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ABSTRACT 

Reaction coordinates chart pathways from reactants to products of chemical reactions. 

Determination of reaction coordinates from ensembles of molecular trajectories has thus been the 

focus of many studies. A widely used and insightful choice of a reaction coordinate is the 

committor function, defined as the probability that a trajectory will reach the product before the 

reactant. Here, we consider alternatives to the committor function that add useful mechanistic 

information, the mean first passage time, and the exit time to the product. We further derive a 

simple relationship between the functions of the committor, the mean first passage time, and the 

exit time. We illustrate the diversity of mechanisms predicted by alternative reaction coordinates 

with several toy problems and with a simple model of protein searching for a specific DNA motif. 
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I. INRODUCTION 

      A reaction coordinate (RC) is a one-dimensional progress parameter which can be both, (i) the 

starting point for atomically detailed simulations of kinetics, and (ii) the final step of the 

calculation, providing an analysis of the mechanism as determined from an ensemble of reactive 

trajectories. This paper focuses on (ii). An RC describes a projection of the dynamics onto a one-

dimensional degree of freedom. Another way to view a reaction coordinate is as providing a set of 

hypersurfaces separating the reactant and product and orthogonal to a one dimensional function 

that progress monotonically from the reactant to the product.  

 

The hypersurfaces are (N-1) dimensional objects that are challenging to determine in the general 

case. However, a simplifying picture of the RC is obtained if the underlying energy landscape is a 

narrow trough leading from the reactant to the product. The reactive trajectories then form a narrow 

tube that is characterized by a central curve and hyperplanes orthonormal to it. A widely used 

definition for this curve is the steepest descent, or minimum energy path (MEP). A number of 

methods were introduced to determine MEPs between known reactants and products, such as the 

Locally Updated Planes (LUP),1 Nudged Elastic Band (NEB),2 the scalar force,3 string,4 and rock 

climbing.5 The MEP is computed at the limit of zero temperature and with no regard to the 

dynamics of the system. The ensemble of reactive trajectories deviates, in general, from the MEP, 

once noise or inertial effects are considered.  

 

To provide a better description of the kinetics of the process, a reaction coordinate that captures 

the underlying dynamics of the system is desired. A reaction coordinate is interpreted as a one-
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dimensional curve or as a progressive set of non-crossing hypersurfaces leading from reactant to 

product. To determine the reaction coordinate as a curve, MaxFlux6-8 approach, the temperature 

dependent RC,9 and the Dominant Reaction Pathway10 assume existence of a narrow tube 

confining typical reaction pathways and proceed to determine the shape of the tube under the 

assumption of overdamped dynamics. Another choice of a temperature-dependent RC is the 

minimum free energy path (MFEP). In this approach a subset of coarse variables is defined (e.g. a 

few distances, torsions, or angles) and the MFEP is determined in the reduced space while the rest 

of the degrees of freedom are thermally averaged out.11, 12  

 

All of the reaction coordinates mentioned above can be used in further investigations of the 

kinetics, for example, by exploiting the transition state theory and further computing dynamical 

corrections to it.13 14 Despite the wide range of theoretical and computational approaches, these 

techniques retain the model of a narrow tube. They offer a simple-to-compute and insightful 

model; however, it is not always applicable, especially in the case of diffusion-controlled reactions 

and/or when the kinetics of interest is controlled by entropy rather that energy barriers, a common 

scenario in biochemical processes. Indeed, the distribution of the ensemble of reactive trajectories 

can be broad and not contained in a narrow tube. Examples include ligand diffusion from solution 

to the active site,15 or an initial folding event of chain collapse.16 

It is thus desirable to define an RC that is not contingent on the property of all typical reactive 

trajectories following similar pathways and is applicable to systems that exhibit highly 

heterogenous pathways of reactive trajectories.  
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The committor function is an example of an RC that does not assume tube-like ensemble of 

reactive trajectories.  It can be determined from an ensemble of trajectories as follows: We initiate 

trajectories from a phase space point. The probability that any of these trajectories will hit the 

product before the reactant state is the committor. The set of phase space points with the same 

probability or committor value form an iso-committor hyper surface. The committor function was 

first introduced as the splitting probability by Onsager in 1938.17 The committor as a reaction 

coordinate was further developed as part of the Transition Path Sampling algorithm and the 

Transition Path Theory18, 19, and it is often considered to be the “perfect” reaction coordinate.  

 

A typical use of the committor is not to predict reaction rates but to analyze reactive trajectories 

and to obtain insight into the reaction mechanism. The committor is not a tool to speed up the 

calculations or make them more efficient. Efficient calculation of the committor was, moreover, a 

challenge for quite some time. Computational approaches such as the maximum likelihood 

analysis,20 neural networks,21 Transition Path Theory22 and Milestoning analysis23 helped 

determine approximate committor functions based on limited trajectory data. The determination 

of the exact hyper surfaces is feasible only for a system with a small number of degrees of freedom 

(typically two). The committor as a reaction coordinate is nevertheless attractive since it captures 

some features of the dynamics.  

 

Recently we showed that the iso-committor hypersurfaces can be estimated efficiently with the 

Milestoning theory.23 The Milestoning theory requires only the transition probabilities between 

states and not the transition times to determine the hypersurfaces. The lack of time information in 

the definition of the RC is a drawback. Intuitively, we expect the most efficient and important 
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pathway to be a fast one. In this paper, we discuss the mean first passage time (𝜏) and the exit time 

to the product (𝜏𝑝
𝑒) as viable alternative definitions of RC’s that capture the temporal properties of 

transition paths explicitly. The use of 𝜏 as a reaction coordinate was first proposed by Parak et al.24  

The mean first passage time describes trajectories that may be trapped for a long time in the 

reactant state. It is of interest to use a measure with a focus on the transition domain between the 

reactants and the product. Such a measure is 𝜏𝑝
𝑒.    

 

The Milestoning formulation offers a clear view how time information is incorporated into the 

alternative reaction coordinates and explores the relations between the committor, mean first 

passage time, and the exit time to the product (𝜏𝑃
𝑒). 𝜏𝑃

𝑒 is also closely connected to the so-called 

transition path time (𝜏𝑇𝑃), which is the time it takes to cross the transition domain to the product 

state. 𝜏𝑇𝑃 is essentially 𝜏𝑃
𝑒  measured from the boundary of the reactant until the trajectories hit for 

the first time the boundary to the product. The transition path time recently attracted considerable 

experimental attention,25, 26 making it an interesting target for theoretical investigations.27, 28  The 

Milestoning formulation enables efficient calculations of the committor, 𝜏, and 𝜏𝑃
𝑒  surfaces.  

