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Abstract

We introduce a list colouring extension of classical Ramsey numbers. We investigate when the two

Ramsey numbers are equal, and in general, how far apart they can be from each other. We find

graph sequences where the two are equal and where they are far apart. For `-uniform cliques we

prove that the list Ramsey number is bounded by an exponential function, while it is well-known

that the Ramsey number is super-exponential for uniformity at least 3. This is in great contrast to

the graph case where we cannot even decide the question of equality for cliques.

1 Introduction

The notion of proper colouring and the corresponding parameter of the chromatic number is one of the

most applicable and widely-studied topics in (hyper)graph theory. In some of these applications the

list-colouring extension of the notion is necessary to describe the situation appropriately. A colouring

of a hypergraph H = (V,E) is a function c : V → N. A colouring is called proper if no hyperedge

e ∈ E is monochromatic. For an assignment L : V → 2N of a subset Lv ⊆ N of colours to each vertex

v ∈ V , we call a colouring c : V → N an L-colouring if c(v) ∈ Lv for every v ∈ V . When Lv = [k] for

every v ∈ V , an L-colouring is called a k-colouring.

The chromatic number χ(H) is the smallest integer k such that there exists a proper k-colouring of

H and the list-chromatic number (or choice number) χ`(H) is the smallest integer k such that for

every assignment L of lists of size k to the vertices of H there is a proper L-colouring. By definition

χ(H) ≤ χ`(H) for every graph H. Under what circumstances are the two parameters equal and how

far they can be from each other? These fundamental questions are the subject of vigorous research,

see, e.g., [8], Chapter 14 and the references therein. A notorious open question in this direction is the

List Colouring Conjecture suggested independently by various researchers including Vizing, Albertson,

Collins, Tucker and Gupta, which appeared first in print in the paper of Bollobás and Harris [7] and

states that the list-chromatic number is equal to the chromatic number for line-graphs. This conjecture

was proved by Galvin [18] for bipartite graphs, by Häggkvist and Janssen [21] for cliques of odd order,

by Alon and Tarsi [1] for cubic bridgeless planar graphs, by Ellingham and Goddyn [14] for regular

class-1 planar multigraphs and by Kahn [22] asymptotically, but is very much open in general. Even

∗Department of Mathematics, Princeton University, Princeton, New Jersey, USA and Schools of Mathematics and
Computer Science, Tel Aviv University, Tel Aviv, Israel. e-mail: nogaa@tau.ac.il. Research supported in part by NSF
grant DMS-1855464, ISF grant 281/17, GIF grant G-1347-304.6/2016, BSF grant 2018267 and the Simons Foundation.
†Department of Mathematics, ETH, 8092 Zurich; e-mail: matija.bucic@math.ethz.ch. Research supported in part

by SNSF grant 200021-175573.
‡School of Mathematics, Tel Aviv University, Tel Aviv, Israel. e-mail: tomkalva@mail.tau.ac.il.
§School of Mathematics, Tel Aviv University, Tel Aviv, Israel. e-mail: kuperwasser@mail.tau.ac.il.
¶Institute of Mathematics, FU Berlin, 14195 Berlin; e-mail: szabo@math.fu-berlin.de. Research supported in part

by GIF grant No. G-1347-304.6/2016 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID:
390685689).

1



for cliques Kn of even order it is not known whether the list-chromatic number of its line graph is n

or n− 1.

A particularly interesting instance of hypergraph colouring arises from Ramsey theory, which is con-

cerned with the proper colouring of very specific hypergraphs. Ramsey’s Theorem states that for any

r-uniform hypergraph (or r-graph) G and number k of colours any k-colouring of the r-subsets of [n]

contains a monochromatic copy of the hypergraph G, provided n is large enough depending on G and

k. The smallest such integer n is usually called the k-colour Ramsey number of the hypergraph G.

Definition. The k-colour (ordinary) Ramsey number of an r-graph G is defined as

R(G, k) := min{n | ∀k-colouring of E(K(r)
n ), ∃ a monochromatic copy of G}.

The study of Ramsey numbers has attracted a lot of attention over the years and many natural

generalisations and extensions of Ramsey numbers were considered, for excellent surveys see [19], [12]

and the references therein. In this paper we study a new variant, a list colouring version of the Ramsey

problem. In particular, when is it possible to assign lists of size k to the edges of K
(r)
n in such a way

that if we colour each edge with a colour from its list we can always find a monochromatic copy of a

given graph. If we require all lists to be the same we recover the ordinary Ramsey number. This gives

rise to the following list-colouring variant of the Ramsey number.

Definition. The k-colour list Ramsey number of an r-uniform hypergraph G is defined by

R`(G, k) = min{n |∃L : E(K(r)
n )→

(
N
k

)
s.t. ∀ L-colouring of E(K(r)

n ) ∃ a monochromatic copy of G}.

A first observation, immediate from the definition, is that for every G and k, we have

R`(G, k) ≤ R(G, k). (1)

In our paper we will be investigating when this inequality is an equality and, more generally, when the

two quantities are close to each other and when they are far apart, how far apart can they be. This

question for specific families of graphs turns out to be related to several long standing open problems

such as the aforementioned list colouring conjecture, we give the details in the following subsections.

Remark. Notion of the list Ramsey number was suggested at https://mathoverflow.net/questions/

298778/list-ramsey-numbers, where some basic observations were made, as well as a conjecture, which

we disprove, that inequality (1) is actually always an equality.

1.1 Results

1.1.1 Stars

Any edge-colouring of a graph contains no monochromatic copy of K1,2 if and only if it is proper.

Therefore the k-colour Ramsey number (list Ramsey number) of K1,2 is equal to the smallest number

n such that χ′(Kn) > k (χ′`(Kn) > k, respectively), where here χ′(G) denotes the edge chromatic

number of G which can be defined as the chromatic number of its line graph and similarly for χ′`.

