Debugging the Performance of Maven’s Test Isolation:
Experience Report

Pengyu Nie Ahmet Celik Matthew Coley
University of Texas at Austin, USA Facebook, Inc., USA George Mason University, USA
pynie@utexas.edu celik@fb.com mcoley2@gmu.edu
Aleksandar Milicevic Jonathan Bell Milos Gligoric
Microsoft, USA George Mason University, USA University of Texas at Austin, USA
almili@microsoft.com bellj@gmu.edu gligoric@utexas.edu

ABSTRACT

Testing is the most common approach used in industry for check-
ing software correctness. Developers frequently practice reliable
testing—executing individual tests in isolation from each other—to
avoid test failures caused by test-order dependencies and shared
state pollution (e.g., when tests mutate static fields). A common
way of doing this is by running each test as a separate process. Un-
fortunately, this is known to introduce substantial overhead. This
experience report describes our efforts to better understand the
sources of this overhead and to create a system to confirm the min-
imal overhead possible. We found that different build systems use
different mechanisms for communicating between these multiple
processes, and that because of this design decision, running tests
with some build systems could be faster than with others. Through
this inquiry we discovered a significant performance bug in Apache
Maven’s test running code, which slowed down test execution by
on average 350 milliseconds per-test when compared to a compet-
ing build system, Ant. When used for testing real projects, this
can result in a significant reduction in testing time. We submitted
a patch for this bug which has been integrated into the Apache
Maven build system, and describe our ongoing efforts to improve
Maven’s test execution tooling.

CCS CONCEPTS

« Software and its engineering — Software configuration man-
agement and version control systems.

KEYWORDS

Build system, Maven, test isolation

ACM Reference Format:

Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan
Bell, and Milos Gligoric. 2020. Debugging the Performance of Maven’s
Test Isolation: Experience Report. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 20), July
18-22, 2020, Los Angeles, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3395363.3397381

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8008-9/20/07...$15.00
https://doi.org/10.1145/3395363.3397381

1 INTRODUCTION

Previous research shows that tests in industry are riddled with
flakiness [8, 19, 20, 28, 30, 32]. A common practice to combat flaky
tests is to run them in isolation from each other. This aims to
eliminate test-order dependencies, i.e., potential effects that one test
execution may have on executions of other tests (e.g., by polluting
some shared static state) [6, 7, 23, 42]. Depending on the level of
isolation, however, the introduced overhead can be substantial.

Test isolation can be implemented to various degrees, ranging
from full sandboxing (i.e., each test is run in its own freshly pro-
visioned OS virtual machine) to sequential execution of all tests
inside a single OS-level process. The former approach provides
absolute isolation, though at a very high cost; the latter, in contrast,
introduces minimal overhead but only guards against races caused
by concurrency.

Speaking of Java projects, running all tests inside a single Java
Virtual Machine (JVM) is the default mode for many build systems,
including Ant, Gradle, and Maven. Although efficient, using this
default mode may impact the correctness of test results and lead to
intermittent test failures when there exist test-order dependencies.

The most commonly used middle ground is running each test in
its own process. In case of Java projects, this entails forking a new
JVM for every test. The overhead of this technique (compared to
running all tests in a single JVM) is known to be significant. Prior
work has shown that the slowdown can be as high as several orders
of magnitudes [6]. The high cost of forking is commonly associated
with the cost of spawning a large number of JVM processes.

Recent work introduced VmVm [6], an approach that defines test
virtualization to isolate each test within a single JVM. Specifically,
VmVm tracks accesses to static fields during a test execution and
automatically re-initializes those fields prior to the execution of the
subsequent test. VmVm brings the best from the two worlds: test
isolation via lightweight containers and reuse of all loaded classes
among tests by executing everything in a single JVM. Extensive eval-
uation of VmVm showed significant performance improvements
over forking and low overhead compared to running all tests inside
a single JVM.

Despite its powerful approach, we believe that VmVm faces two
key obstacles on its way to a wider adoption. It is a complicated sys-
tem, which involves dynamic bytecode instrumentation, and such
instrumentation must be updated with each new version of Java.
Perhaps rightfully so, many developers may be hesitant to be early
adopters of research tools, when developers need tools that they
can rely on, but researchers are pressured to keep inventing new

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

tools over maintaining older work. Instead, developers rely widely
on open source frameworks and tools that are already adopted and
maintained by the community.

Inspired by the initial VmVm evaluation and aforementioned
challenges, we set out to seek a simple yet effective approach to
optimize forking, with the goal of creating a solution that we could
ensure would be more widely adopted. We began by performing
an exploratory study to compare the performance overhead of test
isolation in three different build systems (Ant, Maven and Gradle).
Although all three of these build systems executed the exact same
JUnit tests, each build system provides a separate implementation of
the glue that actually executes those tests. In this study, we evaluated
the overhead of executing a trivial test, which simply called Thread.
sleep(250), repeatedly, in new processes. Somewhat surprisingly,
our results of profiling build system runs show that, for Maven
in particular, a large portion of the overhead is unexplainable by
OS-imposed overheads: on average each test took approximately
350 milliseconds longer to run with Maven than with Ant or Gradle.

To better understand and isolate the sources of overhead in test
isolation, we created FORKSCRIPT, a highly-optimized JUnit test
runner that runs each test in its own process. During a build, on-
the-fly, FORKSCRIPT generates a single specialized execution script
for running all tests and collecting test results. Our execution script
utilizes process management provided by the operating system, as
well as several utilities available on Unix systems. The build system,
hence, needs to interact only with that execution script process,
instead of all individual test processes.

Of course, FORKScRIPT could suffer the same adoption limitations
as VmVm: FORKSCRIPT needs to be tightly integrated with the
build system and test framework and represents a maintenance
challenge. Hence, developers may choose to continue to allow the
build system to run their tests as it normally would, and again, we
may not be successful in getting developers to adopt FORKSCRIPT.
Instead, we used FORKSCRIPT as a baseline while we performed
a deep-dive into Maven’s test execution performance, and were
able to reveal a bug in the inter-process communication (IPC) code
that is used for test communication in Maven. This bug imposed
a constant overhead of approximately 350 milliseconds per-test-
class, resulting in a particularly enormous relative overhead in
projects with very fast running tests. Our patch for this bug has
been integrated into Maven, resulting in a significant speedup for
test runs that require test isolation. Moreover, since our contribution
is merged into Maven (and is not a standalone tool or Maven plugin),
we can be confident that it will have practical impact.

This experience report describes our process discovering, debug-
ging and patching this bug, as well as our experiences working
with the community to continue to improve Maven’s IPC code.
Our results show that FORKSCRIPT can save up to 75% (50% on
average) of test execution time compared to Maven forking when
running a single JVM at a time. The benefits of FORKScRrIpPT for
runs with parallel processes slightly decrease, although savings
remain high. Most importantly, our results also show that with our
patch that has been merged into Maven, every developer can see
similar performance to FORKScRIPT. Reflecting on the experience
of developing VmVm, FORKSCRIPT, and then patching Maven itself,
it is clear to us that working with open source communities can be
both extremely challenging and rewarding. Developing FORKSCRIPT

Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell, and Milos Gligoric

was far easier than debugging and patching the underlying flaw in
Maven. Although FORKSCRIPT ultimately was somewhat faster than
our patched version of Maven, by creating and integrating a simple
patch into Maven we have finally been able to have much broader
impacts by getting our improvements in front of every developer
who uses Maven.

