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Abstract. Coding conventions for naming, spacing, and other essen-
tially stylistic properties are necessary for developers to effectively un-
derstand, review, and modify source code in large software projects. Con-
sistent conventions in verification projects based on proof assistants, such
as Coq, increase in importance as projects grow in size and scope. While
conventions can be documented and enforced manually at high cost,
emerging approaches automatically learn and suggest idiomatic names
in Java-like languages by applying statistical language models on large
code corpora. However, due to its powerful language extension facilities
and fusion of type checking and computation, Coq is a challenging target
for automated learning techniques. We present novel generation models
for learning and suggesting lemma names for Coq projects. Our models,
based on multi-input neural networks, are the first to leverage syntac-
tic and semantic information from Coq’s lexer (tokens in lemma state-
ments), parser (syntax trees), and kernel (elaborated terms) for naming;
the key insight is that learning from elaborated terms can substantially
boost model performance. We implemented our models in a toolchain,
dubbed ROOSTERIZE, and applied it on a large corpus of code derived
from the Mathematical Components family of projects, known for its
stringent coding conventions. Our results show that ROOSTERIZE sub-
stantially outperforms baselines for suggesting lemma names, highlight-
ing the importance of using multi-input models and elaborated terms.
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1 Introduction

Programming language source code with deficient coding conventions, such as
misleading function and variable names and irregular spacing, is difficult for
developers to effectively understand, review, and modify [8, 52, 66]. Code with
haphazard adherence to conventions may also be more bug-prone [17]. The prob-
lem is exacerbated in large projects with many developers, where different source
code files and components may have inconsistent and clashing conventions.
Many open source software projects manually document coding conventions
that contributors are expected to follow, and maintainers willingly accept fixes of
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violations to such conventions [2]. Enforcement of conventions can be performed
by static analysis tools [30, 58]. However, such tools require developers to write
precise checks for conventions, which are tedious to define and often incomplete.
To address this problem, researchers have proposed techniques for automatically
learning coding conventions for Java-like languages from code corpora by apply-
ing statistical language models [4]. These models are applicable because code in
these languages has high naturalness [35], i.e., statistical regularities and repet-
itiveness. Learned conventions can then be used to, e.g., suggest names in code.

Proof assistants, such as Coq [15], are increasingly used to formalize re-
sults in advanced mathematics [28, 29] and develop large trustworthy software
systems, e.g., compilers, operating systems, file systems, and distributed sys-
tems [18, 44, 72]. Such projects typically involve contributions of many partici-
pants over several years, and require considerable effort to maintain over time.
Coding conventions are essential for evolution of large verification projects, and
are thus highly emphasized in the Coq libraries HoTT [37] and Iris [39], in
Lean’s Mathlib [9], and in particular in the influential Mathematical Components
(MathComp) family of Coq projects [19]. Extensive changes to adhere to con-
ventions, e.g., on naming, are regularly requested by MathComp maintainers for
proposed external contributions [50], and its conventions have been adopted, to
varying degrees, by a growing number of independent Coq projects [1, 13, 24, 65].

We believe these properties make Coq code related to MathComp an attrac-
tive target for automated learning and suggesting of coding conventions, in par-
ticular, for suggesting lemma names [7]. However, serious challenges are posed
by, on the one hand, Coq’s powerful language extension facilities and fusion of
type checking and computation [12], and on the other hand, the idiosyncratic
conventions used by Coq practitioners compared to software engineers. Hence,
although suggesting lemma names is similar in spirit to suggesting method names
in Java-like languages [73], the former task is more challenging in that lemma
names are typically much shorter than method names and tend to include heavily
abbreviated terminology from logic and advanced mathematics; a single char-
acter can carry significant information about a lemma’s meaning. For example,
the MathComp lemma names card_support_normedTI (“cardinality of support
groups of a normed trivial intersection group”) and extprod mulgh (“associa-
tivity of multiplication operations in external product groups”) concisely convey
information on lemma statement structure and meaning through both abbrevi-
ations and suffixes, as when the suffix A indicates an associative property.

In this paper, we present novel generation models for learning and suggest-
ing lemma names for Coq verification projects that address these challenges.
Specifically, based on our knowledge of Coq and its implementation, we devel-
oped multi-input encoder-decoder neural networks for generating names that
use information directly from Coq’s internal data structures related to lexing,
parsing, and type checking. In the context of naming, our models are the first
to leverage the lemma lemma statement as well as the corresponding syntax tree
and elaborated term (which we call kernel tree) processed by Coq’s kernel [53].
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We implemented our models in a toolchain, dubbed ROOSTERIZE, which we
used to learn from a high-quality Coq corpus derived from the MathComp family.
We then measured the performance of ROOSTERIZE using automatic metrics,
finding that it significantly outperforms baselines. Using our best model, we
also suggested lemma names for the PCM library [56, 65], which were manually
reviewed by the project maintainer with encouraging results.

To allow ROOSTERIZE to use information directly from Coq’s lexer, parser,
and kernel, we extended the SerAPI library [26] to serialize Coq tokens, syntax
trees, and kernel trees into a machine-readable format. This allowed us to achieve
robustness against user-defined notations and other extensions to Coq syntax.
Thanks to our integration with SerAPI and its use of metaprogramming, we
expect our toolchain to only require modest maintenance as Coq evolves.

We make the following key contributions in this work:

e Models: We propose novel generation models based on multi-input neural
networks to learn and suggest lemma names for Coq verification projects.
A key property of our models is that they combine data from several Coq
phases, including lexing, parsing, and term elaboration.

e Corpus: Advised by MathComp developers, we constructed a corpus of high-
quality Coq code for learning coding conventions, totaling over 164k LOC
taken from four core projects. We believe that our corpus can enable develop-
ment of many novel techniques for Coq based on statistical language models.

e Toolchain: We implemented a toolchain, dubbed ROOSTERIZE, which sug-
gests lemma names for a given Coq project. We envision ROOSTERIZE being
useful during the review process of proposed contributions to a Coq project.

e Evaluation: We performed several experiments with ROOSTERIZE to evalu-
ate our models using our corpus. Our results show that ROOSTERIZE performs
significantly better than several strong baselines, as measured by standard au-
tomatic metrics [59]. The results also reveal that our novel multi-input mod-
els, as well as the incorporation of kernel trees, are important for suggestion
quality. Finally, we performed a manual quality analysis by suggesting lemma
names for a medium sized Coq project [56], evaluated by its maintainer, who
found many of the suggestions useful for improving naming consistency.

The appendix describes more experiments, including an automatic evaluation
on additional Coq projects. We provide artifacts related to our toolchain and
corpus at: https://github.com/EngineeringSoftware/roosterize.

2 Background

This section gives brief background related to Coq and the Mathematical Com-
ponents (MathComp) family of projects, as well as the SerAPI library.

Coq and Gallina: Coq is a proof assistant based on dependent types, imple-
mented in the OCaml language [15, 20]. For our purposes, we view Coq as a
programming language and type-checking toolchain. Specifically, Coq files are
sequences of sentences, with each sentence ending with a period. Sentences are
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Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.
Proof. move => HO u v. split => [/nerodeP H1 w|H1].

- by rewrite -!HO.

- apply/nerodeP => w. by rewrite !'HO.
Qed.

Fig.1: Coq lemma on the theory of regular languages, including proof script.

essentially either (a) commands for printing and other output, (b) definitions
of functions, lemmas, and datatypes in the Gallina language [21], or (c¢) expres-
sions in the Ltac tactic language [22]. We will refer to definitions of lemmas as
in (b) as lemma sentences. Coq internally represents a lemma sentence both as
a sequence of tokens (lexing phase) and as a syntax tree (parsing phase).

In the typical workflow for a Coqg-based verification project, users write
datatypes and functions and then interactively prove lemmas about them by ex-
ecuting different tactic expressions that may, e.g., discharge or split the current
proof goal. Both statements to be proved and proofs are represented internally
as terms produced during an elaboration phase [53]; we refer to elaborated terms
as kernel trees. Hence, as tactics are successfully executed, they gradually build
a kernel tree. The Qed command sends the kernel tree for a tentative proof to
Coq’s kernel for final certification. We call a collection of Ltac tactic sentences
that build a kernel tree a proof script.

Fig. 1 shows a Coq lemma and its proof script, taken verbatim from a de-
velopment on the theory of regular languages [24]. Line 1 contains a lemma
sentence with the lemma name mg_eq_proof, followed by a lemma statement
(on the same line) involving the arbitrary languages L1 and L2, i.e., typed vari-
ables that are implicitly universally quantified. When Coq processes line 5, the
kernel certifies that the kernel tree generated by the proof script (lines 2 to 4)
has the type (is a proof) of the kernel tree for the lemma statement on line 1.

MathComp and lemma naming: The MathComp family of Coq projects, in-
cluding in particular the MathComp library of general mathematical definitions
and results [49], grew out of Gonthier’s proof of the four-color theorem [28], with
substantial developments in the context of the landmark proof of the odd order
theorem in abstract algebra [29]. The MathComp library is now used in many
projects outside of the MathComp family, such as in the project containing the
lemma in Fig. 1 [23]. MathComp has documented naming conventions for two
kinds of entities: (1) variables and (2) functions and lemmas [19]. Variable names
tend to be short and simple, while function and lemma names can be long and
consist of several name components, typically separated by an underscore, but
sometimes using CamelCase. Examples of definition and lemma names in Fig. 1
include mg_eq_proof, mgClassifier, nerode, and nerodeP. Note that lemma
names sometimes have suffizes to indicate their meaning, such as P in nerodeP
which says that the lemma is a characteristic property. Coq functions tend to be
named based on corresponding function definition bodies rather than just types
(of the parameters and return value), analogously to methods in Java [47]. In
contrast, MathComp lemma names tend to be based solely on the lemma state-
ment. Hence, a more suitable name for the lemma in Fig. 1 is mg_eq_nerode.
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Lemma mg_eq_proof L1 L2 (Ni : mgClassifier L1) : L1 =i L2 -> nerode L2 Ni. sentence
(Sentence ((IDENT Lemma) (IDENT mg_eq_proof) (IDENT L1) (IDENT L2) tokens

(KEYWORD" (") (IDENT N1) (KEYWORD :) (IDENT mgClassifier)
(IDENT L1) (KEYWORD")") (KEYWORD :) (IDENT L1) (KEYWORD =i) (IDENT L2)
(KEYWORD ->) (IDENT nerode) (IDENT L2) (IDENT N1i) (KEYWORD .)))

