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ABSTRACT

We present a stochastic approach to perform strongly contracted n-electron valence state perturbation theory (SC-NEVPT), which only
requires one- and two-body reduced density matrices, without introducing approximations. We use this method to perform SC-NEVPT2
for complete active space self-consistent field wave functions obtained from selected configuration interaction, although the approach is
applicable to a larger class of wave functions, including those from orbital-space variational Monte Carlo. The accuracy of this approach
is demonstrated for small test systems, and the scaling is investigated with the number of virtual orbitals and the molecule size. We also
find the SC-NEVPT2 energy to be relatively insensitive to the quality of the reference wave function. Finally, the method is applied to the
Fe(II)-porphyrin system with a (32, 290) active space and to the isomerization of [Cu,0,]*" in a (28e, 320) active space.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023353

I. INTRODUCTION

In studying electronic structure problems, correlation effects
are often separated into strong and dynamic correlation. In some
systems, a single determinant is sufficient to provide a qualitative
description of a system’s electronic structure. However, in strongly
correlated systems, this assumption breaks down, and one often has
to use a superposition of multiple determinants to describe the ref-
erence state. These determinants are obtained by including all (or
several) possible occupations within a subset of orbitals known as
the active space. One often optimizes the active space orbitals to
minimize the energy, which results in a method known as complete
active space self-consistent field (CASSCF). The rest of the correla-
tion due to excitation into remaining orbitals is known as dynamic
correlation and can be included using a variety of methods including
multireference configuration interaction (MRCI),"” multireference
perturbation theory (MRPT),”” and multireference coupled cluster
(MRCC).” "'

In recent years, there have been significant improvements in
algorithms for performing (near-exact) CASSCEF calculations. Meth-
ods including the density matrix renormalization group algorithm

(DMRG)," " full configuration interaction quantum Monte Carlo
(FCIQMC),'*" and selected configuration interaction (scn'é*!
can now be used to solve CASSCF problems accurately for active
spaces of 40-50 orbitals and possibly beyond.'*'"*'">" However,
there still remains the important task of including dynamic corre-
lation. Traditional implementations of MRCI and MRPT require
calculating and storing the three- and sometimes four-body reduced
density matrices (RDMs) within the active space, which require
O(n5) and O(n?) storage, respectively. This becomes infeasible for
the large active spaces considered above, and separate approaches
must be developed.

A variety of methods have been proposed and used to avoid
the need for higher-order RDMs. These include the use of cumu-
lant approximations,” uncontracting terms that require high-order
RDMs,” use of matrix product states,”””’ approaches based on
FCIQMC (where the high-order RDMs are only sampled),l‘\"” a
time-dependent formalism,”””" fully uncontracted formulations of
MRPT,” external contraction,”””* and others.”” "’

Recently, we demonstrated that it is possible to perform
strongly contracted MRCI (SC-MRCI) and second-order n-electron
valence perturbation theory (SC-NEVPT2) without constructing
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RDMs but instead using variational Monte Carlo (VMC)." In this
approach, rather than constructing RDMs and contracting them
with integrals, it is possible to directly sample contributions from
determinants in the first-order interacting space (FOIS). Although
the number of determinants in the FOIS grows exponentially with
the active space size, VMC provides a polynomial scaling method
to sample them. These stochastic approaches were referred to as
SC-MRCI(s) and SC-NEVPT2(s).

In this article, we develop this idea further, focusing specifi-
cally on SC-NEVPT2(s). In particular, we present a somewhat dif-
ferent algorithm that is more efficient and avoids the need for a
trial wave function in the FOIS, as was required in the original SC-
NEVPT?2(s) approach. We also extend this to include core orbitals,
which were not considered in our original implementation. We go
on to provide the analysis of this approach, including scaling with
the number of virtual orbitals for the N, molecule and with system
size for polyacetylene molecules. We also provide examples demon-
strating the performance of SC-NEVPT2 when the reference wave
function is in error. We then study two much larger systems than
considered previously by this method, namely, Fe(II)-porphyrin
in a (32e, 290) active space and [Cu;0;]*" in a (28e, 320) active
space, demonstrating that this approach is practical for challenging
problems.

Il. SC-NEVPT2 OVERVIEW

We begin by recapping the strongly contracted NEVPT2
method"”** and defining the notation to be used throughout.

In multireference perturbation theory, one begins by solving
the complete active space (CAS) problem, giving a reference wave

function |¢f,?) ),

195) = 37 Crn| D), (1)
I

where m is the state label and |D;) are determinants in which all
core orbitals (denoted i, j, ...) are occupied and all virtual orbitals
(denoted r, s, . ..) are unoccupied, while active orbitals (denoted a,
b, ...) can take any occupation number.

Assuming that the set of active orbitals is chosen appropri-
ately, \gb,(,? )) provides a qualitative description of the true wave
function. For better accuracy, dynamic correlation must then be
included by considering excitations involving core and virtual
orbitals. This can be done by second-order perturbation the-
ory, after choosing an appropriate reference Hamiltonian ().
There is no unique way of defining a reference Hamiltonian,
in fact, any Hamiltonian that has \ngﬂO )) as its ground state can
be selected. Various reference Hamiltonians have been chosen in
the literature, and each leads to a different perturbation theory.
In this article, we take the reference Hamiltonian to be the one
that defines strongly contracted NEVPT (SC-NEVPT) theory [see
Eq. 3)].

In the SC scheme, the uncontracted FOIS is partitioned into
subspaces Sl(k). Here, k specifies the change in the number of active

space electrons relative to |</5$,? )) (-2 < k < 2), while I specifies which
non-active orbitals are involved in the excitation. For example, a
determinant that contains two unoccupied core orbitals i and j and
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s

a single occupied virtual orbital r belongs to class S;; . A single

perturber state is then assigned to each class Sl(k), defined by

™) = PO HIg), @)
where Pl(k) is the projector onto the Sl(k) subspace and H is the
Hamiltonian operator. This definition ensures that perturber states
are orthogonal to each other (but not normalized).

The above perturber states can be further divided into eight
types, depending on the number of core and virtual orbitals
involved. We refer to these as v, vv, ¢, cv, cvv, cc, ccv, and ccvv. For
example, we say that a perturber state |1//l§1r)) is of type ccv.

Given the perturber states \wl(k) ), the zeroth-order Hamiltonian
for SC-NEVPT is defined as

k k k
HO = ZE SN+ ZE vl o)
m Lk

which leads to the second-order perturbative energy correction,

(k)
N,
(2) i
Ey) =) : (4)
T Efr?) _ El(k)
Here, Nl(k) are the squared norms of the perturbers,
k K. (k
N = (), 5)

E) is the zeroth-order energy for state m, and El(k) are the per-
turber energies. In NEVPT, these perturber energies are defined via
the Dyall Hamiltonian, H D

k 1 k) Dy, (k
EY = —5 P IH ), (6)
Nl
with
b core virtual
H™ = Z eia,]‘Lai + Z eaulaa + Hactives (7)
i a

where Hiciive is the core-averaged Hamiltonian in the active space
such that HD|¢,(,40)) =gY \gbfno)).