The main contributions of this paper include:

o A closerlook at the cost of forking (as implemented in the existing
build systems) and a finding that substantial overhead behind it
comes from generic inter process communication (IPC).

e A novel, simple, technique, dubbed FORKSCRIPT, to optimize fork-
ing by creating specialized test execution script on-the-fly.

o A deep-dive performance measurement of test execution in Ant,
Maven and Gradle, resulting in a patch that has been merged
into Maven.

e An extensive evaluation of our approach on 29 open-source
projects, totaling 2 million lines of code.

e Impact on several design decisions for future releases of the
Maven build system [3, 5].

Our experience report clearly shows that researchers should ex-
plore rigorous and systematic testing of build systems, including
their performance, correctness, and usability. These topics have not
received much attention by the testing community in the past.

2 MOTIVATING STUDY

While past work on test acceleration typically focuses on a single
build system (e.g. all of the projects evaluated in the VmVm pa-
per used the Ant build system [6]), we were particularly curious
if different build systems’ approach to test isolation could result
in different performance. Hence, we conducted a simple experi-
ment to compare the overhead that each build system adds when
executing tests with isolation. To do so, we generated a test suite
consisting of 100 JUnit test classes, each with a single JUnit test
method that simply calls Thread.sleep(250) and then returns.
These simple tests are not appropriate for benchmarking complex
runtime systems like VmVm, but provide the perfect opportunity
to measure overheads introduced by the build system, since each
test should require a constant execution time. We measured the
total time taken by each of Ant, Maven and Gradle to execute this
entire test suite (with test isolation, and excluding the time taken
by other parts of the build process). Then, we subtracted the actual
time needed to run each test (250 msec) to identify the overhead
per-test introduced by each build system.

Table 1 presents the results of this study. We found that the
overhead introduced by each build system varied dramatically, from
just 259 msec in the case of Ant to 596 msec in the case of Maven.
This wide range makes us hopeful that there may be things that
can be changed in Maven or Gradle to reduce the overhead of
test isolation to at least that of Ant. We know that there will have
to be some overhead to running tests in this method, since there
is a non-zero overhead imposed by the operating system when
creating a new process. However, all of the build systems will
have to pay for that same overhead, and hence, any differences in
overhead between build systems would have to be explained by

Debugging the Performance of Maven’s Test Isolation: Experience Report

Table 1: Overhead Introduced by Each Build System for Iso-
lating a Single Test in Milliseconds.

Build System Overhead Per-Test (ms)
Ant 1.10.6 259
Gradle 5.6.1 412
Maven (Surefire 3.0.0-M3) 596
ty, 12, 13, Uy
JVM
time

(a) mvn test (default behavior)

t 7] 13 ty
|]VM| |JVM| |JVM| |JVM|

(b) -DreuseForks=false -DforkCount=1 time
58 I3
7] Iy
f
1me

(c) -DreuseForks=false -DforkCount=2

Figure 1: Illustrative example of three Surefire configura-
tions when running four tests ({t1, t2, t3, t4}).

o SERIALIZ, App Classes
Executor config JUnit Classes
I Surefire Classes
P)
S) SERTATZE
e SP
M 2 AW M
Jv %1 N JVi
results
ForkStarter ForkBooter

Figure 2: Surefire’s workflow. Shaded boxes highlight the
main sources of overhead introduced by Surefire.

different IPC mechanisms. Hence, if we can identify why Maven
is so much slower than Ant, we could, ideally propose a change
to Maven to improve its performance. Such a change could afford
developers with some of the speedup that they might obtain from
using a system like VmVm to isolate their tests, but with the added
convenience of not requiring any per-project changes, by making
a change to the build system directly. At the same time, while we
can see from this data that Ant has the lowest overhead of these
three options, we don’t know for certain that it represents an ideal
solution: perhaps an even more efficient system could be faster.

3 BACKGROUND

We provide a high level overview of Maven and describe the key
steps taken by Maven when executing a set of tests.

Maven defines a build lifecycle—a well-defined sequence of
phases, including compilation, code generation, test execution, etc.
A user can specify a set of plugins to be executed with each build
phase; a plugin is associated with a phase by its developers, and a
user can only choose which plugins to include in the build run. An
official plugin for running unit tests is Maven Surefire [3]. Surefire

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

Input: tests - set of tests

Input: config - build configuration
1: function FORKSTARTER(tests, config)
2 executor «— MAKEEXECUTOR(config.forkCount)
3 for 7 in tests do:
4 classpath « GETCLASSPATH(7, config)
5 serializedConfig «<— SERIALIZE(, classpath)
6: task «— MAKECOMMANDLINETAsK(serializedConfig)
7 SuBMIT(executor, task)
8 done

9: wAITFORALL(executor)

10: end function

Figure 3: Overview of the key steps executed in the
ForkStarter class, which is a part of the Surefire plugin; this
code is executed in the same Java Virtual Machine that is
running the main Maven process.

implements complex logic for finding test classes in a project, fil-
tering tests, etc. A rich set of options enables user to fine tune test
execution [4].

To execute tests in a project, a developer can simply execute the
following command: mvn test. This command starts Maven (which
is written in Java and executes in its own JVM), goes through all
phases until (and including) the test phase and runs user speci-
fied plugins; all the plugins are executed in the same JVM as the
main Maven process, although the plugins can spawn other pro-
cesses. The aforementioned command would trigger Surefire plu-
gin to spawn a single new JVM process and execute all tests in
the new JVM (Figure 1.a). If a user wants to isolate tests, by run-
ning each test in a separate JVM, she can use the following com-
mand: mvn test -DreuseForks=false -DforkCount=1(Figure 1.b).
The first command-line option (reuseForks) specifies that JVM
should not be reused after test execution is finished, and the sec-
ond command-line option (forkCount) specifies the number of
JVM instances that should run in parallel. Figure 1.c illustrates a
configuration with two JVMs running in parallel.

Behind the scenes, the Surefire plugin finds the tests, extracts
the build configuration needed to tune the test execution, and pre-
pares options for a new JVM. We only consider execution with
forking (without reusing JVMs) in the reminder of this section,
i.e., configurations illustrated in Figure 1.b and Figure 1.c. When it
comes to actual test execution, there are two key classes involved:
ForkStarter and ForkBooter. Figure 2 visualizes their interaction.
ForkStarter executes in the same JVM as Maven and spawns new
JVMs. ForkBooter is the main class started in the new JVM process,
which reads configuration prepared by ForkStarter and executes
one test.

