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ABSTRACT: We present an extension of the equation-of-motion coupled-cluster singles
and doubles (EOM-CCSD) theory for computing X-ray L-edge spectra, both in the
absorption (XAS) and in the photoelectron (XPS) regimes. The approach is based on the
perturbative evaluation of spin−orbit couplings using the Breit−Pauli Hamiltonian and
nonrelativistic wave functions described by the fc-CVS-EOM-CCSD ansatz (EOM-CCSD
within the frozen-core core−valence separated (fc-CVS) scheme). The formalism is based on
spinless one-particle density matrices. The approach is illustrated by modeling XAS and XPS
of several model systems ranging from Ar to small molecules containing sulfur and silicon.

Spectroscopic techniques exploiting X-ray radiation have a
long history. Two of the most popular ones, X-ray

absorption and X-ray photoemission (also known as X-ray
photoelectron or electron spectroscopy for chemical analysis),
enable investigation of the local electronic structure in
molecules and materials. Today’s light sources, which range
from synchrotron and X-ray free-electron lasers to table-top X-
ray instruments based on high harmonic generation, facilitate
exciting new experiments, which were merely hypothetical just
a few years back. These advances have triggered an explosion
of interest of the molecular and material sciences community
in X-ray based techniques.1−3 These advances in the
experimental tools have been accompanied by a burst of
activity in the development of theoretical methods for
simulating and interpreting experimental spectra.4

Conceptually, X-ray spectroscopy is similar to UV−vis
spectroscopy, the main difference being the energy scale and,
consequently, the type of electronic transitions that are probed.
UV−vis radiation induces transitions involving the outer-shell
valence electrons, whereas X-ray radiation induces transitions
involving inner-shell core electrons. Despite this similarity, the
theoretical methods developed for valence spectroscopy are
not directly applicable to core-level spectroscopies.4 Similarly
to their valence counterparts, core-level states often have open-
shell character, but they also exhibit strong orbital relaxation.
Thus, their description requires sufficiently flexible basis sets5,6

and many-body ansaẗze that are capable of tackling static and
dynamic correlation as well as orbital relaxation.
The equation-of-motion (EOM) coupled-cluster (CC)

framework7−12 is a versatile platform for treating excited and
ionized states with open-shell character. Even at the lowest
level of the correlation treatment, when only single and double

excitations are included in the ansatz, the method has the
ability to tackle both dynamic correlation and orbital relaxation
quite well. Originally, EOM-CC was developed to study
valence states; thus, typical implementations seek the solutions
corresponding to the lowest states, which is obviously not
suitable for high-energy core-level states. Another complication
arises from the fact that the core-level states are embedded in a
continuum of valence excited and ionized states, which leads to
poor convergence and erratic results.13,14 The core−valence
separation (CVS) scheme,15 which decouples the valence and
core sectors of the Fock space on the basis of the large energy
gap between the core and valence orbitals, provides a simple
yet effective recipe for extending valence-state methods into
the core-level domain and overcoming the convergence issues.
CVS has been implemented within various electronic structure
methods,16−21 including the EOM-CC family.22−24 The
resulting methods have been successfully applied to model a
variety of X-ray spectroscopic experiments such as absorption
(XAS),22,23,25,26 photoelectron (XPS),24,27,28 X-ray emission
(XES), and resonant inelastic scattering (RIXS).14,29−31 At the
CC level, the applications have been so far limited to the study
of 1s electrons of light elements (that is, the K-edge), due to
yet another obstacle toward the quantitative simulation of X-
ray spectrathe need to include relativistic effects.
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Relativistic effects, which become more pronounced at
higher energies, can be classified into two categories: scalar and
spin−orbit.32 The first type is not critically important in the
context of K-edge spectroscopy, because it results in a constant
energy shift of the entire spectrum.5,27,33 Because K-edge states
are mostly affected by scalar relativistic effects, nonrelativistic
calculations yield qualitatively correct K-edge spectra. The
second type, spin−orbit coupling (SOC), which arises from
the coupling between the magnetic moment associated with
the spin of the electron and the magnetic field created by the
relative motion of charged particles (electrons and nuclei),34

has a greater impact on the spectra at lower edges. SOC mixes
states with different multiplicity, which do not interact in a
nonrelativistic framework. It also causes energy splittings of
orbitals with nonzero orbital angular momentum (l > 0).
Figure 1 shows the SO splitting of the atomic 2p orbitals,
illustrating that SOC affects the L-edge spectra by splitting
them into two edges: L2 (or LII) and L3 (or LIII).
These effects can be fully accounted for within a fully

relativistic treatment with a four-component Hamiltonian,35−37

but such treatments come with a substantial increase of the
computational cost. Various flavors of two-component
methods, such as the zeroth-order regular approximation
(ZORA)38−41 and its infinite-order variant (IORA),42 the
Douglas−Kroll−Hess method,43−45 or the exact two-compo-
nent (X2C) approach,46,47 are less demanding; however, these
calculations still increase the computational cost by an order of
magnitude relative to the nonrelativistic calculation.48

