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Abstract

Electronic structure calculations are ubiquitous in most branches of chemistry, but all have errors in both energies and

equilibrium geometries. Quantifying errors in possibly dozens of bond angles and bond lengths is a Herculean task. A single

natural measure of geometric error is introduced, the geometry energy offset (GEO). GEQ links many disparate aspects of

geometry errors: a new ranking of different methods, quantitative insight into errors in specific geometric parameters, and

insight into trends with different methods. GEO can also reduce the cost of high-level geometry optimizations and shows

when geometric errors distort the overall error of a method. Results, including some surprises, are given for both covalent

and weak interactions.

Whenever one runs an electronic structure calculation within
the Born-Oppenheimer approximation, whether it is a density
functional calculation, ab initio or semiempirical, of a molecule
or a material, one must always answer the question: Which
geometry should | use? Whatever the limitations of your
method are, they will show up in giving an approximate energy
at any given geometry which will minimize at some approxi-
mate geometry. Sometimes the differences between the true
geometry and the approximation are so slight that it does
not matter. Whenever it does matter, common sense often
dictates a choice: When comparing different methods, the
requirement of apples-to-apples comparison means comparing
several methods with a fixed geometry. [1, 2, 3] Other times,
when the cost of a single calculation is severe, geometry opti-
mization is prohibitively expensive, and one resorts to using
geometries from a cheaper method.

This problem is compounded when comparing geometric
parameters computed with different methods. As a molecule
grows in size, there are 3N — 6 distinct degrees of freedom for
the equilibrium structure, with errors in bond lengths, angles,
etc. Some are more accurate in one method, some are better
in another (see, e.g., Ref. [4]). Should one average over all
such parameters? But what if one method is better for bond
lengths, and another for angles? And how do such errors in
geometry correlate with other energetic errors?

We define the geometry energy offset of a given method as

Eyeo = E(G) — E (Go) (1)

where E(G) is the ground-state energy at geometry G, Gy
the exact geometry and G an approximate geometry. This
simple definition leads to all the analysis and results contained
in the paper. Figure 1 summarizes some of our most impor-
tant results with GEO, with more details within this paper and
supplementary information. On the left, we plot GEO energies
averaged over a data set of small organic molecules (top).
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Accurate calculation of GEO using CCSD(T) is expensive (see
methods), but using the approximations themselves is less
expensive and yields nearly identical results (E,,). We can
see that different approximations perform characteristically
well or poorly. Thus every method can be ranked by its GEO
value, and some perform much better for geometries than they
do for, e.g., atomization energies. This is crucial information
for understanding the accuracy of different methods for ge-
ometries. Directly below, we evaluate a much greater variety
of methods for a data set of medium-sized organic molecules.
Here, we use B2PLYP as the reference, since it is the winner
in the top panel and CCSD(T) is already too expensive. This
shows some surprises: lower level (and less costly) methods
can outperform higher level methods because they have been
trained empirically. For example the semiempirical GFN1-xTB
method of Grimme and co-workers competes with DFT with
the PBE functional[5], and outperforms DFT with BLYP[6, 7).

In the center, we show the very disparate behavior of two
popular representative density functionals for single bonds and
for double bonds. PBE, as a generalized gradient approxima-
tion (GGA) is far more accurate for double bonds than for
singles. But a (global) hybrid, B3LYP, totally reverses this
trend: more accurate for single bonds, but surprisingly far
less accurate for double bonds. Explanations of the accuracy
of hybrids[8, 9] typically center on atomization energies, not
bond lengths, and do not explain these trends. The top right
panel shows a trade-off between angle- and bond-length errors.
There are clear behaviors of different levels of density function-
als. The local density approximation has noticeable errors in
both the bond length and angle (but far smaller than those
of HF). One can clearly see how GGA's like PBE and BLYP
and the meta-GGA TPSS [10] greatly reduce the angular error,
but have almost no effect on the bond length. Finally, by mix-
ing some fraction (about 1/4) of exact exchange, PBEQ and
B3LYP lie along a line joining their parent GGA to HF, and the
mixing fraction almost perfectly cancels the bond-length error,
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Figure 1: Why GEO is useful. Left: Fzact and approzimate GEO rankings for quantum chemical methods on small molecules
(top), and GEO of many different methods over medium-sized organic molecules (bottom) with B2PLYP as reference. For the lists of
molecules and further details, see Figs. S2-S6, and Tables S1-S3. Center: Egeo for a few methods and a few molecules (top), single

