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Retrospective on a decade of
machine learning for chemical
discovery

O. Anatole von Lilienfeld® 1.2% & Kieron Burke® 354

Over the last decade, we have witnessed the emergence of ever more machine
learning applications in all aspects of the chemical sciences. Here, we highlight
specific achievements of machine learning models in the field of computational
chemistry by considering selected studies of electronic structure, interatomic
potentials, and chemical compound space in chronological order.

Accurate solutions of the Schrodinger equation for the electrons in molecules and materials
would vastly enhance our capability for chemical discovery, but computational cost makes this
prohibitive. Since Dirac first exhorted us to find suitable approximations to bypass this cost!,
much progress has been made, but much remains out of reach for the foreseeable future. The
central promise of machine learning (ML) is that, by exploiting statistical learning of the
properties of a few cases, we might leap-frog over the worst bottlenecks in this process.

As visible from the publication record in the field (Fig. 1), over the decade since Nature
Communications first appeared, machine learning has gained increasing traction in the hard
sciences?, and has found many applications in atomistic simulation sciences®. Here, we focus on
the progress achieved in the last decade on three interrelated topics (i) electronic structure
theory, broadly defined, (ii) universal force field models, as used for vibrational analysis or
molecular dynamics applications, and (iii) first principles-based approaches enabling the
exploration of chemical compound space.

Basic challenges

The central challenge of Schrodinger space is to use supervised learning from examples to find
patterns that either accelerate or improve upon the existing human algorithms behind these
technologies. In density functional theory (KS-DFT), this most often means improved
approximate functionals; in quantum Monte Carlo (QMC), this is faster ways to find variational
wavefunctions; in ab initio quantum chemistry such as coupled cluster considering single,
double, and perturbative triple excitations (CCSD(T)), this is learned predictions of wavefunc-
tion amplitudes instead of recalculation for every system.

In the condensed phase, molecular dynamics simulations yield a vast amount of useful
thermodynamic and kinetic properties. Classical force fields cost little to run, but are often
accurate only around the equilibrium. The only first-principles alternative is Kohn-Sham density
functional theory (DFT), but its computational cost vastly reduces what is practical. A central
challenge of configuration space is therefore to produce energies and forces from a classical
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Fig. 1 Publications each year from a web of science search with topics of
machine learning and either chemistry or materials, July 20, 2020. The
average number of citations per article is 12. This updates Fig. 1 of ref. 30,

potential of accuracies comparable to DFT (at least) via training
on DFT-calculated samples, possibly for just one element, but
with hundreds to thousands of atoms in unique bonding (and
bond-breaking) arrangements.

Finally, the challenge of chemical compound space is to explore
all useful combinations of distinct atoms. The number of stable
combinations is often astronomical. The central aim is to train on
quantum-chemical examples, and create a ML algorithm that can,
given a configuration of atoms, generate the atomization energy
without running, e.g., a DFT calculation, in order to scan the vast
unknown of unsynthesized molecules for desirable functionalities.

These challenges are hierarchical. Progress in creating better
density functionals clearly impacts finding accurate forces for
molecular dynamics and accurate searching of chemical com-
pound space. Finding a way to learn molecular energies with
fewer examples is useful for chemical compound space, but forces
would also be needed to run molecular dynamics, and self-
consistent densities to run orbital-free DFT. The challenges are
also overlapping: improved density functionals may be irrelevant
if ML force fields can be trained on CCSD(T) energies and forces.

Progress with machine learning

Schrodinger space. Within DFT, the focus is usually on the ever-
elusive exchange-correlation (XC) energy?, which is needed as a
functional of the spin densities. An ‘easier’ target is orbital-free
(OF) DFT, which tries to find the kinetic energy of Kohn-Sham
electrons, to bypass the need to solve the Kohn-Sham equations.
A primary question is: can machines find better density func-
tional approximations than those created by people? Two distinct
approaches are to improve the accuracy of existing human-
designed approximations or to create entirely new machine-
learned approximations that overcome qualitative failures of our
present approximations. Often tests are first performed on model
systems, and later applied to more realistic first-principles
Hamiltonians.

