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Abstract

We introduce a list colouring extension of classical Ramsey numbers. We investigate when the two
Ramsey numbers are equal, and in general, how far apart they can be from each other. We find
graph sequences where the two are equal and where they are far apart. For f-uniform cliques we
prove that the list Ramsey number is bounded by an exponential function, while it is well-known
that the Ramsey number is super-exponential for uniformity at least 3. This is in great contrast to
the graph case where we cannot even decide the question of equality for cliques.

1 Introduction

The notion of proper colouring and the corresponding parameter of the chromatic number is one of the
most applicable and widely-studied topics in (hyper)graph theory. In some of these applications the
list-colouring extension of the notion is necessary to describe the situation appropriately. A colouring
of a hypergraph H = (V, E) is a function ¢ : V. — N. A colouring is called proper if no hyperedge
e € F is monochromatic. For an assignment L : V — 2N of a subset L, C N of colours to each vertex
v €V, we call a colouring ¢ : V' — N an L-colouring if ¢(v) € L, for every v € V. When L, = [k] for
every v € V, an L-colouring is called a k-colouring.

The chromatic number x(H) is the smallest integer k such that there exists a proper k-colouring of
H and the list-chromatic number (or choice number) y,(H) is the smallest integer k such that for
every assignment L of lists of size k to the vertices of H there is a proper L-colouring. By definition
X(H) < x¢(H) for every graph H. Under what circumstances are the two parameters equal and how
far they can be from each other? These fundamental questions are the subject of vigorous research,
see, e.g., [8], Chapter 14 and the references therein. A notorious open question in this direction is the
List Colouring Conjecture suggested independently by various researchers including Vizing, Albertson,
Collins, Tucker and Gupta, which appeared first in print in the paper of Bollobds and Harris [7] and
states that the list-chromatic number is equal to the chromatic number for line-graphs. This conjecture
was proved by Galvin [18] for bipartite graphs, by Haggkvist and Janssen [21] for cliques of odd order,
by Alon and Tarsi [1] for cubic bridgeless planar graphs, by Ellingham and Goddyn [14] for regular
class-1 planar multigraphs and by Kahn [22] asymptotically, but is very much open in general. Even
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for cliques K, of even order it is not known whether the list-chromatic number of its line graph is n
orn— 1.

A particularly interesting instance of hypergraph colouring arises from Ramsey theory, which is con-
cerned with the proper colouring of very specific hypergraphs. Ramsey’s Theorem states that for any
r-uniform hypergraph (or r-graph) G and number k of colours any k-colouring of the r-subsets of [n]
contains a monochromatic copy of the hypergraph G, provided n is large enough depending on G and
k. The smallest such integer n is usually called the k-colour Ramsey number of the hypergraph G.

Definition. The k-colour (ordinary) Ramsey number of an r-graph G is defined as

R(G, k) := min{n | Vk-colouring of E(K"), 3 a monochromatic copy of G}.

The study of Ramsey numbers has attracted a lot of attention over the years and many natural
generalisations and extensions of Ramsey numbers were considered, for excellent surveys see [19], [12]
and the references therein. In this paper we study a new variant, a list colouring version of the Ramsey
problem. In particular, when is it possible to assign lists of size k to the edges of Kff) in such a way
that if we colour each edge with a colour from its list we can always find a monochromatic copy of a
given graph. If we require all lists to be the same we recover the ordinary Ramsey number. This gives
rise to the following list-colouring variant of the Ramsey number.

Definition. The k-colour list Ramsey number of an r-uniform hypergraph G is defined by

Ry(G, k) = min{n |3L : B(K") — CZ}) s.t. V L-colouring of E(K{") 3 a monochromatic copy of G}.

A first observation, immediate from the definition, is that for every G and k, we have

Ry(G, k) < R(G, k). (1)

In our paper we will be investigating when this inequality is an equality and, more generally, when the
two quantities are close to each other and when they are far apart, how far apart can they be. This
question for specific families of graphs turns out to be related to several long standing open problems
such as the aforementioned list colouring conjecture, we give the details in the following subsections.

Remark. Notion of the list Ramsey number was suggested at https://mathoverflow.net/questions/
298778 /list-ramsey-numbers, where some basic observations were made, as well as a conjecture, which
we disprove, that inequality (1) is actually always an equality.

1.1 Results
1.1.1 Stars

Any edge-colouring of a graph contains no monochromatic copy of Kj2 if and only if it is proper.
Therefore the k-colour Ramsey number (list Ramsey number) of K 2 is equal to the smallest number
n such that x'(K,) > k (xy(Kn) > k, respectively), where here x’(G) denotes the edge chromatic
number of G which can be defined as the chromatic number of its line graph and similarly for x/.
Hence the question whether the two Ramsey numbers of K2 are equal for an arbitrary number £ of
colours is essentially equivalent to the aforementioned List Colouring Conjecture for cliques. It was
proved by Haggkvist and Janssen that xj(K;,) < n for every n, which implies that the list chromatic

2


https://mathoverflow.net/questions/298778/list-ramsey-numbers
https://mathoverflow.net/questions/298778/list-ramsey-numbers

index x(Ky) is equal to the chromatic index x'(K,,) for odd n. The question whether x/(K,) is equal
to x/(K,) for even n is still open. Consequently we know that Ry(K12,k) =k + 1 = R(K12,k) when
k is even, but we do not know whether R/(K12,k) is k+ 1 or k + 2 when k is odd.