Furthermore, a variational treatment of the SOC (i.e., when
the spin−orbit operator is included at the wave function
optimization step) may lead to an imbalanced description of
electronic states with different spin projections, resulting in the
violation of Kramers’ theorem and momentum contamina-
tion.49

Fortunately, in molecules composed of atoms from the first
few rows of the periodic table, so-called perturbative treatment
of SOC, which entails calculation of the matrix elements of the
Breit−Pauli Hamiltonian using nonrelativistic wave functions,
is sufficiently accurate while being computationally afford-
able.50 This strategy, which has been successfully used within
EOM-CC framework,48,51−55 has not yet been extended to
core-level spectroscopy, which is the focus of this communi-
cation. Building upon our previous work,23,24,54−56 we
implemented calculations of SOC within the frozen core (fc)
CVS-EOM-CCSD method, thus extending the EOM-CC
framework to modeling X-ray absorption and photoelectron
spectroscopy at the L and higher (i.e., lower in energy domain)
edges.
In this approach, the final states and their properties

(energies and transition strengths) are obtained in a two-step
procedure. In the first step, the nonrelativistic states are
computed using the fc-CVS-EOM-CCSD ansatz:

e

t r;
fc CVS EOM CVS 0

fc CVS

fc

v

v v

c

c c
∑ ∑τ τ

|Ψ ⟩ = ̂ |Φ ⟩
̂ = ̂ ̂ = ̂

μ
μ μ

μ
μ μ

‐ ‐
̂9

; 9

;

(1)

where ;̂ and 9̂ are the cluster and the EOM excitation
operators, and the subindices v and c refer to the valence and
core orbital spaces, respectively. The exact form of the 9̂
operator depends on the target-state manifold, giving rise to
different flavors of EOM-CC methods.9 Here, we use EOM-IP
(EOM for ionization potentials) to compute ionized states,
EOM-EE (EOM for excitation energies) to compute singlet
excited states, and EOM-SF (EOM spin-flip) to compute
triplet excited states (with spin projection ms = −1). For
closed-shell systems, such as those studied here, these
calculations employ closed-shell reference states.

Figure 1. Splitting of the 2p orbitals due to spin−orbit coupling.

Figure 2. H2S. Left: right Dyson orbitals for the nonrelativistic EOM-
IP states. α and β spin−orbitals have different signs, consistent with
the phase treatment in Wigner−Eckart’s theorem. Right: spin-
integrated right Dyson orbitals of the SO-mixed states, represented
as isosurfaces of their (complex) norm.65

Table 1. L-Edge IEs (eV)a and SO Splitting (cm−1) for H2S,
OCS, SO2, CS2, and C4H4S2

system assignment IE (eV) ΔE (cm−1) exp IE (eV)

H2S 2p3/2
−1 169.405 0.00 170.37

169.495 726.54
2p1/2

−1 170.648 10025.40 171.57
OCS 2p3/2

−1 169.996 0.00 170.72
170.108 901.43

2p1/2
−1 171.254 10145.25 171.93

SO2 2p3/2−1 174.341 0.00 174.78
174.410 559.04

2p1/2−1 175.575 9949.94 175.99
CS2 2p3/2−1 169.618 0.00

169.618 0.06 169.98
169.708 724.46
169.708 727.00

2p1/2−1 170.860 10018.78 171.0
170.860 10020.21

C4H4S 2p3/2−1 169.390 0.00 169.89
169.458 546.15 170.00

2p1/2−1 170.620 9913.76 171.14
aTheory: fc-CVS-EOMIP-CCSD/uC-6-311+G(3df). Experimental
values are from ref 74 (H2S, OCS, SO2, CS2) and ref 75 (C4H4S2).
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In the second step, SOCs are calculated as the matrix
elements of the spin−orbit part of the Breit−Pauli Hamil-
tonian, given in atomic units by57

c
i i i j i jh s h s s1

2
( ) ( ) ( , ) ( ( ) 2 ( ))

i i j

SO
2

SO SO∑ ∑̂ = · − · +
≠

i
k
jjjjjjj y

{
zzzzzzz/

(2)

where hSO(i) and hSO(i, j) are the one- and two-electron
operators58

i
Z

Z
r
Z
r

h
r R p

r R

r p

l

( )
( )

