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Abstract

The free energy plays a fundamental role in descriptions of many systems in

continuum physics. Notably, in multiphysics applications, it encodes thermo-

dynamic coupling between different fields, such as mechanics and chemistry. It

thereby gives rise to driving forces on the dynamics of interaction between the

constituent phenomena. In mechano-chemically interacting materials systems,

even consideration of only compositions, order parameters and strains can ren-

der the free energy to be reasonably high-dimensional. In proposing free energy

functions as a paradigm for scale bridging, we have previously exploited neural

networks for their representation of such high-dimensional functions. Specifi-

cally, we have developed an integrable deep neural network (IDNN) that can be

trained to free energy derivative data obtained from atomic scale models and

statistical mechanics, then analytically integrated to recover a free energy func-

tion. The motivation comes from the statistical mechanics formalism, in which

certain free energy derivatives are accessible for control of the system, rather

than the free energy itself in its entirety. Our current work combines the IDNN

with an active learning workflow to improve sampling of the free energy deriva-

tive data in a high-dimensional input space. Treated as input-output maps,

machine learning representations accommodate role reversals between indepen-

dent and dependent quantities as the mathematical descriptions change across

scale boundaries. As a prototypical material system we focus on Ni-Al. Phase

field simulations using the resulting IDNN representation for the free energy

of Ni-Al demonstrates that the appropriate physics of the material have been

learned.
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1. Introduction

Many continuum models are fundamentally based on an underlying mate-

rial free energy. For example, the phase field dynamics described by the Cahn-

Hilliard and Allen-Cahn equations have at their core, chemical potentials. These

chemical potentials are variational derivatives of the total free energy with re-

spect to composition and order parameters, respectively [1, 2, 3]. Another man-

ifestation is seen in nonlinear elasticity, wherein hyperelastic material models

are defined by a strain energy density. The first derivatives of this energy

with respect to frame invariant strains define the stresses, and second deriva-

tives give (generally) non-constant elastic moduli. The governing equations for

quasi-static elasticity can be derived by extremization of the strain energy [4].

Furthermore, as is obvious, for mechano-chemically coupled material systems

cross terms arise among the driving forces, and their correct representation is

critical to resolving the dynamics. Due to these fundamental roles, it is im-

portant to have a mathematical description of the free energy that accurately

reflects the physics. It is actually important to also control the accuracy of free

energy derivatives, since differentiation tends to magnify errors.

Several challenges may arise in constructing such a free energy density func-

tion from data. One is rapid fluctuations that may exist in the free energy with

respect to its arguments, that can be difficult to capture. As we have shown,

while spline representations prove superior to various polynomial forms [5] they

too can have limitations [6]. Additionally, the data that are calculated or mea-

sured are often the derivative of the free energy, rather than the free energy

itself. This is typical for statistical mechanics approaches, where the chemical

potential is the accessible variable rather than the free energy. In previous work,

we introduced a variant on the standard deep neural network (DNN), which we

termed an integrable deep neural network (IDNN), to train a chemical free en-

ergy function from chemical potential data, while maintaining the appropriate

physics of the system [6]. This was done for the free energy as a function of two

variables, namely, composition and an order parameter.

Another potential challenge to training a free energy density function comes

from its high-dimensional inputs. DNNs are well suited to handling high dimen-

sional input [7, 8, 9, 10, 11], therefore the greater difficulty lies in the creation

of data that are well-sampled in the high-dimensional space. Depending on the

method for computing or measuring the free energy or its derivatives, a “brute

force” approach to sampling the space may be infeasible due to time and cost.
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Furthermore, the foundations of theoretical descriptions such as statistical me-

chanics and continuum physics can prove to be at odds in a manner such that the

notions of inputs to and outputs of relations can become reversed as the bridge

between scales is crossed. An example appears in this work: the computational

approach for statistical mechanics takes certain parameter values as input, and

returns composition, order parameters, and the chemical potentials as output.

However, the continuum thermodynamics view is of free energies, and there-

fore chemical potentials being outputs and compositions or order parameters as

inputs. In an algorithmic setting, therefore, a continuum computation cannot

“demand” chemical potentials at chosen composition or order parameter values.