(VernacExpr () (VernacStartTheoremProof Lemma (Id mg_eq_proof) syntax tree
(((CLocalAssum(Name (Id L1)) (CHole () IntroAnonymous()))
(CLocalAssum(Name (Id L2)) (CHole () IntroAnonymous()))
(CLocalAssum(Name (Id N1))
(CApp (CRef (Ser_Qualid(DirPath()) (Id mgClassifier))) (CRef (Ser_Qualid(DirPath())(Id L1))))))
(CNotation(InConstrEntrySomeLevel"_ -> _")
(CNotation(InConstrEntrySomeLevel"_ =i _")
(CRef (Ser_Qualid(DirPath()) (Id L1))) (CRef (Ser_Qualid(DirPath()) (Id L2))))
(CApp (CRef (Ser_Qualid(DirPath()) (Id nerode)))
(CRef (Ser_Qualid(DirPath()) (Id L2))) (CRef (Ser_Qualid(DirPath()) (Id N1))))))))

(Prod (Name (Id char)) ... [(Prod (Name (Id L1)) ... w]
(Prod (Name (Id L2)) ... (Prod (Name (Id N1)) ...
(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq.mem))
(Var (Id L1)) ... (Var (Id L2)))
(App (Ref (DirPath ((Id myhill nerode) (Id Reglang))) (Id nerode))
(Var (Id L2)) ... (Var (Id N1))))))))

Fig. 2: Coq lemma sentence at the top, with sexps for, from just below to bottom:
tokens, syntax tree, and kernel tree; the lemma statement in each is highlighted.

Ser API and Coq serialization: SerAPI is an OCaml library and toolchain for
machine interaction with Coq [26], which provides serialization and deserializa-
tion of Coq internal data structures to and from S-expressions (sexps) [51]. Ser-
API is implemented using OCaml’s PPX metaprogramming facilities [57], which
enable modifying OCaml program syntax trees at compilation time. Fig. 2 shows
the lemma sentence on line 1 in Fig. 1, and below it, the corresponding (simpli-
fied) sexps for its tokens, syntax tree, and kernel tree, with the lemma statement
highlighted in each representation. Note that the syntax tree omits the types of
some quantified variables, e.g., for the types of L1 and L2, as indicated by the
CHole constructor. Note also that during elaboration of the syntax tree into the
kernel tree by Coq, an implicit variable char is added (all-quantified via Prod),
and the extensional equality operator =i is translated to its globally unique ker-
nel name, Coq.ssr.ssrbool.eq_mem. Hence, a kernel tree can be much larger
and contain more information than the corresponding syntax tree.

3 Models

In this section, we describe our multi-input generation models for suggesting Coq
lemma names. Our models consider lemma name generation with an encoder-
decoder mindset, i.e., we use neural architectures specifically designed for trans-
duction tasks [67]. This family of architectures is commonly used for sequence
generation, e.g., in machine translation [11] and code summarization [43], where
it has been found to be much more effective than traditional probabilistic and
retrieval-based approaches.



6 P. Nie et al.

mg _ <EOS>
Decoder (hg, col ] —>[ ] —> s s s—[]
<BOS> mg nerode
Fully
Connected
Layer
E d (hy, ¢)) (hz.l )
ncoders 22«2 2002201 |prod
t 1 1 ot 1 Name Prod
L 1 : ( Prod ) Id Char Nafne ==
Lemma Statement Kernel Tree

Fig. 3: Core architecture of our multi-input encoder-decoder models.

3.1 Core Architecture

Our encoders are Recurrent Neural Networks (RNNs) that learn a deep semantic
representation of a given lemma statement from its tokens, syntax tree, and
kernel tree. The decoder—another RNN—generates the descriptive lemma name
as a sequence. The model is trained end-to-end, maximizing the probability of the
generated lemma name given the input. In contrast to prior work in language-
code tasks that uses a single encoder [27], we design multi-input models that
leverage both syntactic and semantic information from Coq’s lexer, parser, and
kernel. A high-level visualization of our architecture is shown in Fig. 3.
Encoding: Our multi-input encoders combine different kinds of syntactic and
semantic information in the encoding phase. We use a different encoder for each
input, which are: lemma statement, syntax tree, and kernel tree.

Coq data structure instances can be large, with syntax trees having an av-
erage depth of 28.03 and kernel trees 46.51 in our corpus (we provide detailed
statistics in Section 4). Therefore, we flatten the trees into sequences, which can
be trained more efficiently than tree encoders without performance loss [38]. We
flatten the trees with pre-order traversal, and we use “(” and “)” as the bound-
aries of the children of a node. In later parts of this paper, we use syntax and
kernel trees to refer to their flattened versions. In Section 3.2, we introduce tree
chopping to reduce the length of the resulting sequences.

To encode lemma statements and flattened tree sequences, we use bi-direc-

tional Long-Short Term Memory (LSTM) [36] networks. LSTMs are advanced
RNNs good at capturing long-range dependencies in a sequence, and are widely
used in encoders [38]. A bi-directional LSTM learns stronger representations
(than a uni-directional LSTM) by encoding a sequence from both left to right
and right to left [74].
Decoding: We use an LSTM (left to right direction only) as our decoder. To
obtain the initial hidden and cell states (hg, ¢g) of the decoder, we learn a unified
representation of these separate encoders by concatenating their final hidden and
cell states (h;, ¢;), and then applying a fully connected layer on the concatenated
states: hq = W}, - concat([h;]) + by, and ¢q = W,. - concat([¢;]) + b., where Wy,
W., b, and b, are learnable parameters.

During training, we maximize the log likelihood of the reference lemma name
given all input sequences. Standard beam search is used to reduce the search
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(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Cog))) (Id eq_mem)) ...
((App (Ref ... DD ... ))

(Prod Anonymous (App eq_mem ... (App (Ref ... )) ... ))

Fig. 4: Kernel tree sexp before and after chopping; chopped parts are highlighted.

space for the optimal sequence of tokens. With regular decoding, at each time
step the decoder generates a new token relying on the preceding generated token,
which can be error-prone and leads to slow convergence and instability. We
mitigate this problem by performing decoding with teacher forcing [71] such that
the decoder relies on the preceding reference token. At test time, the decoder
still uses the proceeding generated token as input.

Attention: With RNN encoders, the input sequence is compressed into the
RNN’s final hidden states, which results in a loss of information, especially for
longer sequences. The attention mechanism [48] grants the decoder access to
the encoder hidden and cell states for all previous tokens. At each decoder time
step, an attention vector is calculated as a distribution over all encoded tokens,
indicating which token the decoder should “pay attention to”. To make the
attention mechanism work with multiple encoders, we concatenate the hidden
states of the n encoders [hy, ..., h,,] and apply an attention layer on the result [69)].
Initialization: Since there are no pre-trained token embeddings for Coq, we
initialize each unique token in the vocabulary with a random vector sampled from
the uniform distribution U(—0.1,0.1). These embeddings are trained together
with the model. The hidden layer parameters of the encoders and decoders are
also initialized with random vectors sampled from the same uniform distribution.

3.2 Tree Chopping

While syntax and kernel trees for lemma statements can be large, not all parts
of the trees are relevant for naming. For instance, each constant reference is
expanded to its fully qualified form in the kernel tree, but the added prefixes are
usually related to directory paths and likely do not contain relevant information
for generating the name of the lemma. Irrelevant information in long sequences
can be detrimental to the model, since the model would have to reason about
and encode all tokens in the sequence.

To this end, we implemented chopping heuristics for both syntax trees and
kernel trees to remove irrelevant parts. The heuristics essentially: (1) replace
the fully qualified name sub-trees with only the last component of the name;
(2) remove the location information from sub-trees; (3) extract the singletons,
i.e., non-leaf nodes that have only one child. Fig. 4 illustrates the chopping of a
kernel tree, with the upper box showing the tree before chopping with the parts
to be removed highlighted, and the lower box showing the tree after chopping.
In the example in the figure, we chopped a fully qualified name and extracted
a singleton. These heuristics greatly reduce the size of the tree: for kernel trees,
they reduce the average depth from 39.20 to 11.39.
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Our models use chopped trees as the inputs to the encoders. As we discuss
in more detail in Section 6, the chopped trees help the models to focus better
on the relevant parts of the inputs. While the attention mechanism in principle
could learn what the relevant parts of the trees are, our evaluation shows that
it can easily be overwhelmed by large amounts of irrelevant information.

3.3 Copy Mechanism

We found it common for lemma name tokens to only occur in a single Coq file,
whence they are unlikely to appear in the vocabulary learned from the training
set, but can still appear in the respective lemma statement, syntax tree, or kernel
tree. For example, mg occurs in both the lemma name and lemma statement in
Fig. 1, but not outside the file the lemma is in. To account for this, we adopt
the copy mechanism [63] which improves the generalizability of our model by
allowing the decoder to copy from inputs rather than always choosing one word
from the fixed vocabulary from the training set. To handle multiple encoders,
similar to what we did with the attention layer, we concatenate the hidden states
of each encoder and apply a copy layer on the concatenated hidden states.

