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ABSTRACT: We report a theoretical investigation and elucidation of the X-ray 1sc — T*
absorption spectra of neutral benzene and of the benzene cation. The generation Isc —m
of the cation by multiphoton ultraviolet (UV) ionization and the measurement of
the carbon K-edge spectra of both species using a table-top high-harmonic
generation source are described in the companion experimental paper [Epshtein,
M,; et al. J. Phys. Chem. A http://dx.doi.org/10.1021/acs.jpca.0c08736]. We show
that the 1sc — 7 transition serves as a sensitive signature of the transient cation
formation, as it occurs outside of the spectral window of the parent neutral
species. Moreover, the presence of the unpaired (spectator) electron in the 7-
subshell of the cation and the high symmetry of the system result in significant
differences relative to neutral benzene in the spectral features associated with the
Isc = #* transitions. High-level calculations using equation-of-motion coupled-
cluster theory provide the interpretation of the experimental spectra and insight
into the electronic structure of benzene and its cation. The prominent split
structure of the 1sc — 7* band of the cation is attributed to the interplay between the coupling of the core — 7* excitation with the
unpaired electron in the 7-subshell and the Jahn—Teller distortion. The calculations attribute most of the splitting (~1—1.2 eV) to
the spin coupling, which is visible already at the Franck—Condon structure, and we estimate the additional splitting due to structural
relaxation to be around ~0.1—0.2 eV. These results suggest that X-ray absorption with increased resolution might be able to
disentangle electronic and structural aspects of the Jahn—Teller effect in the benzene cation.
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B INTRODUCTION The development of table-top high-harmonic generation
(HHG) sources reaching up to 300 eV further expands the
scope of time-resolved pump—probe applications,”*>~>* by
enabling experiments combining near-infrared/ultraviolet
excitation and soft X-rays probing at the carbon K-edge. The
capabilities of such approaches have been demonstrated in
several recent studies.””*%*1*%35737 For example, the wide
spectral range of the HHG flux enabled studying light-induced
chemical transformations in CF," and SFs" molecules at the
carbon K-edge and sulfur L-edge; this study characterized the
reaction paths and the effects of symmetry breaking through
the splitting of absorption bands and Rydberg—valence mixing
induced by the geometry changes.”> Other chemically relevant
examples include characterization of the pericyclic minimum
leading to the ultrafast ring-opening (or the ground-state
reformation) in 1,3-cyclohexadiene”’ and in furfural,” as well

Special features of core orbitals, such as elemental specificity,
local character, and sensitivity to the environment, endow X-
ray spectroscopies with unique capabilities.'~” The scope of
applications of various flavors of core-level spectroscopies
rapidly expands, thanks to the advances in light sources,
delivering brighter X-ray radiation, and in theoretical methods,
enabling robust modeling of core-level states.””

A combination of core and valence spectroscopies can be
used to study processes involving valence states by utilizing
transitions involving core states as a probe.'’”'” Nowadays,
this type of experimental setup is commonly used to track
chemical dynamics on femtosecond and attosecond time
scales.”'’™* For example, it has been applied to study
fundamental molecular processes, such as ultrafast internal
conversion and intersystem crossing in nucleobases'’ and
other organic molecules,'” metal-to-ligand and metal-to-metal
charge transfer, ring opening,”"** hydrogen-bonding networks Received: ~September 25, 2020
in solvated species,”® and ultrafast proton transfer.”’ Core— Published: October 26, 2020
valence transitions can also be exploited to probe transient
species in minute amounts, and in the presence of parent
closed-shell species as recently demonstrated by detecting OH
produced in the radiolysis of water.”**
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Figure 1. Optimized structures of neutral benzene (center, RI-MP2/cc-pVTZ) and the two lowest states of the cation (EOM-IP-CCSD/cc-pVTZ);
distances in A; angles in degrees. The structure on the left corresponds to the optimization of the 2B3g state and the structure on the right
corresponds to the optimization of the ZBZg state. The two structures are nearly degenerate, with the elongated minimum being 0.002 eV below the
compressed one. The Cartesian geometries are given in the Supporting Information.

as intersystem crossing in acetylacetone.'” These studies
exploited the sensitivity of the transitions involving Isc
electrons to the structural changes in the course of dynamics.
This sensitivity of core-level transitions could be exploited in
other areas of spectroscopy, for example, by probing splitting
of degenerate orbitals due to Jahn—Teller (JT) structural
relaxation induced by photoionization.