This inability to directly choose the values of the inputs as dictated by theory

adds another level of complexity to the creation of a well-sampled dataset in

higher dimensions.

Active machine learning approaches (active learning) can provide a solution

to the need of sampling data in a high-dimensional space. Active learning al-

gorithms are designed to query for additional data where they would be most

useful [12]. In this work, we employ an error-based active learning routine in con-

nection with an IDNN to sample chemical potential data for a material system

with one composition and three order parameters as inputs. Embedded in the

active learning routine is an iterative, boot-strapping approach that combines

the input-output mapping property of neural networks with a linear (therefore

invertible) relation between chemical potentials and auxiliary bias potentials.

The resulting workflow also circumvents the difficulty of input-output relations

alluded to above. With this constellation of innovations, we are able to compute

DNN representations of the free energy density function, which is used in phase

field simulations to model the growth of precipitates in a Ni-Al alloy.

The paper is organized as follows: Section 2 describes the atomistic and

statistical mechanics methods used to obtain chemical potential data, using the

Ni-Al system as an example. The IDNN is outlined in Section 3. The active

learning workflow, a centerpiece of this communication, is described in Section

4. The phase field method is outlined in Section 5. Workflow and phase field

results are presented in Section 6. Concluding remarks appear in Section 7.

2. Chemical potential data from atomic level models

As a model system we consider Ni-rich Ni-Al alloys, which exhibit interesting

order-disorder phenomena on the face-centered cubic (fcc) crystal structure[13].

At dilute Al concentrations, Ni-Al alloys form an fcc solid solution characterized

by disordered arrangements of Ni and Al over the sites of the fcc lattice. At
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Figure 1: Four variants of the L12 crystal structure of Ni3Al. The Ni atoms are colored red,
and the Al atoms are colored blue.

compositions around the Ni3Al stoichiometry, the Ni and Al atoms prefer an

ordered arrangement on fcc, adopting the L12 ordering. The L12 ordering has a

lower translational symmetry than the underlying parent fcc lattice. While the

primitive repeat unit of fcc consists of one site, that of the L12 ordering has four

sites. This results in four symmetrically equivalent translational variants of the

L12 ordering as illustrated in Figure 1. The translational variants can coexist

and when they impinge on each other, they form an anti-phase boundary.

The thermodynamic properties of alloys that undergo order-disorder trans-

formations can be calculated with statistical mechanics [14]. This requires a

mathematical way of tracking the instantaneous arrangement of atoms over the

sites of the parent crystal, which is realized by assigning an occupation variable

σi to each lattice site i with σi = ±1 depending on whether the site is occu-

pied by Ni or Al. The collection of all occupation variables forms the vector

σ ∈ Znlat , where nlat is the number of lattice sites. The energy of the crystal for

any ordering σ can be expressed as a polynomial expansion of the occupation

variables σi according to [15, 14]

E(σ) = E0 +
∑
i

Ei1σi +
∑
i,j

Eij2 σiσj +
∑
i,j,k

Eijk3 σiσjσk . . . (1)

where the successive sums on the right-hand side extend over all sites, i, all

distinct pairs of sites i, j, all distinct triplets of sites i, j, k, etc., leading to the

appellation of cluster expansion for this type of representation. The expansion

coefficients, E0, Ei1, Eij2 , etc. can be fit to a training set of energies for differ-

ent configurations as calculated with a first-principles method such as density

functional theory (DFT) [14]. The cluster expansion of Eq. 1 can be evaluated
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Figure 2: An L12 structure can be described by the composition of the four sublattice sites
numbered here.

rapidly, making it ideally suited for Monte Carlo simulations to calculate ther-

modynamic averages. A cluster expansion Hamiltonian parameterized by Goiri

and Van der Ven[13] was used to describe the effect of configurational ordering

in the binary Ni-Al alloy.