Figure 3 summarizes the key steps that are executed in the
ForkStarter class. The input to ForkStarter is (1) the set of tests
to execute, and (2) a parsed build configuration. Initially (line 2),
ForkStarter creates an executor, i.e., an instance that maintains a
thread pool [2], where each thread will be responsible for spawning
new JVMs and triggering test executions. In the next step (lines 3-8),
ForkStarter iterates over the set of tests to create one task for each
test and submit the task to the executor. Each iteration of the loop
makes a classpath for the current test, serializes the configuration

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

Input: serializedConfig - path to serialized configuration file
1: function FORKBOOTER(serializedConfig)
2 config < DESERIALIZECONFIG(serializedConfig)
3 SETUPJVM(config)
4 junit <~ MAKEJUNIT
5 EXECUTE(junit, config.test)
6 SENDGOODBYE()
7: end function

Figure 4: Overview of the key steps executed in the
ForkBooter class, which is a part of the Surefire plugin; this
code is executed in the new Java Virtual Machine.

for the new JVM to a temporary file, creates a task, and submits the
task. Once all tasks are submitted, ForkStarter waits for all tasks
to complete (line 9).

Figure 4 summarizes the key steps that are executed in the
ForkBooter class, which is the main class in newly spawned JVM.
In the first step (line 2) ForkBooter deserializes the configuration
from the temporary file, sets up configuration for the current JVM
(line 3), creates an instance of JUnit (line 4), and executes the test
with the JUnit (line 5). Finally (line 6), it sends a goodbye signal
(via standard output) to the ForkStarter.

4 BEST-CASE PERFORMANCE: NO IPC

When isolating test case executions in their own process, the test
running infrastructure must have some form of interprocess com-
munication (IPC) to coordinate between the two processes. We
speculated that this must be where the increased overhead that we
saw from Maven and Gradle in comparison to Ant. Based on our
initial profiling of Maven runs and considering the steps taken, in
ForkStarter and ForkBooter, to execute a set of tests, we high-
light, in Figure 2 the steps that introduce overhead in addition to
the cost of spawning new JVM processes. Specifically, (1) using
thread pool and executors to manage processes requires additional
class loading and adds substantial complexity especially for those
test runs when only a single JVM is run at a time (i.e., there is a
single thread in the thread pool), (2) exchanging configuration with
new JVMs via serialization/deserialization to/from files requires
costly IO operations, (3) class loading of Surefire’s classes (e.g.,
ForkBooter) in each new JVM adds on top of already costly class
loading of classes under test [33], and (4) “pumping” input/output
between the original JVM and newly created JVMs requires extra
threads, synchronization, etc.

Although some of the extra steps taken by Surefire may be nec-
essary for certain build configurations, we believe that the overly
generic design adds substantial overhead for simple configurations,
which are common for many small and medium sized open-source
projects, as those used in our evaluation. Thus we set to design and
develop a simple but effective approach to remove overly generic
steps, taken by Surefire, whenever such approach is feasible.

To reduce the IPC between a build system and the processes it
spawns, we present FORKSCRIPT. During a build, on-the-fly, Fork-
ScRIPT generates a single specialized execution script for running
all configured tests and collecting test results; the tests may be run
sequentially or in parallel. Our execution script utilizes process

Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell, and Milos Gligoric

Input: tests - set of tests

Input: config - build configuration

Output: S - specialized script that executes tests
1: function FORKSCRIPT(tests, config)

2: count « 0
3: for 7 in tests do:
4 classpath « GETCLASSPATH(7, config)
+ ‘ .
5 S « $timeout ‘config.timeout \$
+ ‘
6: S « $java -cp ‘classpath
7: forkscript.JUnitRunner ‘z ‘config &$
8: if (count + 1) % config.forkCount == 0 then:
9 S & $waits
10: fi
11: count++
12: done

13: end function

Figure 5: A simplified version of a multi-staged program
used by FORKSCRIPT to generate a specialized script; this pro-
gram replaces ForkStarter code in Figure 3.

management provided by the operating system, as well as several
popular utilities available on Unix systems. The build system, hence,
needs to interact only with that shell script process, instead of all
individual test processes.

FoRrkScRIPT replaces ForkStarter and completely removes Fork-
Booter. At the same time, other parts of Maven and Surefire need
not be changed at all. Moreover, we rely on Surefire to discover tests,
perform filtering, extract build configuration from configuration
files, etc. The changes introduced by FORKScRIPT happen when it
comes to concrete test execution steps.

Figure 5 shows a simplified multi-staged program [37], which
replaces code in Figure 3 and Figure 4, used by FORKSCRIPT to
generate a specialized script for the given set of tests and build
configuration. We use standard notation from code generation com-

munity to represent code fragments and holes [26]. & concatenates
the strings and appends a newline character.

The input to the FORKSCRIPT function is the same as for ForkSta-
rter: a set of tests and the build configuration. The FORKScRIPT
function, similar to ForkStarter, iterates over each test in the set
of tests, but rather than adding each test as a task to an executor,
FORKSCRIPT extracts configuration (e.g., classpath for the test) and
appends a shell command that will execute the test with the appro-
priate setup. Depending on the number of JVMs that should run in
parallel (forkCount), FORKSCRIPT splits the set of tests in one or
more buckets. Note that tests within each bucket are executed in
parallel, as scheduled by the OS, but each test runs in its own JVM.
In our implementation, we use the split command (available on
Unix) to split tests into buckets.

To execute each test, FORKSCRIPT uses a custom JUnitRunner,

which, unlike the default JUnit runner (org.junit.runner.JUnitCore),

accepts several command line arguments to fine tune the output of
the runs. Clearly, to be able to support other testing frameworks
(e.g., TestNG) or a different version of the same framework, we
would have to implement one custom runner for each testing frame-
work and each version.

Debugging the Performance of Maven’s Test Isolation: Experience Report

Because the specialized script is generated in each test run, FORK-
ScripT does not introduce any burden on the developers to maintain
those scripts. In other words, changes in the set of tests (if tests are
added or deleted), as well as changes in the classpath, are automati-
cally reflected in the subsequent test runs. This transparency for
users enabled an easy transition to FORKSCRIPT.

We believe that a large number of projects with a simple build
configuration, can substantially benefit from FOrRkScripT. This is
also evidenced by the results of our evaluation (see Section 6).
Considering the frequency of test runs, especially for those projects
that use Continuous Integration [15, 25, 39], e.g., Travis CI, FORk-
ScrIPT can have substantial impact on developers’ productivity and
software reliability.

5 PERFORMANCE PROFILING MAVEN

FORKSCRIPT provides a barebones, stripped down mechanism to
run JUnit test classes in their own process, but may not suit all de-
velopers’ needs. Hence, we also carefully profiled Maven to identify
the specific source of the ~350msec/test performance overhead (in
comparison to Ant). To start, we refined our overhead measure-
ment experiment described in Section 2 to break down the time
measurement into three components. In particular, we wanted to
attribute the overhead into time needed to launch a new process, for
that process to run the test, and then for that process to terminate.
Figure 6 shows an abstract timeline of the execution of a single
JUnit test class which is representative for Ant, Maven and Gradle.
We profiled: Ty, the duration between when the build system begins
running a test until the child process (the test runner) starts; Ty,
the duration between when the child process starts until the child
process terminates; and T3, the duration between when the child
process terminates until when the build system determines that the
test has completed.