( )

K

K i K i

i K

K

K

iK
iK i

K

K

iK
iK

SO
3

3

3

∑

∑

∑

=
− ×

| − |

= ×

=
(3)

i j
r r

h
r r p

r r
r p l( , )

( ) 1 1i j i

i j ij
ij i

ij
ij

SO
3 3 3=

− ×
| − |

= × =
(4)

ri, pi, and li are the coordinates and the (linear and angular)
momenta, respectively, of electron i, and RK and ZK are the
coordinates and charge of nucleus K. In second quantization,
eq 2 assumes the following form54

c
I a a J a a a a1

2
1
2pq

pq p q
pqrs

pqrs p q s r
SO

2 ∑ ∑̂ = ̂ ̂ + ̂ ̂ ̂ ̂† † †
i
k
jjjjjjj y

{
zzzzzzz/

(5)

where I and J refer to the one- and two-electron spin−orbit
integrals:

I h s(1) (1) (1) (1)pq p q
SOϕ ϕ= ⟨ | · | ⟩ (6)

J h s s(1) (2) (1, 2) (1) 2 (2) (1) (2)pqrs p q r s
SOϕ ϕ ϕ ϕ= −⟨ | ·[ + ]| ⟩

(7)

Matrix elements of this operator can be computed by
contracting the spin−orbit integrals with the corresponding
one- and two-electron transition density matrices (TDM):

s m s m I J( , ) ( , ) 1
2s s

pq
pq pq

pqrs
pqrs pqrs

SO ∑ ∑γ⟨Ψ | ̂ |Ψ′ ′ ′ ⟩ = + Γ/

(8)

where

s m a a s m( , ) ( , )pq s p q sγ = ⟨Ψ | ̂ ̂ |Ψ′ ′ ′ ⟩†
(9)

s m a a a a s m( , ) ( , )pqrs s p q s r sΓ = ⟨Ψ | ̂ ̂ ̂ ̂ |Ψ′ ′ ′ ⟩† †
(10)

The calculation of the SOCs, as defined by eq 2, entails the

computationally demanding two-electron part of
SO

/̂ .
Fortunately, the two-electron contributions can be effectively
evaluated in a mean-field manner. Within this approximation,
called spin−orbit mean-field (SOMF),59 the calculation of
SOC requires only the one-electron TDM

s m s m H( , ) ( , )s s
pq

pq pq
SOMF SOMF∑ γ⟨Ψ | ̂ |Ψ′ ′ ′ ⟩ =/

(11)

with the effective one-electron operator
SOMF

/̂ with
integrals:51,52,54

H I J J J1
2

( )pq pq
rs

rs prqs prsq rpqs
SOMF ∑ ρ= + − −

(12)

where ρ is the state density matrix of the reference
determinant. The SOMF approximation simply entails
neglecting the nonseparable part of the two-electron transition
density matrix.54 By converting these equations into the atomic
orbital basis, one can evaluate the SOMF integrals using
efficient algorithms, such as those used for the Fock-matrix
builds. The SOMF Hamiltonian can be used as a starting point
for more drastic approximations, such as atomic mean-field
approximation in which only the diagonal blocks of ρ (in the
AO basis) are retained, and introducing one-center approx-
imations for the one and two-electron integrals.60 In our
implementation, we used the SOMF scheme without further
approximations.
To obtain the SO-split states, we then construct the SOMF

Hamiltonian matrix in the basis of zeroth-order states

s m s mH ( , ) ( , )s s
SOMF SOMF= ⟨Ψ | ̂ |Ψ′ ′ ′ ⟩/ (13)

and diagonalize it. (Here and below we use bold font to denote
the matrix representations of the operators expressed in the
basis of EOM states.) The diagonal elements of the SOMF
matrix contain the zeroth-order energies (i.e., nonrelativistic
EOM-CC energies) and the off-diagonal elements between
two different states Ψ(s , ms) and Ψ′(s′ , ms′) are

s m s m( , ) ( , )s s
SOMF⟨Ψ | ̂ |Ψ′ ′ ′ ⟩/ , which are computed as de-

scribed in ref 55. The states entering these expressions are
the ionized states (s = 1/2, ms = ±1/2) when we calculate
ionization energies, and the singlet (s = 0, ms = 0) and triplet
(s = 1, ms = −1, 0, +1) excited states when we calculate
excitation energies. The diagonalization of the SOMF
Hamiltonian matrix yields the target SO-coupled states,