3.4 Sub-tokenization

We sub-tokenize all inputs (lemma statements, syntax and kernel trees) and out-
puts (lemma names) in a pre-processing step. Previous work on learning from
software projects has shown that sub-tokenization helps to reduce the sparsity
of the vocabulary and improves the performance of the model [10]. However,
unlike Java-like languages where the method names (almost) always follow the
CamelCase convention, lemma names in Coq use a mix of snake_case, Camel-
Case, prefixes, and suffixes, thus making sub-tokenization more complex. For
example, extprod mulgA should be sub-tokenized to extprod, _, mul, g, and A.

To perform sub-tokenization, we implemented a set of heuristics based on
the conventions outlined by MathComp developers [19]. After sub-tokenization,
the vocabulary size of lemma names in our corpus was reduced from 8,861 to
2,328. When applying the sub-tokenizer on the lemma statements and syntax and
kernel trees, we sub-tokenize the identifiers and not the keywords or operators.

3.5 Repetition Prevention

We observed that decoders often generated repeated tokens, e.g., mem_mem_mem.
This issue also exists in natural language summarization [68]. We further ob-
served that it is very unlikely to have repeated sub-tokens in lemma names used
by proof engineers (only 1.37% of cases in our corpus). Hence, we simply forbid

W

the decoder from repeating a sub-token (modulo “_”) during beam search.

4 Corpus

We constructed a corpus of four large Coq projects from the MathComp family,
totaling 164k lines of code (LOC). We selected these projects based on the
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Table 1: Projects from the MathComp Family Used in Our Corpus.
LOC LOC/file

Project SHA #Files #Lemmas #Toks Spec. Proof Spec. Proof
finmap © 27642a8 4 940 78,449 4,260 2,191 1,065.00 547.75
fourcolor € 0851d49 60 1,157 560,682 9,175 27,963  152.92 466.05
math-comp € 7484716 89 8,802 1,076,096 38,243 46,470  429.70 522.13
odd-order ©€) ca602a4 34 367 519,855 11,882 24,243  349.47 713.03
Avg. N/A 46.75 2,816.50 558,770.50 15,890.00 25,216.75  339.89 539.40
X N/A 187 11,266 2,235,082 63,560 100,867 63,560 100,867

Table 2: Statistics on the Lemmas in the Training, Validation, and Testing Sets.

. Name Stmt
|#F‘les #lemmas  —rp S b Toks #Char ZSubToks
training 152 8,861  10.14 422 44.16 19.59
validation 18 1,085 9.20 420  38.28 17.30
testing 17 1,320 9.76 4.34  48.49 23.20

recommendation of MathComp developers, who emphasized their high quality
and stringent adherence to coding conventions. Our corpus is self-contained:
there are inter-project dependencies within the corpus, but no project depends
on a project outside the corpus (except Coq’s standard library). All projects
build with Coq version 8.10.2. Note that we need to be able to build projects to
be able to extract tokens, syntax trees, and kernel trees.
Constituent projects: Table 1 lists the projects in the corpus, along with
basic information about each project. The table includes columns for the project
identifier, revision SHA, number of files (#Files), number of lemmas (#Lemmas),
number of tokens (#Toks), LOC for specifications (Spec.) and proof scripts
(Proof), and average LOC per file for specifications and proof scripts. The math-
comp SHA corresponds to version 1.9.0 of the library. The LOC numbers are
computed with Coq’s bundled coqwc tool. The last two rows of the table show
the averages and sums across all projects.
Corpus statistics: We extracted all lemmas from the corpus, and initially we
obtained 15,005 lemmas in total. However, we found several outlier lemmas where
the lemma statement, syntax tree and kernel tree were very large. To ensure sta-
ble training, and similar to prior work on generating method names for Java [47],
we excluded the lemmas with the deepest 25% kernel trees. This left us with
11,266 lemmas. Column 4 of Table 1 shows the number of lemmas after filtering.
We randomly split corpus files into training, validation, and testing sets which
contain 80%, 10%, 10% of the files, respectively. Table 2 shows statistics on the
lemmas in each set, which includes columns for the number of files, the number
of lemmas, the average number of characters and sub-tokens in lemma names,
and the average number of characters and sub-tokens in lemma statements.
Fig. 5 illustrates the changes of the depth, number of nodes and number
of sub-tokens (after flattening) of the kernel trees (first row) and syntax trees
(second row) before and after chopping. Our chopping process reduced tree depth
by 70.9% for kernel trees and 70.7% for syntax trees, and reduced the number
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Fig. 5: Statistics on syntax and kernel trees.

of nodes by 91.5% for kernel trees and 90.8% for syntax trees; after flattening,
the resulting average sequence length is, for kernel trees 165 comparing to the
original 2,056, and for syntax trees 144 comparing to the original 1,590. We
provide additional statistics on lemmas before filtering in the appendix.

5 Implementation

In this section, we briefly describe our toolchain which implements the models
in Section 3 and processes and learns from the corpus in Section 4; we dub
this toolchain ROOSTERIZE. The components of the toolchain can be divided
into two categories: (1) components that interact with Coq or directly process
information extracted from Coq, and (2) components concerned with machine
learning and name generation.

The first category includes several OCaml-based tools integrated with Ser-
APIT [26] (and thus Coq itself), and Python-based tools for processing of data
obtained via SerAPI from Coq. All OCaml tools have either already been in-
cluded in, or accepted for inclusion into, SerAPI itself. The tools are as follows:
sercomp: We integrated the existing program sercomp distributed with SerAPI
into ROOSTERIZE to serialize Coq files to lists of sexps for syntax trees.
sertok: We developed an OCaml program dubbed sertok on top of SerAPI.
The program takes a Coq file as input and produces sexps of all tokens found
by Coq’s lexer in the file, organized at the sentence level.
sername: We developed an OCaml program dubbed sername on top of SerAPI.
The program takes a list of fully qualified (kernel) lemma names and produces
sexps for the kernel trees of the corresponding lemma statements.
postproc & subtokenizer: We created two small independent tools in Python
to post-process Coq sexps and perform sub-tokenization, respectively.

For the second category, we implemented our machine learning models in
Python using two widely-used deep learning libraries: PyTorch [60] and Open-
NMT [41]. More specifically, we extended the sequence-to-sequence models in
OpenNMT to use multi-input encoders, and extended attention and copy lay-
ers to use multiple inputs. Source code for the components of ROOSTERIZE is
available from: https://github.com/EngineeringSoftware/roosterize.
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6 Evaluation

This section presents an extensive evaluation of our models as implemented in
ROOSTERIZE. Our automatic evaluation (Section 6.2) compares ROOSTERIZE
with a series of strong baselines and reports on ablation experiments; additional
experiments, e.g., on chopping heuristics, are described in the appendix. Our
manual quality assessment (Section 6.3) analyzes 150 comments we received
from the maintainer of the PCM library on names suggested by ROOSTERIZE
for that project using our best model.

6.1 Models and Baselines

We study the combinations of: (1) using individual input (lemma statement
and trees) in a single encoder, or multi-input encoders with different mixture
of these inputs; and (2) using the attention and copy mechanisms. Our inputs
include: lemma statement (Stmt), syntax tree (SynTree), chopped syntax tree
(ChopSynTree), kernel tree (KnlTree), and chopped kernel tree (ChopKnlTree).
For multiple inputs, the models are named by concatenating inputs with “+7;
a “4” is also used to denote the presence of attention (attn) or copy (copy).
For example, Stmt+ChopKnlTree+attn+copy refers to a model that uses two
encoders—one for lemma statement and one for chopped kernel tree—and uses
attention and copy mechanisms.

We consider the vanilla encoder-decoder models with only one input (lemma
statement, kernel tree, or syntax tree) as baseline models. We also compare
with a retrieval-based baseline model implemented using Lucene [6]: a k-nearest
neighbors classifier using the tf-idf of the tokens in lemma statement as features.

Hyperparameters are tuned on the validation set within the following options:
embedding dimensions from {200, 500, 1000}, number of hidden units in each
LSTM from {200, 500, 1000}, number of stacked LSTM layers from {1, 2, 3}. We
set the dropout rate between LSTM layers to 0.5. We set the output dimension
of the fully connected layer for combining encoders to the same number as the
number of hidden units in each LSTM. We checked the validation loss every 200
training steps (as defined in OpenNMT [41], which is similar to one training
epoch on our dataset), and set an early stopping threshold of 3. We used the
Adam [40] optimizer with a learning rate of 0.001. We used a beam size of 5 in
beam search. All the experiments were run with one NVIDIA 1080-TI GPU and
Intel Xeon E5-2620 v4 CPU.

6.2 Automatic Evaluation

Metrics: We use four automatic metrics which evaluate generated lemma names
against the reference lemma name (as written by developers) in the testing set.
Each metric captures a different level of granularity of the generation quality.
BLEU [59] is a standard metric used in transduction tasks including language <«
code transduction. It calculates the number of n-grams in a generated sequence
that also appear in the reference sequence, where one “n-gram” is n consecu-
tive items in a sequence (in our case, one “n-gram” is n consecutive characters
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Table 3: Results of ROOSTERIZE Models.

