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ABSTRACT
X-ray absorption creates electron vacancies in the core shell. These highly excited states often relax by Auger decay—an autoionization
process in which one valence electron fills the core hole and another valence electron is ejected into the ionization continuum. Despite
the important role of Auger processes in many experimental settings, their first-principles modeling is challenging, even for small sys-
tems. The difficulty stems from the need to describe many-electron continuum (unbound) states, which cannot be tackled with standard
quantum-chemistry methods. We present a novel approach to calculate Auger decay rates by combining Feshbach–Fano resonance the-
ory with the equation-of-motion coupled-cluster single double (EOM-CCSD) framework. We use the core–valence separation scheme
to define projectors into the bound (square-integrable) and unbound (continuum) subspaces of the full function space. The contin-
uum many-body decay states are represented by products of an appropriate EOM-CCSD state and a free-electron state, described by
a continuum orbital. The Auger rates are expressed in terms of reduced quantities, two-body Dyson amplitudes (objects analogous to
the two-particle transition density matrix), contracted with two-electron bound-continuum integrals. Here, we consider two approxi-
mate treatments of the free electron: a plane wave and a Coulomb wave with an effective charge, which allow us to evaluate all req-
uisite integrals analytically; however, the theory can be extended to incorporate a more sophisticated description of the continuum
orbital.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0036976., s

I. INTRODUCTION

Owing to their ability to target specific atomic sites while
being sensitive to the chemical environment, core-level spectro-
scopies are powerful tools for interrogating the molecular struc-
ture.1–3 The underlying versatile selection rules governing excitation
processes to the excited states in either the bound or the contin-
uum part of the spectrum enable a broad range of applications.
Advances in laser technology and the development of novel x-ray
sources have opened up a new area of applications in which core-
level spectroscopies can be used as probes to study electron and
nuclear dynamics with unprecedented time and space resolution.4–9
Recently, x-ray spectroscopy was used to reveal the dynamics of

ionized liquid water,10,11 a photo-induced ring-opening reaction,12
and charge-migration and charge-transfer reactions13–15 and to
interrogate the interplay between open-shell spin-coupling and
Jahn–Teller distortion in the benzene radical cation.16,17

Absorption of an x-ray photon, creating a vacancy in the core
shell, leaves the molecule in a highly excited state. In molecules
composed of light atoms (such as C, N, or O), these core-level
states decay predominantly through a non-radiative autoionization
process called Auger decay.18 In this process, shown schematically
in Fig. 1, the core hole is filled with an electron from a valence
orbital, liberating sufficient energy to eject another valence electron
(called an Auger electron) into the continuum. Having characteristic
timescale on the order of femtoseconds, Auger processes compete
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FIG. 1. Different types of Auger effect: (a) regular Auger decay, (b) resonant (partic-
ipator) decay, and (c) resonant (spectator) decay. Regular Auger decay is relevant
for x-ray photoionization spectroscopy (XPS), whereas resonant Auger processes
occur in x-ray absorption spectroscopy (XAS).

directly with electron and nuclear dynamics triggered by prior x-
ray photon absorption. Auger decay also plays an important role in
molecular imaging using ultrashort x-ray pulses from free-electron
lasers, where it contributes to the damage of the sample, limiting
the achievable resolution.19,20 By measuring the kinetic energy of the
emitted electron, Auger electron spectroscopy is used in studies of
surfaces, materials, nanostructures, and gas-phase molecules.21–24

The first theoretical description of Auger decay was due to
Wentzel, who employed a perturbative approach to calculate transi-
tion rates into the continuum in an atom with two active electrons.25
The key assumption was that Auger decay is a two-step process
in which the emission of the Auger electron is independent of the
preceding core–shell depletion created by means of x-ray photoion-
ization or absorption transition. Hence, the initial state for the Auger
decay can be treated as an electronicallymetastable state, undergoing
spontaneous ionization.

Multichannel resonance scattering theory18,26 provides an alter-
native, more-sophisticated treatment of autoionization, including
the Auger effect. In this framework, the autoionizing state appears
as a pole in the scattering matrix for complex-valued electron colli-
sion energy. The scattering wave function in the vicinity of an iso-
lated resonance state can be decomposed into two parts: bound-like
and continuum-like. The former is square-integrable, and it closely
resembles a regular bound state, whereas the latter is non-square
integrable and fully determines the asymptotic behavior of the
state.

Such a decomposition of the wave function is the essence of the
Feshbach–Fano approach27,28 for treating autoionizing states (res-
onances). As originally formulated by Fano27 and shown in Fig. 2,
the autoionization can be described in terms of mixing between
discrete and continuum diabatic electronic states, coupled by the
off-diagonal (i.e., continuum-bound) matrix elements of the many-
body Hamiltonian. Feshbach put this idea on a more rigorous
mathematical basis by using projector operators and the partition-
ing approach,28 known in the quantum chemistry community as
the Löwdin partitioning technique.29 This approach is the basis of

FIG. 2. In the Feshbach–Fano framework, a resonance state is described in terms
of the interaction between bound and continuum states. The two domains are
defined by means of the Feshbach projection operators, Q and P, which split the
total Hamiltonian into the bound (shown by the green solid curve) and unbound
(shown by the red solid curve) parts. The resonance state is described by a bound
eigenstate from the Q subspace (shown in green) coupled to the continuum states
from the P subspace (shown in red). As a result of this mixing, the total wave func-
tion of the resonance (light blue solid curve) has two distinguishable components:
the bound-like (in the interaction region) and the scattering-like (in the asymptotic
region).

our theoretical framework. Feshbach projection operators Q and
P divide the full function space into the bound and continuum
domains. Similar to Fano’s picture, in Feshbach’s construction, the
resonance state is described as a bound state from the discrete sub-
space Q coupled to the continuum subspace P. By using the parti-
tioning technique,29,30 the Schrödinger equation can be mapped into
an eigenproblem in theQ-space with an effectiveHamiltonian incor-
porating the P-space. Most often, one treats the bound part of the
Hamiltonian and the respective eigenstates as zero-order states and
includes the effect of the continuum at the first-order perturbation,
as was done in the original paper of Feshbach.28 The critical aspect
of the Feshbach–Fano formalism is that the quality of the results
depends strongly on the choice of the projector operators, which are
not rigorously defined. This is the main stumbling block for quan-
titative applications of the Feshbach–Fano formalism to many-body
autoionization problems. Among recent attempts to develop physi-
cally and theoretically justified projectors, the works of Martin and
co-workers31 and Kunitsa and Bravaya32 are notable.

Fortunately, in the case of Auger decay, one can easily sep-
arate the bound and continuum many-body configurations in the
Fock space. This is possible because (i) the core-level states are Fes-
hbach resonances, which can only decay by a two-electron process,
and (ii) the core orbitals are well separated from the valence orbitals.
Thus, Slater determinants, in which at least one core orbital is active,
form the bound domain, which can only couple to the continuum
by pure valence excited determinants. This is exploited in the core–
valence separation (CVS)33 scheme commonly used to adapt stan-
dard electronic structure methods for treating core-level states.34–43
The CVS ansatz decouples core-excited and core-ionized states from
the valence continua, essentially acting as the Feshbach Q projec-
tor. In standard applications of the CVS scheme, the continuum is
simply ignored, and the core-level states are treated as bound states
(in terms of perturbation theory, one can think of these CVS states
as zero-order states). Here, we extend the theory and include the
effect of the continuum by explicitly constructing the decay states
and evaluating the matrix elements between the bound and contin-
uummany-body states. In this way, we obtain first-order corrections
to the energies of the core-level states: the real part of the correction
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adjusts the position of the resonance and the imaginary part gives its
width.