Being the archetypal aromatic molecule, benzene is the
favorite model system for illustrating various types of
spectroscopic techniques™ ** as well as a benchmark for
theoretical methods.””'**™> TIts high symmetry provides
additional complexity, making its electronic structure truly
fascinating. The lowest ionized (and some of the excited)
states of benzene are subject to JT distortions, which have
been investigated in numerous studies.”’ ~**>'™>" Here we
present theoretical characterization of the electronic structure
of the benzene cation produced by valence photoionization of
the parent molecule and probed via X-ray absorption. As
described in the companion paper,”’ the cations generated via
two-photon ionization of benzene with 267 nm (4.64 eV)
radiation are probed via X-ray absorption at the carbon K-edge.
The experimental spectra clearly show signatures of the cations
that are distinct from the parent neutral species. In particular,
the presence of the cations is revealed by the lower-energy XAS
(X-ray absorption spectrum) peak corresponding to transitions
filling the valence hole (core — ) and by splitting of the core
— 7* peak. The transitions to unoccupied valence orbitals
(such as 7* orbitals) are degenerate in neutral benzene but
split in the cation due to the presence of the unpaired electron
(or spectator hole) in the 7 orbitals. This is attributed to the
different possible spin couplings of the three unpaired
electrons—in very simplistic terms, 2(core) X l(fm'*) versus
*(core) X 3(zm*)—yielding final doublet spin states of
core—nzr* character. Analogous splittings have recently been
observed in the N,*, CO*, and NH;* cations;*' ™ they also
bear conceptual similarities with the splitting observed in the
1s shakeup spectrum of neon.®* In addition, JT relaxation lifts
the degeneracy of the #* orbitals, further increasing the
splitting. High-level electronic structure calculations usin,
equation-of-motion coupled-cluster (EOM-CC) theory®~
adapted to describe core-level states'”®®® facilitate the
interpretation and assignment of the experimental spectra
and provide additional insight into the nature of the spin
coupling and the JT effect in benzene cation. In contrast to
many previous studies,*>"*>*”*% which focused on under-
standing the JT effect in the occupied orbital domain, our work
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investigates the JT effect in both the occupied and the virtual
orbital domain, highlighting additional complexity arising due
to the presence of the three unpaired electrons. In addition,
this contribution is the first quantitative characterization of the
core-level transitions in benzene cation.

B THEORETICAL METHODS AND COMPUTATIONAL
DETAILS

The valence states were described by EOM-IP-CCSD (EOM-
CC singles and doubles for ionization potentials) with frozen
core. The core states were described by fc-CVS-EOM-IP-
CCSD'? (frozen-core core—valence-separated EOM-IP-
CCSD). Figure 1 shows optimized structures of the neutral
benzene and benzene cation.

The XAS transitions for neutral benzene were computed
with fc-CVS-EOM-EE-CCSD, at the geometry optimized with
RI-MP2/cc-pVTZ. In addition, we computed the XAS
spectrum of the neutral at the two distorted geometries
corresponding to the elongated and compressed minima of the
cation. The XAS spectrum of the cation was computed using
the fc-CVS-EOM-EE-CCSD method with ROHF open-shell
reference at the EOM-IP-CCSD/cc-pVTZ optimized geometry
(elongated structure). Additional calculations of the cation
XAS were carried out using EOM-EE-CCSDT/STO-3G. The
spectra were generated from the computed energies and
oscillator strengths using a Gaussian convolution function. The
6-311G(2+,+)G** basis set with uncontracted core was used
in all calculations.”” The orbital character of the XAS
transitions was analyzed using natural transition orbitals
(NTOs) computed with the libwfa module’' and Dyson
orbitals;'*'®”* they were visualized using MOLDEN.” All
calculations were carried out using the Q-Chem electronic
structure package,”*”® except for EOM-CCSDT test calcu-
lations, which were carried out using a modified version of the
MRCC’® code (courtesy of M. Kallay).