 

We illustrate the above reaction coordinates using Milestoning studies of several numerical 

examples: (i) a toy four state model, (ii) diffusion at the interface between two phases with different 

viscosities. (iii) transition pathways in a potential with three energy minima, and (iv) a simple 

model of targeting a specific DNA site by a DNA-binding protein. We find significant differences 

between different RCs and argue that the time-based reaction coordinates may provide additional 

insight into the reaction mechanisms. 
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II. METHODS 

      A. Definition of the committor, mean first passage time, and exit time  

Consider a transition between two phase-space domains that we call a reactant (R) and a product 

(P) (Fig. 1). The committor function, 𝐶(𝑥,𝑝), is the probability that a trajectory initiated at a phase 

space point (𝑥, 𝑝) will hit P before R. The mean first passage time is commonly interpreted as the 

average time for the transition between the reactant and the product. Instead, we consider the mean 

first passage time to be the time to reach the product from a phase space point (𝑥, 𝑝). Hence, in 

this definition, the mean first passage time depends on the starting point (𝑥, 𝑝) and is independent 

on the definition of the reactant. We denote the mean first passage time by 𝜏(𝑥,𝑝) and formally it is 

the average time it takes a trajectory, initiated at (𝑥, 𝑝), to hit P (R is not used in the calculation of 

𝜏(𝑥,𝑝)). The mean exit time 𝜏(𝑥,𝑝)
𝑒  is the average time for a trajectory, initiated at (𝑥, 𝑝), to escape 

the transition domain between R and P by terminating at the interface between the transition 

domain and either the reactant or the product. In the discussion below, we also define the 

directional mean exit times  𝜏(𝑥,𝑝)→𝑃
𝑒  and 𝜏(𝑥,𝑝)→𝑅

𝑒  to escape the transition domain into the product 

or reactant states, respectively. We use 𝜏(𝑥,𝑝)→𝑃
𝑒  as an alternative definition to the reaction 

coordinate (Figure 1). 
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Figure 1. Reactant (R) and product (P) domains (gray) are separated by a transition domain (white). Also shown in 

the figure are trajectories with the exit times 𝜏(𝑥,𝑝)→𝑃
𝑒  and 𝜏(𝑥,𝑝)→𝑅

.𝑒  of a phase space point (𝑥, 𝑝), and a trajectory with 

the mean first passage time, 𝜏(𝑅→𝑃). The phae space point (x,p) is assumed to be in the transition domain. For clarity 

the figure shows individual trajectories, however, the MFPT and the exit times are defined for ensembles of 

trajectories. The MFPT is longer than the exit times since it includes a residence period in the reactant.  

 

The exit time from the transition domain, 𝜏(𝑥,𝑝)
𝑒 , is defined as the average of the first times the 

trajectories initiated at (𝑥, 𝑝)  reach the reactant or the product state. The times,  𝜏(𝑥,𝑝)→𝑃
𝑒  and 

𝜏(𝑥,𝑝)→𝑅
.𝑒 , are the average exit times conditional upon reaching P and R respectively. They are called 

“exit times” since they describe the time to depart from the transition domain. 

 

The exit time to the product (reactant) is different from the mean first passage time to the product 

(reactant) since trajectories that contribute to the former are conditioned not to return to the reactant 

(product). Specifically, the average time 𝜏(𝑥,𝑝) is longer than 𝜏(𝑥,𝑝)→𝑃
𝑒  since the trajectories that 

contribute to the mean first passage time may involve long excursions back into the reactant (Fig. 
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1), while the trajectories contributing to 𝜏(𝑥,𝑝)→𝑃
𝑒  must stay in the transition domain separating R 

and P until they hit P.    

 

      B. Milestoning  

      Milestoning is a theory and an algorithm that constructs a kinetic model for long time 

processes. It was discussed extensively in the literature and review articles are available.29, 30 Here 

we summarize essential features of Milestoning for completeness. We consider detailed 

trajectories in the full phase space 𝚪 with a focus on the transition from a reactant R to a product 

P.  

 

In Milestoning the phase space is partitioned to cells or compartments in a coarse subspace 

𝐐. The coarse space typically consists of distances, angles and torsions that capture the progress 

of the process. The length of the vector 𝚪 is in general larger than the length of 𝐐. However, in the 

examples discussed in this paper, the lengths are the same. The coarse space is used to track the 

progress of a trajectory in the full space. Transition probabilities and lifetimes are estimated using 

short trajectories between cell boundaries, which we call milestones (Fig. 2).  The use of short 

trajectories ensures a highly efficient calculations of the mean first passage time and other 

observables.29  
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Figure 2. A schematic drawing of a reaction in a Milestoning space. Every edge on the lattice is a milestone. The 

reactant, R, is the blue box at the lower left corner and the product is the red box at the upper right corner. Also shown 

a trajectory from a milestone of the reactant to a milestone of the product. The milestones form a mesh that can be 

used to analyze a complete trajectory from R to P (blue thick line), or to initiate a trajectory between the milestones 

(thin black line). Quantities of interest in the Milestoning theory are 𝑛𝑗 the number of trajectories that pass in unit time 

milestone j , and 𝐾𝑖𝑗, the probability that a trajectory initiated at milestone 𝑖 will hit another milestone 𝑗 for the first 

time. See text for more details. 

 

The distribution of trajectories that are initiated at, or just crossed milestone 𝑖, is 𝑛𝑖(Γ𝑖), where Γ𝑖  

is a phase space point at milestone 𝑖. We ask what is the probability that these trajectories will 

cross another milestone 𝑗 at a phase space point Γ𝑗 at a later time? The transition probability from 

a point to a point in Milestoning is denoted by 𝐾𝑖𝑗(Γ𝑖, Γ𝑗). The crossing probability of milestone 𝑗 

given an initial distribution at milestone 𝑖 is  

 𝑛𝑗(Γ𝑗) = ∑ ∫ 𝑑Γ𝑖 ⋅ 𝑛𝑖(Γ𝑖) ⋅ 𝐾𝑖𝑗(Γ𝑖, Γ𝑗)𝑖                                                           (1) 

 

i j 

R 

P 

nj 
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The summation over j is on all milestones from which an initiated trajectory can cross milestone 𝑖 

before any other milestone. The last formula is a fundamental Milestoning equation, and is a set 

of homogeneous and linear equations for the number of trajectories that just cross a milestone, 

𝑛𝑖(Γ𝑖). It is exact for classical dynamics as long as the transition probability is defined. The last 

function is also called the first hitting point distribution to indicate that this is a distribution of 

trajectories that hit the milestone for the first time.31 To compute it efficiently, we first write this 

distribution as a product of the total number of trajectories crossing a milestone, 𝑛0𝑖, and a 

normalized distribution within the milestones 𝑓𝑖(Γ𝑖), such that ∫ 𝑓𝑖(Γ𝑖)𝑑Γ𝑖 = 1 , i.e. 𝑛𝑖(Γ𝑖) = 𝑛0𝑖 ⋅

𝑓𝑖(Γ𝑖). Substituting the last expression in Eq. (1) and integrating both sides over Γ𝑗 we have 𝑛0𝑗 =

∑ 𝐾𝑖𝑗𝑖 𝑛0𝑖 where we define 𝐾𝑖𝑗 = ∫ 𝑑Γ𝑖𝑑Γ𝑗 ⋅ 𝑓𝑖(Γ𝑖) 𝐾𝑖𝑗(Γ𝑖, Γ𝑗). Frequently we approximate the 

distribution in the milestone by a Boltzmann distribution 𝑓𝑖(Γ𝑖)~𝑒𝑥𝑝(−𝛽𝐻(Γ𝑖)) and we use these 

distributions to sample initial configurations for the trajectories at the milestone. If we sample 𝑛0𝑖 

trajectories at milestone 𝑖 and of those trajectories 𝑛0𝑖𝑗 trajectories hit for the first time milestone 

𝑗, we can estimate the transition probability as 

 

𝐾𝑖𝑗 ≅ 𝑛0𝑖𝑗

𝑛0𝑖
                                                                   (2) 

 

We can improve our approximation for 𝑓𝑖(Γ𝑖) by using the termination points of the trajectories at 

the 𝑗 milestone to determine a new set of initial distributions for the Milestoning trajectories.32 

These iterations are the algorithm of exact Milestoning.32 Formally they are written as 

𝑓𝑗
(𝑛+1)(Γ𝑗) = 1

𝑛𝑗0
(𝑛) ∑ 𝑛𝑖0

(𝑛) ∫ 𝑑Γ𝑖𝐾̅𝑖𝑗(Γ𝑖, Γ𝑗)𝑓𝑖
(𝑛)(Γ𝑖)𝑖 , which is just a different way of writing Eq. (1). 