The construction of the many-body decay states poses greater
difficulties for the theory than the construction of the initial states
(which can be treated by CVS) because the decay states belong
to the continuum (Feshbach P subspace) and cannot be properly
represented with L2-integrable functions used in electronic struc-
ture calculations. The inherent difficulty in treating unbound many-
electron systems44–47 is the reason why calculations of the Auger
decay rates are still not routine, even for small molecules. The exist-
ing approaches can be divided into three categories: (i) methods that
do not consider the state of the emitted Auger electron, (ii) methods
that treat the Auger electron implicitly without the continuum func-
tions, and (iii) methods that describe the Auger electron explicitly
with a true continuum orbital.

The first category includes electron population analysis,48 in
which the relative Auger rates are computed from the densities of
the valence molecular orbitals on the atom with the core hole. In
a similar spirit, statistical approaches estimate Auger spectra from
the distribution of final products of the decay and their decomposi-
tion in terms of the weights of electronic configurations.49,50 These
methods are useful for larger systems with high density of the final
states.

The second category comprises methods that treat the many-
electron continuum states implicitly, by means of L2-integrable
wave functions. This is done in the Green’s operator formal-
ism,51 non-Hermitian theories such as the complex absorbing
potential approach,52 or in the Stieltjes imaging procedure.53,54
Stieltjes imaging entails calculations of bound–continuum cou-
plings by using a discretized representation of the continuum
by an L2-integrable basis set. This approach has been com-
bined with the algebraic diagrammatic construction (ADC) within
the Fano ansatz to compute Auger rates in atoms and small
molecules.55–57

In the third category of methods, the continuum character of
the Auger electron is treated explicitly. The wave function for the
final state is represented by an antisymmetrized product of a func-
tion for the bound molecular ion and a continuum orbital for the
outgoing electron. In the early days, the bound ion was treated at
the self-consistent mean-field level.58,59 More recently, various fla-
vors of configuration interaction (CI) methods have been employed
to calculate the bound part of the multi-electron wave function.60–63
The continuum orbital for each decay channel can be computed
using a single-center expansion method and performing numerical
integration of the effective one-electron Schrödinger equation with
proper scattering boundary conditions.64 These approaches have
been shown to yield accurate results for Auger spectra of small sys-
tems such as Ne and H2O.60,62 For molecules, a one-center approxi-
mation is commonly employed, where it is assumed that the contin-
uum orbital has the same form as in an atom bearing the core hole
and relevant two-electron integrals have contributions only from
the orbitals centered on that atom.59,65 This approach is employed,
for example, in the XMOLECULE package for modeling ultrafast
dynamics in strong fields.66,67

Although quite a few methods and algorithms for calcula-
tions of Auger spectra have been reported so far, their scope of
applicability remains limited and their predictive power depends
on the underlying ab initio method. For example, for atoms,

elaborate calculations of the Auger widths can be carried out with
the multi-configurational Dirac–Fock method implemented in the
RATIP program.68 However, the results depend strongly on the
manual selection of configurations included in the subspace for the
initial and final states. For molecules, the most advanced method
today is the Fano–ADC–Stieltjes approach.55,57 The drawbacks of
this approach are that it requires large, non-standard orbital basis
sets and that it relies on somewhat arbitrary division of the elec-
tronic configurations into bound and continuum subspaces. Clearly,
there is a need for more-universal computational tools for reliable
treatment of Auger decay. Ideally, such new computational proto-
cols should be cost-effective, easy to set up, and take advantage of
the already available, highly accurate methods and algorithms of
standard quantum chemistry.

Here, we propose a methodology to calculate Auger decay
rates based on equation-of-motion coupled cluster (EOM-CC) the-
ory.69–72 We use EOM-CC to describe the bound part of the wave
function in the initial and final states of the Auger decay and use
continuum orbitals to represent the Auger electrons. The EOM-
CC framework provides effective and robust tools for computing
energies and properties of excited, ionized, and electron-attached
states.69–72 The flexibility of the EOM-CC single-reference ansatz
allows one to tackle states of open-shell73 and multi-configurational
character74,75 with high and controllable accuracy. EOM-CC meth-
ods have been combined with complex absorbing potentials to study
properties of metastable states.47,76,77 To enable access to core-level
states, EOM-CC methods have been combined with CVS,33 result-
ing in a highly effective CVS-EOM-CC scheme. The CVS-EOM-
CCSD approach has been used to compute energies and properties
of core-ionized and core-excited states, as well as x-ray non-linear
properties such as resonant inelastic x-ray scattering (RIXS).34–39,42,78
We note that the core-level spectra can also be described by the
time-dependent coupled-cluster treatment without invoking the
CVS scheme, as was recently demonstrated by Park et al.79 In this
work, the full electronic spectrum was obtained from both time-
propagation of the ground-state wave function and by diagonalizing
the time-independent Hamiltonian. The authors also showed that a
systematic inclusion of different effects (higher excitations and basis
sets) within the EOM-CC framework results in a sub-eV accuracy in
computed absolute core-excitation energies.79

In the present work, we extend the EOM-CC methodology
to describe the autoionization properties of core-ionized and core-
excited states. We combine many-electronic states described by
CVS-EOM-CCSD with a continuum orbital, which we approximate
by a plane wave or a Coulomb wave. This obviates numerical inte-
gration in the calculations of mixed bound-continuum electron-
repulsion integrals. The working equations for the calculations of
the partial autoionization widths are expressed in terms of one- and
two-body Dyson functions, contracted with the bound-continuum
integrals. While Dyson orbitals have been utilized in the theory of
one-photon photoionization,80–87 here, we extend this concept
to two-body functions, which enable a compact representation
of autoionization widths obtained from correlated many-electron
states. In this paper, we describe the theoretical approach and its
implementation in an electronic structure code. In Paper II,88 we
illustrate the performance of the theory by simulating normal and
resonant Auger decay spectra in a set of benchmark atomic and
molecular systems, including Ne, H2O, CH4, and CO2.