The multicolour Ramsey number for stars of arbitrary size was determined by Burr and Roberts [9].
They showed that
(r—Dk+1< R(K1, k) < (r— Dk +2, (2)

and that the lower bound is tight if and only if both r and k are even.

In our first theorem we extend the validity of the lower bound to the list Ramsey number, thus
establishing that the lower bound is tight when both r and k are even. Furthermore, we show for any
fixed number & of colours, that for large enough r the upper bound is tight.

Theorem 1. For any k and r € N, except possibly finitely many integers r for each odd k, we have
Ry(K1,,k) = R(K1,,k). More precisely,

(a) For every r,k € N, we have
(’I” — 1)k +1< RZ(Kl,h k) (3)

In particular, Ry(K1,,k) = (r — 1)k + 1 = R(K ., k) whenever both r and k are even.

(b) For every k € N there ezists w(k) € N such that the following holds. For every k and r > w(k)
that are not both even, we have

Ry(K1,,k) = (r—1)k+2= R(Ky,, k).

Our theorem fails to give a full characterisation of the tightness of the lower bound in (3). For two
colours we can give such a characterisation and find that the two Ramsey numbers are always equal.

Theorem 2. For every r € N we have

2r — 1 if r is even

Ru(K1,,2) = R(K1,,2) =
e(K1r,2) = R(H1r2) {2r ifr is odd.

1.1.2 Matchings

We saw above that for stars the two Ramsey numbers are equal, possibly up to an additive constant
one. Next we consider matchings and find that, unlike for stars, the ordinary Ramsey number is
significantly larger than the list Ramsey number for most values of the parameters.

Ramsey numbers of matchings were determined in 1975 by Cockayne and Lorimer [10]. They showed
that for every r, k € N,
R(rKy,k)=rk+r—k+1. (4)

A trivial lower bound on the list Ramsey number Ry(rKs, k) is 2r: if we were to find a matching of
size r in K,,, monochromatic or not, then n better be at least the number of vertices in rKs. It turns
out that if the number £ of colours is not too large compared to r, then this trivial lower bound is
asymptotically tight! That is, even if n is just slightly larger than 2r, there exists an assignment of
lists of size k to the edges of K,,, such that any list-colouring of the edges contains a monochromatic
rKy (i.e., an almost perfect matching which is monochromatic). Note that by (4), using the same k
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colours on each edge one can colour a much larger clique without a monochromatic rK». In particular
we show that for any fixed number k of colours the two Ramsey numbers are a constant factor %

away from each other asymptotically, as 7 tends to infinity.

The number k of colours becomes more visible in the value of the list Ramsey number once £ is larger
than a logarithmic function of the size r of the matching. In particular for any fixed r, we determine
the growth rate of the k-colour list Ramsey number up to an absolute constant factor and find that
the ratio of the two Ramsey numbers grows as O(log k).

Theorem 3. For any fized k > 2 and r tending to infinity, we have Ry(rKa, k) = 2r + o(r). In

particular
R(rKz, k)  k+1

1).
RE(T’KQ,k) 2 +0< )
For any fized r > 1 and k tending to infinity, we have Ry(rKs, k) = ©(k/logk). In particular

R(TK 2, k)
—————= = 0O(logk).

Ru(rka k)~ OU08k)

In fact we determine the list Ramsey number of matchings for all values of r and k£ up to a constant
factor and when 7 is sufficiently bigger than k even up to an additive lower order term. For more
details see Subsection 2.2.

1.1.3 Cliques and Hypergraphs

Some of the most famous open problems in Ramsey theory involve cliques. The proofs of the classic
probabilistic lower bounds on R(K,,2) all go through in the list chromatic setting, hence

22 < Ry(K,,2) < R(K,,2) < 2.

Not unexpectedly, we cannot improve on the lower bound. It is not difficult to see that Ry(K3,2) =
6 = R(K3,2), but for » > 3 we cannot even decide the equality of the two Ramsey numbers of K,
when k = 2.

For hypergraphs of uniformity ¢ > 3 however, we are able to show an exponential (or even larger,
depending on the uniformity) separation between the ordinary and the list Ramsey numbers. On the
one hand it is known via the stepping-up lemma of Erdés and Hajnal (see Chapter 4.7 of [19]) that
the Ramsey numbers of cliques are super-polynomial in the exponent whenever £ > 4 or £/ = 3,k > 3
(Conlon, Fox, Sudakov [11] for k = ¢ = 3) and in fact grow at least as fast as a tower of height ¢ — 2.
For the list Ramsey number on the other hand we can show that for fixed uniformity and number of
colours it is upper bounded by an exponential in a polynomial in r.