The superscript (n) denotes the iteration number. If the mean first passage time is finite, the 
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iterations are guaranteed to converge.33 That is, we have lim
𝑛→∞

|𝑓𝑖
(𝑛+1)(Γ𝑖) − 𝑓𝑖

(𝑛)(Γ𝑖)| < 𝜀 where 𝜀 

is a small positive number. 

 

Alternatively, if a very long trajectory that goes back and forth between the reactant and product 

is available, 𝐾𝑖𝑗 can be estimated from the long trajectory, counting the times it crosses milestones. 

This is the procedure used in the example III.C. However, if the system is complex, the generation 

of such a trajectory can be prohibitively expensive. The method of Milestoning, which exploits the 

use of short trajectories between milestones, provides a more efficient approach to compute the 

matrix of transition probabilities, 𝐾𝑖𝑗. 

In addition to the transition probability between the milestones we also use the average life time 

of the milestone, which in the trajectory language is defined as  

   𝑡𝑖 = (1 𝑛𝑖⁄ ) ∑ 𝑡𝑖(𝑙)𝑛𝑖
𝑙=1                                                             (3) 

where ti(l) is the time that it takes a trajectory l, initiated at milestone i, to pass for the first time 

any milestone different from i.  

 

The functions Kij  and ti  are sufficient to determine the thermodynamics of the system and the 

first order kinetics (i.e. the mean first passage times 𝜏 and related functions). In the past, we showed 

that the transition network created by Milestoning can be used to determine pathways of maximum 

flux.8 We have also shown how iso-committor surfaces can be computed in the Milestoning 

framework.23 In the present manuscript we show how these functions, in conjunction with the 

Milestoning theory, can be used to efficiently explore alternative definitions of the reaction 

coordinate. 
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 C. Milestoning Algorithms to Calculate the Committor, 𝝉 and 𝝉𝒆 Functions  

     The calculation of the committor (C) and the mean first passage time (𝜏)  functions with 

Milestoning was discussed in earlier studies. We briefly summarize them below and add equations 

for the calculations of 𝜏𝑒. We also illustrate the close relationships between these functions.  

Consider the committor value at milestone 𝑖 - 𝐶𝑖. It is the probability that a trajectory initiated at 

milestone 𝑖 will make it to the product before the reactant. Next, the trajectory continues in a single 

step from milestone 𝑖 to a milestone j with a probability, 𝐾𝑖𝑗
(𝐶). After this single step the overall 

commitment to reach the product remains, of course, the same. This relationship is summarized in 

the equation: 𝐶𝑖 = ∑ 𝐾𝑖𝑗
(𝐶)

𝑗 𝐶𝑗. Taking into account the boundary values of the committor vector, 

𝐶1 = 0 and 𝐶𝑃 = 1, we obtain the matrix equation (Eq. (4))23 

                                                 (𝐈 − 𝐊(𝐶))𝐂 = 𝐞𝑷                                                                 (4) 

The committor function is represented by a vector, 𝐂, of length, M , equal to the number of 

milestones. The vector eP  is given by eP
T = 0,0,...,0,1( ). The first element of the vector is the 

milestone of the reactant and the last element is the milestone of the product. The matrix K C( )  is 

defined as in Eq. (2) except for adjustments to account for entry events to the reactant and to the 

product states. The first and the last rows of this matrix are set to zero to ensure termination of the 

trajectories at the reactant and product milestones (i.e. K1, j
C( ) = KP, j

C( ) = 0  " j ). 

K(C ) =

0 0 0 0
... ... ... ...
... ... ... ...
0 0 0 0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

                                                          (5) 
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where the “…” denote matrix elements from Eq. (1). The values of the committor at the reactant 

and the product states are determined from the conditions 𝑪1 = 0 and 𝑪𝑃 = 1.  Eq. (4) describes 

inhomogeneous linear equations that can be solved using standard linear algebra tools.  

 

In the applications discussed in this paper, the calculation is exact if the milestones are defined in 

full space and are made small enough such that the functions of interest are roughly constant at the 

length-scale of the milestone. Alternatively, the committor vector in Eq. (4) can be expressed in 

coarse space. In that case the equations are exact if the committor (and the kernel) are made 

functions of the coordinates within the milestone in addition to the milestone index (see section 

II.B).32  

 

An interesting feature of Eq. (4) is the lack of time scale in the equation for the committor function. 

The kernel K is a normalized sum of transitional events between two milestones that occur at any 

time, and hence is time-independent (Eq. 1). In this regard, computation of the committor function 

is similar to the calculations of the minimum energy and minimum free energy paths, which also 

lack temporal information. The trajectories that we run to compute the transition probabilities and 

the lifetimes of the milestones contain information about time scales that can be exploited to further 

characterize molecular mechanisms. For example, if we have competing pathways, their relative 

timescales may influence the choice of the reaction coordinate, as we illustrate in the first two 

examples in section III.A and III.B.  

 

As the first choice of an RC containing time information, consider 𝜏(𝑥,𝑝) which is the time to reach 

the product state for the first time starting at a phase space point (𝑥, 𝑝). It is the mean first passage 



 15 

time from a phase space point and not necessarily the reactant. In the Milestoning formulation, we 

introduce a vector W whose elements are the mean first passage times at each milestone. Assume 

that 𝜏𝑖 is the average time to reach the product state 𝑃 from state 𝑖. This time can be partitioned 

into two components: 1. The time to reach a nearby state 𝑗 is 𝑡𝑖𝑗 and the mean first time to the 

product from state 𝑗. We then average over all the nearby states 𝑗. We write this relationship as 

𝜏𝑖 = ∑ 𝐾𝑖𝑗
(𝜏)

𝑗 (𝑡𝑖𝑗 + 𝜏𝑗). We define the lifetime of milestone 𝑖 as 𝑡𝑖 = ∑ 𝐾𝑖𝑗
(𝜏)𝑡𝑖𝑗𝑗  to obtain the 

matrix equation, Equation (6) 32 

     (𝐈 − 𝐊(𝜏))𝛕 = 𝐭                                                             (6) 

where the elements of the vector t  are the lifetimes of the milestones. The lifetime and the 

MFPT of the product state are zeroes. The kernel matrix K t( ) is adjusted only in the last row 

compared to the expression in Eq. (2)  KP, j
t( ) = 0  " j( ) . We also have the condition 𝑡𝑃 = 0. Thus, 

this matrix has the following structure: 

 

K t( ) =

... ... ... ...
.... ... ... ...
... ... ... ...
0 0 0 0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

                                                        (7) 

Again, the ”…” indicates a corresponding matrix element from Eq. (2).  