The atoms of an alloy in thermal equilibrium constantly fluctuate from one

arrangement to another. Nevertheless, the average degree of ordering remains

constant in equilibrium. In this context, it is convenient to introduce thermo-

dynamic long-range order parameters [16] that track the equilibrium degree of

ordering. The degree with which Ni and Al adopt L12 type ordering can be

tracked with average sublattice concentration variables xi, i = 1, . . . , 4, one

for each of the four sublattices of the cubic unit cell of L12 shown in Figure

2. Symmetry arguments then suggest the following linear combinations of the

sublattice concentrations for the L12 ordering [17, 16]:

η0 =
1

4
(x1 + x2 + x3 + x4)

η1 =
1

4
(x1 + x2 − x3 − x4)

η2 =
1

4
(x1 − x2 − x3 + x4)

η3 =
1

4
(x1 − x2 + x3 − x4) ,

(2)

which can also be expressed using the transformation matrix Q:

η = Qx (3)
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where

Q =
1

4


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 (4)

In this form, the first order parameter η0 tracks the overall composition of

the alloy. The three remaining order parameters, η1, η2 and η3, measure the

degree of long-range order that is commensurate with the periodicity of the

L12 phase. They are equal to zero in the completely disordered alloy (since

all sublattice concentrations are then equal to each other) and adopt non-zero

values when the alloy exhibits average long-range order. Furthermore, the three

order parameters are able to distinguish between the four translation variants

of L12. This is illustrated in Figure 1, which shows that each translational

variant of L12 (Figure 1) corresponds to a corner of a tetrahedron in the three

dimensional η1, η2 and η3 order-parameter space at a composition η0 = 1
4 .

Simulating the microstructure evolution of a two-phase mixture of the disor-

dered solid solution and the different translational variants of an ordered phase

requires a free energy description, g, that is a function of composition (i.e. η0)

and order parameters (i.e. η1, η2 and η3 for the L12 ordering). In the binary

Ni-Al alloy, the free energy will have a minimum at the origin of the η1, η2

and η3 space at compositions where the solid solution is stable. The energy

landscape will also have four minima related by symmetry in the vicinity of the

translational variants of L12 in η1, η2 and η3 space at compositions close to

the Ni3Al stoichiometry. Since the free energy, g(η0, η1, η2, η3), is a continuous
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curve, there will be regions in η0, η1, η2, η3 space where g has negative curva-

tures. In these regions the alloy is unstable with respect to ordering and/or

composition fluctuations.

Each order parameter, ηi, has a conjugate ’chemical potential’, µi, that can

be derived from the free energy g according to µi = ∂g/∂ηi. In Monte Carlo

approaches, it is easier to control µi than the order parameters ηi, since the

latter are related to the thermodynamic averages of sublattice concentrations.

A difficulty, however, emerges in regions where the free energy has negative

curvatures. To access these regions, biased Monte-Carlo simulations[16] with

additional bias parameters φi and κi, i = 0, . . . , 3 are used. The bias parameters

are then the inputs to the Monte Carlo simulations, which return statistical

averages of the order parameters 〈ηi〉, i = 0, . . . , 3. The bias parameters and

statistical averages are related to the derivative of the free energy per atom,

g(η0, η1, η2, η3) through the following:

µi :=
∂g

∂ηi

∣∣∣
〈η〉

= −2φi(〈ηi〉 − κi), i = 0, . . . , 3 (5)

The cluster expansions of Equation (1) and Monte Carlo statistical mechan-

ics calculations were performed with the CASM code [18, 14, 19, 20]. The resulting

statistical averages were used to calculate the free energy derivative data.

3. Integrable deep neural network

As explained above, the atomic models directly provide data as derivatives

of the free energy. However, for reasons driven by physics-constrained modelling

that were explained in the Introduction, we seek to represent the free energy

itself in addition to its derivatives. For such purposes, we have previously in-

troduced the notion of an integrable deep neural network (IDNN) [6]. IDNNs

are trained to derivative data and can be analytically integrated to recover the

antiderivative function (e.g. the free energy). We summarize their mathemati-

cal basis and construction here, and refer the reader to the original work [6] for

details.