Hence the question whether the two Ramsey numbers of K1,2 are equal for an arbitrary number k of

colours is essentially equivalent to the aforementioned List Colouring Conjecture for cliques. It was

proved by Häggkvist and Janssen that χ′`(Kn) ≤ n for every n, which implies that the list chromatic
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index χ′`(Kn) is equal to the chromatic index χ′(Kn) for odd n. The question whether χ′`(Kn) is equal

to χ′(Kn) for even n is still open. Consequently we know that R`(K1,2, k) = k + 1 = R(K1,2, k) when

k is even, but we do not know whether R`(K1,2, k) is k + 1 or k + 2 when k is odd.

The multicolour Ramsey number for stars of arbitrary size was determined by Burr and Roberts [9].

They showed that

(r − 1)k + 1 ≤ R(K1,r, k) ≤ (r − 1)k + 2, (2)

and that the lower bound is tight if and only if both r and k are even.

In our first theorem we extend the validity of the lower bound to the list Ramsey number, thus

establishing that the lower bound is tight when both r and k are even. Furthermore, we show for any

fixed number k of colours, that for large enough r the upper bound is tight.

Theorem 1. For any k and r ∈ N, except possibly finitely many integers r for each odd k, we have

R`(K1,r, k) = R(K1,r, k). More precisely,

(a) For every r, k ∈ N, we have

(r − 1)k + 1 ≤ R`(K1,r, k). (3)

In particular, R`(K1,r, k) = (r − 1)k + 1 = R(K1,r, k) whenever both r and k are even.

(b) For every k ∈ N there exists w(k) ∈ N such that the following holds. For every k and r ≥ w(k)

that are not both even, we have

R`(K1,r, k) = (r − 1)k + 2 = R(K1,r, k).

Our theorem fails to give a full characterisation of the tightness of the lower bound in (3). For two

colours we can give such a characterisation and find that the two Ramsey numbers are always equal.

Theorem 2. For every r ∈ N we have

R`(K1,r, 2) = R(K1,r, 2) =

{
2r − 1 if r is even

2r−11 if r is odd.

1.1.2 Matchings

We saw above that for stars the two Ramsey numbers are equal, possibly up to an additive constant

one. Next we consider matchings and find that, unlike for stars, the ordinary Ramsey number is

significantly larger than the list Ramsey number for most values of the parameters.

Ramsey numbers of matchings were determined in 1975 by Cockayne and Lorimer [10]. They showed

that for every r, k ∈ N,

R(rK2, k) = rk + r − k + 1. (4)

A trivial lower bound on the list Ramsey number R`(rK2, k) is 2r: if we were to find a matching of

size r in Kn, monochromatic or not, then n better be at least the number of vertices in rK2. It turns

out that if the number k of colours is not too large compared to r, then this trivial lower bound is

asymptotically tight! That is, even if n is just slightly larger than 2r, there exists an assignment of

lists of size k to the edges of Kn, such that any list-colouring of the edges contains a monochromatic

rK2 (i.e., an almost perfect matching which is monochromatic). Note that by (4), using the same k
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colours on each edge one can colour a much larger clique without a monochromatic rK2. In particular

we show that for any fixed number k of colours the two Ramsey numbers are a constant factor k+1
2

away from each other asymptotically, as r tends to infinity.

The number k of colours becomes more visible in the value of the list Ramsey number once k is larger

than a logarithmic function of the size r of the matching. In particular for any fixed r, we determine

the growth rate of the k-colour list Ramsey number up to an absolute constant factor and find that

the ratio of the two Ramsey numbers grows as Θ(log k).

Theorem 3. For any fixed k ≥ 2 and r tending to infinity, we have R`(rK2, k) = 2r + o(r). In

particular
R(rK2, k)

R`(rK2, k)
=
k + 1

2
+ o(1).

For any fixed r ≥ 1 and k tending to infinity, we have R`(rK2, k) = Θ(k/ log k). In particular

R(rK2, k)

R`(rK2, k)
= Θ(log k).

In fact we determine the list Ramsey number of matchings for all values of r and k up to a constant

factor and when r is sufficiently bigger than k even up to an additive lower order term. For more

details see Subsection 2.2.

1.1.3 Cliques and Hypergraphs

Some of the most famous open problems in Ramsey theory involve cliques. The proofs of the classic

probabilistic lower bounds on R(Kr, 2) all go through in the list chromatic setting, hence

2r/2 < R`(Kr, 2) ≤ R(Kr, 2) < 22r.

Not unexpectedly, we cannot improve on the lower bound. It is not difficult to see that R`(K3, 2) =

6 = R(K3, 2), but for r > 3 we cannot even decide the equality of the two Ramsey numbers of Kr

when k = 2.

For hypergraphs of uniformity ` ≥ 3 however, we are able to show an exponential (or even larger,

depending on the uniformity) separation between the ordinary and the list Ramsey numbers. On the

one hand it is known via the stepping-up lemma of Erdős and Hajnal (see Chapter 4.7 of [19]) that

the Ramsey numbers of cliques are super-polynomial in the exponent whenever ` ≥ 4 or ` = 3, k ≥ 3

(Conlon, Fox, Sudakov [11] for k = ` = 3) and in fact grow at least as fast as a tower of height `− 2.

For the list Ramsey number on the other hand we can show that for fixed uniformity and number of

colours it is upper bounded by an exponential in a polynomial in r.

Theorem 4. For arbitrary positive integers r ≥ ` and k ∈ N we have

R`(K
(`)
r , k) ≤ 24r

3`−1+4kr`−1 log2 r.

This theorem obviously provides an upper bound on the list Ramsey number of any fixed `-graph H,

which is an exponential function of k. For a growing number of colours the base of the exponent can

be strengthened. In order to state our result, we need to introduce a few standard parameters. Let

ex(H,n) denote the maximum number of edges in an H-free `-graph on n vertices and let π(H) =
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limn→∞ ex(H,n)/
(
n
`

)
. Assuming H has at least 2 edges let

m(H) = max
H′⊂H,e(H′)>1

e(H ′)− 1

v(H ′)− `
.