 

Another useful measure of the reaction dynamics is the mean exit time from the transition domain 

(τe). The exit time is interesting because it is related to the transition path time, 𝜏𝑇𝑃 which can be 

measured in single-molecule experiments that probe barrier crossing dynamics. 25, 26 The 

derivation of Eq. (8) is identical to the considerations given for Eq. (6) except that the boundaries 
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of the reactant are made absorbing too. We therefore write the Milestoning equation for the vector 

of the exit time (𝛕𝐞)  

     (𝐈 − 𝐊(𝐶))𝛕𝐞 = 𝐭                                                         (8) 

The difference between Eq. (6) and Eq. (8) is at the milestones between the transition domain and 

the reactant. In Eq. (6) only the milestone of the product state is absorbing, while in Eq. (8) both 

boundaries, to the reactant and to the product state are absorbing. These conditions are built into 

the K matrices as illustrated in Eq. (5) and (7) and they are appropriate to describe trajectories that 

“live” only in the transition domain. Here, the lifetimes at the reactant and product milestones are 

set to zero (𝑡1 = 𝑡𝑃 = 0). In contrast, trajectories that contribute to 𝜏 “live” in the transition and 

in the reactant domains. 

 

The simplicity and the similarity of Eqs (4), (6) and (8) suggest the existence of a relationship 

between these different quantities. Indeed, let us assume that the mean first passage time for the 

reactant state, 𝜏1, is known. We can write an alternative equation to Eq. (6), that uses K C( )  instead 

of K t( )  

I - K C( )( ) t =

1 0 0 0
... ... ... ...
... ... ... ...
0 0 0 1

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

t 1

...

...
0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

=

t 1

...

...
0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

                                      (9) 

Subtracting Eq. (8) from Eq. (9) we have 

(𝐈 − 𝐊(𝐂))(𝛕 − 𝛕𝐞) = (
1 0
… …

0 0
… …… …

0 0
… …
0 1

) (
𝜏1
……
0

) − (
0
……
0

) = (

𝜏1
0
0
0

)                  (10) 

We can also write an equation for the committor value to end up at the reactant, (𝟏 − 𝐂), where 

1t = (1,1,1,...). 
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(𝐈 − 𝐊(𝐂))(𝟏 − 𝐂) = (
1
……
1

) − (
0
……
1

) = (
1
0
0
0

)                                       (11) 

Equations (10) and (11) are inhomogeneous linear equations that have a unique solution. They are 

different by a multiplication of a scalar t 1.  

        (𝐈 − 𝐊(𝐂))(𝛕 − 𝛕𝐞) = (𝐈 − 𝐊(𝐂))(𝟏 − 𝐂)τ1                                          (12) 

The uniqueness of the solution of the linear equation implies that 

           𝛕 − 𝛕𝐞 = (𝟏 − 𝐂)𝜏1           or                                               (13) 

𝛕 = 𝛕𝐞 + (𝟏 − 𝐂)𝜏1 

A physical interpretation of the above formula is straightforward. Consider a trajectory 

originating at a phase space point x,p (or at a milestone) in the transition domain. What is the 

mean first passage time, 𝜏(𝑥,𝑝), to reach the product? There are two sets of trajectories that 

contributes to this mean: (i) trajectories that proceed directly to the product state (red trajectory 

in Fig. 1), or (ii) trajectories that first hit the reactant state (blue trajectory piece in Fig. 1), but 

eventually arrive to the product state (black trajectory piece in Fig. 1). In the first case, the time it 

takes to arrive to P is, by definition, the exit time to the product, 𝜏(𝑥,𝑝→𝑃)
𝑒  . In the second case, the 

temporal duration of the trajectory includes two pieces, the time 𝜏(𝑥,𝑝→𝑅)
𝑒  it takes to reach the 

reactant boundary and the first passage time, 𝜏1 ≡ 𝜏(𝑅→𝑃)  from the reactant boundary to the 

product. The probability of the first scenario is the committor 𝐶(𝑥,𝑝), and the probability of the 

second is 1-𝐶(𝑥,𝑝). Thus, the mean first passage time can be written as 𝜏(𝑥,𝑝) = 𝐶(𝑥,𝑝)𝜏(𝑥,𝑝→𝑃)
𝑒 +

[1 − 𝐶(𝑥,𝑝)][𝜏(𝑥,𝑝→𝑅)
𝑒 + 𝜏1], or, after noticing that the total exit time can be written in terms of the 

exit times to the reactants and products, 𝜏(𝑥,𝑝)
𝑒 = 𝐶(𝑥,𝑝)𝜏(𝑥,𝑝→𝑃)

𝑒 + [1 − 𝐶(𝑥,𝑝)]𝜏(𝑥,𝑝→𝑅)
𝑒 , then 
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𝜏(𝑥,𝑝) =  𝜏(𝑥,𝑝)
𝑒 + [1 − 𝐶(𝑥,𝑝)]𝜏1. The last equation is equivalent to Eq. (13) in the Milestoning 

formulation.  

 

It is worth noting the connection of the exit times to the transition path times, 𝜏𝑇𝑃. The latter are 

the times that trajectories initiated at the boundary of the reactant take to reach first the boundary 

of the product without returning to the reactant state. If the initial point x is infinitely close to the 

reactant boundary, 𝜕𝑅, then the exit time to the product 𝜏(𝑥,𝑝→𝑃)
𝑒   becomes the mean transition path 

time, 𝜏𝑇𝑃 = lim𝑥,𝑝→𝜕𝑅 𝜏(𝑥,𝑝→𝑃)
𝑒 .  

 

The mean first passage time includes considerable time spent at the metastable state of the reactant. 

It is desirable to focus attention on the transition domain. We therefore also consider the exit time 

to the product as a reaction coordinate. The calculations of the exit times from a milestone 𝑖 to the 

product within the Milestoning theory are somewhat more complex than the calculation of the 

mean first passage time. The expression in Eq. (14) is derived in 34 

  𝜏𝑖→𝑃
𝑒 = 1

𝐶𝑖
𝐞𝑖

𝑇(𝐈 − 𝐊(𝑪))−1𝐓(𝐈 − 𝐊(𝑪))−1𝐞𝑃                                                             (14) 

where 𝐶𝑖 is the committor value of the i-th milestone. Hence,  𝐶𝑖 = 𝐞𝑖
𝑇(𝐈 − 𝐊(𝑪))

−1
𝐞𝑃, (see also 

Eq. (4)).  𝐞𝑖
𝑇 is a vector of length M with one for the i-th element and zero elsewhere. The matrix 

of transition times, T, has elements - 𝑇𝑖𝑗. They are average times of trajectories initiated at 

milestone i and terminated at j. Similar to Eq. (3), for 𝑛𝑖 trajectories initiated at milestone i, we 

have 𝑇𝑖𝑗 = 1
𝑛𝑖

∑ 𝛿𝑘𝑗𝑡𝑖𝑘(𝑙)𝑛𝑖
𝑙 , where 𝛿𝑘𝑗 is the Kronecker’s delta function. We sum only the subset 

of trajectories terminated at j while the normalization remains the total number of trajectories 

initiated at milestone i. 
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An interesting simplification to Eq. (14) is obtained if the dynamics under consideration is captured 

by a Master equation. See for example sections III A, III B, and III D. We show in the Appendix 

that in this case 𝐓 = 𝐓𝟎𝐊(𝐶)  where 𝐓𝟎 is a diagonal matrix with the milestones’ lifetimes, 𝑡𝑖, on 

the diagonal. Hence, it is not necessary to estimate transition times between all the milestones. 