J. Chem. Phys. 154, 084124 (2021); doi: 10.1063/5.0036976 154, 084124-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

II. FESHBACH–FANO–LÖWDIN FRAMEWORK
As outlined above, our treatment of the autoionization pro-

cess is based on the concepts originally formulated by Feshbach to
describe nuclear reactions.28 This is an application of the Löwdin
partitioning technique29 to treat the bound-continuum problem.
While the focus of this paper is on the Auger effect, the theory is
general and can be applied to other resonance phenomena.32

Let us start by reviewing the key concepts of the approach. The
principal idea28,29 is the introduction of two Hermitian, mutually
orthogonal, projection operators Q and P such that

Q + P = 1, QP = PQ = 0. (1)

The operators Q and P divide the full function space into two sub-
spaces: the Q-space, characterizing the interaction region with the
discrete spectrum, and the P-space, characterizing the asymptotic
region with the continuous spectrum. The projection operators can
be expressed as

Q =�
n
�ψn��ψn�, P =�

�
� ∞
0

dE�χ±�,E��χ±�,E�, (2)

where the representing functions are the eigenstates of the respective
projected Hamiltonians,

HQQψn = Enψn, HPPχ±�,E = (E + E�)χ±�,E, (3)

with HQQ ≡ QHQ and HPP ≡ PHP. H is the total electronic Hamil-
tonian of the system, explicitly given in Sec. III. These functions are
subject to the following normalization conditions:

�ψn�ψk� = δnk, �χ±�,E�χ±�′ ,E′ � = δ��′δ(E − E′). (4)

Thus, functions forming the Q-space are L2-normalized, whereas
the P-space comprises scattering (unbound) states with Dirac’s δ
normalization. For the unbound states χ±�,E, the index � denotes a
distinct open channel and the superscript ± refers to either outgoing
or incoming asymptotic boundary conditions imposed on the scat-
tering wave function. In Eq. (3), we introduced E�, which denotes
the threshold energy of a given channel, i.e., E� corresponds to the
internal energies of the two subsystems formed after the break-up.
Similar to the Fano picture,27 a resonance in the Feshbach theory
can be seen as an isolated bound state from the Q-space, interacting
with a bath of continuum states from the P-space. This interaction
(or coupling) is responsible for the decay of the resonance. For this
construction to be valid, the operator P must include the summa-
tion over all possible open channels � contributing to the decay of
the given resonant state.

TheQ and P operators transform the full Schrödinger equation

HΨ = EΨ (5)

into an equivalent set of two sets of coupled equations, represented
as

�HQQ HQP
HPQ HPP

��QΨPΨ� = E�QΨPΨ�, (6)

where HPQ ≡ PHQ and HQP ≡ QHP. These two equations can be
rearranged to define two effective Hamiltonians, HPP and HQQ,

HPP = HPP +HPQGQ(E)HQP, (7)

HQQ = HQQ +HQPG(+)P (E)HPQ, (8)

whereGQ andG(+)P are the Green’s functions in theQ- and P-spaces,

GQ(E) = 1
E −HQQ

, (9)

G(+)P (E) = limε→0

1
E + iε −HPP

. (10)

BothHPP andHQQ are energy-dependent and non-local.30 They act
only in their respective subspaces; yet, due to the presence of the
coupling HPQ/QP, they also include the effect of the complementary
subspace. Although they appear equivalent, theHPP andHQQ effec-
tive Hamiltonians have different properties and applications. HPP is
sufficient to obtain the asymptotic form of the total wave function,
Eq. (5), and, thus, to calculate all scattering properties of the system.

By construction, the effective Hamiltonian HQQ is non-
Hermitian and has complex eigenvalues. These eigenvalues are not
equal to the eigenvalues of the original Hamiltonian, Eq. (5), solved
with normal boundary conditions. Rather, they represent the solu-
tion of the original problem with outgoing wave boundary con-
ditions, as in the Siegert treatment.89 This property of the Fesh-
bach solutions results from the use of the G+

P Green’s operator. The
Feshbach–Fano treatment is closely related to other incarnations
of the non-Hermitian quantum mechanics46 designed to describe
resonance states by using anL2 representation of the wave function.

Indeed, if the P andQ operators are defined in an adequate way,
then the eigenstates of HQQ

HQQψ̃n = Ẽnψ̃n, (11)

can be identified with true resonances and their respective eigenval-
ues

Ẽn = En − iΓn2 (12)

correspond to physical observables, i.e., the position (En) and the
width (Γn) of the resonance.

As in the context of electron correlation, the exact solution of
HQQ is impractical. Instead, perturbation theory can be employed,
taking HQQ as the zero-order Hamiltonian and treating the rest as
a perturbation.30,90–92 Thus, the eigenstates of HQQ are zero-order
wave-functions,

HQQψn = Enψn, (13)

and En is zero-order energy of the resonance (because HQQ is Her-
mitian, and En is real). The first-order correction to the energy is
then

E(1)n = �ψn�HQPG(+)P HPQ�ψn�. (14)
By using the distribution property,

lim
ε→0

1
x ± iε = P.V . 1x ∓ iπδ(x), (15)

we arrive at the following expressions for the resonance position:
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En = Re�ψn�HQQ�ψn� = En + �n = En
+�

�
P.V .� ∞

0
dE
�ψn�HQP�χ±�,E��χ±�,E�HPQ�ψn�

En − E� − E
≡ En +�

�
��,n, (16)

and for the resonance width,

Γn = −2Im�ψn�HQQ�ψn�
=�

�
2π�ψn�HQP�χ±�,En−E� ��χ±�,En−E� �HPQ�ψn�

≡�
�
Γ�,n, (17)

in the first order of the perturbation theory. The second term in
Eq. (16) represents a shift in the position of the resonance due to
the coupling with the continuum. Both the energy shift �n and
the width Γn are sums over partial contributions from each open
channel �.

We note that this treatment is meaningful only if ψn provides a
good approximation to the resonance wave-function and the pertur-
bation does not change its character. In other words, this treatment
is justified for isolated, non-overlapping resonances. The coupling
HamiltonianHQP/PQ can be represented asHQP/PQ =H −H0, where
H0 is a part of the total Hamiltonian H (which does not couple Q-
and P-spaces) and both ψn and χ±�,En−E� are eigenstates ofH0 with the
same eigenvalue En.

III. AUGER TRANSITION AMPLITUDES
AND ONE- AND TWO-BODY DYSON FUNCTIONS

We now discuss how to generate bound and continuum zero-
order electronic states within the EOM-CC framework and how to
effectively compute the transition amplitudes �ψn|HQP|χ� ,E�= �ψn|H− En|χ� ,E� entering the expressions for the partial widths and energy
shifts. Our derivation follows, to some extent, the work of Manne
and Ågren,93 who derived general expressions for the Auger ampli-
tudes from the many-electron wave function, with the adjustments
to accommodate coupled-cluster theory and our assumption about
the continuum orbital. We denote the initial (bound) state from the
Q-space as

�ψn� = �S,MSΨN
n �, (18)

where S and MS are spin quantum numbers and the superscript N
is the number of electrons. The final (continuum) states of the N-
electron system after the autoionization can be represented as

�χ�,E� = cα â†
k,α�S′ ,MS− 1

2 ΨN−1
� � + cβ â

†
k,β�S′ ,MS+ 1

2 ΨN−1
� �, (19)

where �S′,MS− 1
2 ΨN − 1

� � denotes a stable, N − 1 electron core and â†
k,σ

are creation operators of the free electron of energy E = k2
2 and spin

σ. If the initial resonant state has energy En, then the energy of the
ejected electron fulfills the following condition (in atomic units):

En = k2

2
+ E�, (20)

where E� is the energy of the stable ion. Constants cα and cβ are
determined by spin adaptation and are expressed in terms of the
Clebsch–Gordan coefficients as

cα = � 12 , 12 ; S′,MS − 1
2
�S,MS�,

cβ = � 12 ,−12 ; S′,MS +
1
2
�S,MS�.