Theorem 4. For arbitrary positive integers r > £ and k € N we have

RZ(K(Z) ]{) < 24r3Z*1+4kr2*1 logg T

T o

This theorem obviously provides an upper bound on the list Ramsey number of any fixed ¢-graph H,
which is an exponential function of k. For a growing number of colours the base of the exponent can
be strengthened. In order to state our result, we need to introduce a few standard parameters. Let
ex(H,n) denote the maximum number of edges in an H-free (-graph on n vertices and let m(H) =



limy, 00 ex(H,n) /(). Assuming H has at least 2 edges let

e(H) -1
H) = ad)-1
m(H) H’CII}}SE)I({’)>1U(H/) —/

Theorem 5. Let H be an {-uniform hypergraph. Then, as k tends to infinity, we have

Ry(H, k) < (1 — n(H) + o(1))~FmlH),

For the particular case of k-colour list Ramsey number of the triangle the theorem gives the exponential
upper bound Ry(K3, k) < (4 + o(1))*.

The behaviour of the ordinary k-colour Ramsey number R(K3, k) is related to other open problems,
most notably the question if the maximum possible Shannon capacity of a graph with independence
number 2 is finite, see [16], [2]. It is one of the notorious open problems of combinatorics to decide
whether its growth rate is exponential or superexponential. Erdds offers $100 for its resolution and
$250 for the determination of the limit kh_}ngo V/R(Ks, k) provided it exists. The current best lower

bound is R(K3,k) > 3.199% (see [24]), so not large enough for us to conclude that the ordinary and
the list Ramsey numbers are different.

For the list Ramsey number we can only give a much weaker lower bound, where the exponent is the
square root of the number of colours.

Theorem 6. If H is an (-uniform hypergraph with x(H) > r, then we have
RZ(H, k‘) > ey/klogr/(llg)‘
In particular Re(K3, k) > eVk/4,

Note that this theorem gives a lower bound exponential in the square root of k£ for every non-2-
colourable f-graph H. Our argument extends to every non-¢-partite ¢-graph, even if they are 2-
colourable, with a somewhat worse constant factor in the exponent.

Theorem 7. Let H be an {-uniform hypergraph which is not £-partite. We have
Ro(H, k) > e=VF,
where 1/c, = 20e’/?.

Our proof method works most efficiently when the ordinary Ramsey number of H is small. It is known
that the multicolour Ramsey number of an ¢-graph H is polynomial in k if and only if H is ¢-partite.
For them we determine the list Ramsey number up to a poly-logarithmic factor.

Theorem 8. Let H be an {-partite £-uniform hypergraph with parts of size at most r. There is a
constant ¢ = ¢(r, ) such that

In particular, if ex(H,n) = O(n'~sH)1 for some e(H) > 0, then

Ry(H, k) = O(R(H,k)) = O(k"/<(D).
'Here f = (:)(g) means, as usual, that f and g are equal up to polylogarithmic factors.
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This theorem can be considered an extension of the second part of Theorem 3, where we determine
that the ordinary and the list Ramsey numbers of matchings are exactly a log k factor away from each
other. For several bipartite graphs (for example for complete bipartite graphs K, s for s > (r —1)!,
even cycles Cg and Cqg or general trees) the asymptotic behaviour of the ordinary Ramsey number is
known up to a polylogarithmic factor and hence by Theorem 8 so is the list Ramsey number.

The rest of this paper is organised as follows. In Subsection 2.1 we prove our results for stars. In
Subsection 2.2 we prove the results for matchings, demonstrating on a relatively simple example the
methods we are going to use in Subsection 2.3 to prove the bounds for list Ramsey numbers of general
graphs. In Section 3 we give concluding remarks and present some open problems. All our logarithms
are natural unless explicitly indicated otherwise.

2 Bounds for list Ramsey numbers

2.1 Stars

Let us start with a few preliminaries and tools which we will use throughout this subsection.

Theorem 9 (Galvin [18]). If G is a bipartite graph of mazimal degree A then x,(G) = A.

To show Ry(G,k) > n we need to show that for any assignment of lists of size k to the edges of K,
we can choose the colours from the lists in such a way that we create no monochromatic copy of G.
We distinguish two cases depending on parity. The following simple observation will enable us to give
lower bounds on Ry(Kj k).

Lemma 10. Let us assume that graphs G, ..., Gy partition the edge set of Ky. If x;(G;) < k for all
i and each vertex belongs to at most v — 1 of the G;’s then Ry(K1,,k) > n.

Proof. Let L be an assignment of lists of size k to the edges of K,,. By the assumption that x}(G;) < k
there is a proper L-colouring ¢; of each G;. Let us define an L-colouring ¢ of E(K,) by c(e) = ¢;(e),
where i is the index of the unique G; containing e. Note that since any vertex v belongs to at most
r — 1 G;’s we know that edges incident to v are using colours from at most » — 1 ¢;’s. Since each ¢; is
proper this means that for any fixed colour v is incident to at most » — 1 edges of this colour, showing
there can be no monochromatic K, under c as desired. ]

We begin with the case of 2 colours, by proving Theorem 2.

Theorem 2. For every r € N we have

2r — 1 if r is even

Ro(K1,,2) = R(K1,,2) =
ol b ) (H ) {27” if v is odd.

Proof. It is well known that the standard Ramsey number satisfies the same equalities, [9]. So by (1)
we only have to show the corresponding lower bounds.



Case 1: r even.

We will make use of the following fact proved by Alspach and Gavlas [3].

Proposition. Let n be an even integer. K, can be partitioned into a single perfect matching and
Hamilton cycles.