Group Model BLEU Frag.Acc. Topl Top5
Multioinout Stmt+ChopKnlTree+ChopSynTree+attn+copy 45.4 22.2% 7.5% 16.5%
+a‘tmp Stmt-+ChopKnlTree+attn-+copy 47.2 24.9% 9.6% 18.0%

M Stmt+ChopSynTree+attn+copy 37.7 18.1% 6.1% 10.6%
copy ChopKnlTree+ChopSynTree+attn+copy 45.4 22.9% 7.6% 15.3%
ChopKnlTree+attn+copy 42.9 19.8% 5.0% 11.7%
Single-input ChopSynTree+attn+copy 39.8 18.3% 6.8% 12.2%
+attn KnlTree+attn+copy 37.0 14.2% 2.2% 8.4%
+copy SynTree+attn+copy 31.0 10.8% 2.8% 6.1%
Stmt+attn+copy 38.9 19.4% 6.9% 11.6%
Stmt+ChopKnlTree+ChopSynTree+attn 24.5 8.6% 0.4% 0.9%
Multi-input Stmt+ChopKnlTree+attn 25.6 8.5% 0.9% 1.7%
+attn Stmt+ChopSynTree+attn 23.8 8.2% 0.8% 1.6%
ChopKnlTree+ChopSynTree+attn 28.4 10.9% 1.8% 3.4%
ChopKnlTree+attn 19.5 4.9% 0.6% 1.3%
Sinele-input ChopSynTree+attn 28.9 12.1% 1.5% 2.9%
ie;t PU KnlTree+attn 14.1 1.6% 0.0% 0.0%
At gynTreetattn 8.8 1.0% 0.0% 0.0%
Stmt+attn 26.9 11.1% 1.1% 2.5%
Stmt+ChopKnlTree+ChopSynTree 17.7 3.5% 0.1% 0.2%
Multioinout Stmt+ChopKnlTree 19.5 4.5% 0.1% 0.3%
PUY Stmt+ChopSynTree 12.6 0.6% 0.0% 0.0%
ChopKnlTree+ChopSynTree 16.7 2.4% 0.0% 0.1%
ChopKnlTree 15.5 1.6% 0.0% 0.0%
ChopSynTree 14.5 0.8% 0.1% 0.1%
Single-input KnlTree 12.0 0.6% 0.0% 0.0%
SynTree 5.7 0.4% 0.0% 0.0%

Stmt 20.0 4.7% 0.1% 0.3%

- Retrieval-based 28.3 10.0% 0.2% 0.3%

in the sequence of characters of the lemma name). We use it to compute the
1 ~ 4-grams overlap between the characters in generated name and characters
in the reference name, averaged between 1 ~ 4-grams with smoothing method
proposed by Lin and Och [46]. Fragment accuracy computes the accuracy of gen-
erated names on the fragment level, which is defined by splitting the name by
underscores (“_”). For example, map_determinant mx has a fragment accuracy
of 66.7% when evaluated against det_map_mx. Unlike BLEU, fragment accuracy
ignores the ordering of the fragments. Finally, top-1 accuracy and top-5 accuracy
compute how often the true name fully matches the generated name or is one of
the top-5 generated names.

Results: Table 3 shows the performance of the models. Similar models are
grouped together. The first column shows the names of the model groups and the
second column shows the names of the models. For each model, we show values
for the four automatic metrics, BLEU, fragment accuracy (Frag.Acc.), top-1
accuracy (Topl), and top-5 accuracy (Top5). We repeated each experiment 3
times, with different random initialization each time, and computed the averages
of each automated metric. We performed statistical significance tests—under
significance level p < 0.05 using the bootstrap method [14]—to compare each
pair of models. We use bold text to highlight the best value for each automatic
metric, and gray background for baseline models. We make several observations:
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Finding #1: The best overall performance (BLEU = 47.2) is obtained using
the multi-input model with lemma statement and chopped kernel tree as inputs,
which also includes copy and attention mechanisms (Stmt+ChopKnlTree+attn
+copy). The improvements over all other models are statistically significant and
all automatic metrics are consistent in identifying the best model. This shows
the importance of using Coq’s internal structures and focusing only on certain
parts of those structures.

Finding #2: The copy mechanism brings statistically significant improvements
to all models. This can be clearly observed by comparing groups 1 and 3 in the
table, as well as groups 2 and 4. For example, BLEU for Stmt+attn and Stmt
+attn+copy are 26.9 and 38.9, respectively. We believe that the copy mechanism
plays an important role because many sub-tokens are specific to the file context
and do not appear in the fixed vocabulary learned on the files in training set.
Finding #3: Using chopped trees greatly improves performance of models and
the improvements brought by upgrading KnlTree to ChopKnlTree or SynTree to
ChopSynTree are statistically significant. For example, this can be clearly seen in
the second group: BLEU for KnlTree+attn+copy and ChopKnlTree+attn+copy
are 37.0 and 42.9, respectively. We believe that the size of the original trees,
and a lot of irrelevant data in those trees, hurt the performance. The fact that
ChopKnlTree and ChopSynTree both perform much better than using KnlTree
or SynTree across all groups indicate that the chopped trees could be viewed as
a form of supervised attention with flat values that helps later attention layers
to focus better.

Finding #4: Although chopped syntax tree with attention outperforms (sta-
tistically significant) chopped kernel tree with attention (BLEU 28.9 vs. 19.5),
chopped kernel tree with attention and copy by far outperforms (statistically
significant) chopped syntax tree with attention and copy (BLEU 42.9 vs. 39.8).
The copy mechanism helps kernel trees much more than the syntax trees, be-
cause the mathematical notations and symbols in the syntax trees get expanded
to their names in the kernel trees, and some of them are needed as a part of the
lemma names.

Finding #5: Lemma statement and syntax tree do not work well together,
primarily because the two representations contain mostly the same information.
In which case, a model taking both as inputs may not work as well as using only
one of the inputs, because more parameters need to be trained.

Finding #6: The retrieval-based baseline, which is the strongest among base-
lines, outperforms several encoder-decoder models without attention and copy
or with only attention, but is worse than (statistically significant) all models
with both attention and copy mechanisms enabled.

6.3 Manual Quality Analysis

While generated lemma names may not always match the manually written ones
in the training set, they can still be semantically valid and conform to prevailing
conventions. However, such name properties are not reflected in our automatic
evaluation metrics, since these metrics only consider exactly matched tokens as



14 P. Nie et al.

Table 4: Manual Quality Analysis Representative Examples.

Lemma statement: p s : supp (kfilter p s) = filter p (supp s)
Hand-written: supp_kfilt Roosterize: supp_kfilter
Comment: v/ Using only kfilt has cognitive overhead.

Lemma statement: g € k v £ : path ord k (supp f) >

foldfmap g e (ins k v £f) = g (k, v) (foldfmap g e £f)
Hand-written: foldf_ins Roosterize: foldfmap_ins
Comment: v The whole function name is used in the suggested name.

Lemma statement: : transitive (Qord T)
Hand-written: trans Roosterize: ord_trans
Comment: v' Useful to add the ord prefix to the name.

Lemma statement: s : sorted (@ord T) s -> sorted (@oleq T) s
Hand-written: sorted_oleq Roosterize: ord_sorted
Comment: X The conclusion content should have greater priority.

Lemma statement: x y : total_spec x y (ord x y) (x == y) (ord y x)
Hand-written: totalP Roosterize: ordP
Comment: X Maybe this lemma should be named ord_totalP?

Lemma statement: pl p2 s : kfilter (predI pl p2) s =
kfilter p1l (kfilter p2 s)

Hand-written: kfilter_predIl Roosterize: eq_kfilter

Comment: X The suggested name is too generic.

correct. To obtain a more complete evaluation, we therefore performed a manual
quality analysis of generated lemma names from ROOSTERIZE by applying it
to a Coq project outside of our corpus, the PCM library [56]. This project
depends on MathComp, and follows, to a degree, many of the MathComp coding
conventions. The PCM library consists of 12 Coq files, and contains 690 lemmas.

We ran ROOSTERIZE with the best model (Stmt+ChopKnlTree+attn+copy)
on the PCM library to get the top-1 suggestions for all lemma names. Overall, the
ROOSTERIZE suggestions achieved a BLEU score of 36.3 and a fragment accuracy
of 17%, and 36 suggestions (5%) exactly match the existing lemma names. Next,
we asked the maintainer of the PCM library to evaluate the remaining 654 lemma
names (those that do not match exactly) and send us feedback.

The maintainer spent one day on the task and provided comments on 150
suggested names. We analyzed these comments to identify patterns and trends.
He found that 20% of the suggested names he inspected were of good quality, out
of which more than half were of high quality. Considering that the analysis was of
top-1 suggestions excluding exact matches, we find these figures encouraging. For
low-quality names, a clear trend was that they were often “too generic”. Similar
observations have been made about the results from encoder-decoder models in
dialog generation [45, 64]. In contrast, useful suggestions were typically able to
expand or elaborate on name components that are intuitively too concise, e.g.,
replacing kfilt with kfilter. Table 4 lists examples that are representative
of these trends; checkmarks indicate useful suggestions, while crosses indicate
unsuitability. We also include comments from the maintainer. As illustrated by
the comments, even suggestions considered unsuitable may contain useful parts.
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7 Discussion

Our toolchain builds on Coq 8.10.2, and thus we only used projects that support
this version. However, we do not expect any fundamental obstacles in support-
ing future Coq releases. Thanks to the use of OCaml metaprogramming via
PPX, which allowed eliding explicit references to the internal structure of Coq
datatypes, SerAPI itself and our extensions to it are expected to require only
modest effort to maintain as Coq evolves.

Our models and toolchain may not be applicable to Coq projects unre-
lated to the MathComp family of projects, i.e., projects which do not follow
any MathComp conventions. To the best of our knowledge, MathComp’s coding
conventions are the most recognizable and well-documented in the Coq commu-
nity; suggesting coding conventions based on learning from projects unrelated
to MathComp are likely to give more ambiguous results that are difficult to vali-
date manually. Our case study also included generating suggestions for a project
outside the MathComp family, the PCM library, with encouraging results.

Our models are in principle applicable to proof assistants with similar foun-
dations, such as Lean [54]. However, the current version of Lean, Lean 3, does
not provide serialization of internal data structures as SerAPI does for Coq,
which prevents direct application of our toolchain. Application of our models to
proof assistants with different foundations and proof-checking toolchains, such
as Isabelle/HOL, is even less straightforward, although the Archive of Formal
Proofs (AFP) contains many projects with high-quality lemma names [25].