In this way, the final continuum state χ has the same total spin S as
the initial state, which is a consequence of the spin conservation in
the course of auto-ionization. From the angular momentum algebra,
we know that possible spins of the final ion states are S′ = S ± 1

2 .
Without loss of generality, we can assume that the initial state has
non-negative spin projection, i.e., MS ≥ 0, and in the following, we
consider the continuum state in the simplified form as

�χ�,E� = â†
k,α�S′,MS− 1

2 ΨN−1
� �, (21)

where there is only one component with α spin of the free elec-
tron. To account for the properly spin-adapted form of χ, Eq. (19), a
degeneracy factor defined as

gα = 1
c2α

(22)

is included in the final expressions for the partial widths Γn ,� and
energy shifts �n ,�. Thus, from now on, we assume that the Auger
electron has spin α and drop all spin quantum numbers in states’
labels as they only enter the final expressions via the degeneracy
factor gα.

In what follows, we assume the strong orthogonality condition
—that is, that the continuum orbital corresponding to the opera-
tor âk is orthogonal to all orbitals from the bound domain present
in �ΨN

n � or �ΨN−1
� � states. This “killer condition” can be formally

expressed as

âk�ΨN
n � = âk�ΨN−1

� � = 0, �ΨN
n �â†

k = �ΨN−1
� �â†

k = 0. (23)

In the derivation of transition amplitudes, we express the Hamilto-
nian in the second quantization form,

H = Ô1 + Ô2 = ∑�
pq
hpqâ†

pâq +
1
2∑�pqrsgpqrsâ†

pâ
†
qâsâr , (24)

where hpq denotes the one-electron integrals (kinetic energy and
nuclear–electron interaction), gpqrs denotes electron-repulsion inte-
grals �pq|rs�, and the symbol ∑∫ signifies that this summa-
tion includes spin-orbitals from both the bound and continuum
domains. The creation and annihilation operators fulfill the anti-
commutation relation,

â†
pâq + âqâ†

p = δpq. (25)

By employing strong orthogonality and using anti-commutation
properties, the one-electron part of the right transition amplitude
assumes the following form:
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�ΨN
n �Ô1� â†

kΨ
N−1
� � = �ΨN

n �∑�
pq
hpqâ†

pâqâ
†
k�ΨN−1

� �
=�

p
hpkn�γp, (26)

where we have introduced one-body (right) Dyson amplitudes n�γp
defined as

n�γp = �ΨN
n �â†

p �ΨN−1
� �, (27)

which connect the N and N − 1 electron states, and hpk matrix ele-
ments are given explicitly in Eq. (41). The last summation in Eq. (26)
is now restricted to the spin-orbitals from the bound domain (no
superimposed integral sign). n�γp are the coefficients of Dyson
orbital ϕd expressed in the molecular orbital basis set,

ϕd(x1) =�
p

n�γp ϕ∗p (x1), (28)

or, equivalently, as a generalized overlap integral in the first quanti-
zation,

ϕd(x1) =√N � �ΨN
n (x1, x2, . . . , xN)�∗

× ΨN−1
� (x2, . . . , xN) dx2 . . . dxN . (29)

Likewise, the one-electron part of the left amplitude is

�ΨN−1
� �âkÔ1�ΨN

n � = �ΨN−1
� �âk∑�

pq
hpqâ†

pâq�ΨN
n � =�

p
hkp�nγp, (30)

where one-body (left) Dyson amplitudes �nγp

�nγp = �ΨN−1
� �âp�ΨN

n � (31)

have been introduced. Following the same procedure, the two-
electron part of the right transition amplitude can be
expressed as

�ΨN
n �Ô2� â†

kΨ
N−1
� � = �ΨN

n �12∑�pqrsgpqrsâ†
pâ

†
qâsârâ

†
k�ΨN−1

� �
= 1
2�pqr �pq�kr�

n�Γpqr , (32)

where we used the symmetrized two-electron integrals,

�pq�kr� = gpqkr − gpqrk, (33)

given explicitly in Eq. (42), and two-body (right) Dyson amplitudes
n�Γpqr defined as

n�Γpqr = �ΨN
n �â†

pâ
†
qâr�ΨN−1

� �. (34)

Analogous to theDyson orbitals, n�Γpqr are the coefficients of the two-
body Dyson function,

gd(x1, x2, x2′) =�
pqr

RΓpqr ϕp(x1)∗ϕq(x2)∗ϕr(x2′), (35)

which, again, can be equivalently written down in the first-
quantization formalism as the following overlap integral:

gd(x1, x2, x2′) =
�
N(N − 1)

2 � �ΨN
n (x1, x2, . . . , xN)�∗

×ΨN−1
� (x2′ , x3, . . . , xN) dx3 . . . dxN . (36)

The left counterpart of the two-electron transition amplitude is

�ΨN−1
� �âkÔ2�ΨN

n � = �ΨN−1
� �âk 12∑�pqrsgpqrsâ†

pâ
†
qâsâr�ΨN

n �
= 1
2�pqr �rk�pq�

�nΓrpq, (37)

where the (left) two-body Dyson amplitudes �nΓpqr are

�nΓpqr = �ΨN−1
� �â†

pâqâr�ΨN
n �. (38)

One- and two-body Dyson amplitudes, as defined by Eqs. (27) and
(34), are analogous objects. The one-body Dyson function can be
obtained by integrating the two-body Dyson function, and the one-
body Dyson amplitudes can be obtained by tracing the two-body
amplitudes. Equations (29) and (36) also highlight the relationship
between the Dyson amplitudes and one- and two-body transition
density matrices, commonly used objects in electronic structure the-
ory.87 The difference between the transition density matrices and
the Dyson amplitudes is that the former connect the states with
the same number of electrons, whereas the latter connect the states
with a different number of electrons. Obviously, in the context of
autoionization, the one- and two-body Dyson functions are the key
quantities, as they show how the initial resonance state is coupled
with stable decay products. In the context of photoionization, the
norms of the one-body Dyson orbitals provide estimates of the
strength of the transition (pole strengths),81,82,86,87 i.e., they are close
to 1 for primary Koopmans-like transitions and are small for transi-
tions with two-electron character (satellite transitions). In the same
fashion, the norms of the two-body Dyson orbitals can be used to
estimate relative Auger rates, in the spirit of electron population
analysis approach48 and density-matrix based estimates of electronic
couplings.94,95

The one- and two-body Dyson functions, which provide all
information about the resonance decay that can be distilled from
L2-integrable wave functions, are bound-domain properties and
can be calculated with electronic structure methods designed to
tackle regular bound states. The remaining piece of the information
about the resonance decay (from the unbound domain) is contained
in the state of the emitted Auger electron, ϕk.

By combining all expressions for one- and two-electron transi-
tion amplitudes and inserting them into Eq. (17), we arrive at the fol-
lowing formulas for the resonance partial width and the correction
for the resonance position, respectively:

Γn,� = 2πgα � dΩk
�
��p hpkn�γp +

1
2�pqr �pq�kr�

n�Γpqr
�
�

× ���p hkp�nγp +
1
2�pqr �rk�pq�

�nΓrpq
�
�, (39)
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�n,� = gαP.V .� dE� dΩk
�∑p hpk

n�γp + 1
2 ∑pqr �pq�kr�n�Γpqr ��∑p hkp

�nγp + 1
2 ∑pqr �rk�pq��nΓrpq�

En − E� − E , (40)

where we have also included the degeneracy factor gα and an explicit
integration over the angles Ωk of the emitted electron with the
momentum k.

