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Abstract. A family of sets is called r-cover free if no set in the family is contained in the
union of r (or less) other sets in the family. A 1-cover free family is simply an antichain with
respect to set inclusion. Thus, Sperner’s classical result determines the maximal cardinality
of a 1-cover free family of subsets of an n-element set. Estimating the maximal cardinality of
an r-cover free family of subsets of an n-element set for r > 1 was also studied. In this note
we are interested in the following probabilistic variant of this problem. Let S0, S1, . . . , Sr

be independent and identically distributed random subsets of an n-element set. Which
distribution minimizes the probability that S0 ⊆

⋃r
i=1 Si? A natural candidate is the uniform

distribution on an r-cover-free family of maximal cardinality. We show that for r = 1 such
distribution is indeed best possible. In a complete contrast, we also show that this is far
from being true for every r > 1 and n large enough.

1. Introduction

For every positive integer n, let Ωn be the set of all subsets of some fixed n-element set.
For a positive integer r, a family F ⊆ Ωn is called r-cover free if no set in F is contained
in the union of r (or less) other sets in F . Let us denote by gr(n) the maximal cardinality
of an r-cover free family in Ωn. A 1-cover free family in Ωn is just an antichain in Ωn, with
respect to set inclusion. Hence g1(n) =

(
n
bn/2c

)
, by the classical result of Sperner ([7]). For

r = 2 it was shown in [2] that 1.134n < g2(n) < O(
√
n)
(

5
4

)n
and in the subsequent paper [3],

the same authors showed that for every r,

(1)

(
1 +

1

4r2

)n

< gr(n) ≤
n∑

k=1

(
n
dk/re

)(
k−1
dk/re−1

) .
A different upper bound, which is better for large r, was obtained in [1]. In [6], this bound
was given a simpler proof and the following, more explicit, form: for every r ≥ 2 and n large
enough,

(2) gr(n) ≤ r8n/r2 .

We will now describe a probabilistic variant of r-cover free families of maximal cardinal-
ity. Let Pn := {p : Ωn → [0,∞) :

∑
A∈Ωn

p(A) = 1} be the family of probability dis-
tributions on Ωn. For a positive integer r and p ∈ Pn, let τr(p) be the probability that
S0 ⊆

⋃r
i=1 Si, where S0, S1, . . . , Sr are random sets, drawn independently from Ωn accord-

ing to the distribution p. Natural candidates to minimize τr are distributions in the set
CFn,r := {p ∈ Pn : p is supported on an r-cover free family} (in which case, one only has to
worry about choosing the same set twice).
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Clearly, minp∈CFn,1 τ1(p) = 1

( n
bn/2c)

where the minimum is attained for any distribution

which is uniformly supported on a maximal antichain in Ωn. Our first result is that for n ≥ 2
this is indeed the minimum of τ1 over all Pn.

Theorem 1. Suppose that n ≥ 2. Then τ1(p) ≥ 1

( n
bn/2c)

for every p ∈ Pn and consequently,

minp∈Pn τ1(p) = minp∈CFn,1 τ1(p).

We note that the weaker statement that Pr(S0 ⊆ S1 or S0 ⊇ S1) ≥ 1

( n
bn/2c)

for every

independent identically distributed random sets S0, S1 in Ωn, readily follows from the fact
that Ωn may be covered by

(
n
bn/2c

)
chains (with respect to set inclusion). This symmetric

version of Theorem 1 may be generalized as follows. For a property P of families of sets,
let ex(n, P ) denote the maximum possible cardinality of a family of sets in Ωn satisfying P
and let ex(n, k, P ), for 0 ≤ k ≤ n, denote the maximum possible cardinality of a family of k-
element sets in Ωn satisfying P . Thus, for example, if P1 is the property of being an antichain
then ex(n, P1) =

(
n
bn/2c

)
by Sperner’s Theorem, if P2 is the property of being an intersecting

family and n ≥ 2k then ex(n, k, P2) =
(
n−1
k−1

)
by the Erdős-Ko-Rado Theorem [4], and if P3

is the property of not containing two sets whose symmetric difference has cardinality smaller
than d, then ex(n, P3) is the maximum possible cardinality of an error correcting code with
length n and minimum distance d. Similarly, ex(n, k, P ) is the maximum cardinality of the
corresponding constant weight code.