Figure 3. Thiophene (C4H4S) L-edge XPS. The theoretical spectra
were obtained using a Gaussian convolution function (σ = 0.15 eV)
and an energy shift of +0.5 eV, estimated by aligning to the first
intense experimental peaks. The experimental spectrum was digitized
from ref 76.
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whose eigenvalues are the energies of the SO-split states. To
compute oscillator strengths for the transitions involving the
SO-split states, as needed for the simulation of L-edge
NEXAFS, we first construct the (non-Hermitian) electric
dipole matrices between the ground state Ψ0 and the zeroth-
order target states Ψ(s, ms):

s m s m( , ) ( , )f f
s

f f
s

0
0

0
0μ μμ μ= ⟨Ψ | ̂ |Ψ ⟩ = ⟨Ψ | ̂ |Ψ ⟩α α α α

← ←

(14)

where α denotes the Cartesian components x, y, and z. These
transition matrices are then transformed into the new basis of
the SO-split states by applying the transformation obtained
from the diagonalization of HSOMF:

U Uf f2 0 0μ μ μ̃ =α α α
† ← ←

(15)

where the matrix U contains the eigenvectors of HSOMF. (Due
to non-Hermiticity of the EOM theory, the geometric
averaging of the estimates from eq 15 does not necessarily
yield a real positive number; however, for the systems
considered here, only very few nonpositive values were
observed and their magnitude was negligible.) Finally, the
oscillator strengths for the transitions between the ground state
and the target SO-coupled state f ̃ are computed as

f f( 0) 2
3 f

x y z, ,

2∑ μω̃← = ̃
α

α̃
= (16)

Figure 4. L-edge XAS of SiH4 (4a), Ar (4b), SO2 (4c), and C4H4S (4d). The theoretical spectra were obtained using a Gaussian convolution
function (σ = 0.15 eV) and an energy shift (Δx) for a better fit with experiment. The experimental spectra were digitized from ref 77 for SiH4, ref
78 for Ar, ref 79 for SO2, and ref 75 for thiophene. The vertical dotted lines correspond to the L2 and L3 ionization energies. The label NR denotes
nonrelativistic calculations without inclusion of the SOC.
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In a similar fashion, the XPS intensities can be estimated
from the squared norm of the Dyson orbitals, defined as
overlap of the initial N-electron wave function of the neutral
and the final (N − 1)-electron wave function of the cation. For
the XPS of ground-state species, the initial wave function is Ψ0
and the final (SO-split) wave function is Ψf.̃ Since in CC
theory the bra and ket states are not Hermitian conjugates of
each other, we use an additional index L or R to mark left and
right wave functions and the respective Dyson orbitals24,61−63

f
d

p
p

f
p f

d

p
p

f
p

,R R, ,L L,∑ ∑ϕ γ ϕ ϕ γ ϕ= ̃ = ̃̃
̃

̃
̃

(17)

where

a ap
f

p f p
f

f p
R,

0
L R L, L

0
Rγ γ̃ = ⟨Ψ | ̂ |Ψ ⟩ ̃ = ⟨Ψ | ̂ |Ψ ⟩̃ † ̃

̃
̃ (18)

are the expansion coefficients (or amplitudes) of the left (L)
and right (R) Dyson orbitals corresponding to the SO-mixed
states on the molecular orbital basis {ϕp}. The target SO-split
state Ψf ̃ is the linear combination of the nonrelativistic cationic
states Ψj

U Uf
j

j jf f
j

f j j
R R L L∑ ∑Ψ = Ψ Ψ = * Ψ̃ ̃ ̃ ̃

(19)

so that the left and right Dyson orbitals for the SO-split target
state Ψf ̃ become

a U

U

f
d

j p
p j jf p

p j
p

j
jf p

p
p

f
p

f

,R

,
0
L R

R,

R,

R,

∑

∑ ∑

∑

∑

ϕ ϕ

γ ϕ

γ ϕ

γ χ

= ⟨Ψ | ̂ |Ψ ⟩

=

= ̃

= ̃
ν

ν ν

̃
† ̃

̃

̃

̃

i
k
jjjjjjj y

{
zzzzzzz

(20)