The one- and two-electron integrals hpk and �pq||kr� are mixed
integrals between the orbitals from the bound domain and the
continuum orbital ϕk describing the emitted electron. The explicit
expression for one-electron mixed integrals reads

hpk = �ϕp� − 1
2
∇2

r +�
i

Zi�r −Ai� − En�ϕk�, (41)

and for two-electron mixed integrals,

�pq�kr� = �ϕp(1)ϕq(2)� 1�r1 − r2� �ϕk(1)ϕr(2) �
−�ϕp(1)ϕq(2)� 1�r1 − r2� �ϕr(1)ϕk(2) �. (42)

Importantly, the orbitals from the bound domain and the
continuum orbital are subject to a different normalization,

�ϕp�ϕq� = δpq, �ϕk�ϕk′ � = δ(E − E′), (43)

in order to fulfill the normalization conditions imposed on the
many-body electronic states, as defined in Eq. (4).

Equations (39) and (40) use left and right Dyson func-
tions, which are not simple conjugates of each other in non-
Hermitian frameworks such as CC/EOM-CC. In the case of Hermi-
tian approaches, these equations simplify and contain the absolute
squares of one amplitude.

IV. EOM-CCSD STATES FOR REGULAR
AND RESONANT AUGER EFFECTS

We now discuss how to employ EOM-CCmethods to compute
necessary electronic states and the corresponding one- and two-
body Dyson functions for Auger phenomena. Within the EOM-CC
framework,69–72 the target state is parameterized as

�ΨI� = R̂IeT̂ �Φ0�, (44)

where |Φ0� is a reference determinant, T̂ is the excitation cluster
operator from the CC ansatz, and R̂I is a generalized EOM excita-
tion operator. Different types of R̂ (electron-conserving excitation,
electron attaching, and electron-removing) allow access to different
sectors of the Fock space,69 as illustrated in Fig. 3. Appropriate selec-
tion of the R̂I operator is a crucial step in the calculations because R̂I
determines the initial resonance state [ψn, Eq. (18)] and its possible
decay channels.

Here, we employ the CCSD ansatz (coupled-cluster with single
and double excitations) in which the cluster operator T̂ is restricted
to single and double excitations,

T̂ = T̂1 + T̂2 =�
ia
tai â

†
aâi +

1
4�ijab t

ab
ij â

†
aâ

†
bâjâi. (45)

Following the standard notation, occupied and unoccupied spin-
orbitals in |Φ0� are denoted by i, j, k . . . and a, b, c . . . indices,
respectively. The level of excitation in the EOM-CC operators is cho-
sen appropriately, e.g., 1h1p and 2h2p in EOM-EE, 1h and 2h1p in
EOM-IP, 2h and 3h1p in EOM-DIP, and so on (here, h and p denote
the hole and particle).

To compute transition properties within EOM-CC theory, we
also need left EOM states, defined as

�ΨI � = �Φ0�L̂Ie−T̂ , (46)

where L̂I is a generalized EOM de-excitation operator.
The EOM-CC operators R and L are the eigenstates of the non-

Hermitian similarity-transformed HamiltonianH,

H = e−T̂HeT̂ . (47)

Diagonalization of H in the space of target configurations, deter-
mined by a specific choice of R, yields EOM eigenvalues En, together
with the corresponding left and right eigenvectors, satisfying the
following equations:

HR̂I = EnR̂I , L̂IH = EnL̂I . (48)

Because of the non-Hermiticity of H, the EOM-CC eigenvectors
are not orthonormal in the usual sense but are chosen to form a
biorthonormal set,

FIG. 3. Target spaces accessed by different EOM-CC models from the closed-shell
reference state Φ0. Only singly excited configurations are shown.
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�ΨI �ΨJ� = �Φ0�L̂I R̂JΦ0� = δIJ . (49)

The choice of the EOM operator R̂I depends on the physical
process we aim to describe. Different types of Auger processes are
illustrated in Fig. 1. We assume that the Auger effect can be treated
as a two-step process, with the first step (core-ionization or core-
excitation) being independent of the second step, at which the Auger
electron is emitted.

In regular Auger decay [Fig. 1(a)], which is relevant to x-ray
photoionization spectroscopy (XPS) experiments, the initial state is
a core-ionized state, and target (decay) states are doubly ionized
valence states. These states can be accessed by CVS-EOM-IP and
EOM-DIP, respectively, as illustrated in Fig. 3.

The CVS scheme restricts the target EOM-IP manifold to
include only the configurations in which at least one core electron
is active; in this way, the coupling with the pseudo-continuum is
removed, and the core state becomes bound. This is achieved by
splitting the occupied spin-orbitals into core (denoted by capital
indices I, J . . .) and valence (denoted by lower-case indices) sets.
In our variant36 of the CVS-EOM-CC approach, we also use the
frozen-core approximation such that the cluster operator in Eq. (45)
is restricted to excitations from the valence shell only.

The CVS-IP-CCSD states are

�ΨN−1
n � = R̂CVS

IP eT̂ �ΦN
0 �, �ΨN−1

n � = �ΦN
0 �L̂CVSIP e−T̂ , (50)

where the right and left operators are

R̂CVS
IP =�

I
rI âI +

1
2�IJa r

a
IJ â

†
aâJ âI +�

Ija
raIjâ

†
aâjâI (51)

and

L̂CVSIP =�
I
lI â†

I +
1
2�IJa l

IJ
a â

†
I â

†
J âa +�

Ija
lIja â

†
I â

†
j âa. (52)

As originally pointed out in Ref. 96, the products of the Auger
decay corresponding to doubly ionized states can be conveniently
described with the EOM-DIP-CCSD ansatz,96–100

�ΨN−2
� � = R̂DIPeT̂ �ΦN

0 �, �ΨN−2
� � = �ΦN

0 �L̂DIPe−T̂ , (53)

where the right and left EOM operators are given by

R̂DIP = 1
2�ij rijâjâi +

1
6�ijka r

a
ijkâ

†
aâkâjâi (54)

and

L̂DIP = 1
2�ij l

ijâ†
i â

†
j +

1
6�ijka l

ijk
a â†

i â
†
j â

†
k âa. (55)

Here, we can point out some major advantages of the EOM-
CC approach. First, the EOM-CC ansatz naturally captures the
multi-configurational character of the initial and product states
by treating leading electronic configurations on the same footing.
When using closed-shell references, the EOM-CC wave-functions
are naturally spin-adapted. Second, both the initial and final product
states include dynamical correlation effects, described by higher-
order excitation operators; see Equations (51), (52), (54), and (55).
Third, both the initial and the final product states are obtained by

diagonalization of the same model Hamiltonian H and using the
same set of orthogonal spin-orbitals from the bound domain,
which significantly simplifies the formalism and leads to a balanced
description of the states involved (provided that the states belong
to the same group in terms of the excitation level of the dominant
amplitude). Fourth, this consistent treatment of the resonance and
its decay channels guarantees that we properly identify the open
channels.