The primary task is to calculate the second-order energy from
Eq. (4). To do so, both the squared norms, Nl(k) , and the perturber
energies, El(k), are required. The exact expressions for El(k) and Nl(k)
can be obtained in terms of active-space RDMs. However, these
include three- and four-body RDMs, whose storage requirements
scale as O(n8) and O(n) in the number of active-space orbitals,
na. Instead, we will take a stochastic approach that avoids the need
for higher-order RDMs.

I1l. STOCHASTIC SC-NEVPT2

The estimation of E$? can be performed in two stages. First, we

calculate the squared norms, Nl(k), for all perturbers. In the second
step, we calculate the summation in Eq. (4) stochastically by sam-

pling perturbers |1;/Z(k)) with probabilities proportional to Nl(k). For
the selected perturber, we estimate the energy El(k) and accumulate
the contribution toward Efnz) (this is fully described in Sec. I1I D).
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We begin with some important general points. First, we only
wish to avoid the use of three- and four-body RDMs; storing one-
and two-body RDMs is always straightforward for current active
spaces. We, therefore, use the existing SC-NEVPT2 approach to cal-
culate all instances of E,(k) and N l(k), which only require the 1-RDM
and 2-RDM. This greatly reduces the sampling task to be performed.
Using this rule, in the stochastic approach to be described, we can
ignore ccvv, cvv, and ccv contributions entirely. For cc, cv, and v,
we need to sample El(k) but not N,<k). For the remaining two sets

(c and v), both El(k) and Nl(k) must be sampled. This is summarized
in Table I.

For the algorithm to be presented, the only computational
requirement on \qS,(,? )) is that overlaps such as (n\(p,(,? )) can be cal-
culated and that the 1-RDM and 2-RDM can be constructed. In
this article, we solely take |¢,(ﬂo)) from SCI. However, this require-
ment is met by other wave functions such as those that can be
optimized in orbital-space VMC. These include Jastrow antisym-
metric geminal power wave functions'"" and other symmetry-
projected Jastrow mean-field wave functions,”” which can be accu-
rate for strong correlation and permit the efficient calculation
of (nlg}y”
not).

Whenever generating connections by the application of the
Hamiltonian, it should be understood that the heat bath criteria
are applied. This was described in the initial presentation of our
VMC approach, which we refer to for in-depth description.”® This
ensures that, for a determinant |n), connections |p) are not gener-
ated if |(p|H|n)| < e for some small threshold e. For results in this
article, we always take e = 107 hartree. This typically reduces both
the prefactor and scaling of the resulting algorithm, with a negligible
effect on the accuracy.

) (though wave functions used in real-space VMC will

A. The continuous time Monte Carlo algorithm

In the following, it is necessary to sample from probability
distributions p,, which take the form

, ®)

TABLE I. Table showing which El(k) and Nl(k) instances are calculated stochastically
and by the traditional deterministic approach. The deterministic approach is taken if
only 1- and 2-body RDMs are required, otherwise we use the stochastic approach in
order to avoid 3- and 4-body RDMs.

Perturber type Energies (El(k)) Norms (Nl(k))

c Stochastic Stochastic
Stochastic Stochastic

cc Stochastic Exact

cv Stochastic Exact

vy Stochastic Exact

ccv Exact Exact

cvy Exact Exact

ccvv Exact Exact
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where |y) is some wave function. Typically, in VMC, this would be
sampled by the Metropolis-Hastings algorithm." "’ However, this
can be quite inefficient when working in a discrete basis of Slater
determinants. Instead, we use the Continuous Time Monte Carlo
(CTMC) algorithm,”””" which was introduced to VMC recently.*
When applied in other areas, this algorithm is sometimes known
as Kinetic Monte Carlo (KMC) or the Bortz-Kalos-Lebowitz (BKL)
algorithm. We briefly recap it here:

1. From a determinant |n), calculate r(p < n),

r(p < n) =

{ply)
(nly) ’ )

for all determinants |p) connected to |n) by a single or double
excitation (within the relevant space).

2. Calculate the residence time for |n), defined as

1

= —————.
X,r(p<n)

(10)
This will define the weight of contributions from |n) in subse-
quent estimators.

3. Select a new determinant |p) with probability proportional to
r(p < n).

After a short burn-in period, iterating this procedure will cor-
rectly sample p,,, provided that ¢, are used as weights for contribu-
tions to estimators. We denote the total residence time for a random
walk by T = Y ,t,. It is worth pointing out that, in CTMC, all moves
are accepted and there are no rejections, but this comes at the added
cost of having to evaluate all the overlap ratios in Eq. (9). However,
this additional cost is mitigated in our VMC algorithm because these
overall ratios are obtained when evaluating the local energy.

B. Previous SC-NEVPT2(s) algorithm

For completeness, we briefly recap the stochastic SC-NEVPT2
approach that we presented previously.”' This was a trial implemen-
tation that excluded excitations involving core orbitals. The energies

El(k) were estimated by sampling the numerators and denominators,

WOIEPY®) )2 (v Pn) (nlHP )

- > (1 1)
Wlv) % () () (v
) Z' (nlye)? 9} )
(yslys) (wlys)  wslm)P
where |ys) is an appropriately chosen sampling wave function,
W/s Z C(k)|l//(k) ) (13)

for some coefficients c( ) Here, all quantities are sampled by a sin-
gle random walk that takes place in S(O) and its FOIS, using the

[(nly)
(yslys)

ful for the test systems considered in Ref. 41 but has drawbacks
that can be improved upon. First, the approach requires the user to

CTMC algorithm to sample This approach was success-
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choose the coefficients cl(k) in the sampling wave function. A suit-
able choice is far from obvious, and a suitable prescription can vary
widely between systems. The final statistical error varies significantly

(k)
1

depending on |ys). In our previous work, we chose ¢;"’ randomly

with céo) being an order of magnitude larger than other coefficients.
This was found to be sufficient for the test systems considered but is
far from optimal.

Second, using the CTMC algorithm as described in Sec. IIT A

[{nlys) )
{(wslys)

connected to the current walker, |n). In contrast, to calculate the
expression Eq. (11) for a given |n) requires

to sample

requires calculating overlaps (p|y;) for all |p)

(nH M) = 3 (nlH ) (ply ). (14)

peS,(k)

Because H? only acts within the active space, the number of over-

laps (p|1//l(k)) to calculate is much smaller. Thus, the CTMC approach
previously used does not only use information already available but
requires significant extra computation to calculate the additional
overlaps.

We instead describe an alternative algorithm that avoids both

issues. Here, we first estimate the norms Nl(k) and then use these to
sample Sl(k). Each corresponding El(k) is then estimated by a random
walk entirely within Sl(k).

