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ABSTRACT: We report on the findings of a blind challenge
devoted to determining the frozen-core, full configuration
interaction (FCI) ground-state energy of the benzene molecule
in a standard correlation-consistent basis set of double-{ quality. As
a broad international endeavor, our suite of wave function-based
correlation methods collectively represents a diverse view of the
high-accuracy repertoire offered by modern electronic structure
theory. In our assessment, the evaluated high-level methods are all
found to qualitatively agree on a final correlation energy, with most
methods yielding an estimate of the FCI value around —863 mEy.
However, we find the root-mean-square deviation of the energies
from the studied methods to be considerable (1.3 mEy), which in
light of the acclaimed performance of each of the methods for

- The Benzene Blind Challenge

ASCI
SHCI
iCl
AS-FClQMC
CAD-FClIQMC
DMRG
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smaller molecular systems clearly displays the challenges faced in extending reliable, near-exact correlation methods to larger
systems. While the discrepancies exposed by our study thus emphasize the fact that the current state-of-the-art approaches leave
room for improvement, we still expect the present assessment to provide a valuable community resource for benchmark and

calibration purposes going forward.

At first glance, the electronic structure of the benzene
molecule is deceptively simple. Initially proposed by
Kekulé in the second half of the 19th century,"” the depiction
of benzene as consisting of an alternating pattern of single and
double bonds between degenerate carbon atoms was radically
novel for its time. Popularly ascribed to a vivid dream of a
serpent biting its own tail, the original conjugated structure was
soon nuanced in favor of a more balanced, D, -symmetric
resonance picture of benzene.>* However, studies of the finer
details of its electronic structure continue to be in vogue to this
day,5~12

physical effects remains a key constraint on a great number of
ab initio simulations in the field of computational
(bio)chemistry.*~** Even more so, benzene—alongside, for
instance, water—may easily be named among the members of
an exclusive subset of molecules which are identifiable by wider
parts of the public. Constituting the smallest neutral aromatic
system composed purely of carbon and hydrogen atoms,
benzene rings are omnipresent throughout most of organic
chemistry as recurring and easily recognizable structural
leitmotifs, to the extent that its widespread use as a symbol
of the biological and chemical sciences has become common-
place in society nowadays.

and an account of its intra- as well as intermolecular
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That being said, with its total of six carbon atoms, each
bonded to a hydrogen atom, benzene has so far been deemed
too big to allow for a truly high-level description of its
electronic wave function. Even in the modest cc-pVDZ basis
set,”> which is the smallest meaningful one-electron basis for
use in correlated calculations, and disregarding the six inner
core molecular orbitals (MOs), the many-electron Hilbert
space of benzene is still on the order of 10% Slater
determinants, making an exact diagonalization of the
Hamiltonian prohibitively expensive. However, given the
availability of scalable computational hardware today and,
even more importantly, the extensive array of emerging new
methods for yielding near-exact electronic ground-state
energies, we believe that the time is now ripe for an ambitious
attempt at solving the electronic Schrodinger equation for the
ubiquitous benzene molecule.
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However trivial a problem it might seem, the quest for a
numerically near-exact (i.e., sub-mEy accuracy) treatment of
the electron correlation in benzene is complicated by the sheer
scale of the combinatorial problem associated with distributing
30 electrons among 108 orbitals. As an illustrative exam4ple,
upon traversing up through the standard coupled cluster” —26
(CC) hierarchy, satisfactory convergence of the correlation
energy cannot be concluded even upon accounting for
connected quadruple excitations’** (CCSDTQ), which is
the highest level of sophistication possible today for systems of
this size.”””" In general, assuming a reasonably dominant
Hartree—Fock (HF) solution, CCSDTQ_is expected to recover
almost all of the remaining discrepancies against exact full
configuration interaction®' ~** (FCI) present in lower-level
(CCSD** and CCSDT**°) CC models.*”** In the case of
benzene, CCSDT lowers the energy by a full —36.45 mE; over
CCSD, while the inclusion of connected quadruple excitations
adds an additional —2.47 mEy, yielding a total correlation
energy of AEccsprq = —862.37 mEy;. To put these numbers in
perspective, and to probe whether or not convergence fails to
be met at the CCSDTQ level of theory, the energy increments
from connected quadruply and higher excited clusters in the
N, molecule (at the equilibrium geometry) have previously
been found to be —1.61 mEy; and —0.23 mEj, respectively.””
Assuming, for the sake of argument, that higher-level
correlation effects are of the same relative order in benzene,
the final correlation energy might be estimated at about AE =
—863 mEy (by multiplying N, results by a factor of 3). The
main objective in the current work is to move beyond this
estimate.