To conduct this profiling, we implemented a simple load-time
Java bytecode instrumentation agent that modified the appropriate
methods of each build system to record the system time of each of
the four events shown in Figure 6. Again, we ran our profiler on
100 tests that each simply call Thread.sleep(250), and report the
average duration of each of the steps to execute each test in Table
2. We were surprised to find that the majority of Maven’s overhead
(compared to Ant) came from T3, the duration between when the
test ends (in the ForkedBooter child process) to when the parent
process (the build system, aka the ForkStarter) finds that the test
has completed.

With this clue in hand, we attached a Java debugger to the child
process (ForkedBooter) and set a breakpoint at the point in the
execution that represents the start of T3 in Figure 6 — when the test
completes. We examined the program behavior carefully, and found
that the program was stalling while a thread was reading from the
standard input stream, <stdin>. Furthermore, we found that it was
this thread blocking on <stdin> that was causing a roughly 350
millisecond delay for each test execution.

Upon further investigation, we found that this is not a problem
unique to Maven. Normally, when a Java thread is reading from an
InputStream, it can be interrupted by another thread (for instance,
if the JVM is shutting down). However, when reading from <stdin>,
the thread can not be interrupted until they reach a JVM “safepoint”,
which occurs every 300 milliseconds [38].

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

1. Start Test 4. Finished
Main | | . |
fork
Process ork() waiting
b U5 U
Test Runner | Run Test |

Process 2. Forked Runner 3. Forked Runner

Starts Exits

Figure 6: Critical regions in test execution to profile. We fo-
cus on three regions: 1) between when the build system de-
cides to execute a test and when the forked process launches,
2) between when the test starts and when it finishes, and 3)
between when the test finishes and when the build system
considers the test complete.

Table 2: Profiling Results that Break Down the Time to Run
Each Test Using the Durations Described in Figure 6. Our
Patch Significantly Reduces the T3 Measurement.

Build System Ti[ms] Tz[ms] T3[ms]
Ant 1.10.6 250 253 9
Gradle 5.6.1 395 253 17
Maven (Surefire 3.0.0-M3) 244 253 352
Maven (With our patch) 217 252 17

To resolve this bug, the fix is simple: when the ForkedBooter
(child JVM) determines that it is time to shut down, do not continue
to read from <stdin>. We proposed this three-line patch (plus a one-
line change to an integration test) to the Maven Surefire developers,
who gladly accepted and merged it into their master branch [14].
With this change, we shaved approximately 350 milliseconds off of
each test class execution time for Maven, bringing its performance
much closer in line with Ant. Since the change was integrated
directly into the project, every user of Apache Maven stands to
benefit from this improvement. We are interested in applying a
similarly detailed performance analysis to Gradle’s performance in
the future.

Interesting future work would also consider the implications of
using network sockets over standard input for test running commu-
nication. In addition to avoiding OS peculiarities regarding block-
ing on <stdin> versus other streams, migrating communication to
sockets would allow Maven to run tests on separate physical ma-
chines than the machine invoking Maven — a powerful feature. We
began working with the Apache Maven community on developing
such a feature, but development is still underway: the test running
code in Maven is extremely old, and it was not designed with the
goal of making such drastic IPC changes easy.

6 STUDY
To assess the benefits of our contributions, we answer the following
research questions:

RQ1: What are the performance improvements obtained by FOrk-
ScripT compared to the default Maven forking?

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

RQ2: How does the improvement scale as the number of concurrent
processes increase?

RQ3: How does the patched Maven compare to FORKSCRIPT?

We run all experiments on a 4-core Intel Core i7-6700 CPU @
3.40GHz with 16GB of RAM, running Ubuntu 18.04. We used Oracle
Java HotSpot(TM) 64-Bit Server (1.8.0_181). Furthermore, we used
Maven 3.5.3.

We first describe the subjects used in our study, as well as exper-
iment setup, then we answer our research questions.

6.1 Subjects

To select the subjects for our study, we mostly searched through
recent work on regression testing and test isolation [6, 21, 23, 27].
Additionally, we set a couple of requirements for each project: the
project must (1) be buildable with the Maven build system, (2) have
non-trivial number of tests, (3) have tests whose execution time
is non-negligible, and (4) successfully build at its latest revision.
We use the latest revision of each project available at the time of
(the latest run of) our experiments rather than revisions used in
prior studies; this makes our experiments feasible as building old
revisions can be challenging.

Table 3 shows the list of 29 projects used in our experiments. All
the selected projects are open-source and available on GitHub. For
each project, we show the size of the project in terms of the num-
ber of lines of code (LOC); number of Maven modules (#Modules);
number of source files in the repository (#Files); number of test
classes, i.e., tests (Classes); number of test methods (Methods); lo-
cation of the project on GitHub (URL); and the revision used in our
experiments (SHA). We used cloc [13] to collect LOC, our scripts
to collect number of files, and Maven default output to report the
number of tests and test methods.

Figure 7 shows the distribution of test execution time, per project,
for all tests; the x-axis is in the logjo scale.

Although projects in Table 3 may not be representative of all Java
projects (or even Java projects that build with Maven), we believe
that the set of chosen projects covers a broad range of application
domains. Additionally, we can see that the projects vary in LOC,
number of files, number of tests, and number of test methods. The
last two rows in Table 3 (Avg. and }}) show the average and total
values (where applicable).

6.2 Experiment Setup

We briefly describe our experiment setup. The main goal is to com-
pare test execution time if one uses Maven forking vs. FORKSCRIPT.
To that end, we perform the following changes and steps.

We modify recent version of Surefire to output the exact time
taken for the entire test execution. Note that Surefire by default
prints only time for each test and the total execution time for the
entire build, but it does not print the total time for test execution as
defined by the ForkStarter function in Figure 3. Thus, we modified
ForkStarter to output time at the beginning and at the end; this
is the only change in Surefire for our experiments. We did the same
change for the FORKScrIPT function in Figure 5. As FORKSCRIPT has
no impact on other phases of the Maven build life cycle, we believe
that measuring only test execution time provides a fair comparison
and avoids any potential noise from other phases in the build.

Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell, and Milos Gligoric

bukkit- —0
checkstyle- = - o

closurecompiler-

commonscodec-
commonscompress - —:Di
commonsio- —m o0 F=o

commonsjxpath-

commonslang-

commonsmath-
commonsnet-
commonsvalidator -

configuration-

-

3}

_% ecollections- S :D

=

o empiredb- - - o _EI:’_
geeoms —] J——

googlejavaformat-

graphhopper- D SN IDNNIS _[D_ .
jfreechart- —“ l_.
jodatime- I

la4j- i@ - -
openfire- « -+ o o —u:]—

retrofit- D-CoP—0

scribejava-

truth- —D]—
vectorz- o —m— oo
- =

yamlbeans-
0.001 0.01 0.1 i 10 30
Time [s]

Figure 7: Distribution of test execution times in log;(scale.

For each project in Table 3 we execute the following steps:

a) Clone the project from GitHub and checkout the revision shown
in Table 3 (SHA),

b) Install the project (by executing mvn install), which will exe-
cute all the build phases and download necessary dependencies
(i.e., third party libraries),

¢) Run tests using Maven in the offline mode to avoid unnecessary
connection to the Internet, and

d) Run tests using FORKSCRIPT in the offline mode.