C. Sampling Nl(k)

We take the general case where \qS,(,? )) may not be normalized.
The squared norms can be sampled using the following approach:

N’(k) _ (%(k)hl/z(k)) (15)
(65165
(PP HIgS))
= ©; (16)
(6 165)
o g (nlHP(O HIg) -
50 @PBD) (i)
= (N®[n]) (18)
Pn

Here, p, is the probability distribution to be sampled by a random
walk,

(0)\2
PG )

(@V18)

The determinants selected, |n), are referred to as walkers. We
emphasize that this random walk takes places entirely within the

CASCI space (S(()O)). The quantity Nl(k) [n] is defined by

N O[] - SR i)
(nigh”)

( (20)
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% pesto (D) T, s (A1) (115
_ I 0 . (21)
(nlg5,”)

N l(k) [n] is calculated by the following steps: First, generate all deter-

minants |p) in Sl(k) that are connected to |n) (calculating (n|H|p) for
each). Then, for each |p), generate all connected determinants |r)

within S(()O) (calculating (p|H|r) and (r|¢f,? )) for each).
In practice, instead of calculating Nl(k) [n] for each Sl(k) sepa-
rately, we accumulate all instances simultaneously, that is, for each

walker |n) € Séo), loop over connected determinants |p) in all Sl(k) is

considered, accumulating contributions to Nl(k) [n] for each.

The norm and energy of the zeroth-order wave function are
sampled in an analogous way during the same random walk. In this
article, we take |¢£,10)> from SCI, such that the wave function is nor-
malized by construction, and its energy known. Nonetheless, this
step is important in general.

Walker moves within SSO) are made using the continuous time
Monte Carlo (CTMC) algorithm, described above. Importantly,
each r(p « n) is already constructed in order to obtain ( © |¢f,? ))
so that the CTMC algorithm can be performed essentially for
free.

(k) . (k)

Note that for every S’ sampled, the quantity (ply,"’)
= (p|H|¢5) is calculated for at least one determinant [p) in Sl(k).
We can, therefore, keep a list of determinants that have the largest

value of (p|1;/l(k)) for each Sl(k) sector (of the determinants reached).
These determinants are used to initialize the walkers when sampling
the corresponding El(k).

As noted in Table I, we only need to sample norms for per-
turbers of types ¢ and v. However, we also need to generate initial
determinants for cc, cv, and vv. Therefore, there are two parameters
that specify the sampling in this step, which we denote Nyorm and
Ninit. For the first Nporm iterations, Nl(k) is only sampled for ¢ and
v-type perturbers. We then perform Niy iterations in which N, l(k) is
sampled for all five perturber types (c, v, cc, cv, and vv). The Nl(k)
estimates for cc, cv, and vv from this step are not used, as we have
access to the exact values. Instead, we use the generated initial deter-
minants when sampling El(k) in the next step. These final iterations
are more expensive. However, we always take Ninit << Nnorm, and
typically, Ninit = 50 is more than sufficient.

D. Sampling E® and E

We next consider the sampling of Efnz) itself, as defined in
Eq. (4). This is done by sampling terms in this summation with a

probability proportional to N l(k),

() _ 1 (k)
EY =% ———=N, (22)
{70 E© g0

(k)

(k) 1 N,

= Z N, X Z - - (23)
|:k’,l'¢0 ] kiz0 E(©) — El(k) Yk 0 NZ(,k )
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_ *) ( 1 )
3P/ [P S R (24)
|:k,l¢0 : ] E© —E®

p(bk)

where p(L,k) = 5. It is straightforward to sample from

Py N,(:k’
p(l, k) since all Nl(k) values are stored after the initial stage of the
algorithm. We also truncate the summation to only include contri-

butions with Nl(k) > 107% as an efficiency improvement, which we
do not find to affect the accuracy.

Sl(k) selected, the corresponding El(k) must then be
s®.

For each

estimated. This is achieved by a random walk entirely within
Specifically,

o _ i lFly )
B == 0 (25)
(v ly )
[l (nlEinly™)
- ®) (%) ®) (26)
nes® (1/’1 |V’z ) <”|V’z )
= (EC[n]), (27)
where
(k)y 2
o= L (28)
(v lv™")
and EP [n] is the local energy at |n) with respect to Fp,
ED[n] = M (29)
™)
% pest0 {1l HDIP) T, s (pIHlr) (116,
- v . (30)

% es (AT (r145)

The numerator of this expression is calculated by the following steps:
First, generate all connections |p) within Sl(k) (and calculate each
(n|Hp|p)). Then, for each |p), generate all connections |r) within

S(()o) (and calculate each (p|H|r) and (r|¢,(,? ))). Similarly, the denom-
inator of this expression is obtained by looping over all connected
determinants |r) in SSO) and calculating (n|H|r) and (r|¢,(ﬂo) ) for each.

The distribution p, is again sampled using the CTMC algo-
rithm. All required values of r(p < n) are obtained when ELD[n] is
calculated such that this can be performed essentially for free.

There are two parameters that define the sampling in this step,
which we denote Nenergy and NE’(k). Here, Nenergy is the number of

samples taken from p(J, k) (i.e., the number of El(k) selected), while

Ny is the number of samples to estimate each El(k) selected. How-
1

ever, instead of using a fixed iteration count for all El(k), it is often
more accurate to use a fixed residence time (see the Appendix). In
cases where we use a fixed residence time, we will list both the total
residence time used, denoted T, and the average iteration count per

El(k) estimate.
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The final energy is estimated using an average of 1/(E(®) fEl(k) )
over the selected Sl(k), as in Eq. (24). Because El(k) is obtained as
a random variable, this is a biased estimator. For a given El(k), the
expectation value of 1/(E® — El(k)) will have an error that will
become larger as the statistical error in El(k) increases. Because only

a small number of samples are used to estimate each El(k), this error
can become non-negligible for some challenging problems. This is
discussed in more detail in the Appendix, where we show that the
bias in each 1/(E - E,(k) ) can be largely corrected by including the
following term:

var[fil(k)]

— (31)
k
(B - EV)

Ebiascorr. = —

where Var[fil(k)] is the variance of the El(k) estimate. We include
this correction term throughout, unless stated otherwise, with an
example given in the Appendix.

E. Parallelism

The above algorithm can be efficiently performed on large-scale
computers. In our current implementation, this is done by running
the above steps independently on each process. Each process gener-
ates its own N, I<k) and E](k) estimates and, ultimately, its own E@ esti-

mate at the end of the simulation. These E” values are then averaged
to produce the final estimate of the SC-NEVPT2 energy, together
with an error estimate. This error estimate is simple to obtain since
results from different processes are statistically independent. There
is no communication between MPI processes at any point during the
simulation.

This approach has very good parallel efficiency. The only cause
of non-ideal parallel performance is that processes will take varying
times to complete all iterations.

Note that the sampling parameters defined above (Nnorm, Ninit>
Nenergy, and NEl(k)) are the number of iterations performed on each
process.

F. Scaling

In the following, we denote the number of core, active, and
virtual orbitals as #, 14, and n,, respectively.

In the algorithm presented, a norm estimate Nl(k) is obtained
for all (I, k) for which the heat bath criteria are satisfied. However,
only a subset of El(k) are obtained, as sampled according to the dis-
tribution in Eq. (24). We, therefore, consider the scaling to calculate

Nl(k) for all (I, k) values and El(k) for a constant number of (I, k)
samples.