In an attempt to substantiate the above projections for what
might be expected upon moving toward a higher level of
correlation treatment, extended CI wave function expansions
have been interpreted for the benzene/cc-pVDZ system by
means of a cluster decomposition method® (cf. the
Supporting Information), which is analogous to the cluster
analysis of the wave function exploited in externally corrected
CC approaches.”' ™" On the whole, these results appear to
indicate that most of the quadruply (and higher) excited
determinants in the FCI wave function stem from
disconnected clusters, suggesting that the inclusion of
connected quintuples, hextuples, etc., in CC theory is relatively
insignificant in comparison, although the above estimate of the
FCI correlation energy indicates that higher—than—quadruply
excited clusters may play a nontrivial role when trying to
obtain results accurate to within fractions of a mEy. The
accurate determination of the electronic ground-state energy of
benzene hence becomes more than an exercise of mere
academic interest. Not only does the benzene molecule
constitute a challenging test application to push the limits of
contemporary, near-exact electronic structure theory, but our
results will further allow us to scrutinize the preliminary
observations discussed above, namely, to what extent higher-
order connected excitations contribute to the FCI correlation
energy for an archetypal, medium-sized molecular system with
no obvious indications of strong electron correlations.

The present study thus aligns itself with the recent series of
meticulous benchmark studies from the Simons Collaboration
on the Many-Electron Problem concerned with model systems
and small transition-metal species.””>* However, as opposed
to these earlier assessments, we have conducted the present
study as a blind challenge with one of us (J.G.) responsible for
compiling all results. This was done in an attempt to conduct
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an unbiased evaluation of the various methods used in the
present work, as listed in Table 1. Not only are the results of

Table 1. Abbreviations Used for the Methods Included in
the Blind Challenge

acronym method references
ASCI adaptive sampling CI 56—60
SHCI semistochastic heat-bath CI 61—-67
iClL iterative CI with selection 68—71
AS-FCIQMC adaptive-shift FCI quantum Monte Carlo ~ 72-76
DMRG density matrix renormalization group 77—88
MBE-FCI many-body expanded FCI 89-92
FCCR full CC reduction 93
CAD-FCIQMC  cluster-analysis-driven FCIQMC 94 and 95

our study bound to prove valuable to future benchmarks and
for the calibration of future methods across most of electronic
structure theory, but the scatter of the resulting correlation
energies further admits a direct assessment of state-of-the-art
approaches nearly a century on from the dawn of modern
quantum mechanics,”* > in particular in terms of performance
transferability in moving from small- to modest-sized
molecular compounds. We will herein refrain from passing
judgment on what a tolerable error with respect to our FCI
target amounts to, because the accuracy of any calculation
needs to be weighed against the computational effort required
to obtain a particular result to paint a full picture. As such, we
will report our findings below in an intentionally neutral tone,
leaving most interpretations of the data to the reader.