Let n = 2r — 2. By the above proposition we can partition K, into a perfect matching G; and r — 2
Hamilton cycles Ga,...,Gr—1. By Galvin’s theorem [18] we know that x}(G;) < 2 and each vertex
belongs to exactly » — 1 of the G;’s so by Lemma 10 we are done.

Case 2: r odd.

In this case we make use of a different partitioning result of Alspach and Gavlas [3].

Proposition. Let n be an odd integer and m an integer satisfying 4 < m < n. K, can be partitioned
into cycles of length m if and only if m divides the number of edges of K.

Let n = 2r — 1. Let us first assume that r > 5. Since |E(K,)| =n(n —1)/2 = (2r — 1)(r — 1) by the
above result we can partition K, into cycles of length r — 1. Since r is odd these cycles are bipartite
and have xj(Cr—1) = 2. As they are 2-regular and partition E(K,) we know that each vertex belongs
to exactly r — 1 of these cycles. Therefore, we are done by Lemma 10.

The case r = 1 is immediate, so we are left with the case r = 3. Let L be an assignment of lists of size
2 to the edges of K5. Partition K5 into two 5-cycles C1, Cs. If we can properly colour both Cy and Cs
using colours from the lists we are done. It is well-known and easy to see that the only way in which
a b-cycle does not admit a 2-colouring from its lists is if the lists are all the same. Therefore, we may
assume that edges of one cycle, say C have the same lists. We now colour all edges of ('} using a
single colour ¢ from their list and colour all edges of C'y by arbitrary colours in their lists which differ
from c. In this colouring there is no monochromatic K 3 as desired. O

Let us now consider the case of more colours. As in the case of 2-colours all our upper bounds come
from the ordinary Ramsey numbers, which were determined by Burr and Roberts in [9] and the trivial
inequality (1). The following two lemmas establish the two lower bounds claimed in Theorem 1,
completing its proof.

Lemma 11.
(r— 1k + 1< Re(K1p, k).

Proof. Let n = (r — 1)k, partition the vertices of K, into sets Vi,...,V,_1, each of size k. We let G;
be the subgraph induced by V; and for ¢ # j we let G; ; be the complete bipartite subgraph with parts
Vi, Vj. By Theorem 9 we know that x}(G; ;) < k and since by a result of Higgkvist and Janssen [21]
we know that x}(Kj) < k we also have x}(G;) < k. Every vertex belongs to exactly r — 1 of these
subgraphs which partition E (K, ), and we are done by Lemma 10. O

This completes the proof of Theorem 1 part (a). Before turning to part (b) we state a packing result
of Gustavsson [20] which we will use for its proof.



Theorem (Gustavsson [20]). For any graph F' there exists an € = e(F') > 0 and ng = no(F') such that
for any graph G on n > ng vertices with minimum degree at least (1 — e)n one can partition the edge
set of G into copies of F, provided:

e ¢(F) | e(@) and

o ged(F) | ged(G),

where e(H) denotes the number of edges of a graph H and gcd(H) denotes the greatest common divisor
of the degrees of vertices in H.

Lemma 12. For every k € N there exists w(k) € N such that the following holds. For every k and
r > w(k) that are not both even, we have

Ry(K1p k) = (r — 1)k +2.

Proof. Let n = (r — 1)k + 1. Therefore, e(Ky) = () = (r — 1)k((r — 1)k + 1)/2. Since, if k is even r
must be odd and in particular, 2|r — 1 we know that k | e(K,,). Let t = e(K,,)/k mod k. Let Gy, ..., Gy
be vertex disjoint subgraphs of K, each isomorphic to Kji 41 with a perfect matching removed,
where we require w(k) > 2k 4+ 1 in order to have enough room (n = (r — 1)k +1 > (w(k) — Dk +1 >
2k%+1 > 2(k+1)t, since t < k—1). Let G be the subgraph of K,, obtained by removing the edges of all
G;’s and let F = Kj . Note that e(G) = tk — tk(k +1) = 0 mod k? so e(F) = k? | e(G). Furthermore,
every vertex of K, not in any G; still has degree (r — 1)k in G while any vertex of G; has degree
(r—1)k — k so ged(G) = k = ged(F'). Therefore, if we let € = (K} 1) and ng = no(Ky ;) given by the
above theorem, then for w(k) > max(ng/k,2/¢) the above theorem applies, implying that E(G) can
be partitioned into Gi41,. .., Gy all isomorphic to Ky .

Since each G is a k-regular bipartite graph Galvin’s Theorem implies x;(G;) < k and since G;’s
partition E(G) we know that each vertex belongs to at most (n — 1)/k = r — 1 of the G;’s so our
Lemma 10 applies and implies the result. O

2.2 Matchings

In this section we will show the following bounds on the list Ramsey number of matchings.

Theorem 13. Let rk € N. If2(k+ 1) < logr then
2r < Ry(rKo, k) <2r + 49K/ (k+1)

If 2(k+1) > logr > 0 then

rk 34rk
—— < Ry(rKo, k) < .
4log(rk) — ok, k) < log(rk)

Theorem 3 is now an immediate consequence of Theorem 13 and (4).

The proof of Theorem 13 appears in the following two lemmas. Our arguments below aim to illustrate
as well the ideas we apply for the general setting in the next subsection, hence they are slightly more
complicated than necessary.