Consider the cost to calculate all Nl(k)[n], for a given |n)
€ S(()O). The expression to be evaluated is given in Eq. (21). First,

all determinants |p) ¢ S((,O) connected to |n) are generated. For per-
turbers of types ¢, v, cc, cv, and vv, the number of valid |p) scales
as O(nine), O(niny), O(nink), O(nincny), and O(ninl), respec-
tively. For each [p) € S,(k), the cost to generate all connected |r) € SSO)
then scales as O(#) for c- and v-type perturbers and as O(n2) for
cc-, cv—, and vu-type perturbers.
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TABLE II. The expected scaling to sample El(k) or Nl(k) estimates. The scaling pre-

sented for El(k) is for a fixed (/, k), while for Nl(k) the scaling is given for all (/, k) of the
given perturber type. This assumes that all valid excitations are generated, whereas
excitations are actually generated by the heat bath criteria, which are expected to
reduce scaling. However, the number of samples required to maintain a constant
statistical error will usually increase with system size, increasing the overall scaling.

Scaling for real examples is investigated in Sec. |V.

Perturber type Energies (El(k)) Norms (Nl(k))
c O(ng) O(ngne)
v O(nl) O(nsny)
cc o) O(nin?)
cv On) O(nineny)
vv O(ng) O(ngnyy)
E(k)[n] is calculated by Eq. (30). F iven |n) € S the cost
: y Eq. (30). For a given |n) € S;", the cos

to generate all connected |p) € Sl(k) scales as O(n5) for all perturber
types. Then, for each |p) € Sl(k), the cost to generate all connected

|r) € Séo) scales as O(n2) for ¢- and v-type perturbers and as O(n?2)
for cc-, cv—, and vo-type perturbers.

The overall scaling for each perturber type, obtained from the
above arguments, is given in Table I1. The true scaling will be some-
what different to this in practice. First, we do not loop over all con-
nected determinants but instead use the heat bath criteria, where
connections are not generated if they have a Hamiltonian element
below some threshold. This is expected to reduce the overall scal-
ing (however, in this article, we use CASSCF orbitals; because these
are delocalized, the potential benefits are more limited). Second, the
above only gives the scaling to calculate El(k) [n] and Nl(k) [n] for a
constant number of samples, |n). In general, the number of samples
will increase with system size for a constant statistical error. This
increases the overall scaling. It is difficult to write down a general
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formula to describe this effect. We instead investigate this through
examples in Sec. [V.

IV. RESULTS

In the following, PySCF*”’ is used to generate molecular
orbitals via CASSCF and molecular integrals for the subsequent SC-
NEVPT2(s) calculations. Heat bath CI (HCI) as implemented in the
Dice code is used as the CASSCF solver’ """ and also to generate
the zeroth-order wave function |¢f,? )) for the SC-NEVPT2(s) step.

To account for burn-in errors, we discard the initial 50 itera-
tions for each CTMC random walk, both for Nl(k) and El(k) estima-
tion, unless stated otherwise.

A. Scaling with the number of virtual orbitals: N,

As a simple first example, we consider N; in its ground state at
R = 2.5 ag bond length. The active space is (10e, 80) with two core
orbitals. We then consider calculating the SC-NEVPT2 energy for
increasing correlation consistent basis sets from cc-pVDZ (18 virtual
orbitals) to aug-cc-pV6Z (368 virtual orbitals).

For the norm—sampling stage, we use parameters Nporm = 900
and Niyie = 100. For the energy sampling stage, we use Nenergy
=10000 and N = 100.

The results are presented in Table III. The final two columns
compare the stochastic SC-NEVPT2 energies to those calculated
with Molpro,”® which agree within 1 or 2 statistical error bars. All
timings presented are wall times.

The timing and error results from Table I1I can be used to assess
scaling with respect to the number of virtual orbitals. Based on the
theoretical scaling in Table 11, and for a fixed number of iterations,
one would except the sampling of norms (time fhorm) to asymp-
totically scale with the number of virtual orbitals as O(n,). The
expected asymptotic scaling to generate initial determinants (time
tinitdet.) 1S O(nf,). Sampling a constant number of energies (time
tenergy) should be independent of #,,.

TABLE Ill. Scaling of SC-NEVPT2(s) timing and error estimates with basis set size, applied to the ground state of N, at R = 2.5 ag. The active space is (10e, 80). thom is the time
to perform 900 iterations to sample Nl(k) for ¢- and v-type perturbers. tiyi; get. is the time to perform 100 iterations to generate initial determinants. fenergy is the time to sample

10000 values of Efk). The final two columns compare the subsequent SC-NEVPT2(s) energy estimates to exact results from Molpro.*®

Total energy + 109 (hartree)

Basis Ny tnorm (8) Finit. det. (S) tenergy (s) Statistical error (hartree) SC-NEVPT2(s) Molpro SC-NEVPT2
cc-pvVDZ 18 5.103 1.019 234.110 2.0x107* —0.1857(2) —0.18543
aug-cc-pVDZ 36 10.482 2454 238.149 22x10* ~0.2025(2) ~0.20236
cc-pVTZ 50 15.672 3.989 204.581 3.5x10* —0.2844(4) —0.28498
aug-cc-pVTZ 82 26.841 8.526 225.526 3.6x10 * —0.2946(4) —0.29433
cc-pvVQZ 100 30.979 10.756 221.810 52x10* —0.3452(5) —0.34511
aug-cc-pvVQZ 150 52.517 21.578 231.923 5.0x10* —0.3494(5) —0.348 80
cc-pV5Z 172 56.710 25.333 224.181 41x10* —0.3680(4) —0.367 52
aug-cc-pV5Z 244 94.875 50.289 257.278 3.0x107* —0.3706(3) —0.369 56
cc-pVe6Z 270 99.372 55.366 244.260 49x10* —0.3828(5) —0.38285
aug-cc-pVe6Z 368 152.935 101.737 271.484 46x10* —0.3838(5) —0.38406
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FIG. 1. Scaling of the norm-sampling time (thom) against the number of virtual
orbitals. The system is N, at R = 2.5 ay, with a (10e, 80) active space. A con-
stant number of iterations are performed, Nnorm = 900. The scaling is found to be
fnorm ~ O(ni,'l)-

tenergy is seen to be independent of n,, as expected. Meanwhile,
the observed scaling of thorm is O(ny'), while the observed scaling of
Finit. det, 1S O(ni,‘s) in reasonable agreement with the predicted results.
The scaling and fit for tnorm are shown in Fig. 1.

It is more challenging to reason about how quickly the
statistical error should increase. There are two sources of statis-
tical error: first from sampling the norms and second from sam-
pling the energies. We usually observe that the majority of statis-
tical error comes from the energy sampling step, though this will
depend on how the simulation parameters are chosen. In the present
case, there is a noticeable increase in the statistical error from cc-
pVDZ to cc-pVQZ, but interestingly the error becomes somewhat
insensitive to n, beyond this point. There is an error on each of
these error estimates, but they are small enough to not affect this
conclusion.