Theorem 2. Let H be a family of unordered pairs of distinct sets in Ωn and let PH be the
property of containing no pair from H. For p ∈ Pn, let τH(p) := Pr({S0, S1} ∈ H or S0 = S1),
where S0, S1 are random sets, drawn independently from Ωn according to the distribution p.
Then minp∈Pn τH(p) = 1

ex(n,PH) . Similarly, for every 0 ≤ k ≤ n, the minimum of τH(p) over

distributions Pn whose support is a subset of {A ∈ Ωn : |A| = k} is 1
ex(n,k,PH) .

The examples mentioned above provide several specific applications of the theorem, and it
is not difficult to describe others.

In a complete contrast to Theorem 1, we show that for every r > 1 (and n large enough),
the minimum of τr on Pn is much smaller than the minimum of τr over CFn,r. For every
0 ≤ ` ≤ n, let p` be the probability distribution in Pn uniformly supported on the family of
all `-element sets in Ωn.

Theorem 3. Suppose that r ≥ 2. There is 0 < µr < 1 such that for every n large enough,
min0<`<n

r
τr(p`) < µnr minp∈CFn,r τr(p) and consequently, minp∈Pn τr(p) < µnr minp∈CFn,r τr(p).

For every r ≥ 2, Theorem 3 shows that minp∈Pn τr(p) is (much) smaller than minp∈CFn,r τr(p),

which is at most 1 −
(

1− 1
gr(n)

)r
< r

gr(n) , as shown by considering any probability distribu-

tion uniformly supported on an r-cover free family of maximal cardinality. A lower bound for
minp∈Pn τr(p) is given in the following theorem.

Theorem 4. Suppose that r ≥ 2. There is Cr > 0 such that minp∈Pn τr(p) ≥ Cr
(gr(n))r and

hence, for n large enough, by (2), minp∈Pn τr(p) ≥ Cr

r8n/r .

We prove Theorems 1 and 2 in Section 2 and Theorems 3 and 4 in Section 3.
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2. The case r = 1

Proof of Theorem 1. Let p ∈ Pn. Let C be the set of all maximal chains in Ωn, with re-

spect to set inclusion. Every A ∈ Ωn belongs to exactly |C|
( n
|A|)

maximal chains. Therefore,

1
|C|
∑

C∈C
∑

A∈C
(
n
|A|
)
p(A) =

∑
A∈Ωn

p(A) = 1 and since
(
n
k

)
≤
(

n
bn/2c

)
for every 0 ≤ k ≤ n,

(3)

(
n

bn2 c

) ∑
A∈Ωn

p(A)2 ≥
∑
A∈Ωn

(
n

|A|

)
p(A)2 =

1

|C|
∑
C∈C

∑
A∈C

(
n

|A|

)2

p(A)2.

Similarly, every pair A0 ( A1 of sets in Ωn belong to exactly |C|
( n
|A1|

)(|A1|
|A0|

)
maximal chains.

Therefore, since
(nk)
(`
k)
≤ 1

2

(
n
bn
2
c
)

for every 0 ≤ k < ` ≤ n,

(
n

bn2 c

) ∑
(A0,A1)∈Ω2

n
A0(A1

p(A0)p(A1) ≥ 2
∑

(A0,A1)∈Ω2
n

A0(A1

(
n
|A0|
)(|A1|

|A0|
)p(A0)p(A1)

=
1

|C|
∑
C∈C

∑
(A0,A1)∈C2

A0 6=A1

(
n

|A0|

)(
n

|A1|

)
p(A0)p(A1).(4)

Summing up (3) and (4) yields(
n

bn2 c

)
τ1(p) =

(
n

bn2 c

) ∑
(A0,A1)∈Ω2

n
A0⊆A1

p(A0)p(A1) ≥ 1

|C|
∑
C∈C

∑
(A0,A1)∈C2

(
n

|A0|

)(
n

|A1|

)
p(A0)p(A1)

=
1

|C|
∑
C∈C

(∑
A∈C

(
n

|A|

)
p(A)

)2

≥

(
1

|C|
∑
C∈C

∑
A∈C

(
n

|A|

)
p(A)

)2

= 1.

as claimed. �

Proof of Theorem 2. LetG be the complement of the graph (Ωn,H). The size of the maximum
clique in G is clearly ex(n, PH). Therefore, by a theorem of Motzkin and Straus [5, Theorem
1],

min
p∈Pn

τH(pH) = 1− 2 max
p∈Pn

∑
{A0,A1} is an edge of G

p(A0)p(A1) =
1

ex(n, PH)
.