We store the logs for the last two steps to be able to extract the
number of tests executed in each run, as well as the test execution
time. We use the former to check the correctness of our runs, i.e.,
each FORKSCRIPT run should execute the same number of tests as
the Maven run. We manually confirmed that all build outcomes are
the same. We use the latter to compute the savings of FORKSCRIPT
compared to default Maven implementation. Namely, we extract
total test execution time for each Maven run (denoted with T™"")
and FORKSCRIPT run (denoted with T5) and compute savings as
RT = %T,,,Tm % 100%. This saving is the key metric used in our
evaluation. We use the same metric for both sequential runs and
parallel runs.

Debugging the Performance of Maven’s Test Isolation: Experience Report

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

Table 3: List of Subjects Used in our Study.

Project LOC #Modules #Files #lests URL . SHA
Classes Methods | https://github.com/

bukkit 32,560 1 731 38 903 | Bukkit/Bukkit 210234
checkstyle 206,965 1 2,001 297 2,993 | checkstyle/checkstyle f7626ac
closurecompiler 357,610 3 1,196 354 13,713 | google/closure-compiler 5cae9b7
commonscodec 20,400 1 127 54 869 | apache/commons-codec 1406889
commonscompress 44,711 1 354 137 1,057 | apache/commons-compress e127b13
commonsdbcp 20,654 1 106 30 569 | apache/commons-dbcp 5226462
commonsio 30,455 1 248 105 1,354 | apache/commons-io 9e5475f
commonsjxpath 24,910 1 232 38 409 | apache/commons-jxpath 3138e7a
commonslang 76,203 1 325 148 4,084 | apache/commons-lang 58a8f12
commonsmath 153,695 1 1,177 367 4,158 | apache/commons-math b@5b3b9
commonsnet 28,207 1 272 43 268 | apache/commons-net cc819eb
commonsvalidator 16,082 1 149 70 541 | apache/commons-validator a377131
configuration 66,847 1 457 169 2,786 | apache/commons-configuration bc69f94
crypto 5,964 1 87 25 111 | apache/commons-crypto d69ef95
eclipsecollections 298,762 16 2,578 3,196 161,417 | eclipse/eclipse-collections 25432
empiredb 52,700 7 472 25 108 | apache/empire-db 816837
gedcom4;j 47,204 1 503 243 1,300 | frizbog/gedcom4j be310f2
googlejavaformat 13,951 1 69 17 1,037 | google/google-java-format 579772a
graphhopper 59,435 7 565 137 1,460 | graphhopper/graphhopper b2db5c2
jfreechart 133,847 1 987 341 2,176 | jfree/jfreechart 520a4be
jodatime 86,138 1 330 1 4,222 | JodaOrg/joda-time c9f2764
la4j 13,581 1 117 20 835 | vkostyukov/la4j 2826a4a
openfire 203,070 8 1,589 31 235 | igniterealtime/Openfire 6c32335
retrofit 19,339 5 220 65 595 | square/retrofit 5¢c2f505
scribejava 11,160 6 238 25 109 | scribejava/scribejava 09364b6
truth 28,805 2 179 59 1,447 | google/truth 14727
vectorz 53,487 1 397 72 456 | mikera/vectorz a05c69d
yamlbeans 6,716 1 51 8 89 | EsotericSoftware/yamlbeans 561099
ztexec 3,163 1 76 20 93 | zeroturnaround/zt-exec 6c3b93b
Avg. 72,986 2 545 211 7,220 | N/A N/A

) 2,116,621 75 15,833 6,135 209,394 | N/A N/A

6.3 Improvements For Sequential Runs

RQ1: What are the performance improvements obtained by FORK-
ScripT compared to the default Maven forking?

Overall, we find that savings obtained by FORKScrIPT for se-
quential runs are 50% on average and up to 75%. We discuss the
details below.

To answer this research question, we followed the experiment
setup from the previous section and executed tests with the follow-
ing command: mvn test -DreuseForks=false-DforkCount=1.Re-
call that the first command-line option will enforce that each test
is executed in its own JVM, and the second option specifies that
there is only one forked JVM at a time. In other words, we are
executing tests sequentially one JVM at a time. Recall (Section 4)
that FORKSCRIPT too respects the forkCount parameter, so in this
case FORKSCRIPT too will run a single test at a time in its own JVM.
We use Forkl1 to denote this run configuration (for both Maven
and FORKSCRIPT); we do not encode reuseForks in the name of

the configuration, because all our experiments use this option, i.e.,
enforce full test isolation.

Table 4 shows the results. The first column lists names of subjects,
and columns 6 and 7 show test execution time in seconds for Maven
and FORKSCRIPT, respectively. Column 8 shows savings (RT) of
ForxkScripT compared to Maven. Interestingly, we can observe that
ForkScripT, for Forkl, speeds up test execution for all subjects.
Minimum speedup is 12% for commonsdbcp and maximum speedup
is 75% for bukkit. The last two rows show the average and total
values for all projects.

We took an extra step to check what projects benefit the most
from FORKSCRIPT. We mostly reasoned about the obtained speedup,
number of tests (as we already reported in Table 3), and test execu-
tion time per test (as we already showed in Figure 7). We observed
that projects with low median time per test benefit the most; median
is shown as the vertical line for each boxplot in Figure 7. This is not
surprising, as the overhead of forking is more observable for tests
that run shorter. For example, FORKSCRIPT was more beneficial for

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell, and Milos Gligoric

Table 4: Test Time in Seconds of Maven and FORKScRrIPT, with NoFork and Fork with 1 and 2 Parallel Processes. RT is the Time

Savings of FORKScripT Compared to Maven.