8 Related Work

Naturalness and coding conventions: Hindle et al. [35] first applied the
concept of naturalness to Java-like languages, noting that program statement
regularities and repetitiveness make statistical language models applicable for
performing software engineering tasks [4]. Rahman et al. [61] validated the nat-
uralness of other similar programming languages, and Hellendoorn et al. [31]
found high naturalness in Coq code, providing motivation for our application
of statistical language models to Coq. Allamanis et al. [2] used the concept of
naturalness and statistical language models to learn and suggest coding conven-
tions, including names, for Java, and Raychev et al. [62] used conditional random
fields to learn and suggest coding conventions for JavaScript. To our knowledge,
no previous work has developed applications of naturalness for proof assistants;
Hellendorn et al. [31] only measured naturalness for their Coq corpus.

Suggesting names: Prior work on suggesting names mostly concerns Java
method names. Liu et al. [47] used a similarity matching algorithm, based on
deep representations of Java method names and bodies learned with Paragraph
Vector and convolutional neural networks, to detect and fix inconsistent Java
method names. Allamanis et al. [3] used logbilinear neural language models
supplemented by additional manual features to predict Java method and class
names. Java method names have also been treated as short, descriptive “sum-
maries” of its body; in this view, prior work has augmented attention mecha-
nisms in convolutional networks [5], used sequence-to-sequence models to learn



16 P. Nie et al.

from descriptions (e.g., Javadoc comments) [27], and utilized the tree-structure
of the code in a hierarchical attention network [73]. Unlike Java syntax trees,
Coq syntax and kernel trees contain considerable semantic information useful
for naming. In the work closest to our domain, Aspinall and Kaliszyk used a
k-nearest neighbors multi-label classifier on a corpus for the HOL Light proof
assistant to suggest names of lemmas [7]. However, their technique only suggests
names that exist in the training data and therefore does not generalize. To our
knowledge, ours is the first neural generation model for suggesting names in a
proof assistant context.

Mining and learning for proof assistants: Miiller et al. [55] exported Coq
kernel trees as XML strings to translate 49 Coq projects to the OMDoc theory
graph format. Rather than translating documents to an independently specified
format, we produce lightweight machine-readable representations of Coq’s in-
ternal data structures. Wiedijk [70] collected early basic statistics on the core
libraries of several proof assistants, including Coq and Isabelle/HOL. Blanchette
et al. [16] mined the AFP to gather statistics such as the average number of lines
of Isabelle/HOL specifications and proof scripts. However, these corpora were
not used to perform learning. Komendantskaya et al. [32, 33, 34, 42] used machine
learning without neural networks to identify patterns in Coq tactic sequences
and proof kernel trees, e.g., to find structural similarities between lemmas and
simplify proof development. In contrast, our models capture similarity among
several different representations of lemma statements to generate lemma names.

9 Conclusion

We presented novel techniques, based on neural networks, for learning and sug-
gesting lemma names in Coq verification projects. We designed and implemented
multi-input encoder-decoder models that use Coq’s internal data structures, in-
cluding (chopped) syntax trees and kernel trees. Additionally, we constructed a
large corpus of high quality Coq code that will enable development and eval-
uation of future techniques for Coq. We performed an extensive evaluation of
our models using the corpus. Our results show that the multi-input models,
which use internal data structures, substantially outperform several baselines;
the model that uses the lemma statement tokens and the chopped kernel tree
with attention and copy mechanism performs the best. Based on our findings, we
believe that multi-input models leveraging key parts of internal data structures
can play a critical role in producing high-quality lemma name suggestions.
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Fig. 6: Core architecture of our multi-input encoder-decoder models, with lemma
statements, syntax trees and kernel trees as inputs.

A Explanatory Notes on Roosterize Models

In this section, we explain some key terminology and concepts used to describe
our generation models; these explanations were omitted from the main text to
conserve space and avoid distracting the reader with excessive detail.
Architecture of our multi-input encoder-decoder models with lemma
statement, syntax tree, and kernel tree: Fig. 6 illustrates our architecture
when all three inputs are used, in contrast to Fig. 3, which only uses two inputs
(lemma statement and kernel tree).

Repetition of decoders’ generated tokens (cf. Section 3.5): This is a com-
mon problem in encoder-decoder models; it is largely because the attention mech-
anism (while helping the model for the most part) does not store information
on how much information the model has “covered” in the encoded sequence. See
also Sutskever et al. [67].

Tf-idf (cf. the retrieval-based baseline model in Section 6.1): This is a numerical
metric reflecting the importance of a token to a document in a corpus, calculated
as the product of term frequency (proportional to the frequency of the token
in the document) and inverse document frequency (inversely proportional to
the number of documents containing the token). In our retrieval-based baseline
model, we used Lucene’s implementation of tf-idf [6].

Early stopping (cf. hyperparameters in Section 6.1): This is a common strategy
to mitigate overfitting in training a machine learning model by monitoring the
model’s performance on both the training set and the validation set and halting
the training if the model stops improving on the validation set even if it improves
on the training set. If early stopping is not used, the model is fully trained to
maximize its performance on the training set, but may have bad performance
on a separate set (e.g., testing set). In our experiments, we set an early stopping
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Table 5: Additional Statistics on the Lemmas in the Training, Validation, and
Testing Sets.

. Name Stmt
‘#F‘Ies #lemmas e p S b Toks #Char ZSubToks
before filtering 187 15,005 10.91 4.47 56.31 24.69
after filtering 11,266 10.00 4.23  44.10 19.79
training 152 8,861  10.14 422 44.16 19.59
validation 18 1,085  9.20 420  38.28 17.30
testing 17 1,320  9.76 434 48.49 23.20

threshold of 3, which means the training is halted if the model does not obtain
smaller loss on the validation set for 3 consecutive checkpoints.

Learning rate (cf. hyperparameters in Section 6.1): This controls the speed
of adjusting models’ learnable parameters based on the loss at each iteration
of the training. An excessively large learning rate makes training faster, but
may result in “overshooting”: adjusting so much that it results in jumping over
the minima. A too low learning rate means training is unnecessarily slow to
complete, and may result in the training getting stuck in a local minimum.
Guided by our previous experience, we used a value of 0.001 paired with the
Adam [40] optimizer (an algorithm for adjusting models’ learnable parameters).
Dropout (cf. hyperparameters in Section 6.1): This is a regularization technique
for reducing overfitting, by randomly resetting a fraction of neural connections
between two layers during training (and during training only). In our experi-
ments, a dropout rate of 0.5 between the LSTM layers means that 50% of the
bits of the hidden and cell states are set to 0 when they are passed from a
previous layer to its next layer in the LSTM during training.

B Additional Statistics

Table 5 shows additional statistics on the lemmas we used. The first row is for
the lemmas before filtering the outliers, the second row is for the lemmas after
the filtering, and the last three rows are for the training, validation, and testing
sets, respectively. Fig. 7 illustrates the changes in the depth, number of nodes
and number of sub-tokens (after flattening) of the kernel trees (first row) and
syntax trees (second row) before filtering, after filtering, and after chopping.

C Ablation Study on Tree Chopping Heuristics

In order to corroborate the effectiveness of ROOSTERIZE’s tree chopping heuris-
tics, we designed an ablation study that applies three different sets of chopping
heuristics and compares them with the one in ROOSTERIZE (Section 3.2). The
three sets of chopping heuristics are:

— Keep-category chopping: This set of heuristics is almost the same as
ROOSTERIZE chopping, except that it keeps the category of a referenced
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Fig. 7: Additional statistics on syntax and kernel trees.

Table 6: Results of the Ablation Study on Tree Chopping.

Group Model BLEU Frag.Acc. Topl Top5
Stmt+ChopKnlTree4+ChopSynTree+attn+copy 45.4 22.2% 7.5% 16.5%

ROOSTERIZE ~Stmt+ChopKnlTree+attn+copy 47.2 24.9% 9.6% 18.0%
Chopping Stmt+ChopSynTree+attn+copy 37.7 18.1% 6.1% 10.6%
ChopKnlTree+ChopSynTree+attn+copy 45.4 22.9% 7.6% 15.3%
Stmt+ChopKnlTree+ChopSynTree+attn+copy 46.8 25.3% 9.5% 19.0%
Keep-category Stmt+ChopKnlTree+attn+copy 47.2 25.2% 9.4% 18.0%
Chopping Stmt+ChopSynTree+attn+copy 37.1 17.9% 6.2% 10.5%
ChopKnlTree+ChopSynTree4attn+copy 46.4 22.6% 7.5% 15.0%
Stmt+ChopKnlTree+ChopSynTree+attn+copy 37.0 17.7% 5.9% 10.5%

Rule-based Stmt+ChopKnlTree+attn+copy 38.8 19.7% 6.7% 11.0%
Chopping  Stmt+ChopSynTree+attn+copy 36.9 16.0% 6.3% 10.5%
ChopKnlTree+ChopSynTree+attn+copy 13.2 0.4% 0.0% 0.0%
Stmt+ChopKnlTree4+ChopSynTree+attn+copy 37.7 19.2% 6.7% 10.9%

Random Stmt+ChopKnlTree+attn+copy 38.5 19.3% 7.3% 11.3%
Chopping  Stmt+ChopSynTree+attn+copy 38.0 18.6% 7.1% 11.4%
ChopKnlTree+ChopSynTree+attn+copy 17.1 2.7% 0.1% 0.1%

name in kernel trees (e.g., whether it is a constant or inductive type), since
that semantic information could be relevant for naming.