For the sake of brevity, technical details on the evaluated
methods listed in Table 1 and the detailed results obtained in
our calculations are collected in the Supporting Information.
Here, we will only briefly compare the methods on the basis of
their common traits and differences. The adagtive sampling
CI°°™° (ASCI), semistochastic heat-bath CI°'~®" (SHCI),
and iterative CI with selection®®™"" (iCI) methods all belong
to a wider class of selected CI (SCI) methods,”*™'% which
approximate the full linear expansion of the FCI wave function
by selecting only important determinants in conjunction with
perturbative corrections to account for any residual correlation.
The FCI quantum Monte Carlo””””® (FCIQMC) method
offers another approach for sampling the wave function,
namely, a stochastic QMC propagation of the wave function in
the many-electron Hilbert space aimed at projecting out the
FCI ground state. The FCIQMC method is most often
complemented by an initiator approximation (i-FCIQMC),
but we will here evaluate its most recent version which uses an
adaptive shift’® (AS-FCIQMC) to mitigate the initiator bias in
the wave function sampling. Operating instead using a
variational matrix product state Ansatz, density matrix
renormalization group’’~** (DMRG) methods provide an
alternative route toward variationally solving the Schrodinger
equation. DMRG methods reduce the exponential scaling of
the above methods with volume to an exponential scaling in
the cross-section area. In the recently proposed many-body
expanded FCI*~”* (MBE-FCI) method, the ECI correlation
energy (without recourse to the electronic wave function) is
decomposed and solved for. By enforcing a strict partitioning
of the complete set of MOs into a reference and an expansion
space, the residual correlation in the latter of these two spaces
is recovered by means of an MBE in the spatial MOs of a given
system. Finally, two methods founded on CC theory have been
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Figure 1. Frozen-core C4Hy/cc-pVDZ correlation energies for the methods of Table 1 alongside CCSDTQ and i-FCIQMC."'® For the additional
results obtained after the blind test was completed, see the Supporting Information.

evaluated. In the full CC reduction” (FCCR) method, cluster
projection manifolds and commutator expressions for higher-
level excitations are systematically reduced in order to
optimally exploit the sparsity of the FCI wave function, as
recast using the CC Ansatz. Alternatively, one can use the
semistochastic cluster-analysis-driven FCIQMC (CAD-
FCIQMC) approach,”*”® in which, in the spirit of the
externally corrected CC methods,” ™" the singly and doubly
excited clusters are iterated in the presence of their three- and
four-body counterparts extracted from FCIQMC (cf. refs
109—111 for other ways of merging stochastic FCIQMC or
CC Monte Carlo''>""® with the deterministic CC framework).

Among the evaluated methods, a few make use of
extrapolations. In the methods that involve a perturbative
correction as an integral component on top of a variational
calculation (ASCI, SHCI, and iCI), final results may be
extrapolated by systematically reducing the portion of the total
correlation energy accounted for by second-order perturbation
theory. In the case of DMRG, extrapolations may be
performed toward an infinite bond dimension estimate. In
order to isolate the effect of extrapolation from the bare
methods themselves, we will present both the unextrapolated
and extrapolated results. On the other hand, MBE-FCI and
AS-/CAD-FCIQMC make no use of extrapolations of any
kind. The FCCR method may also be augmented by either the
Epstein—Nesbet''*'"* or Moller—Plesset''® formulations of
perturbation theory, and while no extrapolations may be
directly drawn from individual FCCR calculations (except for
the most recent variant of the theory, cf. the Supporting
Information), a final result may be derived using the average of
these perturbative corrections in combination with adjust-
ments for the internal thresholds.

Besides the methods listed in Table 1, one additional,
complementary result has previously been reported in the
literature using the same molecular geometry,''’ namely, i-
FCIQMC,""* augmented by perturbation theory.""” It should
be mentioned that none of the methods examined in our study
are variational, as those that are formulated on top of selected
CI and DMRG theory have lost this feature upon being
corrected by perturbation theory or extrapolated toward an
infinite bond dimension, respectively. In the case of AS- and i-
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FCIQMC, one loses a variational bound through stochastic
wave function samplings followed by blocking analyses and the
use of the projected form of the correlation energy expression
rather than an expectation value. FCCR and CAD-FCIQMC
do not have a bound as they are based on CC theory, and
MBE-FCI is nonvariational because of its expansion in terms of
increments.