We start with the lower bound.



Lemma 14. Assuming r,k € N such that rk > 1 we have

Ry(rKsy, k) > max (27“, m> :

Proof. Let n = max (27" -1, (r—=1)- LWJ + r) . Our task is to show that for any assignment L
of lists of size k to E(K,) we can choose an L-colouring without a monochromatic 7K. This is clear if
the first term of the maximum is greater or equal than the second, because then r K5 has more vertices

than K,. So we may assume ﬁ(m) >2. Lett= Lﬁ(rkﬂ > 2.

Let ¢ : E(K,) — [t| be a t-colouring of FE(K,) without a monochromatic K5, which exists since
R(rKs,t) = (r — 1)t +r+1 > n, using (4).

We split all colours in U.cp(k,)Le into t types indexed by [t], with each colour being assigned a type
independently and uniformly at random. Let B, denote the event that no colour in L. got assigned

the type c(e). Then
1\* 2log(rk)\* 1
PBo)=1|1—-) <(1- < .
= (1-5) = () <

So by the union bound we obtain:

TL2
P(B.) < —— < 1,
U BB < 5 <
EEE(Kn)

k
2Mos(h) = 2

where we used k > 2, which follows from
Thus there is an assignment of types to colours appearing in the lists such that for every e € E(K,)
there is a colour ¢/(e) of type c(e) in L. Note that ¢ is an L-colouring of K, with no monochromatic
r Ky, since otherwise there would be a monochromatic r Ky using only one type of colours, contradicting

our choice of c. O

We now turn to the upper bounds. Once again we need to distinguish between the two regimes.

Lemma 15. Let r,k € N. If 2(k + 1) < logr then we have
Ry(rKay, k) < 2r + 427k/ (k1)

and else we have

Ry(rKa, k) < 34rk/log(rk).

Proof. First notice that when r = 1 or £ = 1 the result is immediate, so we assume r, k > 2 throughout
the proof. In order to show an upper bound Ry(G, k) < n, we need to find a list assignment L of lists
of size k to each edge of K, in such a way that there is no way of L-colouring K,, without having a
monochromatic copy of G.

Before proceeding with the proof, let us give some intuition for the next step. We are going to choose
the lists by assigning each edge a uniformly random subset of colours from a slightly larger universe.
Our goal then is to show that with probability less than one our random assignment of lists L has an
L-colouring having no monochromatic rK5. We now take a union bound over all possible colourings of
K, having no monochromatic r Ky and check what is the probability that a fixed one is an L-colouring.
The fact every edge misses a random set of colours makes this probability rather low.
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For each edge of K,, we choose independently and uniformly at random a list of size k from the universe
U of k +t colours. For now we do not specify the values of n and ¢ since they will differ depending on
which of the two regimes we are considering, we will however assume that n is even.

Let B denote the event that there is a colouring ¢ from our lists having no monochromatic rKy. Our
goal is to show P(B) < 1. Let us restrict attention to the complete bipartite graph H = K, /5 ,, /o within
our K,. If B happens this means that there is an edge colouring ¢ of H for which every colour class
contains no matching of size r. Since H is bipartite Konig’s theorem implies that every colour class
has a cover of size at most r — 1.

For any subset S of vertices of H of size |S| = r — 1 consider the subgraph of H on the same vertex set
containing all the edges of H incident to a vertex in S. Denote these subgraphs by Cy,- - Cy,, where

m= (Tﬁl)'

The above observation implies that if B happens, every colour class of ¢ on H is completely contained
within some Cj. For all ¢ € U we denote by ¢; the subgraph of H made by the i-th colour class of c.
Then

P(B) <P(3 an L-colouring ¢: E(H) — U s.t. Vie U, 3j € [m] : ¢; C C))
P(3 an L-colouring ¢ : E(H) = U st. Vie U : ¢; C Cy,)

]

max  P(3 an L-colowring c: E(H) = U s.t. Vie U :¢; C Cj,)

Tl Ikt €[M]

max  P(Ve € E(H),3i € L : e € C})). (5)

Ty dkrt €M)

Let us now bound the last term. For fixed values ji, ..., jx4¢, let d. denote the number of Cj, to which
edge e belongs. As each Cj has at most (r —1)n/2 edges, we have that > c p( ) de < (k+1)(r—1)n/2.

P(Ve € E(H),Ji€ Le:e € Cy,) = P(Ji € L. : e € Cy,)

J k
= 1_<1_t+81> ’ (6)

where in the first inequality we used the independence of the assignment of lists between edges, d. :=
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>ecE(H) de < (k+t)(r=1)
[E(H)]  —  n/2

and we used Jensen’s inequality. Combining (5) and (6) we obtain:
k-t 7\
Py < " T L
r—1 t+1

At this point we proceed differently depending on the relation between k and r. In the first case we

n?/4

will assume k to be significantly smaller than r, specifically we assume 2(k + 1) < logr. We choose
t=(k—-1)- {W—‘ —1 and our goal is to show that for n = 2r +2- [20r*/ **+D7 we have P(B) < 1.