— Rule-based chopping: Removes all nodes after depth 10 for syntax and
kernel trees. This is similar to the proof kernel tree processing heuristics used
in ML4PG [33].

— Random chopping: Randomly removes a subset of nodes from syntax and
kernel trees so that the resulting trees have the same average number of
nodes compared to ROOSTERIZE’s chopped trees, i.e., the heuristic removes

90.9% nodes from syntax trees and 91.4% nodes from kernel trees.

We performed the ablation study using the encoder-decoder models with multi-
input encoders and with both the attention and copy mechanisms. The other
hyperparameters and experimental settings are the same as in Section 6.

Table 6 shows the results of the ablation study. The models using the same
chopping heuristics are grouped together. We make several observations:
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— Among keep-category chopping models, Stmt+ChopKnlTree+ChopSynTree
+attn+copy and Stmt+ChopKnlTree+attn+copy perform the best, and they
have performance similar to Stmt+ChopKnlTree+attn+copy using ROOST-
ERIZE chopping (ROOSTERIZE’s best model). The measured differences be-
tween these three models are not statistically significant, under significance
level p < 0.05 using the bootstrap method [14]. This indicates that although
the category of a referenced name may contain some relevant semantic infor-
mation, the most relevant information is already preserved by ROOSTERIZE
chopping heuristics.

— The models using rule-based chopping and random chopping have poor per-
formance. This indicates that the performance gain achieved by ROOSTERIZE
through chopping is not only due to the size reduction of the input trees,
but also due to the relevant information retained by our chopping heuristics.

D Expanded Corpus and Evaluation

In addition to evaluating ROOSTERIZE using the high-quality corpus consisting
of four MathComp projects (Section 4), we also performed an evaluation on an
expanded corpus that includes 21 Coq projects related to the MathComp family
which follow (to various degrees) the same coding conventions, totaling over
297k LOC. All projects depend, directly or indirectly, on the MathComp library,
but not on projects outside the corpus itself except for Coq’s standard library.
We introduce the expanded corpus in Section D.1 and describe our additional
evaluation on this corpus in Section D.2.

D.1 Expanded Corpus

Table 7 lists the projects in the expanded corpus, along with basic information
about each project. The expanded corpus consists of two parts: the main part
consists of 20 projects and is used for training and evaluating ROOSTERIZE; the
left-out (LO) part is one project, infotheo, which is used to study the generaliz-
ability of ROOSTERIZE on an unseen project.

We constructed and organized the corpus based on recommendations from
MathComp developers. The 4 core MathComp projects used in the original cor-
pus are included as the tier 1 set. We selected 9 projects for the tier 2 set, such
that each included project (1) has a main contributor who is also a significant
contributor to one of the tier 1 projects, and (2) follows to a significant degree
the coding conventions specified for MathComp. (infotheo would be in this set
had we not added it to the left-out part.) Finally, we selected 8 projects which
follow MathComp coding conventions but do not fullfil the tier 2 criteria, for
inclusion in the tier 3 set.

We briefly describe each project in our corpus:

analysis: A library for general real analysis.
bigenough: A small library for € — N reasoning.
bits: A library for reasoning about bit-level operations.



Deep Generation of Coq Lemma Names Using Elaborated Terms 27

Table 7: Projects Used in Our Expanded Corpus.
LOC LOC/file

Project SHA #VFiles #Lemmas #Toks Spec.  Proof Spec. Proof
| finmap © 27642a8 4 940 78,449 4,260 2,191 1,065.00 547.75
& |fourcolor © 0851449 60 1,157 560,682 9,175 27,963  152.92 466.05
—|math-comp  © 7484716 89 8,802 1,076,096 38,243 46,470 429.70 522.13

odd-order © ca602a4 34 367 519,855 11,882 24,243  349.47 713.03

analysis ©) 9e5feld 17 969 152,542 5,553 6,186  326.65 363.88

bigenough © 5£79a32 1 4 731 70 8 70.00 8.00
3| elliptic-curves €) 631a£89 18 625 110,480 3,298 6,298  183.22 349.89
& |grobner © dfa54£9 1 81 15,656 312 1,018  312.00 1,018.00
vo|multinomials © 691d795 5 831 83,438 3,699 3,664 739.80 732.80

real-closed ~ © 495aifa 10 561 108,925 4,348 4,577  434.80 457.70

robot © b341adl 13 864 130,024 3,881 7,249 29854 557.62

two-square € 1c09aca 2 200 20,326 413 1,308  206.50 654.00

bits © 3cd298a 10 411 40,420 1,578 2,463  157.80 246.30

comp-dec-pdl © c1£813b 16 494 61,731 2,305 2,114 144.06 132.12
| disel © e8aas0c 20 256 51,473 2,575 1,898  128.75  94.90
& |fesl-pem © eef4503 12 690 70,273 2,937 2,852  244.75 237.67
w|games © 3d3bd31 12 231 43,438 1,450 3,503  120.83 291.92

monae © 9does61 18 349 73,578 3,422 3,233 190.11 179.61

reglang ©) da333e0 12 230 41,327 1,299 1,734 108.25 144.50

toychain © 97bd697 14 67 61,997 1,747 3,528  124.79 252.00

Main Ave N/A 18.40 906.45 165,072.05 5,122.35 7,625.00 278.39 414.40

by N/A 368 18,129 3,301,441 102,447 152,500 102,447 152,500
Slinfotheo © 6c17242 81 1,891 463,593 12,517 29,778  154.53 367.63
Al Ave N/A 21.38 953.33 179,287.33 5,474.48 8,679.90  256.04 405.96
x N/A 449 20,020 3,765,034 114,964 182,278 114,964 182,278

comp-dec-pdl: Formal proofs of completeness and decidability of converse
propositional dynamic logic.

disel: A framework for distributed separation logic, useful for verifying imple-
mentations of distributed systems.

elliptic-curves: A formalization of the algebraic theory of elliptic curves.

fcsl-pecm: A library formalizing partial commutative monoids, which are useful
for reasoning about pointer-based programs.

finmap: A library with definitions and results about finite maps and sets with
finitely many members.

fourcolor: An updated version of the formal proof of the four-color theorem
in graph theory, which states that in all planar graphs, four colors suffice for
coloring all vertices such that no two adjacent vertices have the same color.

games: Definitions and formal proofs of theorems in algorithmic game theory.
grobner: A formalization of Grobner bases.

math-comp: The MathComp library itself.

monae: A library for monadic equational reasoning.

multinomials: A library formalizing monoidal rings and multinomials, and re-
lated results.



28 P. Nie et al.

Table 8: Statistics on the Lemmas in the Training, Validation, and Testing Sets
of the Expanded Corpus in Each Tier.

#Lemmas Name Stmt

#Char #SubToks #Char #SubToks

before filtering 23,615 10.57 4.32 59.21 25.93

after filtering 18,129 9.89 4.13 47.48 21.16

training 15,011 9.99 4.12 47.93 21.20

All Tiers validation 1,556 9.20 4.08 41.44 18.65

testing 1,562 9.68 4.26 49.19 23.21

training 8,861 10.14 4.22 44.16 19.59

Tier 1 validation 1,085 9.20 4.20 38.28 17.30

testing 1,320 9.76 4.34 48.49 23.20

training 3,692 10.03 4.02 50.52 22.37

Tier 2 validation 403 9.27 3.86 46.26 20.92

testing 40 8.75 3.77 49.25 22.32

training 2,458 9.37 3.90 57.65 25.28

Tier 3 validation 68 8.74 3.44 63.34 26.82

testing 202 9.35 3.82 53.70 23.43
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Fig. 8: Statistics of syntax and kernel trees in the expanded corpus.

odd-order: The formal proof of the odd order (Feit-Thompson) theorem in
abstract algebra, which states that all groups of odd order are solvable.
real-closed: Theorems on real closed fields in algebra.
reglang: A formalization of the theory of regular languages.
robot: A formalization of the mathematics of rigid body transformations to
enable proofs about robot manipulators.
toychain: Formalization and verification of a blockchain network protocol.
two-square: A proof of Fermat’s theorem on the sum of two squares, including
a definition of Gaussian integers.
infotheo: Formalizations of notions and results from information theory and
probability theory.

We follow the same procedure as for the original corpus to extract the lemmas
and filter out the lemmas with the deepest 25% of the kernel trees. Table 8
shows statistics on the lemmas obtained from each set and each tier. Fig. 8
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Table 9: Links to Tables with Results for Various Combinations of Training,
Validation, and Testing Sets.

Training & Validation Testing ‘Results Table

All Tiers All Tiers Table 10
All Tiers Tier 1 Table 11
All Tiers Tier 2 Table 12
All Tiers Tier 3 Table 13
Tier 1 All Tiers| Table 14
Tier 1 Tier 1 Table 3
Tier 1 Tier 2 Table 15
Tier 1 Tier 3 Table 16
Tier 2 Tier 2 Table 17
Tier 3 Tier 3 Table 18

illustrates the changes of depth, number of nodes, and number of sub-tokens
(after serialization) of the kernel trees (first row) and syntax trees (second row)
before filtering, after filtering, and after chopping.

D.2 Automatic Evaluation on the Expanded Corpus

To investigate whether ROOSTERIZE can benefit from learning from a larger but
less focused corpus than in our original automatic evaluation, we experimented
with different combinations of training, validation, and testing sets. Table 9 lists
the combinations we used; the first column shows the corpus that training and
validation sets are from, the second column shows the corpus that testing set is
from, and the third column indicates the results table for each combination.