B RESULTS AND DISCUSSION

Molecular Orbital Framework and Symmetry Anal-
ysis. We begin with a brief overview of the molecular orbitals
(MOs) of benzene and symmetry analysis of the relevant
electronic states and the transitions between them. Figure 2
shows the MO diagram of benzene. Benzene belongs to the
Dy, point group, which is a non-Abelian group. Because most
quantum-chemistry packages use Abelian subgroups, the
symmetry labels of the electronic states and MOs used

https://dx.doi.org/10.1021/acs.jpca.0c08732
J. Phys. Chem. A 2020, 124, 95329541
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Figure 2. Benzene. Occupied molecular orbital diagram at the
Franck—Condon geometry. Symmetry labels correspond to the D,,
group (the largest Abelian subgroup of Dg;,). Using Dy, symmetry
labels, the ground-state electronic configuration is (core)'*(2a,,)
(2eIu)4(2e2g)4(3alg)2(2blu)2(Iqu)2(3elu)4(lalu)2(3e2g)4(lelg§ﬂ
where the core is (lalg)z(lelu)4(1ezg)4(1b1u)2. The respective
correlated ionization energies are given in Table S1. The isovalue is
0.0S.

throughout the manuscript correspond to the D, group, both
at the symmetric Dg;, and at the JT-distorted D,;, geometries. In
this section, we provide proper Abelian labels of the MOs and
discuss selection rules for relevant electronic transitions.

The ground-state electronic configuration of the neutral
benzene (shown in Figure 2) is

XlAlg = (Core)lz (Zalg)2 (zelu)4 (2e2g)4 (3alg)2 (2b1u)2

<1b2u)2(3e1u)4(1a2u)2 (3e2g)4(1elg)4 (1)
with the core being
(L (1e,,)* (1ey)* (1by, @

The symmetry of the z HOMO is e, and the symmetry of 7*
LUMO is e,,. Allowed transitions correspond to A,, (z) and
Ey, (x,y) irreps (irreducible representations).

In the neutral benzene, 7 — 7™ excitation gives rise to the
electronic states:

elg X o = Blu + B2u + Elu (3)
of which two are degenerate. The one-photon allowed states
are degenerate E;, states (transition dipole in xy plane).
Among many core — 7* transitions, only one transition from
the e,, pair can carry oscillator strength:

eZg X € = Alu + A2u + EZu (4)

giving rise to a nondegenerate A,, state (with transition dipole
along z-axis). Excitation energies and oscillator strengths for
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the valence excited states in neutral benzene are given in Table
S3.

In the benzene cation, one needs to consider not only the
initial and target MOs, but also the partially filled degenerate
subshell. Considering all possible transitions from the core to
7* orbitals, in the presence of the 7 spectator (elg):

(alg X eZu) X elg = eZu X elg = Blu + B2u + Elu (5)
(e X €3,) X ey = (ay, + 2y, + €5,) X ey

= 3E1u + Blu + BZu (6)
(by, X e5,) X ey = ey X e, = A, + Ay, + Eyy )
(e, X €5,) X €1y = (blg + by + elg) X eyg

= 3E2g + Alg + AZg (8)

Thus, four pairs of degenerate optically allowed states (of E,,
symmetry) can be produced (with dipole transition moment
along z), each having two independent spin doublets obtained
by coupling three unpaired spins with the same orbital
occupation. This is different from the neutral, where only one
allowed transition of core — #* is possible. In other words, the
presence of the unpaired electron in the degenerate 7 orbital
leads to the appearance of several distinct allowed transitions
in the cation, even at the Franck—Condon (FC) structure,
where both 7 and 7* are degenerate. As far as orbital character
is concerned, one set of potentially bright transitions
corresponds to the transitions from the same pair of orbitals
as in the neutral (e,,). However, the transitions from the
lowest core orbital ( lag), which are dipole forbidden in the
neutral, may become possible. The analysis of the computed
transitions, discussed below, shows that all allowed core — z*
transitions in the cation correspond to the same type as in the
neutral (e,; — e,).