B. Scaling with molecule length: Polyacetylene

To consider scaling with overall molecule size, we consider
trans-polyacetylene molecules with two terminal hydrogen atoms.
They take the form C;,Hz,+2. We denote the number of carbon
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atoms as N and consider cases from N = 4 to N = 28. The cor-
responding number of core, active, and virtual orbitals is given in
Table IV.

The orbital basis set is 6-31g. This is not large enough for accu-
rate quantitative results but sufficient for the present scaling study.
Similarly, we take a model geometry, where all bond lengths and
angles are fixed. Specifically, single C-C bond lengths are 1.45 A,
double C-C bond lengths are 1.34 A, and C-H bond lengths are
1.08 A. All angles are set to 120°.

For larger values of N, the CASCI problem becomes infeasible
to solve by FCI. Instead, we use selected CI (SCI), specifically the heat
bath CI (HCI) method. A constant HCI threshold of € = 5 x 107°
hartree is used for each value of N. The number of determinants in
the HCI wave function is reported as #4ets in Table IV.

The same parameters are used for each simulation: Nyorm = 900,
Ninit = 100, Nenergy = 1000, and NEI(k) = 100. Simulations were run on

32 cores on two Intel E5-2650 nodes.

Each of n., na, and n, scales linearly with the number of car-
bon atoms. Therefore, from Table II, the idealized asymptotic scal-
ing for a constant number of iterations is O(N”). If we discard the
N = 4 data point (to better investigate the asymptotic scaling), then
the observed scaling for the total time (fnorm + finit. det. + fenergy) 1S
O(N®'). This lower scaling is reasonable, given that the theoreti-
cal scaling does not account for excitations ignored by the heat bath
criteria.

There is also an increase in the final statistical error
with molecule size. Interestingly, this error decreases from
N =20 to N = 24; we have checked that this is accurate and not the
result of error on the error estimate. However, all other data points
follow the expected trend of increasing error.

The statistical error decreases with the number of samples (1)
as ns_l/ % and so decreases with simulation time () as t~ V2. Therefore,
a sensible measure of overall computational cost is

n=tx o, (32)

where ¢ is the total time and o is the final error estimate. For the
polyacetylene data in Table IV, the values of # are plotted in Fig. 2,
which agree well with a linear regression line on this log-log plot.
Excluding the first data point (N = 4), the overall cost scales roughly
as O(N®?). Although this scaling is steep, it is similar to that of
traditional SC-NEVPT2 but with the benefit of not requiring higher-
order RDMs. In Sec. IV E, we demonstrate that the method is feasible

TABLE IV. Simulation time and statistical error for SC-NEVPT2(s) simulations performed on polyacetylene, as the number of carbon atoms (N) is increased. n¢, na, and n,, give
the number of core, active, and virtual orbitals, respectively. A constant number of iterations were performed for each simulation (see the main text for simulation parameters).

No. of C atoms (N) ne Mg oy Adets tnorm (8) tinit. det. () tenergy (S) Statistical error (hartree)
4 9 4 31 20 1.556 1.165 3.469 1L.1x104
8 17 8 59 2458 26.469 29.072 90.156 22x107*
12 25 12 87 7.9 x 10* 208.94 251.76 865.784 3.0x10°4
16 33 16 115 42 x 10° 1.134 x 10° 1.279 x 10° 5.086 x 10° 48x10*
20 41 20 143 14 x 10° 4694 x 10° 4832 x 10° 2.006 x 10* 6.8x10*
24 49 24 171 2.5 x 10° 1.981 x 10* 1.594 x 10* 6.733 x 10* 47x104
28 57 28 199 3.3 x 10° 5.615 x 10* 4222 x 10* 1.822 x 10° L.1x107°
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FIG. 2. A measure of computational cost in SC-NEVPT2(s), plotted against the
number of carbon atoms (N) in polyacetylene molecules. The costis 7 = o x 2,
where ¢ is the statistical error and t is the total simulation time. The cost is seen to
scale roughly as O(N82).

for active spaces with 32 orbitals. Given the favorable parallel effi-
ciency, we expect active spaces with more than 40 orbitals to be
achievable. Nonetheless, we are investigating alternative approaches
to reduce this scaling.

C. Effect of error in the reference wave function

It is interesting to investigate how the accuracy of the reference
wave function affects the final SC-NEVPT?2 energy. This is impor-
tant in our case since for larger active spaces, we use an approximate
HCI wave function as the reference, |¢£no ) ).

To do this, we have primarily considered the same trans-
polyacetylene (TPA) system, as studied in Sec. I'V B, for the case with
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16 carbon atoms, N = 16. We performed the SC-NEVPT2(s) proce-
dure using different HCI wave functions, obtained by varying the
HCI threshold, €, which controls the accuracy of the wave function.
The exact reference is obtained in the small € limit.

For TPA (6-31g) results, the following parameters were used.
For the norm sampling step of SC-NEVPT2(s), we take Nnorm = 950
and Niyie = 50. For the energy sampling step, Nenergy is set to 700,
except fore =5 x 107 hartree where Nenergy = 1000. The total resi-
dence time is T = 1.0, except for € = 5 x 10~° hartree where T = 1.5.
We use 20 burn-in iterations for norm and energy sampling steps.

To address the concern that results may rely on the very small
basis set used, we also obtained results for the same TPA system in
the cc-pVDZ basis with two e values. We also performed a simi-
lar analysis for the Fe(II)-porphyrin [Fe(P)] system. The system and
basis are identical to those fully described in Sec. IV D. The results
for € = 107" hartree are identical to those presented in Sec. IV D.
We then performed an additional calculation with € = 3 x 107°
hartree.

The results are given in Table V. For each e value, we
state the HCI variational energy, E©, which is the reference
energy in the subsequent SC-NEVPT2 calculation. We also state
the Epstein-Nesbet perturbative correction within the CAS (“HCI
PT2”), obtained by the semi-stochastic HCI (SHCI) algorithm.‘;5
This gives a measure of error in the reference but does not include
corrections from the FOIS. We then show the SC-NEVPT2(s)
energy estimates E? and the final energy estimate, obtained
as B0 + E@.

The final column can be used to assess the sensitivity of the total
SC-NEVPT2 energy to E). Interestingly, this total energy shows lit-
tle variation with e. For TPA (6-31g) with e =5 x 10~* hartree, the
HCI variational energy is in error by ~38 mhartree, using only 1.2
x 10 determinants in a (16e, 160) active space. However, the final
SC-NEVPT2(s) energy is in error by only ~ 3 mhartree. For € = 1
x 10™* hartree, where the reference energy is in error by ~10

TABLE V. Results performed for trans-polyacetylene (TPA) with 16 carbon atoms (C4gH4g) and Fe(ll)-porphyrin [Fe(P)] in the 5Ag state. We vary the accuracy of the reference
wave function, obtained using the HCI method. We then perform SC-NEVPT2(s) using each resulting reference wave function. The final column shows the variation in the total
SC-NEVPT2 energy, which is seen to have only weak dependence on the quality of the reference. Even when the reference energy (@) is in error by ~38 mhartree, the final
SC-NEVPT2 energy is in error by ~3 mhartree for TPA (6-31g). We also include the HCI PT2 correction within the CAS, obtained by the semi-stochastic HCI approach.

