Þ

Using Riemann and Dirchlet zeta function formulas [35],
we also note that

r2ðjuj; 0Þ ¼
u2

2
þ
Z juj

0

dx ln ð1þ e−2xÞ;

r2

�
juj;� π

2

�
¼ u2

2
þ
Z juj

0

dx ln ð1 − e−2xÞ: ðA2Þ

The derivatives of r1ðjuj; θÞ and r2ðjuj; θÞ with respect to
juj and θ are
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FIG. 4. The difference in the action between n > 0 and n ¼ 0 at
θn ¼ − π

2
is plotted as a function of T=T1ðnÞ.
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∂r1ðjuj; θÞ
∂θ ¼ −

∂r2ðjuj; θÞ
∂juj

¼ −
1

2
ln ½2ðcoshð2uÞ þ cosð2θÞÞ� ¼ d1ðu; θÞ;

∂r1ðjuj; θÞ
∂juj ¼ ∂r2ðjuj; θÞ

∂θ ¼ −tan−1ðtanh juj tan θÞ

¼ d2ðjuj; θÞ: ðA3Þ

Referring to the solutions as θnðμÞ, δnðμÞ and unðμÞ we
compute expressions for the derivative of δn with respect
to μ. Noting that

∂junj
∂μ ¼ un

junj
1

2T

�
1 −

∂δn
∂μ
�
; ðA4Þ

and referring to Eq. (16), we obtain

∂θn
∂μ ¼ un

junj
πd2

2T2½ðπT − d1ðjunj; θnÞÞ2 þ d22ðjunj; θnÞ�
;

∂δn
∂μ ¼ 1 −

π

π − Td1ðjunj; θnÞ þ T d2
2
ðjunj;θnÞ

π
T−d1ðjunj;θnÞ

: ðA5Þ
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