We conclude that all our observations in Section 6.2 on training and testing
on our original corpus (here, tier 1) hold when training and testing on all tiers.
Additionally, we make the following observations based on the results of models
using different combinations of training, validation, and testing sets:

— Training on all tiers helps ROOSTERIZE obtain better performance, although
the corpus includes some noise from tier 2 and tier 3 projects. This observation
is based on comparing the results of training on different sets and testing on
the same set. For example, when testing on all tiers, the best BLEU score
among models trained on all tiers (47.2, cf. Table 10) is higher than the best
score for models trained on tier 1 (44.5, cf. Table 14). As another example,
when testing on tier 2, the best BLEU score among models trained on all
tiers is 38.7 (cf. Table 12), which is higher than the best score among models
trained on tier 2, namely, 33.6 (cf. Table 17).

— Tier 2 and tier 3 projects are indeed less conforming to MathComp naming
conventions than tier 1 projects, confirming the judgment of domain experts.
With the same models trained on all tiers, ROOSTERIZE’s best BLEU score on
the tier 1 testing set (49.3) is greater than the best BLEU score on the tier 2
testing set (38.7), and the latter is greater than the best BLEU score on the
tier 3 testing set (37.4). The same relationships hold for the models trained
only on tier 1.
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Table 10: Results of ROOSTERIZE Models with Training and Validation Sets
from All Tiers and Testing Set from All Tiers.

Group Model BLEU Frag.Acc. Topl Top5
Multici " Stmt+ChopKnlTree4+ChopSynTree+attn+copy 43.2 23.2% 7.1% 15.5%
“Jr;t‘t“np“ Stmt-+ChopKnlTree+attn-+copy 47.2 26.1% 10.3% 19.0%
Leo Stmt-+ChopSynTree+attn-+copy 34.9 18.0% 4.9% 10.7%
Py ChopKnlTree+ChopSynTree4attn+copy 44.2 22.2% 7.4% 14.8%
ChopKnlTree+attn+copy 44.1 20.9% 5.8% 13.1%
Single-input ChopSynTree+attn+copy 39.0 19.1% 7.9% 13.3%
+attn KnlTree+attn+copy 35.4 14.6% 1.2% 6.4%
+copy  SynTreetattn+copy 31.3 14.2% 3.4% 7.1%
Stmt+attn+copy 39.7 20.8% 7.5% 13.6%
Stmt+ChopKnlTree+ChopSynTree+attn 23.1 7.9% 1.1% 2.0%

Multi-input Stmt+ChopKnlTree+attn 27.3 10.9% 1.6% 3.0%
+attn Stmt+ChopSynTree+attn 23.6 9.5% 1.7% 3.0%
ChopKnlTree+ChopSynTree+attn 26.6 10.4% 2.5% 4.5%
ChopKnlTree+attn 22.8 7.0% 1.0% 1.7%
Single-input ChopSynTree+attn 31.0 13.1% 2.5% 4.8%
i P KnlTreetattn 13.5 2.0% 0.1% 0.4%

a SynTree+attn 11.5 1.8% 0.0% 0.1%
Stmt+attn 27.5 11.0% 1.1% 2.0%
Stmt+ChopKnlTree4+ChopSynTree 18.2 4.3% 0.2% 0.4%

Multi-input Stmt+ChopKnlTree 20.3 5.5% 0.4% 0.8%
P St mt+ChopSynTree 11.2 0.1% 0.0% 0.0%
ChopKnlTree+ChopSynTree 12.1 0.8% 0.0% 0.0%
ChopKnlTree 14.1 1.3% 0.0% 0.0%
ChopSynTree 14.4 1.1% 0.1% 0.1%
Single-input KnlTree 11.1 0.0% 0.0% 0.0%
SynTree 10.8 0.0% 0.0% 0.0%

Stmt 20.3 5.4% 0.3% 0.5%

- Retrieval-based 28.2 10.9% 0.6% 0.8%

D.3 Generalizability Case Study

Infotheo consists of 81 Coq files, and contains 1,891 lemmas. We randomly split
the files into training, validation, and testing sets which contain 40%, 10%, 50%
of the files, respectively. After splitting, there were 580 lemmas in the training
set, 144 lemmas in the validation set, and 1,167 lemmas in the testing set.
Table 19 shows the results of applying ROOSTERIZE with the best model on
infotheo without and with additional training. The first column shows the num-
ber of lemmas from the infotheo training set used for additional training. The
rest of the columns show the four automatic metrics. We can observe that ap-
plying ROOSTERIZE without additional training achieves moderate performance
(BLEU = 33.9). With some additional training, performance can be markedly
improved (up to a BLEU score of 37.4 when training on all 580 lemmas).
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Table 11: Results of ROOSTERIZE Models with Training and Validation Sets
from All Tiers and Testing Set from Tier 1.

Group Model BLEU Frag.Acc. Topl Top5
Multi-input Stmt+ChopKnlTree+ChopSynTree4attn+copy 45.0 23.5% 7.6% 16.9%
Lattn Stmt+ChopKnlTree+attn+copy 49.3 26.7% 11.1% 20.6%
Stmt+ChopSynTree+attn+copy 35.0 17.3% 4.8% 10.4%

TCOPY  ChopKnlTree+ChopSynTreetattn+copy 45.9 22.3% 8.1% 16.3%
ChopKnlTree+attn+copy 45.8 21.3% 6.1% 14.1%
Single-input ChopSynTree+attn+copy 39.4 18.8% 7.9% 13.4%
+attn KnlTree+attn+copy 36.4 14.6% 1.0% 6.3%
+copy  SynTree+attn+copy 31.2 13.8% 3.6% 7.5%
Stmt+attn+copy 40.2 20.4% 7.7% 14.0%
Stmt+ChopKnlTree+ChopSynTree+attn 23.5 7.8% 1.1% 2.0%

Multi-input Stmt+ChopKnlTree+attn 28.1 10.9% 1.6% 3.0%
+attn Stmt+ChopSynTree+attn 23.9 8.9% 1.5% 2.8%
ChopKnlTree+ChopSynTree+attn 27.8 10.6% 2.5% 4.7%
ChopKnlTree+attn 23.4 6.8% 1.0% 1.8%
Single-input ChopSynTree+attn 32.1 13.3% 2.7% 5.0%
T attn KnlTree+attn 13.6 1.9% 0.2% 0.5%
SynTree+attn 11.4 1.9% 0.0% 0.1%

Stmt+attn 27.9 10.7% 1.0% 1.9%
Stmt+ChopKnlTree+ChopSynTree 18.4 4.2% 02% 0.4%

Multi-input Stmt+ChopKnlTree 20.6 5.4% 0.4% 0.7%
Stmt+ChopSynTree 11.3 0.1% 0.0% 0.0%
ChopKnlTree+ChopSynTree 12.2 0.8% 0.0% 0.0%
ChopKnlTree 14.3 1.3% 0.0% 0.0%
ChopSynTree 14.5 1.2% 0.1% 0.2%
Single-input KnlTree 11.1 0.0% 0.0% 0.0%
SynTree 10.8 0.0% 0.0% 0.0%

Stmt 20.6 5.2% 0.4% 0.5%

- Retrieval-based 29.0 10.5% 0.3% 0.3%
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Table 12: Results of ROOSTERIZE Models with Training and Validation Sets
from All Tiers and Testing Set from Tier 2.

Group Model BLEU Frag.Acc. Topl Top5
Multi-input Stmt+ChopKnlTree+ChopSynTree4attn+copy 31.7 20.7% 5.8% 15.0%
Lattn Stmt+ChopKnlTree+attn+copy 35.5 25.0% 14.2% 21.7%
Stmt+ChopSynTree+attn+copy 35.6 18.9% 7.5% 13.3%

TCOPY  ChopKnlTree+ChopSynTreetattn+copy 35.4 29.2% 9.2% 13.3%
ChopKnlTree+attn+copy 32.4 21.2% 6.7% 12.5%
Single-input ChopSynTree+attn+copy 38.7 23.9% 10.8% 18.3%
+attn KnlTree+attn+copy 29.2 19.9% 6.7% 10.0%
+copy SynTree+attn+copy 27.5 11.2%  1.7% 4.2%
Stmt+attn+copy 33.2 17.8% 7.5% 16.7%
Stmt+ChopKnlTree4+ChopSynTree+attn 23.2 10.6% 2.5% 6.7%

Multi-input Stmt+ChopKnlTree+attn 26.0 14.2%  4.2% 10.0%
+attn Stmt+ChopSynTree+attn 25.9 17.6% 6.7% 10.0%
ChopKnlTree+ChopSynTree+attn 22.4 15.4% 7.5% 8.3%
ChopKnlTree+attn 23.2 10.8% 3.3% 5.0%
Single-input ChopSynTree+attn 30.2 18.8% 6.7% 11.7%
T attn KnlTree+attn 13.7 2.9% 0.0% 0.0%
SynTree+attn 9.6 1.7% 0.0% 0.0%

Stmt+attn 27.0 15.1% 4.2% 10.0%
Stmt+ChopKnlTree+ChopSynTree 20.4 7.9% 1.7% 2.5%

Multi-input Stmt+ChopKnlTree 18.8 7.6% 08% 2.5%
Stmt+ChopSynTree 11.7 0.4% 0.0% 0.0%
ChopKnlTree+ChopSynTree 11.9 0.4% 0.0% 0.0%
ChopKnlTree 15.0 25% 0.0% 0.0%
ChopSynTree 14.8 1.8% 0.0% 0.0%
Single-input KnlTree 12.1 1.4% 0.0% 0.0%
SynTree 12.3 0.0% 0.0% 0.0%

Stmt 23.6 13.7% 0.8% 0.8%

- Retrieval-based 31.0 27.5% 2.5% 7.5%
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Table 13: Results of ROOSTERIZE Models with Training and Validation Sets
from All Tiers and Testing Set from Tier 3.