and double-bond contributions to E‘Z‘J{,‘"‘”

for two popular methods, showing huge difference in their accuracies (bottom). For the list

of molecules, see Fig. 3. Right: GEO contours as a function of errors in the bond angle and length for the water molecule (top panel)

and weakly bonded Ney Ar (lower panel), and positions of different approzimations.

while increasing the angle-error. Better functionals have about
the same accuracy, while MP2 has almost perfect geometry.

All these results and trends are for strong covalent bonds.
But GEO is even more important for weak interactions, where
GEO energies can be comparable to the binding energy itself.
To illustrate this, in the right, we contrast contours of GEO
for two A2B molecules, one covalently bonded and the other a
non-covalent interaction: Water and the van der Waals trimer,
NesAr, with the different methods from the left figures plotted
as points in the plane. The non-covalent case is strikingly
different. First, its binding energy is only 0.37 kcal/mol, so
GEO errors are now more than relevant on this scale. This
is accompanied by huge errors in bond length, related to
the softness of the potential. Finally, the performance of
different electronic structure methods is very different from
the covalent case. For covalent bonds, MP2 is exceptionally
good; for NCl's, approximate density functionals are much
better. These effects seem to have largely been ignored when
ranking functionals for such complexes, which is usually done
at a fixed geometry. [1, 2, 3] We expect improved performance
for weak interaction methods once GEO errors are accounted
for.

The rest of this paper explains how GEO works and shows
how useful it can be. We focus on just three immediate appli-
cations: (i) obtaining insight into geometric errors in molecular
benchmark energy sets; (ii) establishing an energetic scale com-
paring the quality of geometries from different approximate

quantum-mechanical (QM) solvers; (iii) how this scale can
be used for choosing a geometry optimization solver that has
a good accuracy to cost ratio. We apply our logic first to
covalent bonds, where GEO is typically negligible relative to
atomization energies, and then to non-covalent bonds, where
GEO is often comparable to binding energies, and so is even
more important.
Results and Discussion

Performance of approximations. One of the most
valuable uses of GEO is to rank different electronic structure
methods for their geometric accuracy, as illustrated in the
upper left panel of Fig 1. We stress that this ranking is
quite different from traditional rankings by purely energetic
performance, such as for atomization energies (AE). In Fig. S2
(top panel), we give the errors for AE on our set of small
organic molecules, and in Fig. S2 (lower panel), we show the
correlation plot between GEO and MAE for AE. Roughly, GEO
is typically about 1/80-th of the mean absolute error in AE.
By such a measure, LSDA and HF are surprisingly good for
geometries, because their MAE for atomization is so poor.
Non-empirical functionals (PBE, TPSS) are close to this line,
so improvements in AE's are reflected in improvements in GEO.
Empirical functionals typically perform very well, especially the
global hybrid B3LYP, and BLYP, as a GGA, yields surprisingly
poor geometries. Also, the addition of D3 corrections to any
functional makes little difference to its geometric performance
for covalent bonds.



If we want to calculate GEO errors for larger main-group
molecules, for which CCSD(T) is too expensive, we can use
B2PLYP as a reference in place of CCSD(T). Multireference
systems, such as transition metal dimers, are more delicate
and would need a better reference than CCSD(T) [11, 12] to
calculate GEO.