The second statement follows similarly, by considering the graph induced by G on the vertex
set {A ∈ Ωn : |A| = k}. �

3. The case r > 1

Note that if p ∈ Pn is supported on an r-cover free family F , then

1− τr(p) =
∑
F∈F

p(F ) (1− p(F ))r ≤
∑
F∈F

p(F ) (1− p(F )) ≤ 1− 1

|F|
,
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and hence minp∈CFn,r τr(p) ≥ 1
gr(n) . Therefore, to prove Theorem 3 for some r ≥ 2, it is

enough to show that there is 0 < µr < 1 such that for n large enough,

(5) min
0<`<n

r

τr(p`) < µnr
1

gr(n)
.

For large r this may be easily deduced as follows. For ` := b nerc, clearly

τr(p`) ≤
(
r`
`

)(
n
`

) ≤ (r`
n

)`

≤ 1

e`
< e

1

e
n
er

= e
(
e−

1
e r

8
r

)n
r 1

r
8n
r2

.

Therefore, by (2), for n large enough

(6) min
0<`<n

r

τr(p`) < e
(
e−

1
e r

8
r

)n
r 1

r
8n
r2

< e
(
e−

1
e r

8
r

)n
r 1

gr(n)
.

It can be verified that e−
1
e r

8
r < 1 for every r ≥ 101. Thus, (6) confirms (5), and hence

Theorem 3, for r ≥ 101. We proceed to describe the proof Theorem 3 for general r ≥ 2.

Proof of Theorem 3. Let ` be an integer in the interval [0, nr ) for which
(

n
`+1

)
/
(
r`
`

)
is maximal.

It is simple to verify that if n is large enough, then the sequence
((

n
j+1

)
/
(
rj
j

))bn/4rc+1

j=0
is

increasing and hence ` > n
4r .

Let S0, S1, . . . , Sr be random sets chosen, independently and uniformly, from all the `-
element sets in Ωn.

Let t := b`2/nc and let E be the event: |
⋃r

i=1 Si| > r` − t. It is easy to verify that the

sequence (Pr(S1 ∪ S2 = k))2`
k=2`−t is decreasing, and hence

Pr(E) ≤ Pr(|S1 ∪ S2| > 2`− t) ≤ tPr(|S1 ∪ S2| = 2`− t) = t

(
n−`
`−t
)(

`
t

)(
n
`

) .

Therefore, by (1),

τr (p`) = Pr

(
S0 ⊆

r⋃
i=1

Si

)

= Pr (E) Pr

(
S0 ⊆

r⋃
i=1

Si

∣∣∣∣ E
)

+ Pr (Ωn \ E) Pr

(
S0 ⊆

r⋃
i=1

Si

∣∣∣∣ Ωn \ E

)

≤ t
(
n−`
`−t
)(

`
t

)(
n
`

) ·
(
r`
`

)(
n
`

) + 1 ·
(
r`−t
`

)(
n
`

) =

(
t

(
n−`
`−t
)(

`
t

)(
n
`

) +

(
r`−t
`

)(
r`
`

) ) n− `
`+ 1

·
(
r`
`

)(
n

`+1

)
≤

(
t

(
n−`
`−t
)(

`
t

)(
n
`

) +

(
r`−t
`

)(
r`
`

) ) (n− `)n
`+ 1

· 1

gr (n)
,

and (5) follows by using standard estimates on binomial coefficients. This completes the proof
of the theorem. �

Finally, we prove Theorem 4.
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Proof of Theorem 4. Let p ∈ Pn, let N := 2gr(n), let S1, . . . , SN be random sets, drawn
independently from Ωn according to the distribution p, and consider the random variable

I := {i ∈ [N ] : there is J ⊂ [N ] \ {i} of cardinality r such that Si ⊆
⋃
j∈J

Sj}.

The family {Si}i∈[N ]\I is clearly r-cover free, therefore N − |I| = |[N ] \ I| ≤ gr(n) and hence

E|I| ≥ N − gr(n) = gr(n). On the other hand, clearly E|I| ≤ N
(
N−1
r

)
τr(p). Hence

τr(p) ≥
gr(n)

N
(
N−1
r

) ≥ r! gr(n)

N r+1
=

r!

2r+1gr(n)r

and the result follows. �
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