2
(r—1)(k+t) K\ /4
en 2(r—1)(k+1t)
< _ P S S
logIP(B) < log <r—1> (1 <1 a1
n—2r E—1\F
n t+1
k
n n? [ 20pk/(k+1)
< 6r(k—1) (1 + {zmk/(kﬂ)D 4 ( n
k

_A2r(k—ln 5 (20rk/(k+l)>

n

NSES

r—

< <1+log 1) (r—1)(k+1t) —

QOTk/(kJrl) n

_ ™ 19k — 1 20r ktl
B G e A

_m 1) _ 9 5k+1
< ST (12(k 1) - 2.5 )<0,

where in the second inequality for the second term we used log(l — z) < —z, for z < 1, and 1 —

W >1-— ﬁ((t}ﬂt)) = ";2” 27:81_11)) > ";2’” — % where the last inequality follows since n > 27.

In the third inequality for the first term we used (1 + log r_%) < 1+4log 88 < 6. In the fourth inequality

we used 14 [z]| < 2z when x > 2 for the first term and n > 2r for the second, while in the last inequality

.20 10 10
we used logr > 2(k + 2), to get: £F > 20T/ ()T > /e > 2.5.

For the second case, when logr < 2k + 2, we let n = 2 [16rk/log(rk)] and ¢t = k and use (7) to get:

log P(B) < log ( en )(r—l)(k+t) (1_ <1_ 2(7’—1)(k+t))’“>n2/4

r—1 nt

en n? log(rk)\ "
< - J— — —
< 2rklog (r—1>+ 1 log (1 <1 ok >

2
< 2rk(8 + log k) + ”Z log (1 _ e—log(rk)/4>

< 2rk(8 + log k) — (rk) ™' /4n? /4
< 167k (k1/4 —16(rk)>*/ logQ(rk))
< 167k (k:l/4 - (rk:)l/4> <0,

11



€

e
the second term we used (1 — ) > e~2*, given x < 1/2, with = logkrk < 2k+28*];1°gk < 1/2. In the fifth
inequality we used 8 + log k < 8%/ and in the sixth logz < 42/4. O

where in the first term of the third inequality we used log (—”1> < 1+ log (128k) < 8 + log k, while in

2.3 General bounds.

In this subsection we give our bounds for general graphs and hypergraphs.

2.3.1 Upper bounds.

We start with upper bounds. The idea closely follows the one presented in the previous section with
the main distinction that now it is not so easy to find the appropriate sets C;. Note that the only
property we required from C;’s is that the edge set of every graph not containing a copy of rKjy is
contained in some C;. In the general setting we will find such sets by using the container method
introduced by Saxton and Thomason [23] and Balogh, Morris and Samotij [5]. Specifically, we make
use of the following theorem (Theorem 2.3 in [23]).

Theorem 16. Let H be an {-graph with |E(H)| > 2 and let € > 0. There is a constant ¢ > 0 such that
for any n > ¢ there is a collection of (-graphs C1,...,Cy, on the verter set [n], such that

(a) every H-free £-graph on the vertex set [n] is contained within some Cj,

(b) |E(C)| < (x(H) +2)(}) and

(c) logm < ent=1/m(H)

log n.
We now give an upper bound on the list Ramsey number for a fixed graph as the number of colours
becomes large.

Theorem 5. Let H be an £-uniform hypergraph. Then, as k tends to infinity, we have

Ry(H, k) < (1 — 7(H) + o(1)) FmH),

Proof. We once again choose the lists for each edge uniformly at random out of the universe of
k + t colours. As before, B will denote the event that there is a colouring from our lists having no
monochromatic H. Once again our goal is to show P(B) < 1.

Let ¢ > 0, Theorem 16 provides us with a constant ¢ = ¢(e, H) and a collection of ¢-graphs C1,...,Cp,
satisfying the conditions (a),(b) and (c¢), where we will choose the value of n > ¢ later. We once again
obtain as in (5)
P(B) <m**™  max  P(Ve€ E(H),3i € L.:e € Cy,).
Ty drtt €M
Once again for fixed values of j; we define d. to be the number of Cj;, that contain the edge e, and
denote d, = Z€€E<Kg)> de/(}) < (k+t)(m(H) + €), where the last inequality follows from (b). Once

again as in (6) we obtain:




We choose t = [k/e]|, and require 2e < 1 — 7w(H) to get

e

o~
+ | &
[a—
N———
ol

logP(B) < (k +t)logm + (Z) log [ 1— (1 —

< (k + t)en'= VM 160y — (1 (k+)(r(H) +e) > g <n>

< ck(1+2/e)n VM ) ogn — (1 — 7(H) — 2¢)F—.

w < (1+¢e)(n(H)+¢e) < m(H)+ 2¢ where in the last inequality we used

m(H) +¢e < 1—¢. The last expression will be less than 0 provided

where we used

ck(1 4 2/e) < pl/mH

(L= () — 20" "/ logn. ®)

Given 3¢ < 1 — w(H), for large enough value of k this holds for n = (1 — 7(H) — 3¢)~Fm), O

In the above argument it was important that H was fixed, since the constant ¢ coming from the
container theorem depends on H. The dependence of ¢ on H is somewhat complicated, but by analysing

the proof of Theorem 16 it should be possible to obtain good bounds for various families of graphs. We
14

illustrate this by obtaining an explicit bound on Rg(Kﬁ ), k). We start with a slightly weaker version
of Theorem 16, which is a special case of Theorem 9.2 of [23].2

Theorem 17. Let H = K,gg) with v > £ and let 6 > 0. For any positive integer n there ezists a
collection of L-graphs C1,...,Cy, on the vertex set [n], such that

(a) every H-free £-graph on the vertex set [n] is contained within some Cj,

(b°) Each C; contains at most 6(") copies of H and
\ 2
(c) logm < %log%fo(f) nt=1/mH) Jog .