. NoFork Fork 1 Fork 2
PI‘O_]CCt mvn FS new mvn FS new mvn FS new
Tmvn[s] TFS[s] RT[%] T"“[s] | T™™"[s] T%[s] RT[%] T""[s] | T™"[s] T%[s] RT[%] T""[s]
bukkit 0.98 0.51 47 0.79 19.07 4.62 75 6.79 7.01 2.56 63 4.18
checkstyle 28.48 27.86 2 28.82 231.64 129.27 44 146.17 114.62 82.03 28 90.45
closurecompiler 68.07 74.12 -8 71.11 408.43 289.74 29 301.97 233.35 209.39 10 210.08
commonscodec 6.86 6.40 6 6.62 34.65 13.11 62 16.77 14.44 9.27 35 9.75
€COmMMmonscompress 11.21 10.14 9 11.11 82.75 29.40 64 40.93 33.56 17.11 49 22.23
commonsdbcp 70.53 70.28 0 73.49 90.01 78.59 12 80.43 49.91 42.15 15 47.45
commonsio 58.45 57.80 1 58.13 107.79 69.70 35 75.18 52.56 45.94 12 38.60
commonsjxpath 1.88 1.57 16 1.64 21.14 8.48 59 9.33 8.74 4.75 45 5.30
commonslang 13.49 13.38 0 13.50 88.15 32.11 63 41.51 34.56 22.29 35 22.81
commonsmath 53.12 53.18 0 53.49 243.92 109.10 55 243.62 103.24 61.21 40 103.28
commonsnet 57.51 58.47 -1 57.93 78.93 63.16 19 65.77 48.46 52.02 -7 47.82
commonsvalidator 1.86 1.60 13 1.74 37.25 12.27 67 15.86 13.80 7.76 43 9.25
conﬁguration 24.85 24.14 2 24.14 127.49 61.50 51 70.60 59.38 34.89 41 40.10
crypto 1.86 1.50 19 1.59 15.48 7.17 53 8.45 7.15 4.40 38 5.04
eclipsecollections 76.81 71.00 7 76.13 2,233.72 1,157.09 48 1,307.81 1,014.09 670.55 33 737.34
empiredb 2.36 1.68 28 2.06 14.48 6.38 55 6.70 6.29 4.17 33 4.36
gedcom4;j 17.05 9.35 45 18.44 149.74 46.24 69 77.05 64.77 28.65 55 46.01
googlejavaformat 4.29 3.81 11 4.18 15.67 9.90 36 11.46 8.05 6.84 15 7.28
graphhopper 20.18 14.46 28 19.46 91.34 41.33 54 50.71 43.33 27.98 35 31.50
jfreechart 2.10 1.40 33 2.14 174.61 59.41 65 77.70 62.74 32.32 48 43.85
jodatime 2.79 2.26 18 2.68 2.99 2.28 23 2.79 2.92 248 15 2.73
la4j 5.77 5.15 10 5.62 15.25 7.70 49 9.35 7.48 5.51 26 6.39
openfire 8.61 7.80 9 7.66 29.73 16.77 43 16.71 13.85 12.02 13 10.87
retrofit 21.15 17.31 18 17.35 53.24 35.67 33 36.22 30.83 26.41 14 24.89
scribejava 4.19 2.46 41 2.85 13.61 4.23 68 5.88 6.65 3.35 49 4.05
truth 5.65 4.93 12 5.05 35.99 14.57 59 17.39 16.37 9.15 44 10.76
vectorz 1.49 1.01 32 1.21 37.92 11.00 70 14.87 14.58 6.21 57 8.50
yamlbeans 0.70 0.32 54 0.43 4.24 1.20 71 1.66 1.69 0.73 56 1.09
ztexec 15.58 15.46 0 15.94 25.93 19.61 24 20.86 14.39 14.56 -1 12.10
AVg. 20.27 19.28 15 20.18 154.66 80.74 50 95.88 72.02 49.88 32 55.45
b 587.87 559.35 N/A 585.30 4,485.16 2,341.60 N/A 2,780.54 2,088.81 1,446.70 N/A 1,608.06

bukkit than for closurecompiler (75% vs. 29%). As another example,
FORKSCRIPT was more beneficial for commonscodec than for com-
monsdbep (62% vs. 12%). An exception to this rule is commonsnet,
which has low median value and relatively low saving (19%). With a
closer look, we found that a few tests in commonsnet dominate the
entire test execution time and the number of tests in this project is
small, thus the cumulative overhead is small and savings are low.
For completeness, we also report test execution time without
test isolation. Namely, we simply execute: mvn test with Maven
and FORKScRIPT. The results are shown in Table 4 in columns 2-4
(NoFork). Although FORKSCRIPT provides savings even in this case,
we note that the absolute difference in test execution time is rather
small, and this configuration was not the motivation for our work.

6.4 Improvements For Parallel Runs

RQ2: How does the improvement scale as the number of concurrent
processes increase?

Overall, our results show that FORKSCRIPT outperforms Maven
for parallel runs. Concretely, FORKSCRIPT saves, on average, 32%
of test execution time when running 2 JVMs in parallel. Next, we
discuss the results in details.

To execute tests in parallel we execute the following command:
mvn test -DreuseForks=false -DforkCount=2. We have also ob-
tained results with —DforkCount = 4, which showed similar results,
but we do not report the details in this paper. As our machine has 4
cores, we have not tried running experiments with larger number
of parallel processes.

Table 4 shows the results for parallel runs. Columns 10-12 (Fork2)
show execution time and savings when running (up to) two JVMs
in parallel. We can see that savings remain substantial. On average,
for runs with two parallel processes, FORKSCRIPT saves 32%. For
runs with two parallel processes, minimum saving (slowdown in
this case) is -7% while maximum is 63%. The reduction in savings,
when running multiple JVMs in parallel, was expected as the to-
tal execution time approaches theoretical maximum, i.e., time to

Debugging the Performance of Maven’s Test Isolation: Experience Report

execute the longest test in the project. Note that we expect that
runs for jodatime are the same for all forking options because this
project has only one test (although it has many test methods).

6.5 Comparison With Patched Maven

RQ3: How does the patched Maven compare to FORKSCRIPT?

Finally, we compared ForRkScripT with the patched Maven. Clearly,
we expected that FORKScrRIpT would outperform the patched Maven,
but we expected to see much smaller differences compared to the
non-patched Maven version.

Table 4 shows the results. In columns titled “T™¢"” we report
time for executing tests with the patched Maven. We can observe
that savings of patched Maven are substantial over the non-patched
version. Additionally, FORKScRIPT slightly outperforms patched
Maven, as was expected (Section 4), because FORKSCRIPT supports
only a subset of features.

7 IMPLICATIONS AND LESSONS LEARNED

Reflecting on our experience, we believe that there are several
important lessons that we have learned which are applicable to
practitioners and researchers:

Detect performance bugs through differential testing. To the
best of our ability to judge, this performance bug has been in Maven
since the introduction of the feature to isolate tests (beyond the
history of the project’s git repository). Developers everywhere have
likely assumed that the performance bug that we found was simply
the normal, expected behavior. Only by performing fine-grained
differential testing of three different build systems (described in
Section 2) did we even recognize that there was a flaw. Performance
bugs are notoriously difficult to find, but when there are alternative
systems that accomplish the same goal, differential testing can help
to reveal them.

Find simple fixes that can be integrated today. While our fix
solved the performance bug that we found, it could also be solved
by a long-term effort that is rewriting the entire ForkedBooter
and ForkStarter IPC system that relies on <stdin>. This architec-
ture dates back to the creation of this project (over a decade ago),
and unfortunately poses problems for projects that, themselves use
<stdin> and <stdout>. Instead, there is a significant refactoring
within the Maven community to replace the <stdin> communica-
tion with non-blocking socket channels [1]. However, this effort
will take several months, and require the involvement of multiple
Apache community members. When we first isolated the bug, we
actually went down this route first as a fix, and almost prepared a
pull request to make this change in Maven. While we made it work
(and pass all tests), the changes required to the codebase were ex-
tremely invasive. We created the simple patch described in Section
5 only after realizing that it would take months to transition the
project from <stdin> to sockets in a way that would best comply
with the community practices.