Only the life times of individual milestones and the transition probabilities between the milestones 

are required. Accepting the result of the appendix we substitute T by 𝐓𝟎𝐊(𝐶) in Eq. (14) to have 

after a few algebraic steps 

 

𝜏𝑖→𝑃
𝑒 =

1
𝐶𝑖

𝐞𝑖
𝑇(𝐈 − 𝐊(𝑪))−1𝐓𝟎𝐊(𝑪)(𝐈 − 𝐊(𝑪))−1𝐞𝑃 

=
1
𝐶𝑖

𝐞𝑖
𝑇(𝐈 − 𝐊(𝑪))−1𝐓𝟎(𝐊(𝑪) − 𝐈 + 𝐈)(𝐈 − 𝐊(𝑪))−1𝐞𝑃 

= −
1
𝐶𝑖

𝐞𝑖
𝑇(𝐈 − 𝐊(𝑪))−1𝐓𝟎𝒆𝑃 +

1
𝐶𝑖

𝐞𝑖
𝑇(𝐈 − 𝐊(𝑪))−1𝐓𝟎(𝐈 − 𝐊(𝑪))−1𝐞𝑃 

𝜏𝑖→𝑃
𝑒 = 1

𝐶𝑖
𝐞𝑖

𝑇(𝐈 − 𝐊(𝑪))−1𝐓𝟎(𝐈 − 𝐊(𝑪))−1𝐞𝑃                                   (15) 

 

The last equation is obtained when we realize that 𝐓𝟎𝒆𝑃  is the zero vector. The multiplication by 

𝐞𝑃 extracts the life time of the product milestone which is zero. 

 

III. RESULTS 

A. Simple four-state system 

      A simple illustration of the differences between the reaction coordinates represented by the 𝜏, 

𝜏𝑃
𝑒, and committor functions is provided by the toy model shown in Figure 3. For simplicity, we 
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omit the starting phase space point (𝑥, 𝑝) or initial state when writing these functions. There are 4 

states to be considered and two plausible pathways between the reactant (state 1) and the product 

(state 4). The pathways are 1-2-4 and 1-3-4.  

The matrix of transition probabilities which we choose for illustration is 

 

                       K =

0 0.5 0.5 0
0.9 0 0 0.1
0.9 0 0 0.1
0 0.5 0.5 0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

                                                               (16) 

 

We impose the boundary conditions listed in the previous section to have for K(C) 

                                                      K C( ) =

0 0 0 0
0.9 0 0 0.1
0.9 0 0 0.1
0 0 0 0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

                                                  (17) 

The kernel matrix of Eq. (17) is sufficient to determine the committor vector that, not 

surprisingly, predicts equal contribution of each of the two pathways (i.e. the ones going through 

states 2 and 3): 

                                                                C =

0
0.1
0.1
1

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

                                                              (18) 

The matrix K t( ) allows the trajectories to return to the reactant state before terminating at the 

product. It is therefore: 
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K t( ) =

0 0.5 0.5 0
0.9 0 0 0.1
0.9 0 0 0.1
0 0 0 0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

                                                   (19) 

For an illustration we choose a vector of diverse lifetimes, 𝐭 = (100,100,0.1,0). The computed 

vector of mean first passage time to the product is t = 1500.5,1450.45,1350.55,0( )  illustrating a 

difference between the contributions from the two pathways (going through states 2 and 3) that 

were predicted to be the same by the committor function. Since the trajectory is allowed to dwell 

in the reactant state, however, the relative difference between the contributions from the two 

pathways is not large. 

 

Finally, we compute the exit time to the product using eq. 15. We need 

(𝐈 − 𝐊(𝑪))
−1

= (
1

0.9
0.9
0

0
1
0
0

0
0
1
0

0
0.1
0.1
1

)           & 

   (𝐈 − 𝐊(𝑪))
−1

𝐓𝟎(𝐈 − 𝐊(𝑪))
−1

= (
0

90
0.09

0

0
100

0
0

0
0

0.1
0

0
10

0.01
0

)    (20) 

to have 𝛕𝑷
𝒆 = (𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 100,0.1,0). Note that the exit time to the product from the reactant 

state is not defined since trajectories initiated at the reactant terminate immediately and never 

make it to the product. Note also that the path with the shorter life time is strongly preferred by 

this reaction coordinate in contrast to the committor and mean first passage time for which the 

two pathways are almost equivalent. The reason for this is that pathways contributing to the 

mean first passage time include the option of returning to the reactant and then picking the faster 

pathway, and thus trajectories starting from states 2 and 3 may take similar average times to 

arrive to the product. 
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Physically, the different reaction coordinates described above address different questions. The 

committor function informs us about the yield of the reaction. We wait for a steady state 

condition and ask which path generates more products. The exit time examines the first runner, 

i.e., which pathway generates products faster. If the interest is in the yield then the committor is a 

good choice. If, however, we are interested in biological signaling, a small number of molecules 

that rapidly make it to the product state can initiate the signal and are therefore of considerable 

interest. In that case the exit time is more telling. 

 

This toy problem clearly illustrates that variation in local lifetimes of the states and a difference 

in the question asked can lead to significant changes in path preferences and in alternate 

mechanisms. 

 
Figure 3. A four-state system, with state 1 being the reactant and state 4 the product. States 2 and 3 represent two 

intermediates. There are two parallel pathways. The “better” pathway is determined by our choice of the reaction 

coordinate. 

 
 

B. Coordinate dependent migration 

        Consider a two-dimensional lattice with sites that can be of two types, A or B. In Figure 4 

sites of type A are above the dashed line while type B are below. Transitions are allowed between 

nearby sites and are described by the Master equation 𝑑𝑃𝑖
𝑑𝑡

= ∑ 𝑘𝑖𝑗𝑗 𝑃𝑗 − ∑ 𝑘𝑗𝑖𝑗 𝑃𝑖 with rate 

coefficients 𝑘𝑖𝑗 that depend on the types of the sites. Specifically, 𝑘𝑖𝑗 =k(A)=0.2. and 𝑘𝑖𝑗 =k(B)=1 
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if the sites i and j are of the same type (A and B, respectively) and 𝑘𝑖𝑗 =k(AB)=0.5(k(A)+ k(B)) if the 

sites are of different types. Each lattice point is a state.  The theory developed in the Method 

section is applicable to any choice of states for which we can define a kernel and local life time. 