Theorem 5. Let H be an `-uniform hypergraph. Then, as k tends to infinity, we have

R`(H, k) ≤ (1− π(H) + o(1))−km(H).

For the particular case of k-colour list Ramsey number of the triangle the theorem gives the exponential

upper bound R`(K3, k) ≤ (4 + o(1))k.

The behaviour of the ordinary k-colour Ramsey number R(K3, k) is related to other open problems,

most notably the question if the maximum possible Shannon capacity of a graph with independence

number 2 is finite, see [16], [2]. It is one of the notorious open problems of combinatorics to decide

whether its growth rate is exponential or superexponential. Erdős offers $100 for its resolution and

$250 for the determination of the limit lim
k→∞

k
√
R(K3, k) provided it exists. The current best lower

bound is R(K3, k) ≥ 3.199k (see [24]), so not large enough for us to conclude that the ordinary and

the list Ramsey numbers are different.

For the list Ramsey number we can only give a much weaker lower bound, where the exponent is the

square root of the number of colours.

Theorem 6. If H is an `-uniform hypergraph with χ(H) > r, then we have

R`(H, k) ≥ e
√
k log r/(4`).

In particular R`(K3, k) > e
√
k/4.

Note that this theorem gives a lower bound exponential in the square root of k for every non-2-

colourable `-graph H. Our argument extends to every non-`-partite `-graph, even if they are 2-

colourable, with a somewhat worse constant factor in the exponent.

Theorem 7. Let H be an `-uniform hypergraph which is not `-partite. We have

R`(H, k) ≥ ec`
√
k,

where 1/c` = 2`e`/2.

Our proof method works most efficiently when the ordinary Ramsey number of H is small. It is known

that the multicolour Ramsey number of an `-graph H is polynomial in k if and only if H is `-partite.

For them we determine the list Ramsey number up to a poly-logarithmic factor.

Theorem 8. Let H be an `-partite `-uniform hypergraph with parts of size at most r. There is a

constant c = c(r, `) such that

R(H, bck/ log kc) ≤ R`(H, k) ≤ R(H, k).

In particular, if ex(H,n) = Θ̃(n`−ε(H)),1 for some ε(H) > 0, then

R`(H, k) = Θ̃(R(H, k)) = Θ̃(k1/ε(H)).
1Here f = Θ̃(g) means, as usual, that f and g are equal up to polylogarithmic factors.
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This theorem can be considered an extension of the second part of Theorem 3, where we determine

that the ordinary and the list Ramsey numbers of matchings are exactly a log k factor away from each

other. For several bipartite graphs (for example for complete bipartite graphs Kr,s for s > (r − 1)!,

even cycles C6 and C10 or general trees) the asymptotic behaviour of the ordinary Ramsey number is

known up to a polylogarithmic factor and hence by Theorem 8 so is the list Ramsey number.

The rest of this paper is organised as follows. In Subsection 2.1 we prove our results for stars. In

Subsection 2.2 we prove the results for matchings, demonstrating on a relatively simple example the

methods we are going to use in Subsection 2.3 to prove the bounds for list Ramsey numbers of general

graphs. In Section 3 we give concluding remarks and present some open problems. All our logarithms

are natural unless explicitly indicated otherwise.

2 Bounds for list Ramsey numbers

2.1 Stars

Let us start with a few preliminaries and tools which we will use throughout this subsection.

Theorem 9 (Galvin [18]). If G is a bipartite graph of maximal degree ∆ then χ′`(G) = ∆.

To show R`(G, k) > n we need to show that for any assignment of lists of size k to the edges of Kn

we can choose the colours from the lists in such a way that we create no monochromatic copy of G.

We distinguish two cases depending on parity. The following simple observation will enable us to give

lower bounds on R`(K1,r, k).

Lemma 10. Let us assume that graphs G1, . . . , Gt partition the edge set of Kn. If χ′`(Gi) ≤ k for all

i and each vertex belongs to at most r − 1 of the Gi’s then R`(K1,r, k) > n.

Proof. Let L be an assignment of lists of size k to the edges of Kn. By the assumption that χ′`(Gi) ≤ k
there is a proper L-colouring ci of each Gi. Let us define an L-colouring c of E(Kn) by c(e) = ci(e),

where i is the index of the unique Gi containing e. Note that since any vertex v belongs to at most

r − 1 Gi’s we know that edges incident to v are using colours from at most r − 1 ci’s. Since each ci is

proper this means that for any fixed colour v is incident to at most r− 1 edges of this colour, showing

there can be no monochromatic K1,r under c as desired.

We begin with the case of 2 colours, by proving Theorem 2.

Theorem 2. For every r ∈ N we have

R`(K1,r, 2) = R(K1,r, 2) =

{
2r − 1 if r is even

2r−11 if r is odd.

Proof. It is well known that the standard Ramsey number satisfies the same equalities, [9]. So by (1)

we only have to show the corresponding lower bounds.
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Case 1: r even.

We will make use of the following fact proved by Alspach and Gavlas [3].

Proposition. Let n be an even integer. Kn can be partitioned into a single perfect matching and

Hamilton cycles.

Let n = 2r − 2. By the above proposition we can partition Kn into a perfect matching G1 and r − 2

Hamilton cycles G2, . . . , Gr−1. By Galvin’s theorem [18] we know that χ′`(Gi) ≤ 2 and each vertex

belongs to exactly r − 1 of the Gi’s so by Lemma 10 we are done.

Case 2: r odd.

In this case we make use of a different partitioning result of Alspach and Gavlas [3].

Proposition. Let n be an odd integer and m an integer satisfying 4 ≤ m ≤ n. Kn can be partitioned

into cycles of length m if and only if m divides the number of edges of Kn.