As explained above, the only properties needed from the
bound-domain calculations are one- and two-bodyDyson functions.
With the initial state and final channel states defined by Eqs. (50)
and (53), one-body Dyson functions vanish, which reflects the fact
that the Auger decay is a two-electron process. The two-body Dyson
functions for the regular Auger decay are given by the following
expressions:

n�Γpqr = �ΦN
0 �L̂CVSIP e−T̂ â†

pâ
†
qârR̂DIPeT̂ �ΦN

0 �,
�nΓpqr = �ΦN

0 �L̂DIPe−T̂ â†
pâqârR̂

CVS
IP eT̂ �ΦN

0 �. (56)

The programmable expressions for these matrix elements within the
EOM-CCSD model are given in the Appendix.

The second example is the resonant Auger effect, relevant for
x-ray absorption spectroscopy (XAS) experiments. The difference in
the regular Auger effect is that now the initial resonance state is cre-
ated by core-valence excitation rather than by core ionization [see
Figs. 1(b) and 1(c)]. The initial states are, therefore, described by
CVS-EOM-EE-CCSD (see Fig. 3), with left and right target states
given by

�ΨN
n � = R̂CVS

EE eT̂ �ΦN
0 �, �ΨN

n � = �ΦN
0 �L̂CVSEE e−T̂ , (57)

with the CVS-EOM-EE-CCSD operators

R̂CVS
EE =�

Ia
raI â

†
aâI +

1
4�IJab r

ab
IJ â

†
aâ

†
bâJ âI +

1
2�Ijab r

ab
Ij â

†
aâ

†
bâjâI , (58)

L̂CVSEE =�
Ia
lIaâ

†
I âa +

1
4�IJab l

IJ
abâ

†
I â

†
J âbâa +

1
2�Ijab l

Ij
abâ

†
I â

†
j âbâa. (59)

The final states in this case are described by EOM-IP-CCSD,

�ΨN−1
� � = R̂IPeT̂ �ΦN

0 �, �ΨN−1
� � = �ΦN

0 �L̂IPe−T̂ , (60)

where the right and left EOM-IP-CCSD operators are given by

R̂IP =�
i
riâi +

1
2�ija r

a
ijâ

†
aâjâi, (61)

L̂IP =�
i
liâ†

i +
1
2�ija l

ij
a â

†
i â

†
j âa. (62)

In the resonant Auger effect, one distinguishes between par-
ticipator and spectator decays. In the former, the electron origi-
nally excited from the core–shell also takes part in the decay pro-
cess [Fig. 1(b)], whereas in the latter, this electron remains in the
excited orbital [Fig. 1(c)]. The channels for the spectator decay
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require at least 2h1p configurations; therefore, within the EOM-
IP-CCSD ansatz, they are described less accurately than the par-
ticipator channels (requiring only 1h configurations). The descrip-
tion of the spectator channels can be systematically improved by
employing the EOM-IP-CCSDT ansatz with triple excitations and
the corresponding 3h2p configurations in the EOM part.

As in the case of the regular Auger effect, all that is needed from
the bound-domain calculations to compute Γ and � are two-body
Dyson functions, represented as

n�Γpqr = �ΦN
0 �L̂CVSEE e−T̂ â†

pâ
†
qârR̂IPeT̂ �ΦN

0 �,
�nΓpqr = �ΦN

0 �L̂IPe−T̂ â†
pâqârR̂

CVS
EE eT̂ �ΦN

0 �. (63)

The programmable expressions for these Dyson functions in terms
of the CC and EOM amplitudes are given in the Appendix.

V. CONTINUUM ORBITAL AND MIXED BOUND-FREE
MOLECULAR INTEGRALS

Let us now discuss the issue of the continuum orbital ϕk and
the evaluation of mixed bound-continuum one- and two-electron
integrals. With the definition of the many-body continuum wave
function as given in Eq. (21), the continuum orbital ϕk describes the
motion of the ejected electron in the field created by the residual ion
|Ψ��. ϕk can be obtained by solving a Hartree–Fock-like equation
(rigorously derived from the Kohn variational method),93,101

�−1
2
∇2

r −�
A

ZA�r − RA� + Ĵ[Ψ�](r) − K̂[Ψ�](r)�ϕk(r) = k2

2
ϕk(r),

(64)

subject to the strong orthogonality and normalization conditions as
given by Eqs. (23) and (43). In this equation, the Coulomb and the
exchange operators are defined as

Ĵ[Ψ�](r)ϕk(r) = � dr′�
pq

�ρpq
ϕ∗p (r′)ϕq(r′)�r − r′� ϕk(r) (65)

and

K̂[Ψ�](r)ϕk(r) = � dr′�
pq

�ρpq
ϕ∗p (r′)ϕk(r′)�r − r′� ϕq(r), (66)

respectively. Operators Ĵ and K̂ depend on the state of the residual
ion |Ψ�� through the one-particle state density matrix,

�ρpq = �Ψ��â†
pâq�Ψ��. (67)

State density matrix �ρpq comprises two blocks (�ραα and �ρββ)
depending on the spin functions of the p and q spin-orbitals.
The Coulomb operator Ĵ has contribution from both components,
whereas the exchange operator K̂ has contribution only from the
�ραα component (assuming that the ejected electron has α spin).

The most common approach to solve Eq. (64) is to apply par-
tial wave decomposition to ϕk and then to approximate the exchange

potential K̂[Ψ�](r) with some simple model such as homogeneous
electron gas.60,64 This results in a set of coupled second-order dif-
ferential equations, which are solved numerically. Although such a
procedure works well for small atoms, it becomes impractical for
larger, non-symmetric molecules, in which one needs to account
for non-spherical potential and deal with a slow convergence of the
partial-wave expansion. In the present work, we do not attempt to
solve Eq. (64) explicitly. Rather, we assume a simple form of the
continuum function ϕk, either as a plane wave or a Coulomb wave.

Our first model for continuum orbital ϕk is a plane wave,

ϕPWk (r) =
�

k(2π)3 eik⋅r, (68)

where the prefactor
�
k�(2π)3 results from the normalization con-

dition, Eq. (43). The continuum orbital in the form of a plane wave
corresponds to the solution of Eq. (64), where we neglect all the
potential terms. Although this might seem a drastic approximation,
one can argue that in the case of the Auger process, the energy of
the ejected electron is so large (hundreds of eV) that the poten-
tial of the ionized core appears to be small relative to the kinetic
energy. Validity of this argument is discussed in Paper II,88 where
we present numeric results illustrating different treatments of the
Auger electron.