Apart from an explicit constant in part (c) the main difference compared to Theorem 16 is that in
the condition (b’) rather than bounding the number of edges in each container we bound the number
of copies of the forbidden graph H it contains. It is not hard to obtain condition (b) from (b’) by
making use of the Erd6s-Simonovits supersaturation lemma, but requiring an explicit constant makes
it slightly messy. We start with the standard bound of De Caen on ex(Ky), n).

Theorem 18 (De Caen [13]).

it (-2 () )

We now state the Erdés-Simonovits supersaturation lemma, keeping track of the constants.

Theorem 19 (Erd6s-Simonovits [17]). Let H be an ¢-graph with r vertices, x,e > 0 and m € N. Given
ex(H,m) < :r(";) we have that if an (-uniform hypergraph on n vertices contains at least (x + ) (?)

edges then it contains more than 6(?)71 (™) copies of H.

2Where we plugged in the explicit values given in their Corollary 3.6 and Theorem 9.3 to obtain our explicit constant.

13



Combining the last three theorems gives us the following explicit version of Theorem 16 for the complete
{-graph.

Theorem 20. Let H = Ky) with v > £ and let 6 > 0. For any positive integer n there exists a
collection of (-graphs C1,...,Cy, on the vertex set [n], such that

(a) every H-free £-graph on the vertex set [n] is contained within some Cj,
T— -1 n
) 1BC) < (1-3() ") (7) and

2
(c) logm < 913(2)" pt=1/m(H) logn.

Proof. Let x =1 — %(2:%)71,5 = %(Zj)fl and m = 6r. By Theorem 18 we know that ex(H,m)

<

(")) so Theorem 19 applies showing that any ¢ graph on n vertices with more than (z +¢)(})) =

(1 - %(;:%)_1) () edges contains at least §(") copies of H, where 1/§ := ¢~ 1("") < 6(;:%) (6;7") <
2

22(2)". Using this value of § in Theorem 17 we obtain the result. O

We are now ready to obtain the bound on Rg(K,SZ), k) promised in the introduction.

Theorem 4. For arbitrary positive integers r > £ and k € N we have

R[([{}()7 k) < 241"3Z_1+4k'r2_1 logo T

Proof. We may assume r > £ > 2 and k > 2, as otherwise the inequality is clearly true.

r—1

—1 .
4_1) and using

Repeating the argument that lead to (8) with 1 — (Zj)il in place of m(H), e = %(

Theorem 20 instead of Theorem 16 we obtain that Rg(Kr(g), k) <n given:

k
13(0)° . r=INY e (o 1/m(H)
27\ | <1+6(€1 13 01 <n /logn.

Which, using m(H) = (ﬁ)_zl < 7=1/(1 = 1) holds for n = 24 ' +4kr"" osa T 14 gee this notice that

k .
logn < 10r3-1k; k2 (3(2:1)) < k2pth < 94k(t=Dlogy T, 10,301 (1 i 6(?:})) 0 < g < 9312 < 93(})

2
and 216(0)° < 9, O

After this paper was submitted Balogh and Samotij obtained a more efficient container lemma in [6].
This can be used to obtain a slight improvement in the bound of the above theorem.

2.3.2 Lower bounds.

Let us now turn towards lower bounds. The main tool is the following lemma, giving us a lower bound
for Ry(H, k) in terms of the ordinary Ramsey number, but with fewer colours.

Theorem 21. If R(H, |k/(¢logn)]|) > n then:
Ry(H, k) > n.

14



Proof. The proof will proceed along similar lines as that of Lemma 14. Let m = |k/({logn)].
Consider a colouring ¢ : E (K,@) — [m], without a monochromatic H, which exists because n <
R(H,m).

Let each edge e of Kr(f) be assigned a list L. of size k, our goal is to show that we can pick colours
from the lists avoiding a monochromatic copy of H.

We assign to each colour a type from [m], independently and uniformly at random. Let B, be the
event that no colour in L. got assigned type c(e). Then

P(B.) < (1—=1/m)* < (1 —tlogn/k)* < 1/n".

So by the union bound we obtain:

U BB < <Z> 1/nt < 1.

GEE(K'r(f)>

Thus there is an assignment of types for which every e € £ (Kfp) has at least one colour of type c(e)
in its list and we colour e in one such colour. In this colouring there can be no monochromatic copy

of H since otherwise there would be a monochromatic copy of H under ¢, contradicting our choice of

C. O
We can now deduce all our lower bounds from the introduction.

Proof of Theorem 6. Let us first show that R(H,k) > 7*. In order to do this we exhibit a colouring
of G = Kr(i) without a monochromatic copy of H. We split G into r equal parts and colour all edges
not completely within one of the parts using colour 1, then we repeat within each of the parts. Notice
that since x(H) > r there can be no monochromatic copy of H in this colouring, implying the claim.