Let n = 2r − 1. Let us first assume that r ≥ 5. Since |E(Kn)| = n(n − 1)/2 = (2r − 1)(r − 1) by the

above result we can partition Kn into cycles of length r − 1. Since r is odd these cycles are bipartite

and have χ′`(Cr−1) = 2. As they are 2-regular and partition E(Kn) we know that each vertex belongs

to exactly r − 1 of these cycles. Therefore, we are done by Lemma 10.

The case r = 1 is immediate, so we are left with the case r = 3. Let L be an assignment of lists of size

2 to the edges of K5. Partition K5 into two 5-cycles C1, C2. If we can properly colour both C1 and C2

using colours from the lists we are done. It is well-known and easy to see that the only way in which

a 5-cycle does not admit a 2-colouring from its lists is if the lists are all the same. Therefore, we may

assume that edges of one cycle, say C1 have the same lists. We now colour all edges of C1 using a

single colour c from their list and colour all edges of C2 by arbitrary colours in their lists which differ

from c. In this colouring there is no monochromatic K1,3 as desired.

Let us now consider the case of more colours. As in the case of 2-colours all our upper bounds come

from the ordinary Ramsey numbers, which were determined by Burr and Roberts in [9] and the trivial

inequality (1). The following two lemmas establish the two lower bounds claimed in Theorem 1,

completing its proof.

Lemma 11.

(r − 1)k + 1 ≤ R`(K1,r, k).

Proof. Let n = (r − 1)k, partition the vertices of Kn into sets V1, . . . , Vr−1, each of size k. We let Gi
be the subgraph induced by Vi and for i 6= j we let Gi,j be the complete bipartite subgraph with parts

Vi, Vj . By Theorem 9 we know that χ′`(Gi,j) ≤ k and since by a result of Häggkvist and Janssen [21]

we know that χ′`(Kk) ≤ k we also have χ′`(Gi) ≤ k. Every vertex belongs to exactly r − 1 of these

subgraphs which partition E(Kn), and we are done by Lemma 10.

This completes the proof of Theorem 1 part (a). Before turning to part (b) we state a packing result

of Gustavsson [20] which we will use for its proof.
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Theorem (Gustavsson [20]). For any graph F there exists an ε = ε(F ) > 0 and n0 = n0(F ) such that

for any graph G on n ≥ n0 vertices with minimum degree at least (1− ε)n one can partition the edge

set of G into copies of F , provided:

• e(F ) | e(G) and

• gcd(F ) | gcd(G),

where e(H) denotes the number of edges of a graph H and gcd(H) denotes the greatest common divisor

of the degrees of vertices in H.

Lemma 12. For every k ∈ N there exists w(k) ∈ N such that the following holds. For every k and

r ≥ w(k) that are not both even, we have

R`(K1,r, k) = (r − 1)k + 2.

Proof. Let n = (r − 1)k + 1. Therefore, e(Kn) =
(
n
2

)
= (r − 1)k((r − 1)k + 1)/2. Since, if k is even r

must be odd and in particular, 2|r−1 we know that k | e(Kn). Let t ≡ e(Kn)/k mod k. Let G1, . . . , Gt
be vertex disjoint subgraphs of Kn each isomorphic to Kk+1,k+1 with a perfect matching removed,

where we require w(k) ≥ 2k + 1 in order to have enough room (n = (r − 1)k + 1 ≥ (w(k)− 1)k + 1 ≥
2k2+1 ≥ 2(k+1)t, since t ≤ k−1). Let G be the subgraph of Kn obtained by removing the edges of all

Gi’s and let F = Kk,k. Note that e(G) ≡ tk− tk(k+ 1) ≡ 0 mod k2 so e(F ) = k2 | e(G). Furthermore,

every vertex of Kn not in any Gi still has degree (r − 1)k in G while any vertex of Gi has degree

(r− 1)k − k so gcd(G) = k = gcd(F ). Therefore, if we let ε = ε(Kk,k) and n0 = n0(Kk,k) given by the

above theorem, then for w(k) ≥ max(n0/k, 2/ε) the above theorem applies, implying that E(G) can

be partitioned into Gt+1, . . . , Gq all isomorphic to Kk,k.

Since each Gi is a k-regular bipartite graph Galvin’s Theorem implies χ′`(Gi) ≤ k and since Gi’s

partition E(G) we know that each vertex belongs to at most (n − 1)/k = r − 1 of the Gi’s so our

Lemma 10 applies and implies the result.

2.2 Matchings

In this section we will show the following bounds on the list Ramsey number of matchings.

Theorem 13. Let r, k ∈ N. If 2(k + 1) ≤ log r then

2r ≤R`(rK2, k) ≤ 2r + 42rk/(k+1).

If 2(k + 1) > log r > 0 then

rk

4 log(rk)
≤R`(rK2, k) ≤ 34rk

log(rk)
.

Theorem 3 is now an immediate consequence of Theorem 13 and (4).

The proof of Theorem 13 appears in the following two lemmas. Our arguments below aim to illustrate

as well the ideas we apply for the general setting in the next subsection, hence they are slightly more

complicated than necessary.

We start with the lower bound.
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Lemma 14. Assuming r, k ∈ N such that rk > 1 we have

R`(rK2, k) ≥ max

(
2r,

(r − 1)k

2 log(rk)

)
.

Proof. Let n = max
(

2r − 1, (r − 1) ·
⌊

k
2 log(rk)

⌋
+ r
)
. Our task is to show that for any assignment L

of lists of size k to E(Kn) we can choose an L-colouring without a monochromatic rK2. This is clear if

the first term of the maximum is greater or equal than the second, because then rK2 has more vertices

than Kn. So we may assume k
2 log(rk) ≥ 2. Let t =

⌊
k

2 log(rk)

⌋
≥ 2.

Let c : E(Kn) → [t] be a t-colouring of E(Kn) without a monochromatic rK2, which exists since

R(rK2, t) = (r − 1)t+ r + 1 > n, using (4).