U a

U

f
d

j p
f j j p p

p j
f j p

j
p

p
p

f
p

f

,L

,

L
0
R

L,

L,

L,

∑

∑ ∑

∑

∑

ϕ ϕ

γ ϕ

γ ϕ

γ χ

= *⟨Ψ | ̂ |Ψ ⟩

= *

= ̃

= ̃
ν

ν ν

̃ ̃

̃

̃

̃

i
k
jjjjjjj y

{
zzzzzzz

(21)

where we introduced the amplitudes of the Dyson orbitals of
the original nonrelativistic EOM states24,61

a ap
j

p j
R

p
j

j p
R,

0
L L, L

0
Rγ γ= ⟨Ψ | ̂ |Ψ ⟩ = ⟨Ψ | ̂ |Ψ ⟩†

(22)

In the last equality of eqs 20 and 21, the Dyson orbitals are
expressed on the atomic orbital basis {χν}. The Dyson orbitals
of the SO-split states are complex-valued. Complex orbitals can
be visualized in different ways, from simply representing their
real and imaginary components separately to more sophisti-
cated representations that take their phases into account.64,65

To visualize the complex Dyson orbitals, we use here the

QSimulate-QM program,66 which implements the algorithm
proposed in ref 65.
Figure 2 shows zero-order and SO-coupled right Dyson

orbitals for H2S, illustrating the effect of the SOC on the
ionized states. SOC mixes the nonrelativistic states and
changes orbital shapes (i.e., 2p1/2 and 2p3/2 orbitals are rotated
relative to the original px, py, and pz) and also scrambles spin
and space degrees of freedom. The SO-mixed orbitals
transform by a different symmetry group (double point
group), because the relativistic treatment necessitates using
different symmetry groups, as described, for example, in refs 67
and 68. For a C2v molecule (such as H2S), the relativistic states
belong to the C̅2v double group, which is a non-Abelian group
with four one-dimensional irreps of the bosonic type and one
two-dimensional irrep of the fermionic type. Wave functions
with odd and even numbers of electrons transform according
to the fermionic and bosonic representations, respectively. The
Dyson orbital spinors (Figure 2) have the representation E ×
A1 = E. This is a two-dimensional irrep, which corresponds to a
Kramers doublet in the full symmetry group (with time-
reversal operation). Thus, the apparent shape of the orbital
depends on how the basis is selected in this irrep. In the
Supporting Information, we present an alternative, symme-
trized, rendering of the SO-mixed Dyson orbitals, together
with the transformation matrix used to generate it and the
unconstrained transformation matrix U.
These SO-mixed Dyson orbitals illustrate the effect of the

SOC on the ionized states, in the same fashion as the analysis
of the SO-mixed transition density matrices from ref 69
illustrates the effect of SOC on the excited states. We note that
this analysis is based on the SO-mixed adiabatic states, in
contrast to the SOC NTO analysis presented in ref 56, which
is formulated in terms of the nonrelativistic (diabatic) states.
The mixing also affects transition strengths, in the same

fashion as it affects oscillator strengths. For example, the
relative XPS intensities for the transitions involving the SO-
split states are approximated as

U U2 L Rγ γ γ̃ = † (23)

The SOC-CVS-EOM-CCSD approach has been imple-
mented in the Q-Chem electronic structure package.70,71 The
implementation included the extension of the fc-CVS-EOM-
CCSD framework to the SF states, in addition to the
previously implemented23,24 IP and EE variants. For the XPS
calculations, we used the 6-311+G(3df) basis set with
uncontracted core functions, denoted as uC-6-311+G(3df),
following the recommendation of a recent benchmark study.6

Because we focus on L-edges, we only uncontracted the core
orbitals, roughly corresponding to n = 2, i.e., the second
contracted s-function (leaving the “6” contracted core function
untouched) and the two most contracted p-functions. For the
XAS calculations, we used uC-6-311(2+,+)G(p,d) augmented
with additional Rydberg-type functions whose exponents were
generated according to the prescription of Kaufmann et al.,72

and quantum number n = 2.5, ..., 5. Uncontracted bases were
used for the active edge only, whereas all other atoms were
described by the standard variants of these basis sets. All basis
sets are given in the Supporting Information. The number of
states included in the SOMF Hamiltonian varies depending on
the system, the exact number of states for each system can be
found in Supporting Information.
To illustrate the capabilities of the method, we considered