Jahn—Teller Distortion in Benzene Cation. Figure 3
summarizes essential features of the JT effect in benzene
cation: it shows the MO diagram and the electronic
configurations for the two lowest states of the cation. The z-
type HOMO of benzene is doubly degenerate at the symmetric
Dy, geometry of the neutral (Figure 2). The ionization creates
two degenerate states (ZElg or, using the largest Abelian
subgroup notations, 2B3g and 2Bzg) ,”” which undergo strong JT
distortion.”*>*® Note that virtual levels (such as doubly
degenerate 7* LUMO) mirror the behavior of the occupied
levels (# HOMO) along the JT displacement. The relaxation
of the ZBSg state gives rise to the elongated (or acute) structure
and the relaxation of the *B,, state gives rise to the compressed
(or obtuse) structure;78 the structures are shown in Figure 1.

The geometric relaxation involves in-plane CCC deforma-
tion, along the doubly degenerate v4 vibrational mode.>">**’
These stretching and compressing deformations lead to two
sets of 3-fold degenerate minima corresponding to the
elongated and compressed structures.”””>® The motion
connecting these minima is called pseudorotation. Following
the standard formalism,””*" the JT displacement is described
by polar coordinates: the amplitude p, characterizing the
magnitude of the displacement from the symmetric structure,
and the pseudorotation phase ¢. The degeneracy between the
two lowest states of the cation is lifted linearly along p, giving
rise to the two split adiabats forming a familiar Mexican hat
pattern when rendered using p and ¢); these potential energy
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Figure 3. Molecular orbital diagram and electronic configurations of
the two lowest electronic states of the cation illustrating the JT effect
in benzene cation. At the FC (symmetric) structure, the z-type
HOMO of benzene (and, consequently, the ground state of the
cation) are doubly degenerate. The relaxation of the cation results in
the ring deformation, lifting the degeneracy between the two =&
orbitals and, consequently, between the two lowest electronic states of
the cation. The energies of the bright core—valence transitions are
also nearly the same at the two JT minima; however, the transitions
corresponding to the symmetric (FC) structure are red-shifted by
0.33 eV. Light-colored lines schematically show the energies of the 7*
orbitals (LUMO) along the JT distortion. Vertical black lines with
arrows show the core—valence transitions in the cation involving
partially occupied 7 orbitals. The energies (in eV) are computed with
(CVS-)EOM-IP-CCSD/uC-6-311(2+,+) G**.

surfaces (PES) are shown in Figure 4 (these PES were
generated following eq 3 from ref 51 using their experimentally
derived values for the linear (k = 0.88) and quadratic (g =
0.02) vibronic couplings). The character (and symmetry) of
the electronic wave functions changes as one circles around the
symmetric (FC) structure, giving rise to the geometric phase
effect and complex structure of the vibronic states.”’ In the
benzene cation, the energy profile along the pseudorotation is
nearly flat and the zero-point level is above the small barrier
separating the six minima;”" thus, dynamicall?r, the benzene
cation behaves as a symmetric molecule,”’ but without
electronic degeneracies (i.e.,, both 7 and 7* pairs are split).
Quantitative description of the photoelectron spectrum’® of
benzene requires calculations of the vibronic states of the
benzene cation accounting for the geometric phase effect,
arising due the changes of the symmetry of the lowest adiabatic
electronic state along pseudorotation motion. As illustrated, for
example, by Babikov et al.”' for the N example (and also
discussed in ref 82), this effect imparts additional nodal
structure to the vibrational wave functions. Koppel and co-
workers**” carried out state-of-the-art calculations of vibronic
states of benzene cation using an ab initio parametrized
vibronic Hamiltonian and multiconfigurational time-dependent
Hartree—Fock calculations of nuclear wave functions; they
were able to fully explain the vibrationally resolved photo-
electron spectrum®® of benzene. Such calculations, utilizing
proper vibronic states of the cation, would be desirable for
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Figure 4. PES of the two lowest states of benzene cation along two JT
coordinates (amplitude p and pseudorotation angle ¢). At the FC
(symmetric) structure, the two cationic states are degenerate. The
relaxation of the cation breaks the degeneracy of the two states
(hence, lower and upper adiabats). The symmetry is lowered, giving
rise to two sets of 3-fold symmetry equivalent minima on the lower
PES (elongated and compressed structures). The pseudorotation
coordinate connects the minima (note that the electronic character of
the lowest adiabatic state changes along this coordinate). See Figure 3
for molecular orbital diagram and electronic configurations.