We split all colours in ∪e∈E(Kn)Le into t types indexed by [t], with each colour being assigned a type

independently and uniformly at random. Let Be denote the event that no colour in Le got assigned

the type c(e). Then

P(Be) =

(
1− 1

t

)k
≤
(

1− 2 log(rk)

k

)k
≤ 1

r2k2
.

So by the union bound we obtain:

⋃
e∈E(Kn)

P(Be) ≤
n2

2r2k2
< 1,

where we used k ≥ 2, which follows from k
2 log(rk) ≥ 2.

Thus there is an assignment of types to colours appearing in the lists such that for every e ∈ E(Kn)

there is a colour c′(e) of type c(e) in Le. Note that c′ is an L-colouring of Kn with no monochromatic

rK2, since otherwise there would be a monochromatic rK2 using only one type of colours, contradicting

our choice of c.

We now turn to the upper bounds. Once again we need to distinguish between the two regimes.

Lemma 15. Let r, k ∈ N. If 2(k + 1) ≤ log r then we have

R`(rK2, k) ≤ 2r + 42rk/(k+1),

and else we have

R`(rK2, k) ≤ 34rk/ log(rk).

Proof. First notice that when r = 1 or k = 1 the result is immediate, so we assume r, k ≥ 2 throughout

the proof. In order to show an upper bound R`(G, k) ≤ n, we need to find a list assignment L of lists

of size k to each edge of Kn in such a way that there is no way of L-colouring Kn without having a

monochromatic copy of G.

Before proceeding with the proof, let us give some intuition for the next step. We are going to choose

the lists by assigning each edge a uniformly random subset of colours from a slightly larger universe.

Our goal then is to show that with probability less than one our random assignment of lists L has an

L-colouring having no monochromatic rK2. We now take a union bound over all possible colourings of

Kn having no monochromatic rK2 and check what is the probability that a fixed one is an L-colouring.

The fact every edge misses a random set of colours makes this probability rather low.
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For each edge of Kn we choose independently and uniformly at random a list of size k from the universe

U of k+ t colours. For now we do not specify the values of n and t since they will differ depending on

which of the two regimes we are considering, we will however assume that n is even.

Let B denote the event that there is a colouring c from our lists having no monochromatic rK2. Our

goal is to show P(B) < 1. Let us restrict attention to the complete bipartite graph H = Kn/2,n/2 within

our Kn. If B happens this means that there is an edge colouring c of H for which every colour class

contains no matching of size r. Since H is bipartite König’s theorem implies that every colour class

has a cover of size at most r − 1.

For any subset S of vertices of H of size |S| = r− 1 consider the subgraph of H on the same vertex set

containing all the edges of H incident to a vertex in S. Denote these subgraphs by C1, · · ·Cm, where

m =
(
n
r−1
)
.

The above observation implies that if B happens, every colour class of c on H is completely contained

within some Ci. For all i ∈ U we denote by ci the subgraph of H made by the i-th colour class of c.

Then

P(B) ≤ P(∃ an L-colouring c : E(H)→ U s.t. ∀i ∈ U, ∃j ∈ [m] : ci ⊆ Cj)

≤
∑

j1,...,jk+t∈[m]

P(∃ an L-colouring c : E(H)→ U s.t. ∀i ∈ U : ci ⊆ Cji)

≤ mk+t max
j1,...,jk+t∈[m]

P(∃ an L-colouring c : E(H)→ U s.t. ∀i ∈ U : ci ⊆ Cji)

= mk+t max
j1,...,jk+t∈[m]

P(∀e ∈ E(H), ∃i ∈ Le : e ∈ Cji). (5)

Let us now bound the last term. For fixed values j1, . . . , jk+t, let de denote the number of Cji to which

edge e belongs. As each Cj has at most (r−1)n/2 edges, we have that
∑

e∈E(H) de ≤ (k+ t)(r−1)n/2.

P(∀e ∈ E(H), ∃i ∈ Le : e ∈ Cji) =
∏

e∈E(H)

P(∃i ∈ Le : e ∈ Cji)

=
∏

e∈E(H)

(
1−

(
k + t− de

k

)
/

(
k + t

k

))

=
∏

e∈E(H)

(
1−

(
1− de

k + t

)
· · ·
(

1− de
t+ 1

))

≤
∏

e∈E(H)

(
1−

(
1− de

t+ 1

)k)

≤

1−

(
1− d̃e

t+ 1

)kn2/4

, (6)

where in the first inequality we used the independence of the assignment of lists between edges, d̃e :=

10



∑
e∈E(H) de

|E(H)| ≤ (k+t)(r−1)
n/2 and we used Jensen’s inequality. Combining (5) and (6) we obtain:

P(B) ≤
(

n

r − 1

)k+t1−

(
1− d̃e

t+ 1

)kn2/4

≤
(

en

r − 1

)(r−1)(k+t)
(

1−
(

1− 2(r − 1)(k + t)

n(t+ 1)

)k)n2/4

. (7)

At this point we proceed differently depending on the relation between k and r. In the first case we

will assume k to be significantly smaller than r, specifically we assume 2(k + 1) ≤ log r. We choose

t = (k−1) ·
⌈

n
20rk/(k+1)

⌉
−1 and our goal is to show that for n = 2r+2 ·

⌈
20rk/(k+1)

⌉
we have P(B) < 1.

logP(B) ≤ log

( en

r − 1

)(r−1)(k+t)
(

1−
(

1− 2(r − 1)(k + t)

n(t+ 1)

)k)n2/4


<

(
1 + log

n

r − 1

)
(r − 1)(k + t)− n2

4
·
(
n− 2r

n
− k − 1

t+ 1

)k
< 6r(k − 1)

(
1 +

⌈ n

20rk/(k+1)

⌉)
− n2

4
·

(
20rk/(k+1)

n

)k

<
12r(k − 1)n

20rk/(k+1)
− r2 ·

(
20rk/(k+1)

n

)k

=
rn

20rk/(k+1)
·

(
12(k − 1)−

(
20r

n

)k+1
)

<
rn

20rk/(k+1)
·
(

12(k − 1)− 2.5k+1
)
< 0,

where in the second inequality for the second term we used log(1 − x) ≤ −x, for x < 1, and 1 −
2(r−1)(k+t)
n(t+1) ≥ 1− 2r(k+t)

n(t+1) = n−2r
n − 2r(k−1)

n(t+1) > n−2r
n − k−1

t+1 where the last inequality follows since n > 2r.