The bigger picture is shown in the lower-left panel of Fig.
1, which includes many different kinds of methods. Here, we
had to use B2PLYP [13] as a reference (see above). Besides
the QM solvers considered in Figure 1a(top), we also include
semiempirical QM solvers, such as DFTB[14, 15] and PMz([16,
17], and the highly practical HF-3¢c[18] and PBEh-3c[19], both
of which use a small basis set and contain empirical parameters.
The results are summarized in the lower panel of Figure 1a,
where different error bar colours indicate methods at different
levels of theory, with the best method for each level of theory
shown in red. Trends are similar to the panel above, but overall
GEQ's are larger as the molecules are bigger. This plot is not
accurate below about 0.1 kcal/mol, because of the B2PLYP
reference. Thus B3LYP does not really rank as No. 1, its
errors are simply correlated with the reference. As we discuss
later, since GFN1-xTB[15] has the best performance among
all semiempirical methods shown, it can serve as an excellent
starting point in optimization schemes.

Geometry optimization. Based on GEO, one can estab-
lish the following sequence composed of the best method for
each level of complexity: GFN1-xTB — TPSS (or PBEh-3c)
— B3LYP — B2PLYP. This sequence can be used in auto-
mated explorations of chemical space and molecular screenings
assisted by QM solvers,[20, 21, 22] which are powerful tools
for the discovery of new molecules with desired properties.
In these procedures, based on energetic criteria (e.g., their
binding energies with a specific enzyme) molecules are filtered
out, and QM geometry optimizations of a large number of

molecules make the procedure computationally demanding.

As the number of molecules in the screening decreases, more
expensive and more accurate methods are typically used. Thus,
based on our sequence determined by the GEO criterion, in
the first step of the screening one can employ GFN1-xTB

for optimizing geometries of all initial molecular candidates.

After the first cycle of filtering out molecules, TPSS[10] can
be employed as an optimizer, and so on. In the last round,
B2PLYP geometries can be confidently used, given they are
energetically very close to the CCSD(T) ones (~0.03 kcal/mol
for the testset considered in Figure 1a). Even if one only wants
the CCSD(T) geometries for small molecules, one can use
the same sequence to pre-optimize the molecular geometry,
before the CCSD(T) optimizer is turned on, and thereby save
computational time.

Simplifications and analysis tools.
above, a much less costly calculation is

As mentioned

E' =F (G) — E(Gy), (2)

geo

where F is the approximate energy (see Supplementary Section

1 for more mathematical details). This is typically an excel-
lent approximation to GEO, because even inaccurate methods
such as HF yield reasonable vibrational frequencies.[23] From
Figure 1a, the mean Fgy, error is in close agreement with its
E!’;m counterpart for all approximations (see also Tables S1
and S2 for Eye, and Ey,, values for individual molecules).

The next simplification is to approximate GEO by expanding
FEy around its minimum to second order:

B = L AGTHAG, 3)
where Hj, is the Hessian at the minimum, composed of force
constants and AG = G — G is the error in specific geometric
parameters (degrees of freedom) that determine the relative
positions of nuclei. These could be simple Cartesians or any
other choice of coordinates. Again, this is extremely accurate
when approximated with most electronic structure methods
(see Figures S17- S22). Thus, we can use Eq. 3 for further
analysis and decomposition of GEO. One can easily diagonalize
H( and obtain GEO modes, p. In these coordinates, Eq. 3
becomes:

N
; 1 = 2
Ege™ = B fo (Api)~, (4)
i

where f? are the underlying force constants (H, eigenvalues)
and Ap; = p; — pi represent AG written in terms of the errors
in the GEO normal modes (Hj eigenvectors) and N, < 3N —6
is the number of GEO active modes. A highly appealing
feature of Eq 4 is that each term contributes positively to
Ebarm  which, in turn, allows us to obtain weights of each
modes’ contribution to the total GEO. In Figures S27- S29,
for a set of small molecules we analyse how each of the N,
GEO-active modes contributes to the total Egg;m for different
approximations and we also show the GEO-inactive modes,
those that have no contribution to E;‘(,‘f)m For example, by
symmetry, no (sensible) electronic structure approximation
gives unequal OH bond lengths in the water molecule, so
the asymmetric stretch of the OH bond is GEO-inactive (see
Fig. S5). The higher the symmetry of a molecule, the fewer
modes are GEO active. For ethene, all modes that distort its
Dy, symmetry (asymmetric and out-of-plane vibrations) are
GEO-inactive, so only 3 of its 12 modes are GEO-active, as
shown in Fig. S29.

Besides the GEO modes, a more chemically intuitive analysis
in terms of bond lengths, angles, and torsion angles of E,
can be obtained by considering Eq. 3 in internal coordinates.
Considering only the underlying diagonal elements of H{ (the
Hessian in internal coordinates), we find the following simple

approximation to Eharm:

3N -6
. 1 )
harm . zsi le __ 2
quo -~ E;t"l:;p ¢ = 5 E fi‘Zi (Aqi) . (5)
i

where Ag; = §; — q are the errors in internal coordinates. While
the r.h.s of Eq. 4 is exactly equal to EP2™  this is not so for

geo
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Figure 2: GEO analysis for formaldehyde. Top: (a) GEO rankings of approzimations. The plots also show that Egeo is accurately
approzimated by E:;,’,,’,f"' (Eq. 3) and Ezi,::,'plc (Eq. 5). (b) E'Zi,::,'plc weights, E'Zi,::,'plc’i/ E‘;iff,‘"“ (see lower panels for colour legends).
When all bonds are stretched by the same vy factor, GEO becomes E_Zm, (see the text), and the underlying weights are marked by the
arrow. (¢) GEO-active and GEOQO-inactive modes (those that have no contribution to the r.h.s. of Eq 4). For the E:;,’,,’,f"' weights in
normal modes, analogous to panel (b), see Fig. S28. (d)-(f) Plots showing errors in individual geometric parameters (z-axis), and
how these errors translate to E'Zl,::,'plc terms by virtue of Eq. 5 (y-azis). The points marked by the arrows, show GEO when the bond
lengths are stretched by 1%.

Ef;i:f;‘"“, since the off-diagonal H{ are typically small but non-  exact exchange) do best, outperforming even B2PLYP! The
zero. For the organic molecules we consider here, ESmP'® i hybrids do no better than simple LSDA. But, the roles are
typically in good agreement with both E;‘gg“ and the "exact" reversed in the middle panel, showing that hybrids greatly
FEgeo (see Figures S17- $22). This, in turn, allows us to safely improve single-bond length error. Finally, the angle-error is

use Eq. 5 to decompose Eg:,?;m into its positive contributions shown, with a variety of results, but no clear trends. The

arising from errors in specific geometric parameters. right panel of Fig S12 shows that MP2 and B2PLYP yield
the best angles on average for the set of molecules considered
In Figure 2, we illustrate how a GEO analysis works for in Fig. 1b. All three curves are monotonic, so rankings by a

a simple case, formaldehyde. In panel (a), we give GEO E;L'f,‘plc contribution correspond directly to rankings by the
rankings of different approximations for this molecule, which error in the underlying geometric parameter.
somewhat align with the database averages of Fig 1(a). As

with all covalent cases we studied, EM™ and Ef;;'f,“"“ are in

co
excellent agreement with GEO, which%llows us to use Eq 5 to 03 1 2 7 8 o "
decompose contributions from different structural parameters. 04 o T . F
The fractional contributions of each coordinate are shown in S w3 4 10 1 12 - LSDA
panel (b). Angle errors give only a minor contribution to GEO Eo3 ° ' - - PBE
for all methods. For the hybrids, GEO error comes nearly g 02 o> 8 130 14 ¢ ~ B3LYP
entirely from the error in the double bond, while in the case of Quﬁ | ° P2
semilocal functionals, nearly the entire GEO error comes from 0.1
the error in the single bond lengths, consistent with the trends ~ B2PLYP
in Fig 1(b). The rankings for the single and double bond 0. A 3 0 15 T
lengths and the bond angle are shown in the lower panels, and ftmolecule