{ k/(glOgT)J we have that

Choosing n =7
R(H, |k/(flogn)]) > plh/(Llogn) | T{ k/(élogr)J =n
Hence Theorem 21 applies, giving us the desired inequality. ]

Proof of Theorem 7. Axenovich, Gyarfas, Liu and Mubayi [4] showed that if an ¢-graph H is not
f-partite then

R(H, k) > M/ (tLHDeh) (9)
Then for n = Lecﬁﬂj we have that
R(G, |k/(Llogn)|) > elk/(Clogm|/(LH1)e") > cerVh >
so Theorem 21 applies and gives us the desired inequality. O

Proof of Theorem 8. The upper bound is the trivial inequality (1). For the lower bound we set

n = R(H, |ck/logk|)—1, which implies {lsng ex(H,n) > (}), since each colour class is H-free. Using

15



Erdés’ upper bound [15, Theorem 1] on the Turdn number of ¢-partite ¢-graphs one obtains

R(H, k) < (k¢ (10)

for any (-partite /-graph H with each part of size at most r. Substituting 1/c := 2r=1¢2

that

log ¢ we get

[k/(£logn)] > [k/(Llog(ke®)" )| > [ck/logk] .

So we obtain that
R(H, |k/(¢logn)|) > R(H, |ck/logk]) > n.

Hence, Theorem 21 implies the result.

To deduce the second part, note that from ex(H,n) = ©(n‘*H)) it is not hard to deduce that
R(H, k) = ©(k'/#(1)) | for example it follows from Lemma 15 of [4]. Combining this and the first part
of the theorem the result follows. O]

3 Concluding remarks and open problems

In this paper we initiate the systematic study of list Ramsey numbers of graphs and hypergraphs. We
obtain several general bounds and reach a good understanding of how the list Ramsey number relates
to the ordinary Ramsey number for some families of graphs. There are plenty of very natural further
questions that arise.

For stars we have shown that the list Ramsey number is at most one smaller than the Ramsey number.
We showed that they are equal in the case of two colours or when the size of the star is sufficiently
large compared to the number of colours. Actually, we could not show them to differ for any values of
the parameters, and we tend to conjecture that they are always equal.

Conjecture 1. For any r,k € N
Ry(Ky 4, k) = R(Ky,,k).

Proving this conjecture for small r, in particular for r = 2, seems to be difficult, since that is equivalent
to the well-studied and still open List Colouring Conjecture for cliques. That said, it would also be
really interesting to show the conjecture for any r > 3, because this already seems to require new ideas.

For matchings we determine the list Ramsey number up to a constant factor. While our approach is
very similar to the one we use in the general setting, we obtain very good bounds by exploiting the
very simple structure of matchings. It would be interesting, but again probably hard, to determine the
list Ramsey number of matchings exactly. We actually obtain the list Ramsey number of matchings up
to a smaller order additive term when the size of the matching is sufficiently larger than the number
of colours. When the number of colours is large enough compared to the size then we could obtain
tight bounds only up to a multiplicative constant factor. It would be highly desirable to prove bounds
which are correct up to a lower order term.

Question 2. Does the limit
klim Ry(rKa,k)/(k/logk)
— 00

exist and if it does what is its value?

16



If this limit exists we have shown that it is between r/4 and 34r. While we did not make a serious
attempt to optimise these constant factors and it is not hard to improve them by being more careful
with our arguments, finding the precise constant factor seems to require new ideas.

There are many other families of graphs for which pretty good bounds are known for the Ramsey
number, such as paths or cycles, and which might exhibit interesting behaviour in the list Ramsey
setting.

In the case of general graphs and hypergraphs we have shown that the list Ramsey number is bounded
above by a single exponential function in terms of the number of colours, which for higher uniformity
hypergraphs is in stark contrast to the ordinary Ramsey number, which is known to exhibit an iterated
exponential behaviour. In the case of ¢-partite /-graphs we showed that the list Ramsey number is
in fact a polynomial function of the number of colours and that it is close to the ordinary Ramsey
number. For non /-partite -graphs we have shown a lower bound which is exponential in the square
root of the number of colours. It would be interesting to ascertain whether this lower bound or the
exponential upper bound is closer to the truth, even only for some specific families (of non-¢-partite
l-graphs) such as cliques. In fact for the case of ¢ = 2, that is, for graphs, it is still open whether the
k-colour list Ramsey number of cliques is always equal to its ordinary Ramsey counterpart.

Question 3. Is it true that for any r,k € N

Ry(K,, k) = R(K,, k)?

We have shown how list Ramsey numbers connect to various interesting problems and sometimes
exhibit very different behaviour when compared to their ordinary Ramsey counterparts. Such in-
formation may give some indication for the original Ramsey problem as well. For example, since
Ry(K3,k) < (44 o(1))* if one wishes to construct an example showing R(K3, k) is super-exponential
in k£ (and in the process win a $100 prize from Erddés) one needs to ensure this example does not also
work in the case of list Ramsey numbers.

Ramsey theory is very rich in attractive problems and there are many such problems which may prove
to be interesting in the list Ramsey setting as well. Some classical examples that come to mind are
Schur’s or Van der Waerden’s Theorems.
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