Mathematically, the IDNN is constructed by differentiating a standard deep

neural network (DNN) by each of its inputs, xk (see a schematic in Figure

4). The following equations described the structure of a standard DNN with n

hidden layers, where W `, b` are the weight matrix and bias vector of hidden

layer `, f is the activation function, a` and z` are intermediate vector values at
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n hidden layers, mℓ units in layer ℓ

x1
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∂x1
∂Y

∂xk
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Figure 4: Schematic of an integrable deep neural network (DNN).

each layer, and Y is the DNN output:

z` = b` +W `a`−1

a` = f(z`)

Y = bn+1 +W n+1an

(6)

After differentiation, additional equations arise to describe the IDNN, which is

represented by ∂Y/∂xk:

∂a`
∂xk

= f ′(z`)�
(
W `

∂a`−1

∂xk

)
∂Y

∂xk
= W n+1

∂an
∂xk

(7)

where the operator � denotes element-wise multiplication. Note that both the

activation function and its derivative are used in the IDNN. If the activation

function is chosen to be the softplus function, f(x) := ln(1 + ex), its derivative,

f ′(x) = 1/(1 + e−x), is also a common activation function, namely the logistic

function. Note that though the IDNN, ∂Y/∂xk, and its associated DNN, Y ,

have different structures, they share the same weights and biases. It is this fact

that creates the derivative/integral relationship between the IDNN and DNN.

Of relevance to implementation, the integration to obtain Y is available for no

extra training.

Using modern deep learning libraries, an IDNN can simply be defined by

constructing a standard DNN, then applying a gradient operator to the output.

For a given set of inputs and derivative data {(x̂θ, ŷθ)}, the mean square error of
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the DNN gradient (i.e. the IDNN) and the chemical potential data is minimized

over the space of weights and biases, as represented by the following:

Ŵ , b̂ = arg min
W ,b

n∑
k=1

MSE

(
∂Y (x,W , b)

∂xk

∣∣∣
x̂θ
, ŷkθ

)
(8)

The resulting trained standard DNN gives the integrated DNN.

4. Active learning workflow

It is desirable to have a free energy derivative that is uniformly sampled in

the space of order parameters for use in mesoscale models. However, Monte-

Carlo techniques use the bias parameters φi and κi as input, with the order

parameter values emerging as thermodynamic averages from the simulations.

The bias parameters are related to the chemical potentials and order parameters

through eq. 5. Typically, in biased Monte-Carlo simulations the bias curvature,

φi is held constant, while κi values are varied.

Naive sampling of the κi parameters can lead to some regions in the order

parameter space that are undersampled and others that are oversampled. The

uniformity of sampling can be improved by creating and using a surrogate model,

µ̂(η), to predict which values of κi will give uniform sampling in the η space.

In our treatment, the surrogate µ̂(η) is an IDNN.

While all values of κi are physically valid, some values are more relevant

than others. It is not initially apparent what the relevant range of κi values

should be. However, physically valid values for each sublattice composition xi

lie in the range [0, 1]. Therefore, instead of using κ to define the domain of the

search space, we sample from the sublattice composition space. We impose the

additional constraint that η0 ≤ 0.25, since the Ni-Al system transitions from

FCC to BCC above that point. Given that the PDEs defining the phase field

model are written in terms of the composition and order parameters, we pose

the problem in terms of η.

For each iteration of the workflow, we perform a global sampling from the

sublattice composition space using a Sobol′ sequence. We use a Sobol′ sequence

because of its space-filling and noncollapsing properties [21, 22, 23]. The sublat-

tice composition values are converted to order parameter values with Eq. (2).

These are used as input to the surrogate model, which gives a prediction for the

chemical potentials and, using Eq. (5), the associated κi bias parameters. With

these κi values as input, the cluster expansions and Monte Carlo computations

(within the CASM platform) return a set of composition and order parameter

values, ηi, with their corresponding chemical potentials, µi, for i = 0, . . . 3.
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Once the dataset is updated, the IDNN is trained using all of the chemical

potential data. After training is complete for the current iteration, the active

learning component of the workflow takes place. The pointwise training error

is evaluated for the IDNN using only the data points from the most recent

global sampling. The data points are sorted according to error. The N data

points giving the highest error are used to identify areas that would benefit from

additional data. Additionally, the appearance of energy wells in the surface are

of interest, since they correspond with the material phases. These energy wells

are identified by evaluating the Hessian of the free energy surface for sampled

points and selecting points with a positive definite Hessian and a low gradient

norm. Random points near these data with either high error or within an energy

well are used to define a local sampling of order parameter values. As before,

the IDNN as the surrogate model and associated equations provide κi values

that become input to CASM, resulting in an updated dataset and concluding the

iteration.