how they correlate with Ef;i‘f},‘p'c. In each case, the actual curve

is parabolic (the GEO axis is logarithmic). The rankings differ Figure 3: The same plot as in the top panel of Fig. 1b but with

substantially from those for the total GEO. The leftmost is the geod (see the absolute GEQ scale section) on the y-axis. For
. . ; D

double bond, and here the semilocal functionals (no mixing of ~ ™ore plots comparing Egeo and Egeo, see S7.



Absolute GEO scale. A problem that bedevils bench-
marking of atomization energies is whether to consider total
energy errors or errors per bond. Here we show that there
exists a universal GEO scale, independent of any method,
that overcomes this problem for geometric errors. Consider
a small expansion of all coordinates, AG = vGy, producing
Ejeo = v*D/2 where D = GJHoGq. Thus, Eje, is the
GEO value for a very specific geometric error, that of expan-
sion (or compression) of the exact geometry. For our small
molecules, if v = 1%, Eje, is a fraction of a kcal/mol. Thus,
any calculation of GEO by any method for any molecule can be
compared to this intrinsic property of the molecule. Moreover,
E’;’co scales with the size of the molecule (compare, e.g., D
values for small molecules shown in Table S7 with those for
medium-sized molecules shown in Table S7), so that GEO's
measured relative to it do not grow with molecular size. We
can even decompose Egc,, in terms of Hessian eigenvectors
or simple internal coordinates, giving an internally defined
distribution of contributions. This only includes bond lengths,
as no angle changes when molecules are uniformly expanded.

We define: EL, = Eyco (Dy,0/ D), and in Figure 3, we
repeat the plot in the top panel of Fig. 1b., but with Eg,o,
which varies much less with molecular size. In Table S6, we
show that approximate calculations of D typically yield highly
accurate estimates (even HF is not too bad). In Figure S30, we
show the decomposition of D for each bond in each molecule,
with double bonds being about 0.25 and most singles being
about 0.1 times 10" kcal/mol if to an H atom, and about 0.16
if between heavier atoms. For rare gas dimers (bonded by
weak interactions), D values are several orders of magnitude
smaller (see Table S9).

Returning to Fig 2, the leftmost column of (b) is the D-
decomposition of the single versus double bond, showing that
under expansion, 60% of the energy cost is to stretch the
double bond, 40% to stretch the single. Then BLYP clearly
makes an unusually small error in the double, and a relatively
large error in the single.

Non-covalent interactions. The rest of this paper is
devoted to weak interactions. We re-examine all aspects of
GEO for these cases, as GEO energies can be a more significant
fraction of the binding energies here. Force constants for weak
bonds are so much weaker that even very small GEO values
can lead to large errors in bond lengths. For weak interactions,
we include D3 corrections [26] to the approximations, which
typically greatly improve energetic accuracy. We also only
allow the weak bond length to vary in complexes, i.e., one
degree of freedom.

The upper panel shows a prototypical van der Waals system,
Nes, with the exact curve and various approximations. In most
cases, the geometries are quite accurate (minima are marked
by beads) so that GEO energies are very small. Surprisingly,
wB97XD [27] has a large geometric error, but nonetheless
yields a highly accurate energy minimum, a cancellation of
geometric and non-geometric errors (apparently missed by its
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Figure 4: GEO analysis for the Nez binding energies. Top
panel: Binding curves of Nes with various methods. Lower
panel: GEO for different approzimations. For more details, see
Figs. S35- S38.