In the third inequality for the first term we used
(

1 + log n
r−1

)
≤ 1+log 88 ≤ 6. In the fourth inequality

we used 1+dxe < 2x when x > 2 for the first term and n > 2r for the second, while in the last inequality

we used log r ≥ 2(k + 2), to get: 20r
n ≥

10
1+20r−1/(k+1)+(2r)−1 ≥ 10

1+21/e2
> 2.5.

For the second case, when log r < 2k + 2, we let n = 2 d16rk/ log(rk)e and t = k and use (7) to get:

logP(B) ≤ log

( en

r − 1

)(r−1)(k+t)
(

1−
(

1− 2(r − 1)(k + t)

nt

)k)n2/4


≤ 2rk log

(
en

r − 1

)
+
n2

4
log

(
1−

(
1− log(rk)

8k

)k)

≤ 2rk(8 + log k) +
n2

4
log
(

1− e− log(rk)/4
)

≤ 2rk(8 + log k)− (rk)−1/4n2/4

≤ 16rk
(
k1/4 − 16(rk)3/4/ log2(rk)

)
≤ 16rk

(
k1/4 − (rk)1/4

)
< 0,

11



where in the first term of the third inequality we used log
(
en
r−1

)
≤ 1 + log (128k) ≤ 8 + log k, while in

the second term we used (1− x) ≥ e−2x, given x ≤ 1/2, with x = log rk
8k ≤

2k+2+log k
8k ≤ 1/2. In the fifth

inequality we used 8 + log k ≤ 8k1/4 and in the sixth log x ≤ 4x1/4.

2.3 General bounds.

In this subsection we give our bounds for general graphs and hypergraphs.

2.3.1 Upper bounds.

We start with upper bounds. The idea closely follows the one presented in the previous section with

the main distinction that now it is not so easy to find the appropriate sets Cj . Note that the only

property we required from Ci’s is that the edge set of every graph not containing a copy of rK2 is

contained in some Ci. In the general setting we will find such sets by using the container method

introduced by Saxton and Thomason [23] and Balogh, Morris and Samotij [5]. Specifically, we make

use of the following theorem (Theorem 2.3 in [23]).

Theorem 16. Let H be an `-graph with |E(H)| ≥ 2 and let ε > 0. There is a constant c > 0 such that

for any n ≥ c there is a collection of `-graphs C1, . . . , Cm on the vertex set [n], such that

(a) every H-free `-graph on the vertex set [n] is contained within some Ci,

(b) |E(Ci)| ≤ (π(H) + ε)
(
n
`

)
and

(c) logm ≤ cn`−1/m(H) log n.

We now give an upper bound on the list Ramsey number for a fixed graph as the number of colours

becomes large.

Theorem 5. Let H be an `-uniform hypergraph. Then, as k tends to infinity, we have

R`(H, k) ≤ (1− π(H) + o(1))−km(H).

Proof. We once again choose the lists for each edge uniformly at random out of the universe of

k + t colours. As before, B will denote the event that there is a colouring from our lists having no

monochromatic H. Once again our goal is to show P(B) < 1.

Let ε > 0, Theorem 16 provides us with a constant c = c(ε,H) and a collection of `-graphs C1, . . . , Cm
satisfying the conditions (a),(b) and (c), where we will choose the value of n ≥ c later. We once again

obtain as in (5)

P(B) ≤ mk+t max
j1,...,jk+t∈[m]

P(∀e ∈ E(H), ∃i ∈ Le : e ∈ Cji).

Once again for fixed values of ji we define de to be the number of Cji that contain the edge e, and

denote d̃e =
∑

e∈E
(
K

(`)
n

) de/(n`) ≤ (k + t)(π(H) + ε), where the last inequality follows from (b). Once

again as in (6) we obtain:

P(∀e ∈ E(H), ∃i ∈ Le : e ∈ Cji) ≤

1−

(
1− d̃e

t+ 1

)k(n`)

.

12



We choose t = dk/εe, and require 2ε < 1− π(H) to get

logP(B) ≤ (k + t) logm+

(
n

`

)
log

1−

(
1− d̃e

t+ 1

)k
≤ (k + t)cn`−1/m(H) log n−

(
1− (k + t)(π(H) + ε)

t

)k (n
`

)
≤ ck(1 + 2/ε)n`−1/m(H) log n− (1− π(H)− 2ε)k

n`

``
.

where we used (k+t)(π(H)+ε)
t ≤ (1 + ε)(π(H) + ε) ≤ π(H) + 2ε where in the last inequality we used

π(H) + ε < 1− ε. The last expression will be less than 0 provided

ck(1 + 2/ε)``

(1− π(H)− 2ε)k
< n1/m(H)/ log n. (8)

Given 3ε < 1− π(H), for large enough value of k this holds for n = (1− π(H)− 3ε)−km(H).

In the above argument it was important that H was fixed, since the constant c coming from the

container theorem depends on H. The dependence of c on H is somewhat complicated, but by analysing

the proof of Theorem 16 it should be possible to obtain good bounds for various families of graphs. We

illustrate this by obtaining an explicit bound on R`(K
(`)
r , k). We start with a slightly weaker version

of Theorem 16, which is a special case of Theorem 9.2 of [23].2

Theorem 17. Let H = K
(`)
r with r > ` and let δ > 0. For any positive integer n there exists a

collection of `-graphs C1, . . . , Cm on the vertex set [n], such that

(a) every H-free `-graph on the vertex set [n] is contained within some Ci,

(b’) Each Ci contains at most δ
(
n
r

)
copies of H and

(c) logm ≤ 1
δ log 1

δ210(
r
`)

2

n`−1/m(H) log n.