Energies (hartree)

System ¢ (hartree) Ndets HCI variational (E®) HCI PT2 SC-NEVPT2(s) (E?) Total (E¥ + E?)
5x10 4 1.2 x 10* —616.2060 —0.0218 —1.2288(4) —617.4348(4)
3x10°* 3.7x 10* —616.2151 ~0.0169 ~1.2199(5) —617.4351(5)
—a 5
TPA (6-31g) 1x10” 24x10° —616.2341 —0.0065 —1.2035(5) —617.4376(5)
7x 10 33x10 —616.2367 —0.0049 —1.2020(6) —617.4386(6)
3x10°° 6.3 x10° —616.2393 —0.0034 —1.1991(5) —617.4384(5)
5x10 ° 6.4x10° —616.2439 —0.0007 —1.1938(5) —617.4377(5)
—a 5 B - - -
IPA (cc-pVDZ) 1x10"! 22x10° 616.4946 0.0059 1.9154(6) 618.4100(6)
1x10 23%10 —616.5016 —0.0014 —1.9079(7) —618.4096(7)
Fe(P) 3x10°° 2.0x 10° —2245.0225 —0.0061 —3.1708(10) —2248.1934(10)
1x10°° 9.3x10° —2245.0269 —0.0033 —3.1653(6) —2248.1922(6)
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mbhartree, the total SC-NEVPT?2 energy is converged to the exact
value within statistical error bars. Similarly, TPA (cc-pVDZ) and
Fe(P) results show agreement within error bars after varying e.

These results show that the SHCI PT2 energy (which cor-
rects E” itself) should not be included in the final energy estimate.
Instead, SC-NEVPT2 energies can be estimated simply as E + E?,
Clearly, including the SHCI PT2 correction would give energies in a
significant error for the results presented.

The accuracy of E® + E® can be partially understood because
E@ is formed as a sum of negative quantities, Nl(k)/(E(O) - El(k)).
Therefore, as E© becomes less negative (larger €), each contribu-
tion in the summation becomes more negative. It is not unreason-
able to then expect partial cancellation between errors in E¥ and
E?, Nonetheless, the very accurate nature of cancellation here is
perhaps surprising. If this result were general, it would be pow-
erful and extremely useful. However, a general statement on the
accuracy of this cancellation cannot be made without more test-
ing, for example, with several different systems and basis sets, which
will be a task for future work. However, these are promising initial
results, and they justify the HCI wave functions used in Secs. IV D
and IV E.

D. Fe(ll)-porphyrin

Next, we perform calculations of the Fe(II)-porphyrin [Fe(P)]
system. This has been an important benchmark system for mul-
tireference methods in recent years, in part due to the diffi-
culty of identifying the spin state ordering.'”*"”"*® Experimen-
tal results on Fe(P) and related systems have usually found the
ground state to be a triplet state, although these results are obtained
either from a polar solvent or the crystal phase.”” ** Initial the-
oretical studies have predicted a quintet °A, ground state, while
a triplet ground state is observed with larger or more care-
ful active space choices.”””””" Very recently, it has been sug-
gested that the true ground state is a quintet, when geometrical
effects are properly considered;”’ we do not consider such effects
here.

We focus on a (32e, 290) active space used in early studies
by Li Manni et al.'” and subsequently by Smith et al.”' This active
space consists of 20 C 2p;, 4 N 2p;, and 5 Fe 3d orbitals. We then
investigate the effect of dynamic correlation through SC-NEVPT2.
In particular, we consider the vertical excitation energy, using the
same geometry as Smith et al, which is given in the supplemen-
tary material. This geometry was originally described by Groenhof
et al.,*" was optimized for the triplet state, and was also used in a
DMRG investigation of this system.”” At this fixed geometry, pre-
vious results suggest that the ground state is a triplet; for example,
this was found to be the case with a larger (44e, 440)°" active space.
Lee and co-workers also studied this system recently,” giving a use-
ful summary of recent results and using auxiliary-field quantum
Monte Carlo (AFQMC) to confirm the triplet ground state. How-
ever, for this (32e, 290) active space, and at the CASSCF level of
theory, a °A, ground state is observed. It is interesting and valu-
able to investigate to what extent SC-NEVPT2 can correct this
situation.

Although Fe(P) has Dy;, symmetry, we use Dy, instead. Using
D5, symmetry labels, we calculate the lowest energy states in both
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the 5Ag and ? Big sectors. Note that the irreducible representation
By of Dy, corresponds to Aag and Byg in Dyy,.

The basis set is cc-pVDZ. We use the same CASSCF orbitals
optimized by Smith et al. for their CASSCF study of this system,
where HCI was used as the solver. The reference wave function in
SC-NEVPT2(s) was also obtained with HCI, using a final threshold
of € = 10> hartree, which resulted in a wave function of ~10” deter-
minants for both states. For SC-NEVPT?2(s) simulations, parameters
used by each process were: for the > Ay state, Nyorm = 950, Ninit = 50,
Nenergy = 1500, and T = 0.4 (giving NEl(k) ~ 72 on average), and for the

3Blg state, Nnorm = 900, Ninit = 100, Nenergy = 1260, and T = 0.4 (giv-
ing Nyoo ~ 104 on average), performed with 320 MPI processes for

both stlates. The following orbitals were frozen in the SC-NEVPT2(s)
calculation: 20 C 1s, 20 N 1s, and 1-3s, 2-3p on the Fe atom, 33
orbitals in total.

The results are presented in Table VI. Using CASSCF only, the
> A state is lower in energy than the *Byg state by ~31 mhartree.
Including the SC-NEVPT2 correction, it is seen that the quintet state
remains the ground state; however, the energy gap is lowered by
approximately 19 mhartree, suggesting an improved result overall.

Note that the CASSCF energy is in error by approximately +5
mbhartree for the 5Ag state and by ~+9 mhartree for the 3B1g state
due to the finite value of € used in HCI, although correcting for this
does not change our conclusion significantly. It would be simple to
improve this by using a smaller value of ¢, which only has a small
effect on the SC-NEVPT2(s) simulation time. This is because coef-
ficients in the reference wave function are obtained by a hash table
lookup, the time for which has very weak scaling with the number of
determinants.

Our results show that including dynamic correlation through
SC-NEVPT2 does noticeably improve the predicted energy gap in
this system, but that the expected ordering only occurs with a larger
active space. In particular, including the set of 5 Fe 4d orbitals
together with 10 0 bonds between Fe and N atoms (1 Fe 4py, 1 Fe 4p,,
4 N 2p,, and 4 N 2p,) results in a (44e, 440) active space,”*” which
gives a triplet ground state. Li Manni and Alavi have also studied a
separate model of Fe(P), where CzH groups are replaced by hydro-
gen atoms. With this, they also predict a triplet ground state with a
more compact (32e, 340) active space, which also includes the Fe 4d
orbitals, and part of the Fe-N ¢ manifold.”” Combined, these results
highlight the importance of appropriately choosing the active space
in such systems.