For the first iteration of the workflow, there are no data to use to create an

IDNN surrogate model for the chemical potential. We instead use the equations

for the chemical potentials of an ideal solution, which are the partial derivatives

of the ideal solution free energy with respect to the order parameters. With the

free eneergy and chemical potentials expressed in terms of the more transparent

sublattice compositions, the relations are:

g̃(x) =
kBT

4

4∑
i=1

(xi log xi + (1− xi) log(1− xi)) (9)

µ̃i−1(x) :=
kBT

4

4∑
j=1

log

(
xj

1− xj

)
Q−1
ji i = 1, .., 4 (10)

where kB is the Boltzmann constant and T is the temperature. Figure 4 and

algorithm 1 summarize the full workflow.

Algorithm 1. Active learning of free energy
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Global sampling

(b) data from CASM: 𝜅    𝜂(a) sample from 𝜂 space, 
 use surrogate 𝜇(𝜂) to
 find 𝜅i = 𝜇i/(2𝜙i) + 𝜂i

𝜂

𝜅

𝜂

𝜇

Train surrogate 

(c) train IDNN: 𝜇(𝜂) 

𝜂

𝜇

𝜂

𝜇

Local sampling

(d) identify points w/ high error
  or in energy wells, 
  sample nearby points,
  find 𝜅i with surrogate

𝜂

𝜇

𝜂

𝜇

(e) data from CASM: 𝜅    𝜂 

𝜂

𝜅

Figure 5: Schematic of the active learning workflow, described with hypothetical 1D data.
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Initialize k = 1, D = ∅, µ̂0(η) = µ̃(Q−1η). Iterate over the

following:

1. Global sampling:

(a) Select sample points in the sublattice composition

space:

{x ∈ (0, 1)× · · · × (0, 1) | η0 ≤ 0.25}

(b) Evaluate the corresponding bias parameter values:

κi =
1

2φi
µ̂i(Qx) +

∑
j

Qijxj

(c) Use the κ values as input to CASM to compute the

order parameter values, η and chemical potential

values, µ.
Resulting values form data set Gk = {(η,µ)}.

(d) Update D := D ∪ Gk.
2. Train IDNN surrogate model µ̂k(η) to the data set D,

initialized from µ̂k−1(η) when k > 2.

(a) Break if ||µ̂k(η)− µ̂k−1(η)||2 < tol,

for η sampled using a Sobol′ sequence.

3. Local (error-based) sampling:

(a) Identify points in Gk that give highest IDNN

error.

(b) Identify points with a positive definite Hessian

and low gradient norm.

(c) Submit nearby points to CASM; results form data

set Lk = {(η,µ)}.
(d) Update D := D ∪ Lk.
(e) k = k + 1

4.1. FCC symmetry

Due to the symmetry of the FCC crystal structure in the Ni-Al system, the

free energy density should be invariant to permutations of η1, η2, η3 and changes

in the sign of any two of the order parameters η1, η2, and η3 [17]. To impose

this invariance, we express the free energy density as a function of the following

invariants:

h1(η1, η2, η3) = η1η2η3

h2(η1, η2, η3) = η2
1 + η2

2 + η2
3

h3(η1, η2, η3) = η2
1η

2
2 + η2

2η
2
3 + η2

3η
2
1

(11)
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Thus, the proper symmetry is perfectly enforced by setting g(η0, η1, η2, η3) :=

ĝ(η0, h1, h2, h3).

5. Phase field formulation

We used the analytically integrated free energy DNN in phase field compu-

tations. The phase field model was based on the coupled Cahn-Hilliard and

Allen-Cahn equations [1, 2].