Therefore, the Milestoning formulation will be used to analyze this system as well.  

 

Figure 4. A simple lattice model of free migration through two phases in contact. The contact between the two 

phases is denoted by a black dashed line. The upper layer, called A in the text, has a rate coefficient k(A) for migration 

between two adjacent sites, while the lower layer has a coefficient, k(B). The transition rate between a pair of sites each 

at a different layer is k(AB). The reactant is the set of lattice points enclosed in a black rectangular box on the left that 

is shaded by gray and denoted by R. The product is the set of points enclosed by the yellow rectangular box, denoted 

by P and shaded gray as well.  

 

We model the migration along the X axis (Figure 5). The black box represents the reactant and the 

yellow box represents the product. The distance between the interfaces of the reactant and product 

states is 32 lattice spacings. The box size is 65x64.  
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The rate coefficients at the edges of the lattice are adjusted according to their number of neighbors 

to reduce surface effects.  For example, consider a uniform fluid in which the transition probability 

from a site to any of the four neighboring sites is ¼. if a lattice site is at the edge and has only three 

neighbors, then the missing transition to the fourth neighbor is “compensated” by doubling the 

reversed transition probability. i.e. the transition probabilities in the latter case are ¼ , ¼ , and ½. 

The probability of ½ is for a transition in a direction normal to the edge and into the lattice.   

 

Figure 5. Migration through phases in contact. The contact between the two phases is at y=0 and is denoted by a 

black dashed line. The reactant includes the lattice sites within the black rectangular box on the left while the product 

includes the lattice points within the yellow rectangular box on the right. Contour plots of the three functions are 

shown, (a) committor, (b) mean first passage time, (c) exit time to the product.  

 

So far, we formulate the problem using the Master Equation. To use the tools developed in the 

Method section we need to relate the rate coefficients of the Master equation to the transition kernel 

and the life times of the states. A relationship between the rate coefficients and the Milestoning 

(a) C (b) 𝜏 (c) 𝜏𝑃
𝑒 
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parameters is given in reference 35 - kij = Kij / ti . Summing up over all the indices j we have 

∑ 𝑘𝑖𝑗 = 1
𝑡𝑖

𝑗 ∑ 𝐾𝑖𝑗 = 1
𝑡𝑖

𝑗  . We determine the value of the local life time and the kernel as 

Kij =
kij
kij

j
å

  and ti =
1
kij

j
å

                                                        (21) 

 

In Fig. 5 we show contour plots of the committor, mean first passage time, and the exit time to the 

product. Since the calculation of the committor function depends only on K, it is not surprising 

that the iso-committor surfaces are orthogonal to the interface line, regardless of the disparity in 

the local transition times in the two phases.  On the other hand, both the 𝜏 and 𝜏𝑃
𝑒 depend on the 

local transition time and show a preference to move through the phase with a larger rate coefficient 

(and thus follow a path which is more time efficient). 

 
C. A potential with three metastable states. 

      The third example is of dynamics on a two-dimensional potential energy surface with three 

minima that was studied by Huo and Straub 7 using the MaxFlux approach, and by Elber and 

Shalloway 9 using a temperature dependent reaction coordinate. This energy landscape includes 

two minima that are designated to be the reactant and product states (R and P) as well as an 

intermediate state IM. As Elber and Shalloway showed using a curve optimization, at low 

temperatures pathway I (Fig. 6), which proceeds via the intermediate, is more likely to be sampled. 

In contrast, at high temperatures the direct pathway II (Fig. 6) is preferred. 

 

Here we have modified the original potential to introduce a larger difference between the energy 

barriers along path I and path II and raise the energy of the local minimum IM (Fig. 6, and Eq. 
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(22)). We also added an exponential term that prevents the system from escaping to infinity thus 

resulting in a diverging mean first passage time.  

  

𝑈(𝑥, 𝑦) = 3 ∙ exp[−𝑥2 − (𝑦 − 0.2)2] − 

3 ∙ exp[−𝑥2 − (𝑦 − 1.8)2] − 5 ∙ exp[−𝑦2 − (𝑥 − 1.0)2] 

−5 ∙ exp[−𝑦2 − (𝑥 + 1.0)2] + 10[𝑥2+(𝑦−0.5)2−9]                                    (22) 

 
 

Figure 6. An energy landscape with three metastable states (see text for more details on the potential energy, Eq. 

(22)). There are two pathways (I & II) from the reactant (R) to the product (P). The two energy barriers on pathway I 

are 1.07 each, and the height of the energy barrier on pathway II is 1.75.  

       

The dynamics on this landscape is described by the overdamped Langevin equation 

    (𝑥̇
𝑦̇) = − (

𝜕𝑈/𝜕𝑥
𝜕𝑈/𝜕𝑦) + (

𝑅𝑥
𝑅𝑦

),                                                                                        (23)                                                                      
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where the components of the noise vector (Rx,Ry) are statistically independent, normally distributed 

random forces each having a zero mean (〈𝑅𝑥〉 = 〈𝑅𝑦〉 = 0) and satisfying the fluctuation-

dissipation theorem (e.g., 〈𝑅𝑥(0)𝑅𝑥(𝑡)〉 = 2𝑘𝐵𝑇𝛿(𝑡)), where T is the temperature. 

Eq. 23 was integrated using the Euler finite-difference scheme. For example, for the discrete-time 

evolution of the coordinate x we have  

 

 

𝑥𝑘+1 = 𝑥𝑘 − (𝜕𝑈
𝜕𝑥

)
𝑥=𝑥𝑘,𝑦=𝑦𝑘

∙ ∆𝑡 + 𝜂𝑥𝑘 ∙ ∆𝑡                                            (24) 

𝑦𝑘+1 = 𝑦𝑘 − (𝜕𝑈
𝜕𝑦

)
𝑥=𝑥𝑘,𝑦=𝑦𝑘

∙ ∆𝑡 + 𝜂𝑦𝑘 ∙ ∆𝑡                                                 ,                                          

where ∆𝑡 is the time step, 𝑥𝑘 = 𝑥(𝑘∆𝑡),  and 𝜂𝑥𝑘 or 𝜂𝑦𝑘 is a random variable whose probability 

distribution is given by a gaussian with a zero mean, e.g.,    𝑃(𝜂𝑥𝑘) = 1
√2𝜋𝜎2 exp (− 𝜂𝑥𝑘

2

2𝜎2) , 𝜎 =

√2𝑘𝐵𝑇
∆𝑡

.  

We analyze two long trajectories. The first was generated at T=0.25 with a step size of 0.005 for 

1.92 ´ 1011 steps. The second trajectory was of 1.6 ´ 1010  steps and at T=1. The trajectories are 

analyzed on a mesh of milestones (Fig. 7).  The mesh is created in the range 𝑥 ∈ [−3,3], 𝑦 ∈

[−2.5,3.5] with a spacing of 0.25 in the x and y directions. Every edge in the mesh is a milestone. 