For researchers: engage in the open source community. As
software testing researchers, engaging with the open source com-
munity is an extremely valuable opportunity to both discover inter-
esting problems and to have a broader impact on the community.
Open source projects can have a diverse group of contributors,
each of whom may have another software development job, with

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

their own differing perspectives and challenges. Engagement can
come in many rich forms: in the past we have reported bugs and
made pull requests to Maven, but never before had we joined the
Slack channel. We encourage other researchers to engage with the
open source community not only by finding and reporting bugs in
projects, but by patching them and integrating new features that the
community wants. Compared to our past experiences contributing
to the same project (Maven), we found that it is far easier to have a
pull request merged when our change is either to fix a clear bug or
to implement a feature that already is on developer’s wishlists. In
contrast, proposing pull requests that simply integrate our research
prototypes or research ideas into the open source project are far less
likely to be successful, since open source project maintainers might
be wary to accept large new features that may not be necessary in
the eyes of the maintainer, but nonetheless will become a mainte-
nance burden for that person. Finding a balance between research
novelty and practical impact is key, as always. In the meantime, we
continue to work with the project maintainers to migrate the IPC
from <stdin> to socket channels, and look forward to continue to
contribute to Maven.

For researchers: perform systematic testing of build systems.
There is a vast amount of literature related to build systems, but
it mostly focuses on build system design (e.g., [24]) and testing
correctness of build scripts (e.g., [9]). Researchers have invested
limited effort in checking correctness of build systems, with an
exception of several efforts to formally design and prove (a part
of) build systems [12, 31]. This experience report clearly shows the
need for more work in this direction.

8 THREATS TO VALIDITY

External. The set of projects used in our evaluation may not be
representative of all Java projects. To mitigate this threat, we used a
large number of open-source projects, which differ in size, applica-
tion domain, and number of tests. Moreover, many of the projects
used in our study have been used in prior work on (regression)
testing [6, 11, 21, 27].

The reported results are obtained on a single machine. How-
ever, we obtained results for many projects across four different
machines, and the savings were substantial in all cases. We do not
report results from all machines as showing those numbers would
not add new insights.

We used a single revision of each project in this paper, and the
results could differ for other revisions. We simply chose the latest
revision of each project available at the time of our experiments; in
our initial experiments, not reported in this paper, we used earlier
revisions, and we observed similar savings when using FORKSCRIPT.
Internal. Our code and scripts may contain bugs that could impact
our conclusions. To increase our confidence in our implementation,
we did many sanity checks. Specifically, we checked that the number
of tests is the same regardless of the build configuration and we
confirmed that each log file contains the format appropriate for the
used configuration. In addition, we wrote tests for our code and did
pair programming.

Construct. We have not compared our approach with other tech-
niques that have been developed to speed up execution of tests, in-
cluding regression test selection [35, 41], test case minimization [34],

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

and efficient class loading [33]. We believe that those other tech-
niques are orthogonal to our approach and could provide additional
benefits if used together. We discuss the details of other techniques
in the Related Work section.

ForkScripT and VmVm share the same overall goal (reducing
time needed to run tests in isolation), but take radically different
approaches. VmVm requires bytecode instrumentation to change
each test to be self-isolated, and is quite brittle and can result in
unexpected test failures. It was also not designed for Java 8 (but
Java 7), let alone today’s Java 14. Instead, FORKSCRIPT changes the
build system to run each test more efficiently. We were faced with
1) using only very old, Java 7, and few projects for our evaluation,
2) use an apparently updated version of VmVm that is also frag-
ile and unsupported (https://github.com/Programming-Systems-
Lab/vmvm/issues/7), or 3) not report any unfair comparison in this
paper. We thought that choice 3 was the fairest for everyone.

9 RELATED WORK

Test-order dependencies and test isolation. Muslu et al. [32]
showed that running tests without isolation hides bugs. Zhang et
al. [42] were among the first to demonstrate the impact of test order
dependence on test outcome. They also proposed a technique to
detect test order dependencies and showed the impact of detected
dependencies on five test-case prioritization techniques. Bell and
Kaiser [6] performed an extensive study to evaluate the cost of
isolating tests via forking and presented a technique, named VmVm,
for unit test virtualization. Later work by Bell et al. [7] presented
ElectricTest, an approach for detecting dependencies among tests by
utilizing JVM’s garbage collection and profiling. By forcing garbage
collection at the end of each test, ElectricTest captures if objects
modified by one test are read by the subsequent test(s). Gyori et
al. [23] introduced PolDet to detect tests that pollute shared state.
PolDet captures the state of the heap at the beginning and at the
end of each test and reports if the captured states differ. Unlike
prior work, we focused on identifying hidden overhead in forked
runs, and we proposed a technique to remove costly IPC for those
build configurations when such communication is not necessary.

Flaky tests. Test-order dependency is only one source of flaky
tests, i.e., tests that non-deterministically pass or fail for the same
input without any change to the program [19, 20, 28, 30]. Other
sources of flakiness include non-determinism due to thread sched-
uling, network access, IO, etc. Initial work on flaky tests mostly
focused on creating taxonomy of flaky tests and avoiding flakiness.
Recent work focuses on automatically detecting flaky tests [8]. Our
work is on avoiding (rather than detecting) flaky tests due to test
dependencies.

Build systems. A build system is in charge of orchestrating the ex-
ecution of build tasks [16, 24, 29, 36]. Although most build systems
support a handful of built-in in process tasks, in practice most build
tasks involve spawning a process and waiting for it to complete.
Such orchestration, no matter how simple it may be, inevitably
introduces some overhead. Depending on the number of advanced
features the build system may support (e.g., incrementality, shared
caches, process sand-boxing) [12, 17, 22], the introduced overhead
may be significant. For example, to implement a simple timestamp-
based incrementality, the build system has to record all input and

Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell, and Milos Gligoric

output files of a build task and check their timestamps before it
determines if the task needs to be rerun; to support fetching build
outputs from a shared cache, a fingerprint of the build task must be
determined, which (among other things) includes computing the
checksums of all input files; finally, if the goal is to ensure that a
build task doesn’t read/write any files other than those it declares,
the task must be run in a sandbox or otherwise monitored for file
accesses it makes.

All those advanced features carry certain benefits at the cost
of adding more overhead in the worst-case scenario (e.g., clean
builds with cold caches). It is up to the developers of a project to
decide what is the best trade-off for building their project. From
the build system’s point of view, FORKSCRIPT replaces a number of
fine-grained build tasks (individual test executions) with a single
build task (which executes all tests). Making the granularity of build
tasks coarser is likely to undermine the benefits of the aforemen-
tioned advanced features (incrementality/cacheability/sandboxing).
However, many projects are not set up to use those features in the
first place (or their build system simply doesn’t support them), in
which case there is no penalty to pay for using FORKScRIPT. Using
FoRKSCRIPT is also appropriate in continuous integration loops
which are typically configured to run clean builds only [10, 25, 39].

Other techniques to speed up JVM runs. Nikolov et al. [33]
proposed recoverable class loaders, an approach to snapshot class
loaders and associated class objects. Xu and Rountev [40] presented
an approach for identifying inappropriate use of data structures
in Java programs. Nailgun [18], which is currently maintained by
Facebook developers, provides a client, protocol, and server for
running Java programs without paying the startup cost. Our work
is orthogonal to prior efforts and optimizes test isolation by avoiding
overly generic implementation of inter process communication.