The main results of our study are summarized in Figure 1
(with the underlying numerical data tabulated in the
Supporting Information). No error bars are provided given
that these are derived differently in the various methods. While
our pool of results is too limited to allow for in-depth statistics
to be computed from it (besides a mean value, p, and a
standard deviation, &), a number of observations may still be
made. In the following, we will make use of mEy; as the unit for
reporting correlation energies in order to accentuate differ-
ences (recalling that 1 mEy corresponds to 2.6 kJ/mol).

Our key observations can be summarized as follows: (i) The
majority of the methods evaluated in the present work yield a
larger correlation energy (in absolute value) than that of the
CCSDTQ method, in agreement with the general notion that
high-level CC methods, although not bounded by the
variational theorem,lzo often are so in practice. (ii) Across
the various results, all but those of the three flavors of SCI fall
into an interval ranging from —863.7 mEy; to —862.8 mEy,. (iii)
Taking into account the finer details of the ASCI, iCI, and
SHCI calculations (cf. the Supporting Information), we expect
the result of the latter to be more accurate than the former two,
as evidenced by the smallest extrapolation distance among
these three methods, cf. Table 2; these distances (AEg,) are
here meant to serve as an indication of the extent to which the
individual methods rely on extrapolation procedures. (iv) The
examples of stochastic CI calculations included in Figure 1 (i-
and AS-FCIQMC) are also observed to disagree with one
another, however only by half of that of their deterministic
counterparts. AS-FCIQMC, which corrects for the under-
sampling bias of noninitiator determinants, is expected to be
the more accurate of these two. (v) The extrapolated DMRG
result is in good agreement with the remaining methods listed
in point (ii). In addition, it is observed from Table 2 to be far
less reliant on an extrapolation of the energy than the tested
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Table 2. Extrapolation Distances, AEg, (in mEy), Involved
in Computing the Final ASCI, iCI, SHCI, and DMRG
Results in Figure 17

method AE,,. AEg, AE irap. AE g
ASCI —737.1 —835.4 —860.0 —24.6
iCI —730.0 —833.7 —861.1 -274
SHCI —827.2 —852.8 —864.2 —-11.4
DMRG —859.2 —859.2 —862.8 -3.6

“These are defined by the difference between the final computed
energy, AEg,,, and the extrapolated energy, AE .y, (final variational
energies, that is, in the absence of perturbation theory, are presented
as AE,,. ). For the SCI methods, extrapolations are performed toward
the limit of vanishing perturbative correction, while the variational
DMRG energy is extrapolated toward an infinite bond dimension. See
the Supporting Information for results obtained after the blind test
was completed.

SCI methods. (vi) Likewise, the CAD-FCIQMC and MBE-
FCI results, both of which have not been extrapolated, agree
with each other to within 0.4 mEy. (vii) Viewing CAD-
FCIQMC as a correction to the underlying AS-FCIQMC wave
function, calculating the correlation energy by means of the
CC rather than the CI Ansatz is observed to slightly reduce the
absolute values of the AS-FCIQMC energies, by 0.3 mEy for
the most accurate AS-FCIQMC instantaneous and averaged
wave functions equilibrated using a population of 2 billion
walkers. The deterministic CAD-FCIQMC iterations reduce
the change in the AS-FCIQMC correlation energies, when
increasing the walker population from 1 to 2 billion, by a factor
of about 2 (from 1.1 to 0.5 mEy, cf. the Supporting
Information). For AS-FCIQMC, the change in energy is a
reflection of the initiator bias (or approximation) in addition to
the smaller stochastic error. (viii) As further discussed in the
Supporting Information, the FCCR results exhibit a
pronounced dependence on the choice of perturbative
treatment, giving rise to an intrinsic variance of 5.3 mE.
However, the final, perturbatively corrected FCCR correlation
energy is estimated to lie in close proximity to the remaining
non-SCI results. (ix) To that end, the results of the only four
methods, which have not been aided by second-order
perturbation theory (DMRG, MBE-FCI, as well as AS- and
CAD-FCIQMC), are observed to coincide to a reasonable
extent, spanning an interval of only 0.9 mEy,.