The major advantage of approximating ϕk with a plane wave
is that we can directly perform the analytic evaluation of all mixed
one- and two-electron integrals, Eqs. (41) and (42), provided that the
orbitals from the bound domain are expanded in terms of Gaussian
functions of the form

ϕG(r) = (x − Ax)i(y − Ay)j(z − Az)le−α�r−A�2 , (69)

which is the usual case. In the analytic evaluation of mixed Gaus-
sian/plane wave integrals, we make use of the following property:

e−α�r−A�2eik⋅r = eik⋅Ae− k2
2α e− α

2 �r−A�2e− α
2 �r−A−i kα �2 , (70)

which shows that the product of a Gaussian and a plane wave func-
tions can be expressed as a product of two Gaussians with one of
them centered in the complex plane. In this way, we can mimic a
plane wave with a single s-type Gaussian, shifted to the complex
plane. Thus, in the evaluation of mixed integrals, we can reuse the
integral codes designed for Gaussian functions, after some simple
modifications, based on Eq. (70). Indeed, directly from Eq. (70), one
can see that the overlap between a Gaussian and a plane wave is equal
to the overlap of two (modified) Gaussians. Mixed integral with the
kinetic energy operator can be simply reduced to the overlap integral
since

� drϕG(r)�−1
2
∇2

r�eik⋅r = 1
2
k2 � drϕG(r)eik⋅r. (71)

For the evaluation of one- and two-electron Coulomb mixed inte-
grals with the plane wave, we can use again Eq. (70) and replace
a plane wave with a single s-type Gaussian. The only complication
arising for the Coulomb integrals with a plane wave is that now
we need to compute Boys function for a complex argument, as a
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consequence of positioning one Gaussian in the complex plane. In
our implementation, we evaluate the complex-valued Boys function
using the algorithm from Ref. 102. We note that other methods
for evaluating integrals with mixed Gaussian/plane wave basis have
been reported: Rys quadrature,103 the density fitting and Cholesky
decomposition,104 and direct numerical integration.105

In our second model, we approximate ϕk with a Coulomb wave
of the form

ϕCWk (r) =
�

k(2π)3 eik⋅rΓ(1 − iη)e−
πη
2 1F1(iη, 1,−ikr − ik ⋅ r), (72)

where η = −Z/k is the Sommerfeld parameter, Z is the nuclear
charge, 1F1 is the Kummer confluent hypergeometric function, and
the incoming wave boundary conditions are implied. This form of ϕk
corresponds to the assumption that the potential part from Eq. (64)
can be approximated asV(r) = − Z

r , where Z is an effective Coulomb
charge (Zeff ); its optimal value is discussed in the accompanying
paper.88 For Z = 0, the Coulomb wave reduces to the plane wave.

As with the plane wave, we aim at evaluating mixed bound-
continuum integrals analytically without numerical integration. To
do so, we employ the approach from Ref. 106, which provides a
recipe for an efficient decomposition of the Coulomb wave in terms
of products of Gaussian and plane wave functions in the form

ϕGPWk (r) = (x − Ax)i(y − Ay)j(z − Az)le−α�r−A�2eik⋅(r−A). (73)

The main idea behind the method of Ref. 106 is to rewrite the
Coulomb wave as

ϕCWk (r) =
�

k(2π)3 eik⋅r
∞�
l=0

l�
m=−l

Okl(r)R∗lm(r)Rlm(k), (74)

where Okl(r) are the lth pseudo-partial waves given by

Okl(r) = Γ(1 − iη)e− πη
2 (iη)l (−2i)l(2l)! 1F1(l + iη, 2l + 2,−2ikr) (75)

and Rlm(v) are the solid spherical harmonics of vector v. The
pseudo-partial waves Okl(r) are functions that can be easily approx-
imated with a small set of primitive Gaussians,

Okl(r) ≈ Nc�
i=i cli e

−ξli r2 , (76)

where the exponents ξli and expansion coefficients cli are determined
by an optimization procedure (carried out separately for each value
of k). The advantage of this approach over the standard partial-
wave expansion is twofold. First, the major oscillatory part of the
Coulomb wave is contained already in the eik ⋅r term, making Okl(r)
smooth and slowly varying functions. Consequently, the expansion
from Eq. (76) is very compact, even for very high energy (as encoun-
tered in the Auger effect). Second, pseudo-partial wave convergence
is substantially faster than for standard partial waves, again, owing to

the explicit presence of the eik ⋅r factor in Eq. (74). Inserting Okl(r)
from Eq. (76) into the definition from Eq. (74) leads directly to the
expansion of the Coulomb wave in terms of ϕGPWk (r) functions. The
next step is to evaluate the necessarymixed bound-free integrals with
ϕGPWk (r) as the continuum orbital and the Gaussian functions as the
remaining orbitals from the bound domain. For ϕGPWk (r) functions,
we make use of the following identity:

e−α�r−A�2eik⋅(r−A) = e− k2
4α e−α�r−A−i k

2α �2 , (77)

which shows that the s-type ϕGPWk (r) is equivalent to a regular s-
type Gaussian, however, shifted to the complex plane. If ϕGPWk (r) is
purely of s-type, the property above is sufficient to evaluate all mixed
overlap and one- and two-electron Coulomb integrals using stan-
dard integral codes for Gaussian functions (as for the plane wave, we
need complex-valued Boys functions for the Coulomb integrals). If
ϕGPWk (r) has a non-zero angular momentum (in any direction), then
mixed overlap and Coulomb integrals can be obtained from the hor-
izontal recurrence relation, which allows the angular momentum to
be shifted from one orbital centered onA to another orbital centered
on B. The standard horizontal recurrence for a one-electron integral
(iA|iB) can be schematically written as (assuming the shift is done
along the X axis)

(iA�iB + 1) = (iA + 1�iB) + (Ax − Bx) ⋅ (iA�iB). (78)

For the mixed (ϕG|ϕGPW) integrals, this horizontal recurrence needs
to be modified to

(iA�iB + 1) = (iA + 1�iB) + Re(Ax − Bx) ⋅ (iA�iB), (79)

so while an s-type ϕGPW function is positioned in the complex plane
[according to Eq. (77)], the horizontal shift to build angular momen-
tum in ϕGPW is done only along the real axis. A different treatment is
needed for mixed kinetic energy integrals with ϕGPW functions. For
these integrals, we can use the following property:

� drϕG(r)�−1
2
∇2

r�ϕGPWk (r) = � drϕGPW∗k (r)�−1
2
∇2

r�ϕG(r),
(80)

and then, by analyzing the action of the differentiation operator onto
the regular Gaussian function,

@2

@x2
ϕG(r) = �i(i − 1) 1(x − Ax)2 + 4α2(x − Ax)2 − α(4i + 2)�ϕG(r),

we show that the mixed kinetic energy integral can be simply related
to the sum of the overlap integrals.

Thus, by approximating the continuum orbital with either a
plane or a Coulomb wave, we are able to evaluate all necessary mixed
bound-continuum integrals by reusing standard integral codes for
Gaussian functions, with some simple modifications. Therefore, all
these integrals can be effectively computed using highly optimized
codes developed for Gaussian integrals. Consequently, we can apply
our methodology to larger molecules, with sizable one-electron basis
sets, without incurring the additional cost of numerical integration.
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In our derivations, we assumed strong orthogonality of the con-
tinuum orbital, and it is clear that plane or Coulomb waves do not
fulfill that condition without additional orthogonalization. In our
calculations, we do not explicitly impose this condition. One can
argue that due to the large energy of the outgoing Auger electron,
the overlap between the (approximate) continuum orbital and the
orbitals from the bound domain should be rather small. Moreover,
it has been noted in previous benchmark studies of Auger decay that,
within simplified treatments for the continuum orbital, better decay
rates are obtained when the overlap with the bound domain orbitals
is neglected altogether.62,107 While this behavior has been attributed
to fortuitous error cancellation,62,107 the theoretical analysis108 by
Miller et al. suggests an alternative explanation—i.e., that the explicit
orthogonalization is not necessary when the initial and final states
are obtained from the same set of orthogonal bound-domain orbitals
in a fully variational procedure.