modeling high-resolution XAS spectra of the cation; however,
they are not needed for understanding the main features of the
present spectra, which do not have fine vibrational resolution.

Energetically, the JT relaxation amounts to a 0.27 eV
decrease of the lowest adiabat and the energy splitting between
the upper and lower PES at the relaxed geometry is about 0.45
eV (theoretical values). The two minima are nearly degenerate,
with the elongated one being 0.002 eV lower in energy (EOM-
IP-CCSD/cc-pVTZ). As pointed out before,”’ because the
barriers separating these minima are far below the zero-point
vibrational level, neither one represents the benzene cation,
and their relative energies are irrelevant. Instead, the benzene
cation should be thought of as a product of averaged structures
along the pseudorotation coordinate (with a proper account of
the geometric phase).

In the experiment we interpret here,”" described in the
companion experimental paper,”’ the cation is produced by
two-photon ionization using 267 nm (4.64 eV), which
amounts to a total energy of 9.29 eV. Comparison of this
value with the vertical ionization energy of benzene, 9.22 eV
(theory) or 9.243 eV (experiment'), reveals that the cation is
formed relatively cold, as discussed in detail in the companion
experimental paper,”” with only (0.05 + 0.05) eV excess
energy (~0.07 eV according to theory) above the FC point.

XAS of Neutral Benzene. Before considering the
spectrum of the cation, let us briefly discuss the XAS spectrum
of the neutral, shown in Figure 5. The spectrum, recorded on a
table-top system for the first time,*’ is very similar to the

: 39,43,83-88
previously reported spectra. The spectrum features
four main peaks, labeled A—D. The transitions involve six
nearly degenerate core orbitals (all within 0.08 eV) and virtual
valence and Rydberg orbitals.

The high symmetry of benzene leads to the rich underlying
structure of the spectrum;13 i.e,, although the core orbitals are
very close in energy, different core orbitals are active in
different peaks. Since the peak assignment has been

https://dx.doi.org/10.1021/acs.jpca.0c08732
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Figure 5. XAS of neutral benzene (top panel: theory; bottom panel:
experiment). The inset shows the molecular orbital diagram
illustrating the nature of the transitions; see Figure 6 for assignments.
Vertical dashed line show the ionization energy (IE). The theoretical
spectrum was obtained applying a Gaussian convolution function (¢ =
0.3 eV) to mirror the typical experimental spectrum performed with
the table top system and a systematic energy shift (to the spectrum
and the IE) of —0.7 eV to match the experiment.

controversial,***”*" here we briefly analyze the character of the
main spectral features in terms of the underlying natural
transition orbitals (NTOs). Figure 6 shows leading NTOs for