Apart from an explicit constant in part (c) the main difference compared to Theorem 16 is that in

the condition (b’) rather than bounding the number of edges in each container we bound the number

of copies of the forbidden graph H it contains. It is not hard to obtain condition (b) from (b’) by

making use of the Erdős-Simonovits supersaturation lemma, but requiring an explicit constant makes

it slightly messy. We start with the standard bound of De Caen on ex(K
(`)
r , n).

Theorem 18 (De Caen [13]).

ex(K(`)
r , n) ≤

(
1− n− r + 1

n− `+ 1
/

(
r − 1

`− 1

))(
n

`

)
.

We now state the Erdős-Simonovits supersaturation lemma, keeping track of the constants.

Theorem 19 (Erdős-Simonovits [17]). Let H be an `-graph with r vertices, x, ε > 0 and m ∈ N. Given

ex(H,m) < x
(
m
`

)
we have that if an `-uniform hypergraph on n vertices contains at least (x+ ε)

(
n
`

)
edges then it contains more than ε

(
m
r

)−1(n
r

)
copies of H.

2Where we plugged in the explicit values given in their Corollary 3.6 and Theorem 9.3 to obtain our explicit constant.
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Combining the last three theorems gives us the following explicit version of Theorem 16 for the complete

`-graph.

Theorem 20. Let H = K
(`)
r with r > ` and let δ > 0. For any positive integer n there exists a

collection of `-graphs C1, . . . , Cm on the vertex set [n], such that

(a) every H-free `-graph on the vertex set [n] is contained within some Ci,

(b) |E(Ci)| ≤
(

1− 2
3

(
r−1
`−1
)−1) (n

`

)
and

(c) logm ≤ 213(
r
`)

2

n`−1/m(H) log n.

Proof. Let x = 1 − 5
6

(
r−1
`−1
)−1

, ε = 1
6

(
r−1
`−1
)−1

and m = 6r. By Theorem 18 we know that ex(H,m) <

x
(
m
`

)
so Theorem 19 applies showing that any ` graph on n vertices with more than (x + ε)

(
n
`

)
=(

1− 2
3

(
r−1
`−1
)−1) (n

`

)
edges contains at least δ

(
n
r

)
copies of H, where 1/δ := ε−1

(
m
r

)
≤ 6

(
r−1
`−1
)(

6r
r

)
≤

22(
r
`)

2

. Using this value of δ in Theorem 17 we obtain the result.

We are now ready to obtain the bound on R`(K
(`)
r , k) promised in the introduction.

Theorem 4. For arbitrary positive integers r ≥ ` and k ∈ N we have

R`(K
(`)
r , k) ≤ 24r

3`−1+4kr`−1 log2 r.

Proof. We may assume r > ` ≥ 2 and k ≥ 2, as otherwise the inequality is clearly true.

Repeating the argument that lead to (8) with 1 −
(
r−1
`−1
)−1

in place of π(H), ε = 1
3

(
r−1
`−1
)−1

and using

Theorem 20 instead of Theorem 16 we obtain that R`(K
(`)
r , k) ≤ n given:

213(
r
`)

2

· k ·
(

1 + 6

(
r − 1

`− 1

))
· `` ·

(
3

(
r − 1

`− 1

))k
< n1/m(H)/ log n.

Which, using m(H) =
(r`)−1
r−` ≤ r`−1/(l − 1) holds for n = 24r

3`−1+4kr`−1 log2 r, to see this notice that

log n ≤ 10r3`−1k; k2
(

3
(
r−1
`−1
))k
≤ k2r`k ≤ 24k(`−1) log2 r; 10r3`−1

(
1 + 6

(
r−1
`−1
))
`` ≤ r5r ≤ 23r

2 ≤ 23(
r
`)

2

;

and 216(
r
`)

2

≤ 24r
2`

.

After this paper was submitted Balogh and Samotij obtained a more efficient container lemma in [6].

This can be used to obtain a slight improvement in the bound of the above theorem.

2.3.2 Lower bounds.

Let us now turn towards lower bounds. The main tool is the following lemma, giving us a lower bound

for R`(H, k) in terms of the ordinary Ramsey number, but with fewer colours.

Theorem 21. If R(H, bk/(` log n)c) > n then:

R`(H, k) > n.
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Proof. The proof will proceed along similar lines as that of Lemma 14. Let m = bk/(` log n)c.
Consider a colouring c : E

(
K

(`)
n

)
→ [m], without a monochromatic H, which exists because n <

R(H,m).

Let each edge e of K
(`)
n be assigned a list Le of size k, our goal is to show that we can pick colours

from the lists avoiding a monochromatic copy of H.

We assign to each colour a type from [m], independently and uniformly at random. Let Be be the

event that no colour in Le got assigned type c(e). Then

P(Be) ≤ (1− 1/m)k ≤ (1− ` log n/k)k ≤ 1/n`.

So by the union bound we obtain: ⋃
e∈E

(
K

(`)
n

)P(Be) ≤
(
n

`

)
· 1/n` < 1.

Thus there is an assignment of types for which every e ∈ E
(
K

(`)
n

)
has at least one colour of type c(e)

in its list and we colour e in one such colour. In this colouring there can be no monochromatic copy

of H since otherwise there would be a monochromatic copy of H under c, contradicting our choice of

c.

We can now deduce all our lower bounds from the introduction.

Proof of Theorem 6. Let us first show that R(H, k) > rk. In order to do this we exhibit a colouring

of G = K
(`)

rk
without a monochromatic copy of H. We split G into r equal parts and colour all edges

not completely within one of the parts using colour 1, then we repeat within each of the parts. Notice

that since χ(H) > r there can be no monochromatic copy of H in this colouring, implying the claim.