VI. IMPLEMENTATION
We implemented the calculation of the one- and two-body

Dyson amplitudes and mixed Gaussian-plane wave integrals in the
Q-Chem quantum chemistry package.109,110 Our implementation
used the libtensor library111 and the suite of CVS-EOM-EE codes
recently developed by Coriani and co-workers.36

All mixed Gaussian/plane wave integrals were implemented
using the libqint infrastructure. The two-electron Coulomb inte-
grals were computed by modifying the Head–Gordon–Pople algo-
rithm112 for electron-repulsion integrals and utilizing the implemen-
tation of White et al.102 to calculate the Boys function for a com-
plex argument. Numerical integration over the angles of the emitted
electron [Eq. (39)] was done with Lebedev quadrature. Additional
computational details are given in Paper II.88

VII. CONCLUSIONS
We have presented an extension of the EOM-CCSD formalism

to compute Auger decay rates in atoms and molecules. This work
is a natural extension of previous developments based on the EOM-
CCSD framework combined with the CVS scheme and concerned
with the description of core-ionized and core-excited states. In the
context of modeling autoionization, the advantages of the EOM-
CC methods are as follows: (i) a balanced description of the initial
and final bound-domain wave functions with one set of orthogonal
orbitals and the same effective Hamiltonian, (ii) a simple, black-box
computational setup, with no system-dependent parameterization,
and (iii) flexibility to treat states of different electronic characters,
including multi-configurational and open-shell wave-functions. To
calculate Auger decay rates using the Feshbach–Fano ansatz, we
have combined many-electron CVS-EOM-IP/EE-CCSD states with
a continuum orbital describing the outgoing electron, approximated
by either a plane wave or a Coulomb wave.

In Paper II,88 we present numeric examples, which illustrate
the performance of the theory and highlight the consequence of
approximate treatment of the free electron.

We conclude by noting that our methodology to calculate
Auger widths is quite general and can be adapted to other prob-
lems concerned with autoionization, such as interatomic Coulombic

decay, electron-transfer mediated decay, or Penning ionization. In
addition, the theory can be particularly useful to generate smooth
complex potential energy surfaces to study coupled electronic and
nuclear dynamics in the presence of autoionization.
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APPENDIX: EOM-CCSD EXPRESSIONS
FOR ONE- AND TWO-BODY DYSON AMPLITUDES

Below, we present EOM-CCSD programmable expressions for
different blocks of the one- (n�γp ≡ Rγp, �nγp ≡ Lγp) and two-body
(n�Γpqr ≡ RΓpqr , �nΓpqr ≡ LΓpqr) Dyson amplitudes for the relevant com-
binations of the EOM models. The two-body Dyson functions have
the following permutational symmetry:

RΓpqr = −RΓqpr and LΓpqr = −LΓprq.
In the following, we make use of the symmetrizing/anti-
symmetrizing operator P±(i, j) defined as

P±(i, j)[ f (i, j)] = f (i, j) ± f ( j, i)
and adapt a notation for the right and left one- and two-body Dyson
amplitudes,

n�γp ≡ Rγp, �nγp ≡ Lγp, n�Γpqr ≡ RΓpqr , �nΓpqr ≡ LΓpqr .

1. CVS-EOM-IP-CCSD to EOM-DIP-CCSD Dyson
amplitudes

Rγp = �Φ0�L̂CVSIP e−T̂ â†
pe

T̂ R̂DIP�Φ0� = 0,
RΓaiJ = �Φ0�L̂CVSIP e−T̂ â†

aâ
†
i âJe

T̂ R̂DIP�Φ0� = −�
k
lJka rik,

RΓijK = �Φ0�L̂CVSIP e−T̂ â†
i â

†
j âKe

T̂ R̂DIP�Φ0�
=�

la
lKla r

a
ijl + lKrij +�

la
lKla t

a
i rjl −�

la
lKla t

a
j ril.

2. EOM-DIP-CCSD to CVS-EOM-IP-CCSD Dyson
amplitudes

Lγp = �Φ0�L̂DIPe−T̂ âpeT̂ R̂CVS
IP �Φ0� = 0,

LΓIjk = �Φ0�L̂DIPe−T̂ â†
I âjâke

T̂ R̂CVS
IP �Φ0�

= −�
la
ljkla raIl − ljkrI ,
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LΓIaj = �Φ0�L̂DIPe−T̂ â†
I âaâje

T̂ R̂CVS
IP �Φ0�

=�
k
ljkraIk +�

klb
�ljklb ⋅ rbIl�tak + rI�

k
tak l

jk

+
1
2
rI�

klb
ljklb tabkl ,

LΓIab = �Φ0�L̂DIPe−T̂ â†
I âaâbe

T̂ R̂CVS
IP �Φ0�

= −1
2
rI�

jk
ljktabjk +�

jk
taj t

b
k
LΓIjk − 1

2�jklc l
jkl
c rcIjt

ab
kl

+P−(a, b)������
1
2�jklc�l

jkl
c ⋅ tackl ��rbIj + rItbj � +�

jk
�ljk ⋅ tbj �raIk

������.

3. CVS-EOM-EE-CCSD to EOM-IP-CCSD Dyson
amplitudes

Rγp = �Φ0�L̂CVSEE e−T̂ â†
pe

T̂ R̂IP�Φ0� = 0,
RΓabI = �Φ0�L̂CVSEE e−T̂ â†

aâ
†
bâIe

T̂ R̂IP�Φ0� = −�
j
lIjabrj,

RΓaiJ = �Φ0�L̂CVSEE e−T̂ â†
aâ

†
i âJe

T̂ R̂IP�Φ0�
= −lJari −�

kb
lJkabr

b
ik −�

b
tbi

RΓabJ ,

RΓijK = �Φ0�L̂CVSEE e−T̂ â†
i â

†
j âKe

T̂ R̂IP�Φ0�
= −�

a
lKa r

a
ij − 1

2�lab(l
Kl
ab ⋅ rl) ⋅ tabij +�

ab
tbj t

a
i
RΓabK

+P−(i, j)�1
2
rj�

lab
lKlabt

ab
il − ri�

a
lKa t

a
j −�

lab
taj ⋅ �lKlab ⋅ rbil��.

4. EOM-IP-CCSD to CVS-EE-CCSD Dyson amplitudes

Lγp = �Φ0�L̂IPe−T̂ âpeT̂ R̂CVS
EE �Φ0� = 0,

LΓIjk = �Φ0�L̂IPe−T̂ â†
I âjâke

T̂ R̂CVS
EE �Φ0� =�

a
ljka r

a
I ,

LΓIaj = �Φ0�L̂IPe−T̂ â†
I âaâje

T̂ R̂CVS
EE �Φ0�

= ljraI +�
kb

ljkb �rabIk − takrbI �,
LΓIab = �Φ0�L̂IPe−T̂ â†

I âaâbe
T̂ R̂CVS

EE �Φ0�
=�

j
ljrabIj +

1
2�jkc �l

jk
c ⋅ tabjk � ⋅ rcI +�

jk
taj t

b
k
LΓIjk

+P−(a, b)������−r
b
I �

j
taj l

j −�
jkc
�ljkc ⋅ taj � ⋅ rbcIk − 1

2
rbI �

jkc
ljkc t

ac
jk

������.
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