The order parameter η0 being equal to the homogeneous composition, is a

conserved value. The remaining order parameters η1, η2, η3 are nonconserved

variables. Given the homogeneous free energy density g(η) as a function of

order parameters, we define the total free energy as the following:

Π[η] =

∫
Ω

[
g(η) +

3∑
i=0

1

2
χi|∇ηi|2

]
dV (12)

The corresponding chemical potentials are given by the variational derivatives of

the total free energy, namely µi := δΠ/δηi. Using standard variational methods

results in the following equations for the chemical potentials:

µi =
∂g

∂ηi
− χi∇2η, i = 0, . . . , 3 (13)

The phase field model consists of the Cahn-Hilliard and Allen-Cahn equa-

tions, given by the following, respectively:

∂η0

∂t
= −∇ · J (14)

∂ηi
∂t

= −Lµηi , i = 1, 2, 3 (15)

The Cahn-Hilliard equation is in conservation form, with the flux defined as

J := −M∇µ0. It models the overall composition of the system through η0, while

conserving mass. The Allen-Cahn equation models the time evolution of the

long-range ordering of the system through the non-conserved order parameters

ηi, i = 1, 2, 3. The two equations are coupled through the chemical potentials

being derived from the same free energy. Periodic boundary conditions were

applied.

The weak form of the equations for the case with a uniform mobility and

periodic boundary conditions, as solved by the IGA formulation [24, 25, 5], takes

13
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Figure 6: (a) Learning curves for the IDNN training over the active learning workflow. Periodic
jumps in the loss occur at the beginning of each new round of the workflow. (b) Convergence
of the IDNN over rounds of the active learning workflow. The IDNN is evaluated after each
round using the same set of points from a Sobol′ sequence to find the predicted chemical
potentials. In this case, the Sobol′ sequence is used to approximate integration [21]. The
norm of the difference in the chemical potential evaluations from one round to the next are
plotted.

the following form:

0 =

∫
Ω

[
w
∂η0

∂t
+M

(
∇w · ∇ ∂g

∂η0
+ χ0∇2w∇2η0

)]
dV (16)

0 =

∫
Ω

[
w
∂ηi
∂t

+ L

(
w
∂g

∂ηi
+ χi∇w · ∇ηi

)]
dV, i = 1, 2, 3 (17)

6. Implementation and results

The workflow was run on the ConFlux high performance computing cluster

at the University of Michigan, with the CASM Monte Carlo runs taking place

on the CPU nodes and training of the IDNN, implemented with Keras and

Tensorflow, utilizing GPUs. Between two and three thousand new points were

calculated with each global sampling, and up to 2,800 new data points were

added with each local sampling. Over 136,000 data points had been sampled

by the end of the 39th iteration of the workflow in Algorithm 1. The values of

the chemical potentials were scaled by 100 to improve the IDNN fit.

Since the data after the first global sampling were still quite sparse, a hy-

perparameter search was performed only after the second global sampling. The

IDNN in the first iteration of the workflow was set to have two hidden layers

with 20 units each and a learning rate of 0.2. The hyperparameter search was

performed by comparing 30 IDNN architectures and learning rates. Learning
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rate values were randomly chosen log-uniformly from the domain [0.005, 0.5],

and the units per layer were chosen uniformly from the domain [20, 500]. We

kept the number of hidden layers low for two reasons. First, the IDNN will be

evaluated at every quadrature point in the phase field simulation, so it is ben-

eficial to have a small network to reduce computation time. Second, while the

combination of softplus and sigmoid activation functions works well with the

IDNN structure, sigmoid activation functions suffer from the vanishing gradient

pathology during training if they are very deep [26, 27]. Thus, all IDNNs were

set with either two or three hidden layers. Each of the 30 IDNNs was trained

for 250 epochs, and the IDNN with the lowest validation loss was chosen. With

this approach, an initial learning rate of 0.199 and two hidden layers with a

width of 158 units were selected. For all subsequent iterations of the workflow,

the architecture of the IDNN was kept fixed, and the training of the weights

and biases resumed at each new workflow iteration without reinitialization.

The learning curves for the full workflow are shown in Figure 6a. The IDNN

was trained for 1000 epochs in each workflow iteration using the AdagradOptimizer.