Choosing n = r

⌊√
k/(` log r)

⌋
we have that

R(H, bk/(` log n)c) > rbk/(` logn)c ≥ r
⌊√

k/(` log r)
⌋

= n.

Hence Theorem 21 applies, giving us the desired inequality.

Proof of Theorem 7. Axenovich, Gyárfás, Liu and Mubayi [4] showed that if an `-graph H is not

`-partite then

R(H, k) ≥ ek/((`+1)e`). (9)

Then for n =
⌊
ec`
√
k
⌋

we have that

R(G, bk/(` log n)c) ≥ ebk/(` logn)c/((`+1)e`) ≥ ec`
√
k ≥ n,

so Theorem 21 applies and gives us the desired inequality.

Proof of Theorem 8. The upper bound is the trivial inequality (1). For the lower bound we set

n = R(H, bck/ log kc)−1, which implies
⌊

ck
log k

⌋
ex(H,n) ≥

(
n
`

)
, since each colour class is H-free. Using
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Erdős’ upper bound [15, Theorem 1] on the Turán number of `-partite `-graphs one obtains

R(H, k) ≤ (k``)r
`−1
, (10)

for any `-partite `-graph H with each part of size at most r. Substituting 1/c := 2r`−1`2 log ` we get

that

bk/(` log n)c ≥ bk/(` log(k``)r
`−1

)c ≥ bck/ log kc .

So we obtain that

R(H, bk/(` log n)c) ≥ R(H, bck/ log kc) > n.

Hence, Theorem 21 implies the result.

To deduce the second part, note that from ex(H,n) = Θ̃(n`−ε(H)) it is not hard to deduce that

R(H, k) = Θ̃(k1/ε(H)), for example it follows from Lemma 15 of [4]. Combining this and the first part

of the theorem the result follows.

3 Concluding remarks and open problems

In this paper we initiate the systematic study of list Ramsey numbers of graphs and hypergraphs. We

obtain several general bounds and reach a good understanding of how the list Ramsey number relates

to the ordinary Ramsey number for some families of graphs. There are plenty of very natural further

questions that arise.

For stars we have shown that the list Ramsey number is at most one smaller than the Ramsey number.

We showed that they are equal in the case of two colours or when the size of the star is sufficiently

large compared to the number of colours. Actually, we could not show them to differ for any values of

the parameters, and we tend to conjecture that they are always equal.

Conjecture 1. For any r, k ∈ N
R`(K1,r, k) = R(K1,r, k).

Proving this conjecture for small r, in particular for r = 2, seems to be difficult, since that is equivalent

to the well-studied and still open List Colouring Conjecture for cliques. That said, it would also be

really interesting to show the conjecture for any r ≥ 3, because this already seems to require new ideas.

For matchings we determine the list Ramsey number up to a constant factor. While our approach is

very similar to the one we use in the general setting, we obtain very good bounds by exploiting the

very simple structure of matchings. It would be interesting, but again probably hard, to determine the

list Ramsey number of matchings exactly. We actually obtain the list Ramsey number of matchings up

to a smaller order additive term when the size of the matching is sufficiently larger than the number

of colours. When the number of colours is large enough compared to the size then we could obtain

tight bounds only up to a multiplicative constant factor. It would be highly desirable to prove bounds

which are correct up to a lower order term.

Question 2. Does the limit

lim
k→∞

R`(rK2, k)/(k/ log k)

exist and if it does what is its value?
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If this limit exists we have shown that it is between r/4 and 34r. While we did not make a serious

attempt to optimise these constant factors and it is not hard to improve them by being more careful

with our arguments, finding the precise constant factor seems to require new ideas.

There are many other families of graphs for which pretty good bounds are known for the Ramsey

number, such as paths or cycles, and which might exhibit interesting behaviour in the list Ramsey

setting.

In the case of general graphs and hypergraphs we have shown that the list Ramsey number is bounded

above by a single exponential function in terms of the number of colours, which for higher uniformity

hypergraphs is in stark contrast to the ordinary Ramsey number, which is known to exhibit an iterated

exponential behaviour. In the case of `-partite `-graphs we showed that the list Ramsey number is

in fact a polynomial function of the number of colours and that it is close to the ordinary Ramsey

number. For non `-partite `-graphs we have shown a lower bound which is exponential in the square

root of the number of colours. It would be interesting to ascertain whether this lower bound or the

exponential upper bound is closer to the truth, even only for some specific families (of non-`-partite

`-graphs) such as cliques. In fact for the case of ` = 2, that is, for graphs, it is still open whether the

k-colour list Ramsey number of cliques is always equal to its ordinary Ramsey counterpart.

Question 3. Is it true that for any r, k ∈ N

R`(Kr, k) = R(Kr, k)?

We have shown how list Ramsey numbers connect to various interesting problems and sometimes

exhibit very different behaviour when compared to their ordinary Ramsey counterparts. Such in-

formation may give some indication for the original Ramsey problem as well. For example, since

R`(K3, k) ≤ (4 + o(1))k if one wishes to construct an example showing R(K3, k) is super-exponential

in k (and in the process win a $100 prize from Erdős) one needs to ensure this example does not also

work in the case of list Ramsey numbers.

Ramsey theory is very rich in attractive problems and there are many such problems which may prove

to be interesting in the list Ramsey setting as well. Some classical examples that come to mind are

Schur’s or Van der Waerden’s Theorems.
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[17] P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs. Combinatorica 3(2):181–

192, 1983.

[18] F. Galvin. The list chromatic index of a bipartite multigraph. J. Combin. Theory Ser. B 63(1):153–

158, 1995.

[19] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory. Wiley Series in Discrete

Mathematics and Optimization. Paperback edition of the second edition, 1990.

[20] T. Gustavsson. Decompositions of large graphs and digraphs with high minimum degree. PhD

thesis, Univ. of Stockholm, 1991.
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