TABLE VI. Energies for two low-lying states of Fe(ll)-porphyrin, obtained with
CASSCF and SC-NEVPTZ2(s), using a common geometry for both states. The (32e,
290) active space of Li Manni et al."” was used. Irreducible representation labels here
refer to the Dy, point group, which was used for all calculations.

Energies (hartree)

State CASSCF SC-NEVPT2(s) Total

SAg —2245.0269 —3.1653(6) —2248.1922(6)
3Big —2244.9957 —3.1844(7) —2248.1800(7)
AE 0.0312 —0.0190(9) 0.0122(9)
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E. [Cw0,]*"

As a final example, we consider the [Cu202]2+ molecule. In
particular, we study the isomerization between bis(u-oxo) and p-1*:
#*-peroxo isomers. The model and process, in particular, when com-
bined with appropriate ligands, have an important role as an active
site for O, activation by enzymes such as tyrosinase. Given the pres-
ence of transition metals, it is expected that the treatment of static
correlation may be important, and it has further been suggested that
a balanced treatment of static and dynamic is required for accurate
results. Moreover, existing benchmarks are available from previous
computational studies,””** making this a sensible test system.

We describe the isomerization process using the same geome-
tries of Cramer et al.”” In this, the Cu-Cu distance is equal to 2.8
+ 0.8F A, while the O-0 distance is equal to 2.3 - 0.9F A. Here, F is
a parameter, which varies from 0 to 1. F = 0 indicates the bis(y-oxo)
geometry, and F = 1 indicates the y-#: #*-peroxo geometry.

We use the ANO-RCC-VQZP basis set,”””” which corresponds
to Cw:[21s15p10d6f4g2h/7s6p4d3f2g1h] and O:[14s9p4d3f2g/4s
3p2d2f1g] contractions. This is slightly different to the basis used
in other studies such as that by Yanai et al.””

We take the same (28e, 320) active space of Yanai et al.,
consisting of all Cu 3d and 4d orbitals and all O 2p and 3p orbitals.

CASSCEF orbitals are obtained with HCI using a final thresh-
old of € = 107" hartree. We then use a tighter threshold of
€ =2 x 1077 hartree to generate the reference wave function for SC-
NEVPT2(s). This results in HCI wave functions with between 2.0
x 107 and 2.6 x 107 determinants, depending on F. We then perform
SC-NEVPT?2(s), using norm parameters Nnorm = 450 and Nipit = 50.
The number of energy samples, Nenergy, is between 2000 and 2100,
and simulations were run with either 320 or 360 processes, depend-
ing on the value of F. The total residence time T was set to 0.4, which
gave NEI(k) between 50 and 55 on average (in addition to 50 burn-in

iterations).

The results are given in Table VII and plotted in Fig. 3. We
also include results from previous studies for comparison. In partic-
ular, CAS(16,14), CR-CCSD(TQ), and CR-CCSD(TQ);. results were

TABLE VII. Energies (in kcal mol—') from various methods, including SC-
NEVPT2(s), for the isomerization of [Cu,0,]** between bis(u-0x0) and p-r?: 1?-
peroxo isomers. Energies are relative to the u-#2: #2-peroxo isomer (F = 1.0). Note
that we use a different basis set to these two studies.

F
Method 0 0.2 0.4 0.6 08 1
HCI-SCF 224 143 8.2 37 10 0
SC-NEVPT2(s)  41.3(8) 33.5(9) 26.3(9) 19.9(8) 9.3(9)0
CAS(16,14)° 02 72 —127 —163 140 0
CR-CCSD(TQ)" 351 267 189 107 310
CR-CCSD(TQ)," 385 288 200 114 36 0
DMRG-CI” —~12.8 209 215 167 —100 O
DMRG-SCF’ 264 179 110 5.1 110
DMRG-SC-CTSD" 37.4 290 220 144 61 0

Results from Ref. 67.
PResults from Ref. 68.
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FIG. 3. Energies for the isomerization of [Cu,0,]%*, relative to the -2 1
peroxo isomer (F = 1.0). Data plotted are the same as in Table VII. Results plotted
in black are from Ref. 67. Results plotted in green are from Ref. 68.

taken from the study of Cramer et al.,"”” and DMRG-CI, DMRG-
SCF, and DMRG-SC-CTSD results were taken from the study of
Yanai et al.”” Our CASSCEF results, obtained using HCI as a solver,
are labeled “HCI-SCEF.” It is known to be difficult to obtain the cor-
rect isomerization profile for this system. Too small an active space
leads to an unphysical minimum. HCI-SCF results show that the
more substantial (28e, 320) active space removes this minimum,
as previously found by Yanai using DMRG-SCF. More accurate
results are obtained when dynamical correlation is included. Our
SC-NEVPT2(s) results are approximately in agreement with exist-
ing results. We find slightly larger relative energies than previous
results. However, we use a larger basis set, so it is perhaps expected
that results will not be identical. Cramer et al. also use a pseudopo-
tential for Cu atoms, while we freeze core electrons. Overall, these
results show reasonable agreement and demonstrate the usefulness
of this approach for a significant active space.

V. CONCLUSION

In this work, we have developed a stochastic approach to
performing strongly contracted NEVPT2. This method reproduces
exact SC-NEVPT?2 energies within statistical error bars but avoids
the prohibitive cost of constructing and storing three- and four-body
RDMs.

The method has low scaling with the number of virtual orbitals,

1. The cost to sample a fixed number of perturber energies, El(k), is
independent of n,, while the increase in associated statistical error
is low for small basis sets, plateauing off for larger basis sets. The
scaling with the number of active space orbitals is more restrictive. In
particular, we investigated the scaling of the overall computational
cost with molecular size, N, for polyacetylene molecules. In this case,
the number of core, active, and virtual orbitals increases linearly with
N, and the total cost (after accounting for the increase in statistical
error) was found to scale roughly as O(N®?).

We also investigated the sensitivity of the final SC-NEVPT2
energy to a reference wave function of varying accuracy. Interest-
ingly, we found final energies to remain accurate, with relatively
weak dependence on the quality of the reference energy. If this result
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were general, then it would be very powerful. We intend to study this
for further systems to investigate this possibility.

The method was applied to example systems where multi-
reference behavior is expected to be important: Fe(II)-porphyrin
with a (32e, 290) active space and [Cu,O; |** with a (28e, 320) active
space. The method was successfully applied to these large active
spaces, raising the possibility of obtaining SC-NEVPT?2 results, with-
out approximations, in larger active spaces than previously con-
sidered. These calculations were performed with moderate com-
puter resources. However, the approach has good parallel efficiency
such that it could be used in a straightforward manner on much
larger parallel computers, as have been used in many QMC studies
previously.