each peak and the respective weights (squares of singular
values) for each pair. The dominant spectral feature, peak A at
2852 eV (experimental value), is an excitation to the
degenerate valence 7% orbitals; the rest of the transitions are
of Rydberg character. Although peak A corresponds to one
nondegenerate target electronic state (see Molecular Orbital
Framework and Symmetry Analysis for symmetry analysis), it
comprises transitions between two pairs of NTOs due to
symmetry (this aspect was overlooked in previous studies).
Peak B at 2872 eV corresponds to a doubly degenerate
transition; the NTOs reveal a dominant pair with the s-like
target Rydberg orbital and a secondary pair with a p-like target
Rydberg orbital. Peak C at 288.2 eV covers three distinct
electronic transitions (marked C,—C; in Figure 6). States
giving rise to the doubly degenerate peak C, correspond to the
transition to Ry(p) orbitals lying in the molecular plane. The
doubly degenerate peak C, corresponds to the transition to the
Ry(p) (in plane) and Ry(d;)-like orbitals. Peak Cj is the
transition to a Ry(p) (out-of-plane) orbital. Finally, peak D at
289.2 eV corresponds to doubly degenerate transitions to
Ry(s) and Ry(p) character and not to higher z* orbitals, as
was stated previously."”*® We note that the target orbitals
show an extra node relative to the p orbitals in peaks B and C,
suggestive of a higher principal quantum number (i.e., 4 versus
3). Our results indicate that the previous assignment®”** of
peaks B and C to the transitions to ¢*-like orbitals may be an
artifact of the computational protocol and orbital analysis.
Tables with transition energies, oscillator strengths, and NTOs
for all spectral features are given in the Supporting
Information.

XAS of Benzene Cation. The XAS spectrum of the cation
is expected to have several distinct features. First, a new peak
corresponding to the transition filling the valence 7z hole
should appear at an energy below peak A of the neutral
Second, the unpaired electron in the degenerate 7z subshell
changes the selection rules for the transitions relative to the

Peak A: 285.97

, 035 “
Blu :
¢ 0.35 *

Peak B: 287.80

=@
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E—

BZu
S 0.20
—_—
Q 050 ‘
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Peak C1: 288.79

Peak C3: 288.91

Figure 6. NTOs for peaks A—D in the XAS spectrum of neutral benzene. Energies are in eV; the squares of the respective singular values are shown
for each pair. The dashed lines separate the degenerate components of the transitions. Orbitals in boxes show alternative viewpoints. CVS-EOM-
EE-CCSD/uC-6-311(2+,+)G**; the cutoff value for the electron density contour (isovalue) was 0.05 for peak A and 0.00S for the rest.

9536

https://dx.doi.org/10.1021/acs.jpca.0c08732
J. Phys. Chem. A 2020, 124, 95329541


http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c08732/suppl_file/jp0c08732_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c08732/suppl_file/jp0c08732_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c08732?fig=fig6&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c08732?ref=pdf

The Journal of Physical Chemistry A

pubs.acs.org/JPCA

closed-shell case; this is an interesting consequence of a non-
Abelian symmetry group. On the basis of symmetry analysis
(see Molecular Orbital Framework and Symmetry Analysis),
four pairs of degenerate states corresponding to core — #*
transitions (each having two independent spin doublets
obtained by coupling three unpaired spins with same orbital
occupation) become dipole-allowed, which should lead to a
splitting of peak A. Third, different possible spin couplings
between the three unpaired electrons result in the splitting of
the transition corresponding to the final states of the same
orbital character (i.e, core—zz*). Fourth, as illustrated in
Figure 3, JT distortion in the cation lifts the degeneracy
between the pairs of degenerate MOs, i.e., both the z HOMO
and the 7% LUMO are split at the relaxed structures, which can
also affect the shift and splitting of peak A and other
transitions. Fifth, because of symmetry lowering, some other
transitions, which are dark in D¢, symmetry, can gain oscillator
strength.