The trajectories are examined and crossing events of milestones are recorded and used to estimate 

the Milestoning functions K and t. The committor function, mean first passage time, and exit time 

to the product are computed according to Eqs. (4), (6), and (14) and are compared in Fig. 7.  
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(a) committor 

 
(b) mean first passage time 

 
(c) exit time to the product  

 

Figure 7. Reaction pathways in a two-dimensional system with three minima. The gray shaded bars on the left of 

the figures are the values of the potential energy contours (Eq. 22). The color bars are for the functions of interest on 

the grid. We show (a) the committor, (b) the mean first passage time and (c) the exit time to the product at the two 
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temperatures. Left:  T=0.25. Right: T=1. The reactant and product are marked by dotted squares. The difference 

between the mean first passage time and exit time to the product is significant as the exit time emphasizes the short 

transition.  

 

Specifically, we plot contour maps for the committor function (Fig. 7a), the mean first passage 

time (Fig. 7b), and the exit time to the product (Fig. 7c). The data for the low-temperature case 

T=0.25 is shown on the left, and for the high-temperature case T=1 on the right. The committor 

landscape is qualitatively different from the landscapes of the mean first passage time and exit 

time to the product. Indeed, it is roughly symmetric with respect to reflection at x=0 and is 

insensitive to temperature. In contrast, the mean first passage time is symmetric only at low 

temperature. The exit time to the product emphasizes the pathways with the shortest times, 

regardless of the temperature and is asymmetric at low and high temperatures. It offers the opposite 

view to that offered by the committor function when the emphasis is on speed and not the volume 

of the reaction.   

 
 

D. Protein Search for targets on DNA 

      Protein-DNA interactions play a significant role in many cellular functions such as gene 

expression, DNA repair and more.36 Before the formation of a protein-DNA complex, the protein 

searches, diffusively, for specific binding sites on the long DNA molecule. In a pioneering and 

intriguing experiment Briggs and co-workers 37 measured the rate in which the Lac repressor 

protein finds its binding site on the DNA. The striking observation was a rate coefficient, 

𝑘~1010𝑀−1𝑠−1, which is two orders of magnitude faster than the one predicted assuming free 

diffusion in three dimensions (3D) (k~108 M-1 s-1). It was also three orders of magnitude faster 

than the rate of protein-protein association (k~107 M-1 s-1). These findings have led to the proposal 
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that the observed fast search for the binding site is a combination of diffusion in 3D and diffusion 

along the DNA (1D). 38-40 Single molecule experiments probing the diffusion of different proteins 

on stretched DNA molecules confirm this mechanism.41, 42 A clear review of the simple arguments 

in favor of the proposed mechanism is by Mirny et al.43  Of course, the above simplified model is 

leaving many questions unanswered. For example, what is the role of DNA conformations? 44; of 

the detailed structures of the protein and DNA? 45; of the ruggedness and stochasticity of the system 

(caused, e.g., by the DNA sequence) 46, 47? These questions and more are intensely investigated, 

and the list of the above references are only a partial account of this large field. 

 

This system presents an interesting challenge: can a reaction coordinate differentiate between 

different search mechanisms (i.e., 3D search, 1D search along the DNA, or a combination of the 

two)? As an illustration we consider which of the choices we outlined above, the committor, the 

mean first passage time, and the exit time to the product are consistent with the established picture 

of a mixed 1D and 3D diffusion as a dominant mechanism. To facilitate and simplify the analysis 

we consider the diffusion in 1D and 2D (instead of 3D). We examine a simplified model in two 

dimensions and report the committor, the mean first passage time, and the exit time to the product 

as a way to characterize the search mechanism.  

  

The system is modelled on a 2D square lattice (Fig. 8) of dimension (5L+1)×(5L+1), where the L 

is distance between the reactant and product. The rate coefficients at the edges are determined as 

in the second example (Fig. 4). The DNA is represented as one row of lattice points. The dynamics 

of the system is characterized by four rate coefficients: 

 𝑘𝑤 is the rate coefficient for protein hopping between lattice points in aqueous solution. 
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 𝑘𝐷  is the rate coefficient for protein translocation between DNA lattice points. 

 𝑘𝑜𝑛 is the binding rate coefficient of the protein to the target site at the DNA.  

 𝑘𝑜𝑓𝑓  is the dissociation rate coefficient from the target binding site at the DNA.  

Since the target site is bonding, departure from the binding site is activated and is assumed to be 

significantly slower than diffusion and the forward rate. Hence, 𝑘𝑜𝑓𝑓 ≪  𝑘𝑜𝑛. 

The sites i and j are considered milestones. We compute the Milestoning kernel, Kij , and the 

milestone lifetimes, ti , using Eq. (21), and each lattice node is a state. The different functions 

representing the reaction coordinate are computed with Eqs. (4), (6) and (14) 

 

 
Figure 8. A 2D lattice model of the protein-DNA system. Aqueous solution is represented by blue lattice points. 

The DNA is modelled as the row of lattice points on the black oscillating curve. P (*) represents a target binding site 

at the DNA. 
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We place the product P (the site of the target on the DNA) at a center of a circle with a radius L. 

The reactant state R consists of all the lattice points lying on or outside this circle. The committor 

function, the mean first passage time and the exit time to the product are shown in Fig. 9.  

 

Similar to the second example, the committor function does not change when we modify the 

diffusion rate in water (Fig. 9a) while the mean first passage time and 𝜏𝑃
𝑒  change their qualitative 

behavior (Fig. 9b and 9c). The mean first passage time is significantly longer than the exit time to 

the product since the trajectories of the diffusing protein that contribute to the mean first passage 

time may recross the circle interfacing the reactant and the transition domain before arriving at the 

product; in contrast, the trajectories that contribute to the exit time to the product are always 

confined within the circle.  

(a)  
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(b)  

(c)  
   
Figure 9. Reaction path calculations of a ligand search for a binding site on a stretched DNA molecule: (a) the 

committor, (b) the mean first passage time, (c) the exit time to the product. For the calculations of the committor (a) 

and the mean first passage time (b), the reactant R includes all the lattice points lying on or outside the circle of radius 

L centered at the product. The reactant lattice points are omitted in the exit time plots. The boundary between the 

reactant and the transition domain is a black dashed circle in the mean first passage time calculation. The product is 

presented by a *. The rate coefficients kD=1 and koff=0.01 were kept the same in all the calculations. In the figures on 

the left we set 𝑘𝑜𝑛 = 𝑘𝑤=10, and the right figures have 𝑘𝑜𝑛 = 𝑘𝑤 = 1. Hence, we vary the diffusion rates in aqueous 

solutions and we set the ligand binding rate equal to the rate of migration in solution. 

 
Figures 9b and 9c illustrate the impact of diffusion rates, or the rate of hopping between the lattice 

sites on the most efficient pathways.  As we decrease the rate coefficients for transition between 

lattice points in aqueous solution the system is more likely to conduct an efficient search along the 
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one-dimensional DNA. The combination of 1D and 3D diffusion are consistent with experimental 

observations and other theories that were discussed above. 43  

  

E. THE TRANSITION STATE 

One attractive feature of the committor function is that it provides a way to define a transition 

states as the hypersurface with the value of the committor equal 0.5.13 This transition state is 

intuitive and is hepful in the investigations of reaction mechanisms. The question we address in 

this section is: Can we find a corresponding definition of a transition state using the mean first 

passage time, or the exit times? 