several systems for which experimental data are available.
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These systems are listed in the Supporting Information, along
with their structural parameters. In most cases, we used
structures optimized at the CCSD(T)/cc-pCVQZ level of
theory, taken from ref 73. For thiophene, we used an MP2/cc-
pVTZ optimized structure. All Cartesian coordinates are given
in the Supporting Information.
Table 1 shows the first three core-ionization energies (IEs)

for H2S, OCS, SO2, CS2, and C4H4S2 computed with SOC-
CVS-EOMIP-CCSD/uC-6-311+G(3df) and compares them
with the experimental values. The table also shows the energy
difference with respect to the first IE (ΔE). The corresponding
zeroth-order energies, calculated at the nonrelativistic fc-CVS-
EOMIP-CCSD/uC-6-311+G(3df) level of theory, are given in
Table S3 in the Supporting Information. The energies are
assigned to the ionization of the electrons from the 2p orbitals
of the atom marked in bold. The results show how spin−orbit
coupling splits the nearly degenerate 2p orbitals into two sets:
one 2p1/2 orbital and two near-degenerate 2p3/2 orbitals, as
explained in Figure 1 and illustrated in Figure 2. The gap
between these two sets is due to the SOC, whereas the small
energy difference between the 2p3/2 orbitals arises from
nonspherically symmetric molecular environment (this split-
ting is called molecular field splitting). Depending on the
system, the absolute deviations of the computed IEs relative to
the experimental values are on the order of 0.1−1.0 eV, which
corresponds to relative errors of the order of 0.05−0.5%.
Figure 3 shows the computed XPS spectra of the thiophene
molecule, illustrating the spectroscopic signatures of the SOC.
At the nonrelativistic level, the 2p orbitals, although already
slightly nondegenerate due to the molecular field, are still close
enough so that the spectrum has only one peak. The inclusion
of the SOC splits this peak into two, with the intensity ratio
2:1, corresponding to the ionization of two 2p3/2 and the one
2p1/2. After a shift of +0.5 eV the SO-corrected spectrum
agrees well with the experiment, in terms of both the intensity
ratio and the energy splitting.
Figure 4 compares the computed L-edge NEXAFS for SiH4,

SO2, C4H4S, and Ar with the experimental spectra. The raw
theoretical data (energies and oscillator strengths) are
provided in the Supporting Information.
Figure 4a shows the L-edge spectra of silane with and

without SOCs. As in the XPS example above, the first peak is
split into two upon inclusion of the SOC and agrees well with
the experiment. The shifted IEs are also in good agreement
with the experiment. However, our convoluted spectrum does
not reproduce the highly structured set of bands above 104.4
eV observed in the experiment, possibly due to using the same
empirical Gaussian broadening function for all computed
states, regardless of their actual lifetime.
Figure 4b shows the spectra for the argon atom. Theory and

experiment agree well, after a small shift of +0.7 eV is applied.
The first band at around 244.5 eV is due to the 2p3/2 → 4s
transition, whereas the second band at around 246.5 eV
corresponds to the 2p1/2 → 4s transition. The third and fourth
bands contain contributions from the 2p3/2 → 5s,3d and 2p1/2
→ 5s,3d transitions, respectively. In the case of sulfur dioxide
(see Figure 4c) the agreement between theory and experiment
is also quite good for the first peaks (zoomed-in region), after a
shift of −0.6 eV is applied. The agreement deteriorates slightly
at higher energies.
Finally, Figure 4d illustrates the spectra for a larger molecule,

thiophene. In this case, the theoretical spectrum is in excellent

agreement with the experimental one in the entire energy
range and without an energy shift.
In conclusion, we have presented the first implementation of

the perturbative inclusion of spin−orbit effects within coupled-
cluster theory to describe core-level spectroscopy. This has
been achieved by utilizing a general framework for calculating
the SOCs from spinless one-particle density matrices
computed for the fc-CVS-EOM-CCSD wave functions. This
methodological advance enables the calculation of SO-
corrected ionization and excitation energies by a simple two-
step procedure. In the first step, the nonrelativistic states are
computed using appropriate variants of the EOM-CC family of
methods; the choice of the method is determined by the target
states, i.e., EOM-IP for ionized states and EOM-EE/SF for
excited states. In the second step, these zeroth-order states are
mixed by the perturbation due to the SO part of the Breit−
Pauli Hamiltonian, giving rise to the SO-corrected energies and
intensities. The examples illustrate the capabilities of the new
method to accurately and efficiently simulate L-edge XAS and
XPS.
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