Effect of Spin Coupling versus Structural Relaxation on
the Core-Level Transitions in Benzene Cation. In order to
disentangle the effect of the structural relaxation on the main
spectral transitions from the electronic effects (due to spin
coupling of the three unpaired electrons), we first consider the
effect of the structure on the XAS transitions in neutral
benzene. Figure 7 shows the effect that JT distortion would
have on the XAS transitions in the neutral. The shift of the
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Figure 7. XAS of neutral benzene at the symmetric FC structure and
at the two JT minima. The spectra were obtained by applying a
Gaussian convolution function (¢ = 0.05 eV).

main transitions relative to the symmetric structure is rather
small (less than 0.1 eV), but, as anticipated, some peaks split
due to lower symmetry. In particular, peak A is split by 0.19 eV
at both the elongated and the compressed structures. The
origin of this splitting can be easily rationalized by the NTO
analysis (Figure 6): the particle orbitals giving rise to peak A
are the two 7* orbitals that are split by JT distortion. The
magnitude of the splitting can be attributed to the energy
splitting of the virtual levels, as the energy of core orbitals
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changes very little (~0.01 eV, Tables S1 and S2 in the
Supporting Information) upon the displacement. The splittings
of other XAS transitions are smaller (e.g., 0.01 eV for peak B),
which can be explained by the diffuse character of the particle
NTOs, which makes them less sensitive to the structural
displacements. These spectral changes give a rough estimate of
the magnitude of the spectral shifts in the cation due to
structural relaxation. We also note that the positions of the
peaks are nearly the same at both minima (difference of 0.05
eV for the first bright transition), suggesting that the spectra of
the cation can be represented by just one structure (we choose
the *B;, minimum).

Theory versus Experiment. Figure 8 shows the exper-
imental® and theoretical XAS spectra of the benzene cation.
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Figure 8. XAS of benzene cation (top panel: theory; bottom panel:
experiment). The insets in the top panel show the molecular orbital
picture of the transitions giving rise to the three sets of peaks. The
theoretical spectrum was computed for the elongated structure and
obtained using a Gaussian convolution function (¢ = 0.3 €V) and an
energy shift of —0.7 eV. The black and red spectra in the bottom
panel correspond to two different time delays between the pump and
probe beams. The small black arrows above peaks E, F, and G
highlight the direction of the shifts at longer time delay.

The experimental spectrum was obtained® as the logarithmic
difference of absorption of the sample with and without UV
pulse. The two experimental spectra® taken over the range 0—
50 fs and at 1000 fs delays between the pump and probe beams
have similar structures but the peak positions shift slightly, as
indicated by black arrows in the bottom panel. The theoretical
spectrum agrees reasonably well with the experimental one
after a shift of —0.7 eV is applied. The main difference from the
XAS spectrum of the neutral (Figure S) is the presence of the
low-energy peak (peak E at 281.3 eV) and a clear splitting of
the dominant feature (peak A in the neutral, marked as peaks F
and G in the cation), accompanied by red and blue shifts of the
split peaks relative to peak A in the neutral. Inspection of the
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NTOs (given in the Supporting Information) reveals that peak
E is derived from the lsc — 7 transition, peaks F and G
correspond to the transitions to the two 7* orbitals (as in peak
A of the neutral). Peak H’ has the same orbital character as
peak B in the neutral. The splitting of the core — 7* transition
in the cation is expected (and observed theoretically) already
at the symmetric FC structure, when the two 7* orbitals are
still exactly degenerate; thus, it arises due to the spin coupling
via the presence of the unpaired electron in the z-subshell (the
JT distortion will further modulate the splitting). Using
theoretical values, peak G (G’) is blue-shifted by 0.4 eV
relative to peak A (A’) in the neutral, while peak H’ is blue-
shifted by 2.9 eV relative to peak B (B’) in the neutral. A larger
shift of the latter can be attributed to the Rydberg character of
this transition: the compact valence orbitals are stabilized more
than the Rydberg orbitals by the positive charge of the cation.
The computed splitting between peaks F and G is 1.1 eV,
which agrees well with the experimental® value of 1 eV. This
value is also close to the singlet—triplet gap in the neutral
benzene (1.22 eV, computed with EOM-EE-CCSD/6-311(2+,
+)G** at the FC structure). Because both splittings are
attributed to different spin coupling of the 7 and #* electrons,
their magnitude should be roughly equal to the exchange
integral between the respective orbitals. Thus, close agreement
between the splitting of the core — #* transition in the cation
and the singlet—triplet gap (between the two lowest zz*
states) in the neutral confirms their origin as due to spin
coupling.