We define the transition function Τ𝑒(𝑥, 𝑝) as  

 

  Τ𝑒(𝑥, 𝑝) = 𝑙𝑜𝑔[𝜏(𝑥,𝑝)→𝑃
𝑒 𝜏(𝑥,𝑝)→𝑅

𝑒⁄ ]                                         (25) 

 

The transition state is obtained for the set of points (𝑥, 𝑝) such that Τ𝑒(𝑥, 𝑝) = 0. That is, we 

consider the points in the transition domain that have the same exit times to both the reactant and 

the product states. Deviations from the transition state impact the balance between the two 

transition times and the value of Τ𝑒(𝑥, 𝑝). In Figure 10 we show contour plots of the transition 

function for the second and third examples of this manuscript. 
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Figure 10. Contour plots of the transition function Τ𝑒(𝑥, 𝑝) for two of the examples provided in the manuscript. 

(A) Coordinate dependent migration (section III.B), (B) A potential with three metastable states (section III.C) with 

temperature of 0.25, (C) A potential with three metastable states (section III.C) with temperature of 1.0. The contour 

lines of Τ𝑒(𝑥, 𝑝) = 0 are the transition states. 

 

It is interetsing to note the similarity of the transition states as defined with the transition function 

equal to zero in Figure 10 and the committor function equal 0.5 in Figure 5a and 7a. Of course, the 

exit times include temporal information, missing from the committor, which can be exploited in 

other ways.  

A 

B C 
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IV. DISCUSSION AND CONCLUSIONS 

      We have considered three functions, or reaction coordinates, that can capture and describe the 

progress of a molecular rearrangement, the committor, the mean first passage time and the exit 

time to the product. One of these functions, the committor, is often considered a “perfect” reaction 

coordinate. As we illustrate here, however, the committor does not include temporal information. 

From this perspective the committor is similar to the free energy, an analogy that is worth 

exploring. The free energy landscape is useful for modeling kinetics close to equilibrium and for 

identifying reaction bottlenecks. High free energy barriers, which the system must pass between 

the reactants and the products, are usually bottlenecks of reactions. The rate of transitions across 

the landscape, however, also depends on mobility (or, equivalently, diffusivity), which cannot be 

determined from the free energy. If the free energy barriers are high and the reactive trajectories 

are confined within a narrow tube then the diffusivity will not significantly impact the choice of 

the reaction coordinate. If, however, there are alternative reaction pathways with comparable 

barriers, or if the reaction is diffusion-controlled, then the mobility will likely influence the 

molecular mechanism, as illustrated here.  

 

A similar argument applies to the committor. In the Milestoning language the committor depends 

only on K, the transition kernel between the milestones (Eq. 4) and not on the times of the local 

transitions, which are contained in the lifetime vector t. If the transition probabilities chart a unique 

bottleneck (a domain of low transition probability that must be traversed to reach the product) then 

the committor is a good measure of the reaction coordinate. If, however, there are multiple 
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competing pathways and/or the transition times depend strongly on the milestones, the committor, 

as a way to identify the dominant reaction mechanism, can be misleading.  

 

Moreover, as noted earlier, the committor function emphasizes the efficiency of product release. 

If we focus on early events and the onset of the reaction (e.g. in biological signaling) the fastest 

routes are the most significant. The identification of the fastest pathways is not addressed by the 

committor function. 

 

The mean first passage time and exit time to the product (Eqs. (6) and (14)) supplement the 

committor by including time information (the mean first passage time was proposed as a reaction 

coordinate by Park et al.24).  The use of mean first passage time as a reaction coordinate has the 

advantage that it directly reports an experimental observable (specifically, the mean first passage 

time from the reactant to the product). The mean first passage time includes significant 

“incubation” time at the reactant. This is obviously a disadvantage, if we wish to focus on the 

transition domain, and we therefore also consider the exit time. Moreover, the exit time to the 

product is related to another experimental observable, the transition path time and it therefore 

offers a fresh view on the kinetics of the process. Several numerical examples reported here 

illustrate the differences between the above reaction coordinates and suggest that the committor 

maybe unsatisfactory when multiple competing pathways exist, the diffusivity is a significant 

function of the position, and when the interest is in early events of the reaction. 

 

Modeling of reactions is greatly assisted by simulations and their analyses. The calculation of the 

mean first passage time, the committor, and the exit times is facilitated by the availability of 
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enhanced sampling techniques for kinetics, such as Milestoning,29 weighted ensemble,48 and 

non-equilibrium umbrella sampling.49 In particular the use of meshes in these methods makes it 

possible to compute the functions of the committor, mean first passage time, and the exit time on the 

grid. Analyzing trajectory data to depict molecular mechanisms is an important step providing 

both quantitative and qualitative insights. Given that different definitions of reaction coordinates 

are sub-optimal in different ways, in order to improve understanding of the transition it is then 

useful to examine alternative definitions of the reaction coordinate before settling on one 

mechanism and not the other.  

 

Although different reaction coordinates may offer different qualitative views of the same 

process, they may be related mathematically. Here we show a formal connection between the 

committor, the mean first passage time, and the exit time from the domain separating the reactant 

from the product (Eq. (13)). This connection is particularly interesting given that the mean first 

passage time and the exit time are experimentally accessible, for example, via single-molecule 

measurements of biomolecular dynamics. 

 

APPENDIX: The Master equation and the matrix of transition times. 

Consider a system that is described by a Master equation 

𝑑𝑃𝑖
𝑑𝑡

= − ∑ 𝑘𝑗𝑖𝑃𝑖 +𝑗 ∑ 𝑘𝑖𝑗𝑃𝑗𝑗                                                                      (A.1) 

In this system the time dependent transition probability from state i to state j is given by 14 

𝐾𝑖𝑗(𝑡) = 𝑘𝑖𝑗 ⋅ 𝑒𝑥𝑝(− ∑ 𝑘𝑖𝑗 ⋅ 𝑡𝑗 )                                                   (A.2) 

The probability of transition between a pair of milestones at any time (this is an element of the K 

matrix which is used in this paper) is given by  
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𝐾𝑖𝑗 = ∫ 𝐾𝑖𝑗(𝑡)∞
0 𝑑𝑡 = 𝑘𝑖𝑗

∑ 𝑘𝑖𝑗𝑗
                                                         (A.3) 

The average transition time between milestone 𝑖 and milestone 𝑗,  𝑡𝑖𝑗, is  

𝑡𝑖𝑗 = ∫ 𝑡 ⋅ 𝐾𝑖𝑗(𝑡)∞
0 𝑑𝑡 = 𝑘𝑖𝑗

(∑ 𝑘𝑖𝑗𝑗 )2                                                   (A.4) 

Note however that the lifetime of a milestone is given by 

𝑡𝑖 = ∑ 𝑡𝑖𝑗𝑗 = 1
∑ 𝑘𝑖𝑗𝑗

                                                      (A.5) 

And we can therefore write 

𝑡𝑖𝑗 = 𝐾𝑖𝑗 ⋅ 𝑡𝑖                                                            (A.6) 

which is the same as the matrix relationship given in section II: 𝐓 = 𝐓𝟎𝐊. 
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