There are several areas in which this method could be devel-
oped. First, it will be important to develop SC-NEVPT2(s) to work
with other types of wave functions, in particular orbital-space VMC
wave functions.”’ Such wave functions can be well suited to strong
correlation and with favorable scaling."”"*”' Because only wave

function overlaps ((n\gbf,? ))) and 1- and 2-RDMs are needed, this
should be a straightforward task. Our code already supports the
optimization of such wave functions, including the calculation of
the required overlaps and RDMs. Second, we are keen to investi-
gate approaches to reduce the scaling, in particular, with respect
to the active space size. With these developments, we hope that
this may be a robust method to perform NEVPT2 with active
spaces of 40-50 orbitals, which we believe would be valuable in the
general task of performing strongly correlated electronic structure
calculations.

SUPPLEMENTARY MATERIAL

The supplementary material includes the geometry of the
Fe(II)-porphyrin model studied in this article. This geometry was
taken from Ref. 64. The geometries for all other systems are stated in
the article.
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APPENDIX: POTENTIAL BIASES

Because a large number of energies E,(k) must be sampled, each
with its own independent random walk, only a limited number of
samples can be used to estimate each El(k). This is different to the
typical case in VMC, where a single energy is to be estimated by
a long random walk (typically by the Metropolis algorithm). Sta-
tistical biases in QMC will become larger as the number of sam-
ples becomes smaller. Therefore, for the small number of samples
used, there are some potential biases to consider carefully for the
algorithm presented.
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1. Burn-in

Each random walk with the CTMC algorithm has a burn-in
period. In practice, we have found that results are essentially iden-
tical regardless of whether burn-in iterations are discarded or not,
suggesting this to be a negligible effect here. Nonetheless, it is sen-
sible to account for this possibility where affordable. We, therefore,
typically discard the first 50 iterations for each random walk, both
in Sém (for Nl(k) estimation) and in each S,(k) sampled (for El(k)
estimation).

2. CTMC estimates of El(k)

Some care is required in using the CTMC algorithm. In CTMC,

a sample from a given determinant |#) is weighted by a correspond-

ing residence time, defined as ¢, = m. The final point estimate
P

of El(k) is obtained by

£ - X tnELD[”]. (A1)

Yt
Using a constant number of iterations for each El(k) leads to small
statistical bias, which becomes noticeable for very large systems.
Instead, each El(k) should be estimated with a constant total res-
idence time, T = Y ,t,. We, therefore, run CTMC random walks
until some fixed threshold time is reached, at which point the walk
is ended. This is found to resolve all such issues with biases in El(k)
estimates.

3.Bias in (E{Y) - E®))7 estimator

Contributions to Efnz ) each take the form (E,(,f ) El(k) )~!, where
each El(k) is stochastically sampled. Even if the estimator for El(k) is
unbiased, the final result will be biased because E[ 1 ] # ﬁ Estima-
tors of this type are very common in QMC, and associated biases are
typically negligible. In the current case, however, the bias is larger

because the number of samples used to estimate each El(k) is very
small (~50-100) for the calculations presented in this work.

To see the issue more clearly, we can consider a Taylor expan-
sion of (Efno) - El(k))_l, where El(k) is a point estimate of El(k). We

may write El(k) = El(k)

El(k) is unbiased, we have that E[§] = 0. One can then write

+ 0, where § denotes the error. Assuming that

1 1

= (A2)

O™ E® _g® s

1
T O _p® (A3
0 [
(Em - El )[1 - Efno)_Efk) ]
1 1) & 3
= 1+ + +0(67) | (A4)
ES}?) _ El(k) |: Er(r?) _ E](k) (Er(r?) _ El(k))z
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We can use this to look at the expected value of (E,(,?) - El(k) )y

1 1 E[&%]
B0 20| 20 o' 70 _wm
EO - E® | EY g (B —EM)?

+0(8) | (A5)

1 Var[El(k)]
= +
Efno) _ El(k) (Efno) _ El(k))s

+0(8). (A6)

Therefore, it can be seen that the bias will increase as the energy
difference E,(,? ) El(k) becomes smaller and as the estimate of El(k)
becomes more noisy.
The above equation gives an expression to correct much of the
bias,
var[El(k)]
(Er(r?) _ El(k))S ’

Using this expression requires an estimate of the variance of f:"l(k). If
the Metropolis algorithm were used, the standard estimator for the
variance of the mean would be used,

Epias corr. = — (A7)

R 1 =
af;;m S NN-T) Zn:(EIL)[”] - D)%, (A8)

where N; is the number of samples and EP is the sample mean.
Instead, we use the CTMC algorithm, where the estimator for El(k)
is formed as a weighted sum, as in Eq. (A1). An estimator for the
variance of a weighted sum is more complicated, and there is no gen-
erally accepted formula for all applications. We have tested several
estimators and found that the following formula”"” is very accurate
for our case, which we, therefore, use:

& = 1_N
EY T T (N - 1)

; > (tEL[n] - TEP)? (A9)
= 2BD 3 (t = T)(taEL [n] - TED)

n

(A10)

+ B S (b - T)Z]. (Al1)
n

Here, T = Y uty is the total residence time and ¢, act as weights in

the estimator for EF, as in Eq. (A1). Ef[n] is the local energy with

respect to the Dyall Hamiltonian, as in Eq. (29). In addition, samples

EP[n] are serially correlated, and we account for this by using an

automated reblocking procedure.”

4. Example: N, cc-pVDZ

As a simple example to demonstrate these concepts, in particu-
lar, the estimation of ag(k) and the bias correction term, we consider

1
N, in a cc-pVDZ basis set. This is the same example considered in
Sec. IV A, using a (10e, 80) active space and two core orbitals.

We consider the estimation of a single perturber energy, El(k),
of type vv, involving the two virtual orbitals that are lowest in energy.
For this small example, it is possible to enumerate all determinants

in Sl(k) and calculate the exact El(k). By repeating the stochastic esti-

mation of El(k) a large number of times, we can investigate the above
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effects. In particular, we repeat this estimation of El(k) 100 000 times
so that we can accurately construct the distribution function and
investigate the true variance and bias.

For the perturber in question, the exact result is El(k)

= —105.258 96 hartree. Performing the CTMC estimation of El(k),
exactly as in the SC-NEVPT2(s) algorithm, and then averaging over

the 100 000 repeated estimates give El(k) = —105.258 82(15) hartree
so that the method is unbiased within error bars. An accurate esti-
mate of the variance (obtained directly from the constructed prob-

ability distribution) is Var[f:"l(k)] = 0.00229 hartree?, while the
estimate from Eq. (A11) is Ug<k) = 0.002 33 hartree?,

Similarly, the difference Ibetween the exact and estimated values
of (Efno) —El(k) )"'is 3.3(11) x 1077 hartree™*, indicating the possibil-
ity of a small bias. Including the above bias correction changes this
discrepancy to —1.1(11) x 107" hartree™’, suggesting an improve-
ment. In this case, the correction is extremely small so could be
ignored. For non-trivial problems, this correction needs more care-
ful consideration. For the [Cu,0,]*" examples in Sec. IV T, the bias
correction in Eq. (A7) is of size ~0.6 mhartree for each value of F.
We, therefore, include this correction term in all results presented in
this article.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.
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