All of the methods evaluated herein are the products of years
of intense development, and most of the computed results in
Figure 1 have required a considerable amount of computa-
tional resources to obtain. Because of its high polynomial
scaling and memory requirements, the CCSDTQ model is
unlikely to enable near-exact results for molecular systems
significantly larger than benzene. Be that as it may, our
CCSDTQ result was still obtained using only 5.5k core hours
using a single thread on a multicore node equipped with 120
GB of physical memory, indicating that high-level CC theory
represents an affordable, yet robust alternative to many of the
other methods tested in our study for problems of a similar size
and with similar nature of the involved electron correlation. In
comparison, the FCCR result in Figure 1 required a total of
0.1M core hours (using 640 parallel processes) across all of the
involved calculations, while the extrapolated DMRG result
required 0.08M core hours in total, distributed across 100—200
cores. The DMRG method generally requires a non-negligible
amount of memory, on par or greater than the CC
requirements above, while these may be reduced somewhat
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in the FCCR method. The extrapolated ASCI, SHCI, and iCI
results were all obtained in parallel, consuming 0.3k, 2.8k, and
1.5k core hours in the process, respectively, thus all offering
relatively inexpensive compromises in comparison with some
of the other methods in Figure 1. Again, the memory
requirements involved in running the largest possible CI
spaces will ultimately hinder their application to significantly
larger problem sizes and basis sets. Both the AS-FCIQMC and
MBE-ECI results were obtained in a highly parallel manner,
but with minimal memory demands in the case of the latter
method. In the case of AS-FCIQMC, a total of 0.06M core
hours were consumed, distributed over a group of either 100 or
200 multicore nodes, while the MBE-FCI calculation was
parallelized over 128 nodes for a total of 1.7M core hours, by
far the most expensive of all the evaluated methods. Finally, the
CAD-FCIQMC correlation energy was computed in just a few
hours on a single node, initialized from the converged AS-
FCIQMC solution.

In summary, while all of the methods of our assessment yield
results in general agreement with one another, the overall low
resolution, as exemplified by a substantial standard deviation
across our sample set (in excess of 1.3 mEy), ultimately
hinders a precise determination of the FCI correlation energy
to within a small fraction of a mEy. That being said, this
uncertainty is most likely too pessimistic, and our findings do
indeed seem to indicate, taking into account also the post
blind-test energies of some of the methods, that the most
plausible frozen-core correlation energy—for the current
geometry in the cc-pVDZ basis set—is around —863 mEy,
in accordance with our preliminary estimate in the
introduction and earlier projections.'>' On this basis, we are
led to conclude that the electronic structure of benzene in its
equilibrium geometry is predominantly dynamic in character.

More generally, in particular in view of its format as a blind
challenge, our findings collectively represent an unbiased
assessment of a diverse set of current state-of-the-art methods.
As a consequence of the fact that the sophistication and
application range of near-exact electronic structure continue to
be improved, we end by strongly encouraging the continued
benchmarking of future correlation methods aimed at FCI
against the results presented here. To that effect, we note that
updated ASCI, SHCI, iCI, and FCCR results—made possible
solely by improvements to the efficiencies of their
implementations or the use of optimized MOs in combination
with larger correlation spaces—were submitted following the
compilation of the results in Figure 1. These results are
discussed in the Supporting Information. In addition, two sets
of results obtained using alternative methods—phaseless
auxiliary-field quantum Monte Carlo'*” (ph-AFQMC) and
CI using a perturbative selection made iteratively' >’
(CIPSI)—have subsequently appeared in the literature as
complementary notes to the present work.
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The Supporting Information is available free of charge at
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Details on all methods and their results: (section 1)
geometry and (section 2) main results; (sections 3—11)
details on MBE-FCI, DMRG, AS-FCIQMC, CAD-
FCIQMC, SHCI, ASC], iCl, FCCR, and CCSDTQ;
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(section 12) cluster decompositions of a few SCI wave
functions (PDF)
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