In orbital-free DFT, Snyder et al.’> used Kernel-Ridge-
Regression (KRR) on a one-dimensional model of a molecule
an machine-learned functional for OF DFT that breaks bonds
correctly, which has been successively built upon®. Brockherde
et al.” showed how KRR could be applied by finding densities
directly from potentials (the Hohenberg-Kohn map) avoiding
functional derivatives. The problem of XC is harder. Nagai et al.3
showed that accurate densities of just three small molecules are
sufficient to create machine-learned approximations that are

comparable to those created by people. In ab initio quantum
chemistry, Welborn et al.® have shown how to use features from
Hartree-Fock calculations to accurately predict CCSD energies,
while an intriguing alternative is to map to spin problems and use
a restricted Boltzmann machine!?. In the last year, two new
applications for finding wavefunctions within QMC have
appeared! 12,

While many avenues are being explored, there is as yet no
clearly improved, general-purpose ML-designed density func-
tional, ML-powered QMC, or ML approach to ab initio quantum
chemistry available to the general user. But for such a complex
problem, progress is measured in decades, and we are reasonably
confident that such codes could appear over the next five years.

Configuration space. Machine learning models for exploring
configurational spaces yield rapid force predictions for extended
molecular dynamics simulations. While surrogate models of
interatomic potentials using neural networks were firmly estab-
lished before 20103, Csanyi, Bartok and co-workers used KRR in
their seminal ’Gaussian-Approximated Potential’ (GAP) method,
relying on Gaussian kernel functions and an atom index invariant
bispectrum representation!4. In 2013, the first flavor of the
smooth overlap of atomic positions (SOAP) representation for
KRR based potentials was published!®. First stepping stones
towards universal force-field, trained ‘on-the-fly’ or throughout
the chemical space of molecules displaced along their normal
modes, were established in ref. 617, KRR based force-field
models with CCSD(T) accuracy were introduced in 2017'8, and
based on Behler’s atom-centered symmetry function representa-
tions in neural network-based potentials tremendous progress
was made!? enabling Smith et al. to train an Accurate Neural
network englne (ANI) on millions of configurations of tens of
thousands of organic molecules distorted along aforementioned
normal mode displacements2. Impactful applications include
KRR potentials used to model challenging processes in ferro-
magnetic iron?!, or Weinan E, Car and co-workers using the
Summit supercomputer to simulate 100 million atoms of water
with ab initio accuracy using convolutional neural networks?2.

Chemical compound space. The idea of using machine learning
to mine ab initio materials data bases dates back to 2010 in
seminal work by Hautier et al.2. Starting with the Coulomb-
matrix?4, the development of a selection of ever improved
machine learning models (due to improved representations and/
or regressor architectures) is exemplified2> on atomization ener-
gies of the Quantum Mechanics results for organic molecules
with up to 9 heavy atoms (QM9) data set?%, as shown in Fig. 2
“QM9-IPAM-challenge”. Such single-point energy calculations
typically dominate the cost of quantum chemistry compute
campaigns, and therefore a vital minimal target for surrogate
models.

Examples of improvements of understanding compound space
include the discovery of an elpasolite crystal containing
aluminum atoms with negative oxidation state?’, polarizability
models using tensorial learning?, or predicting solvation and
acidity in complex mixtures®”.

Summary and outlook

Much has happened over the last decade, touching on nearly all
aspects of atomistic simulations. Our selection of areas (electronic
structure, interatomic potentials, and chemical space) and studies
mentioned does not do justice to the overall impact machine
learning has had on nearly all branches of the atomistic sciences.
Much of the more important work first appeared in rather
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Fig. 2 Learning curves of atomization energies of organic molecules,
showing out-of-sample prediction error (mean absolute error) decays
with increasing number of training molecules drawn at random from
QM9 dataset?6, Models shown differ by representation and architecture.
The black X denotes the "QM?9 challenge™ of achieving 1 kcal/mol accuracy
on the QM9 dataset using only 100 molecules for training3. Adapted from
ref. 25, Springer Nature Limited.

technical journals such as the Journal of Chemical Physics or
Physical Review Letters and is already heavily cited. More recent
advances were published in broader journals such as Science,
PNAS or Nature and Nature Communications. Some of the out-
standing challenges in the field include (i) improved quantum
chemistry methods which can reliably cope with reaction barriers,
d- and f-elements, magnetic and excited states, as well as redox
properties of systems in any aggregation state, (ii) extensive high-
quality data sets covering many properties over wide swaths of
structural and compositional degrees of freedom, and (iii) the
removal of hidden and unconscious biases. Extrapolating from
the past, the future looks bright: Long-standing problems have
been and are being tackled successfully, and new capabilities are
always appearing. Likely, the community will soon address
challenges that previously were simply considered to be prohi-
bitively complex or demanding, such as automatized experi-
mentation or synthesis of new materials and molecules on
demand.
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