10 CONCLUSION

This experience report captures our efforts to demystify and better
understand why test isolation is computationally expensive. The
result of our efforts — a patch integrated into the popular Apache
Maven build system — will result in a significant reduction in test
execution time for many developers. Based on these results, we
also created a research prototype, FORKSCRIPT. FORKSCRIPT is based
on our finding that a large portion of test execution time, if test
isolation is needed, goes into overly generic infrastructure of build
systems, e.g., inter process communication. To reduce this time,
FORKSCRIPT creates a specialized script for a given build configura-
tion and maintains the script as the build configuration changes.
FORKSCRIPT is publicly available. Our approach of using differential
testing of multiple build systems to detect performance bugs could
be useful for other researchers or practitioners. We continue to
engage with the open source community to further improve the
inter process communication components in Maven.

ACKNOWLEDGMENTS

The authors thank Karl Palmskog, Chenguang Zhu, and the anony-
mous reviewers for their comments and feedback. This work was
partially supported by the US National Science Foundation under
Grant Nos. CCF-1652517.

Debugging the Performance of Maven’s Test Isolation: Experience Report

REFERENCES

(1]
(2]

(8]

(9]

[10

[11

[12

[13
[14

[15

[16

(7

[18
[19

[20]

[21]

[22]

Apache. 2018. Test XML file is not valid when rerun "fails" with an assumption.
https://issues.apache.org/jira/projects/SUREFIRE/issues/SUREFIRE- 1556.
Apache. 2018. Thread Pool in Maven Surefire
https://github.com/apache/maven-surefire.

Apache. 2019. Maven Surefire Plugin. https://maven.apache.org/surefire/maven-
surefire-plugin/.

Apache. 2019. Maven Surefire Plugin — surefire:test. https://maven.apache.org/
surefire/maven-surefire-plugin/test-mojo.html.

Apache. 2019. Should Surefire specialize test runner when test isolation (i.e., fork)
is needed? https://issues.apache.org/jira/browse/SUREFIRE-1516.

Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In
International Conference on Software Engineering. 550-561.

Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient De-
pendency Detection for Safe Java Test Acceleration. In International Symposium
on Foundations of Software Engineering. 770-781.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. 2018. DeFlaker:
Automatically Detecting Flaky Tests. In International Conference on Software
Engineering. 433-444.

Cor-Paul Bezemer, Shane Mcintosh, Bram Adams, Daniel M. German, and
Ahmed E. Hassan. 2017. An Empirical Study of Unspecified Dependencies in
Make-Based Build Systems. Empirical Softw. Engg. 22, 6 (2017), 3117-3148.
Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build
System with Lazy Retrieval for Java Projects. In International Symposium on
Foundations of Software Engineering. 643-654.

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017. Re-
gression Test Selection Across JVM Boundaries. In International Symposium on
Foundations of Software Engineering. 809-820.

Maria Christakis, K. Rustan M. Leino, and Wolfram Schulte. 2014. Formalizing
and Verifying a Modern Build Language. In International Symposium on Formal
Methods. 643-657.

Al Danial. 2020. Cloc. https://github.com/AlDanial/cloc.

Tibor Digana. 2019. [SUREFIRE-1516] Poor performance in reuse-
Forks=false. https://github.com/apache/maven-surefire/commit/
5148b02ba552cd79ac212b869dec10d01badd2e6.

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In International Symposium on Foundations of Software Engineering. 235-245.
Sebastian Erdweg, Moritz Lichter, and Weiel Manuel. 2015. A Sound and Opti-
mal Incremental Build System with Dynamic Dependencies. In Object-Oriented
Programming, Systems, Languages & Applications. 89-106.

Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In International Conference
on Software Engineering, Software Engineering in Practice. 11-20.

Facebook. 2020. Nailgun. https://github.com/facebook/nailgun.

Martin Fowler. 2018. Eradicating Non-Determinism in Tests. http://martinfowler.
com/articles/nonDeterminism.html.

Zebao Gao, Yalan Liang, Myra B. Cohen, Atif M. Memon, and Zhen Wang. 2015.
Making System User Interactive Tests Repeatable: When and What Should We
Control?. In International Conference on Software Engineering. 55-65.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211-222.

Google. 2020. Bazel. https://bazel.build/.

Code.

[23]

[24]

[25]

[26]

[27

[28

[29]

[30]

[31

[32

[33

(34

[35

[36

[37

[38

[39

[40

[41

[42

ISSTA °20, July 18-22, 2020, Los Angeles, CA, USA

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:
Detecting State-polluting Tests to Prevent Test Dependency. In International
Symposium on Software Testing and Analysis. 223-233.

Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu. 2002. The Vesta Software
Configuration Management System. Research Report. http://www.hplLhp.com/
techreports/Compaq-DEC/SRC-RR-177.pdf.

Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-Source
Projects. In Automated Software Engineering. 426-437.

Sam Kamin, Lars Clausen, and Ava Jarvis. 2003. Jumbo: Run-time Code Genera-
tion for Java and Its Applications. In International Symposium on Code Generation
and Optimization. 48-56.

Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 583-594.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In International Symposium on Foundations of
Software Engineering. 643-653.

Shane Mcintosh, Bram Adams, and Ahmed E. Hassan. 2012. The Evolution of

Java Build Systems. Empirical Software Engineerinﬁ 17, 4-5 (2012), 578-608.
Atif M. Memon and Myra B. Cohen. 2013. Automated Testing of GUI Applications:

Models, Tools, and Controlling Flakiness. In International Conference on Software
Engineering. 1479-1480.

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build Systems a
La Carte. Proc. ACM Program. Lang. 2, International Conference on Functional
Programming (2018).

Kivan¢ Muslu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating
Unit Tests. In International Symposium on Foundations of Software Engineering.
496-499.

Vladimir Nikolov, Rudiger Kapitza, and Franz] Hauck. 2009. Recoverable Class
Loaders for a Fast Restart of Java Applications. Mobile Networks and Applications
14, 1 (2009), 53-64.

Voas JM. Offutt J, Pan J. 1995. Procedures for Reducing the Size of Coverage-based
Test Sets. In International Conference on Testing Computer Software. 111-123.
Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. Transactions on Software Engineering 22, 8 (1996), 529-551.
Peter Smith. 2011. Software Build Systems: Principles and Experience. Addison-
Wesley Professional.

Walid Taha. 2004. A Gentle Introduction to Multi-stage Programming. Springer
Berlin Heidelberg, 30-50.

tevemadar. 2018. Blocking on stdin makes Java process take 350ms more to exit.
https://stackoverflow.com/a/48979347.

Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Integra-
tion in GitHub. In International Symposium on Foundations of Software Engineering.
805-816.

Guoging Xu and Atanas Rountev. 2010. Detecting Inefficiently-used Containers to
Avoid Bloat. In Conference on Programming Language Design and Implementation.
160-173.

Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012), 67-120.

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivan¢ Muslu, Wing Lam, Michael D
Ernst, and David Notkin. 2014. Empirically Revisiting the Test Independence
Assumption. In International Symposium on Software Testing and Analysis. 385—
396.

	Abstract
	1 Introduction
	2 Motivating Study
	3 Background
	4 Best-Case Performance: No IPC
	5 Performance Profiling Maven
	6 Study
	6.1 Subjects
	6.2 Experiment Setup
	6.3 Improvements For Sequential Runs
	6.4 Improvements For Parallel Runs
	6.5 Comparison With Patched Maven

	7 Implications and Lessons Learned
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