Training was terminated early for a workflow iteration if there was no decrease

in the validation loss for 150 consecutive epochs. A learning rate decay of 0.8

was multiplied at each new iteration of the workflow. Additionally, the learning

rate was temporarily reduced by half whenever the validation loss plateaued for

100 epochs, then reset at the beginning of the next workflow iteration. Periodic

jumps in the loss occur at the beginning of each new round of the workflow,

as new data are added to the set. For the first five rounds, the search space is

slightly expanded to oversample the edges of the physical domain and resolve

the data as the chemical potentials diverge according to the ideal solution equa-

tion (10). This is reflected in the upward jump in the loss between the first five

rounds.

Convergence of the IDNN was monitored by computing the 2-norm of the

difference in predicted chemical potential values from one round to the next,

evaluated at points determined by a Sobol′ sequence. The workflow converged

with a tolerance of 1× 10−4 within 39 iterations, as seen in Figure 6b.

The evolution of the IDNN is presented in Figure 7 by plotting a slice of the

predicted chemical potential µ0 as a function of η0 and η1, with η1 = η2 = η3.

Significant changes are seen in the first few iterations of the workflow, with

evident convergence in the later iterations. A slice of the final, analytically

integrated free energy DNN, referenced to pure Ni and the perfectly ordered

L12, is shown in Figure 8, again with η1 = η2 = η3. An energy well is seen at

about η0 = 0.23, corresponding to the γ′ Ni-Al precipitates for the L12 variant
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Figure 7: Evolution of the IDNN representing the chemical potential for a two-dimensional
subspace, over iterations of the active learning workflow.
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(a) Time step 0 (b) Time step 30 (c) Time step 50 (d) Time step 70

Figure 9: Evolution of the Ni3Al precipitates, with four L12 variants shown as blue, orange,
brown, and purple.

with all positive valued order parameters. A well near η0 = 0.05 represents the

γ solid solution phase. A few spurious, shallow wells exist in the DNN surface,

but they do not seem to negatively affect the resulting precipitate formation in

the phase field results (see Figure 9).

The phase field equations were solved numerically using isogeometric analysis

(IGA) [24]. The simulation was performed using the mechanoChemIGA code1,

which is based on the PetIGA [28] and PETSc [29, 30, 31] libraries, and run

on the XSEDE Comet HPC cluster [32]. Initial conditions were random about

η0 = 0.12 and ηi = 0, i = 1, 2, 3. Adaptive time stepping was used. Results are

plotted in Figure 9. The expected development of precipitates with multiple

L12 variants are shown, demonstrating that the free energy DNN has captured

the appropriate physics. The blue, orange, brown, and purple regions represent

the four L12 variants that develop in the Ni-Al precipitates at about η0 =

0.23, separated by anti-phase boundaries. The tan background shows the γ

phase solid solution. The precipitates and anti-phase domains are seen to grow

and coarsen over time, while the antiphase boundaries become flatter. Since

elasticity has not been included in this simulation, the faceting that occurs in

experiments is not observed in the simulation.

7. Conclusions

In this work, we have presented an active learning workflow to improve

sampling of chemical potential data while simultaneously constructing a deep

neural network (DNN) representation of the free energy. The application of

active learning, in which the machine learning method identifies regions of the

1Code available at github.com/mechanoChem/mechanoChemIGA

17



data space where more data are needed and also drives the sampling of the

high-dimensional space in those regions.

Using an integrable deep neural network (IDNN) to train to the chemical

potential provides an analytically integrated free energy density DNN. This in-

tegrability is critical in mechano-chemical coupling, wherein the stresses are de-

fined as derivatives of the free energy density with respect to strains. However,

even in the absence of coupling to elasticity, it is essential to maintain con-

sistency of the free energy/chemical potential representation. In this context,

näıvely training to derivative data without enforcing consistency by ensuring a

unique antiderivative (up to constants) will manifest as unphysical results: The

chemical potentials will not reflect the appropriate physics inherent in their

being derivatives of a single free energy density function.

To demonstrate that the resulting free energy DNN accurately reflects the

physics of the Ni-Al system, we performed phase field simulations using the

free energy DNN as input. The phase field results show the creation, growth,

and coarsening of Ni3Al precipitates with anti-phase boundaries. Building on

our previous work, these results continue to demonstrate the effectiveness of

machine learning methods in addressing challenges in computational physics.
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