In addition to illustrating electronic signatures of the cation
(manifested by the new low-energy (Peak and by the splitting of
peak A), the experimental spectra® (Figure 8, bottom panel)
also reveal dynamics of the structural relaxation of the cation
manifested by shifts in the positions of the 3 main peaks. At
longer time delays in the experiment, peaks E and G move to
higher energy (~0.2 eV) and peak F moves to lower energy
(~0.3 eV), as indicated by the arrows in the bottom panel of
Figure 8. The signs of the shifts follow the expectations from
the MO diagram (Figure 3): at the JT displaced structure, the
half-occupied z-orbital moves to higher energy and the two 7*
orbitals split to lower and higher energy relative to their
position in the FC region. The computed XAS spectra (shown
in Figure S2 in the Supporting Information) of the cation at
the FC and JT-relaxed structures show similar trends. As noted
in the experimental paper,’" while the experimental time
resolution is insufficient to capture the time scale due to a
possible JT shift accurately, the effect of possible shifts in time
is evident in the spectrum. An additional effect that could cause
the shifts is vibrational structure, discussed further in the
companion experimental paper.*’

Comparing the calculations at the symmetric FC structure
and the relaxed JT minimum (Figure S2 of the Supporting
Information), we observe relatively small differences: peak E is
blue-shifted (0.31 eV), the relative intensity of peaks F and G
changes slightly, and the splitting between the lowest transition
under peak F and the transition under peak G increases by
about 0.1 eV, consistent with the magnitude of the splitting
computed for band A of the neutral (Figure 7). Thus, the
prominent doublet structure at 285 eV in the cation spectra
arises due to the effect of the unpaired electron on the
transition (~1—1.2 eV), while the structural relaxation leading
to the splitting of 7* orbitals has a much smaller effect (~0.1—
0.2 V). As in the case of the computed XAS spectrum of the
neutral, the energy changes of the transitions due to the
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structural relaxation can be attributed to the energy change of
the valence (occupied or virtual) MOs, because the energies of
the core orbitals are much less sensitive to the structure.

We note that, due to the use of an open-shell reference in
EOM-CC, the computed target excited states (which should be
pure doublet states) are afflicted by spin contamination, which
affects their computed positions and intensities. Spin
contamination is significantly reduced upon inclusion of triple
excitations in the ansatz.””°° Therefore, we carried out
exploratory calculations at the CCSDT level in a minimal
basis set and the results show a reduction of the energy
separation and intensity redistribution of some lines, for
instance the second stick line under the F band, which is the
spin counterpart of the main transition of peak G. Importantly,
these preliminary CCSDT calculations confirm the split nature
of the 1s — 7* band, and some dynamic shift of peak E and
increase of splitting of bands F and G due to the JT distortion.

B CONCLUSION

To conclude, we have reported theoretical calculations and the
interpretation of experimental®® XAS spectra of the neutral
benzene and its cation. The cation shows a unique low-energy
peak and large splitting of the brightest peak A due to the
electronic and structural effects of ionization. The calculations
provide the MO picture of the main spectral features and
attribute most of the splitting (~1—1.2 eV) to the spin
coupling, with relatively minor contribution (~0.1-0.2 eV)
from structural relaxation. Because the splitting of the two &
and two 7 orbitals and the position of the main peaks are
different at the FC and relaxed structures, it may be possible, in
principle, to monitor the dynamics of JT relaxation by
following these transitions. The spectroscopic signatures of
structural relaxation are seen even at the relatively low
temporal resolution used in the present experiments.*’
However, the splitting between the main XAS transitions due
to the electronic effect (spin coupling of the three unpaired
electrons) is considerably larger than the smaller shifts due to
structural relaxation (i.e, 1—1.2 eV versus 0.1-0.2 eV). Our
study highlights the current capabilities of table-top X-ray
spectroscopy and the need for future experiments with better
temporal and spectral resolution and more sophisticated
theoretical treatment of open-shell electronic structure and
dynamics.
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