Group Model BLEU Frag.Acc. Topl Top5
Multi-input Stmt+ChopKnlTree+ChopSynTree+attn+copy 33.6 21.4% 3.8% 6.8%
Lattn Stmt+ChopKnlTree+attn+copy 36.0 22.6% 4.3% 8.6%
Stmt+ChopSynTree+attn+copy 34.4 22.1% 5.0% 11.9%

FCOPY  ChopKnlTree+ChopSynTree+attn-copy 34.5 20.3% 2.8% 5.6%
ChopKnlTree+attn+copy 34.5 17.8% 2.8% 6.3%
Single-input ChopSynTree+attn+copy 36.3 20.5% 6.9% 11.6%
+attn KnlTree+attn+copy 29.6 12.1% 1.5% 5.9%
+copy  SynTree+attn+copy 32.5 17.6% 2.5% 5.1%
Stmt+attn+copy 37.4 24.2% 6.1% 10.2%
Stmt+ChopKnlTree+ChopSynTree+attn 20.3 7.7% 0.8% 1.3%

Multi-input Stmt+ChopKnlTree+attn 22.1 10.2% 0.8% 1.5%
+attn Stmt+ChopSynTree+attn 20.7 11.2% 1.7% 2.5%
ChopKnlTree+ChopSynTree+attn 19.2 7% 1.3%  2.0%
ChopKnlTree+attn 18.9 7.0% 0.5% 0.7%
Single-input ChopSynTree+attn 24.2 10.4% 0.8% 2.1%
T attn KnlTree+attn 12.7 2.2% 0.0% 0.2%
SynTree+attn 12.2 1.5% 0.0% 0.0%

Stmt+attn 24.4 12.5% 0.8% 1.2%
Stmt+ChopKnlTree4+ChopSynTree 16.2 4.3% 0.2% 0.3%

Multi-input Stmt+ChopKnlTree 18.5 5.7% 0.3% 0.8%
Stmt+ChopSynTree 10.9 0.1% 0.0% 0.0%
ChopKnlTree+ChopSynTree 12.0 0.7% 0.0% 0.0%
ChopKnlTree 12.5 0.6% 0.0% 0.0%
ChopSynTree 13.5 0.1% 0.0% 0.0%
Single-input KnlTree 11.0 0.0% 0.0% 0.0%
SynTree 10.6 0.0% 0.0% 0.0%

Stmt 17.6 5.0% 0.0% 0.5%

- Retrieval-based 23.7 11.6% 2.5% 3.0%
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Table 14: Results of ROOSTERIZE Models with Training and Validation Sets
from Tier 1 and Testing Set from All Tiers.

Group Model BLEU Frag.Acc. Topl Top5
Multi-input Stmt+ChopKnlTree+ChopSynTree+attn+copy 43.3 21.4% 6.8% 14.9%
Tattn Stmt+ChopKnlTree+attn+copy 44.5 23.9% 8.5% 16.2%
Stmt+ChopSynTree+attn+copy 36.6 17.5% 5.6% 10.1%

FCOPY  ChopKnlTree+ChopSynTree+attn-copy 43.3 22.3% 6.8% 13.8%
ChopKnlTree+attn+copy 40.7 19.2% 4.5% 10.6%
Single-input ChopSynTree+attn+copy 38.8 18.3% 6.4% 11.6%
+attn KnlTree+attn+copy 35.1 13.1% 2.0% 7.3%
+copy  SynTree+attn+copy 30.9 10.9% 2.6% 5.9%
Stmt+attn+copy 38.0 19.1% 6.4% 10.9%
Stmt+ChopKnlTree+ChopSynTree+attn 23.8 8.5% 0.4% 0.9%

Multi-input Stmt+ChopKnlTree+attn 24.6 8.4% 0.9% 1.7%
+attn Stmt+ChopSynTree+attn 23.2 8.0% 0.7% 1.5%
ChopKnlTree+ChopSynTree+attn 27.1 10.5% 1.7% 3.2%
ChopKnlTree+attn 18.9 4.7% 0.5% 1.2%
Single-input ChopSynTree+attn 27.9 11.9% 1.6% 2.8%
ttn KnlTree+attn 13.7 1.5% 0.0% 0.0%

+a SynTree+attn 8.8 1.0% 0.0% 0.0%
Stmt+attn 26.0 10.8% 1.2% 2.4%
Stmt+ChopKnlTree4+ChopSynTree 17.4 3.4% 0.1% 0.2%

Multi-input Stmt+ChopKnlTree 19.1 4.4% 0.1% 0.2%
Stmt+ChopSynTree 12.6 0.6% 0.0% 0.0%
ChopKnlTree+ChopSynTree 16.2 2.2% 0.0% 0.0%
ChopKnlTree 15.2 1.6% 0.0% 0.0%
ChopSynTree 14.4 0.8% 0.1% 0.1%
Single-input KnlTree 12.2 0.6% 0.0% 0.0%
SynTree 5.7 0.3% 0.0% 0.0%

Stmt 19.4 4.6% 0.1% 0.3%

- Retrieval-based 26.9 9.6% 0.3% 0.4%
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Table 15: Results of ROOSTERIZE Models with Training and Validation Sets
from Tier 1 and Testing Set from Tier 2.

Group Model BLEU Frag.Acc. Topl Top5
Multi-input Stmt+ChopKnlTree+ChopSynTree+attn+copy 34.2 22.8% 9.2% 11.7%
Lattn Stmt+ChopKnlTree+attn+copy 35.0 26.7% 8.3% 14.2%
Stmt+ChopSynTree+attn+copy 36.7 14.2% 6.7% 14.2%

TCOPY  GhopKnlTree+ChopSynTree+attn-+copy 33.9 25.8% 9.2% 16.7%
ChopKnlTree+attn+copy 34.8 25.0% 8.3% 14.2%
Single-input ChopSynTree+attn+copy 35.6 20.1% 7.5% 15.8%
+attn KnlTree+attn+copy 25.3 11.2% 3.3% 7.5%
+copy  SynTree+attn+copy 33.3 14.2% 2.5% 6.7%
Stmt+attn+copy 42.4 20.8% 6.7% 15.8%
Stmt+ChopKnlTree+ChopSynTree+attn 24.8 12.8% 1.7% 5.8%

Multi-input Stmt+ChopKnlTree+attn 25.5 13.2% 5.0% 6.7%
+attn Stmt+ChopSynTree+attn 22.8 10.4% 0.0% 5.0%
ChopKnlTree+ChopSynTree+attn 25.6 15.6% 5.8% 7.5%
ChopKnlTree+attn 19.4 6.7% 0.8% 3.3%
Single-input ChopSynTree+attn 28.0 17.5% 6.7% 7.5%
T attn KnlTree+attn 13.1 1.4% 0.0% 0.8%
SynTree+attn 10.9 2.1% 0.0% 0.0%

Stmt+attn 28.5 17.9% 5.0% 6.7%
Stmt+ChopKnlTree4+ChopSynTree 20.4 10.4% 0.8% 2.5%

Multi-input Stmt+ChopKnlTree 17.9 6.7% 0.0% 0.0%
Stmt+ChopSynTree 14.3 0.4% 0.0% 0.0%
ChopKnlTree+ChopSynTree 15.6 4.6% 0.0% 0.0%
ChopKnlTree 15.3 3.6% 0.0% 0.0%
ChopSynTree 14.9 2.2% 0.0% 0.0%
Single-input KnlTree 12.2 0.4% 0.0% 0.0%
SynTree 6.6 0.0% 0.0% 0.0%

Stmt 20.9 9.9% 2.5% 4.2%

- Retrieval-based 24.8 14.6% 2.5% 7.5%
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Table 16: Results of ROOSTERIZE Models with Training and Validation Sets
from Tier 1 and Testing Set from Tier 3.

Group Model BLEU Frag.Acc. Topl Top5
Multi-input Stmt+ChopKnlTree+ChopSynTree+4attn+copy 31.2 15.9% 2.1% 5.4%
Tattn Stmt+ChopKnlTree+attn+copy 29.1 16.9% 1.3% 4.5%
Stmt+ChopSynTree+attn+copy 29.8 13.8% 2.1% 5.8%

TCOPY  ChopKnlTree+ChopSynTreetattn-copy 31.3 17.9% 1.7% 3.5%
ChopKnlTree+attn+copy 27.6 13.8% 1.0% 2.6%
Single-input ChopSynTree+attn4-copy 33.1 17.8% 3.8% 6.8%
+attn KnlTree+attn+copy 24.3 6.4% 0.0% 1.2%
+copy  SynTree+attn+copy 30.4 11.1% 1.8% 4.3%
Stmt+attn+copy 30.9 16.7% 3.1% 5.8%
Stmt+ChopKnlTree+ChopSynTree+attn 19.5 7.6% 0.3% 0.3%

Multi-input Stmt+ChopKnlTree+attn 18.3 6.8% 0.2% 0.3%
+attn Stmt+ChopSynTree+attn 19.4 6.3% 0.3% 0.7%
ChopKnlTree+ChopSynTree+attn 18.9 7.4% 0.3% 0.8%
ChopKnlTree+attn 15.0 2.8% 0.0% 0.2%
Single-input ChopSynTree+attn 21.3 9.4% 1.2% 1.2%
Tattn KnlTree+attn 10.7 0.4% 0.0% 0.0%
SynTree+attn 7.7 0.5% 0.0% 0.0%

Stmt+attn 19.5 7.5% 0.5% 0.8%
Stmt+ChopKnlTree+ChopSynTree 14.9 1.6% 0.0% 0.0%

Multi-input Stmt+ChopKnlTree 16.5 3.8% 0.0% 0.0%
Stmt+ChopSynTree 12.4 0.5% 0.0% 0.0%
ChopKnlTree+ChopSynTree 13.4 1.0% 0.0% 0.0%
ChopKnlTree 13.1 1.2% 0.0% 0.0%
ChopSynTree 13.5 0.7% 0.0% 0.0%
Single-input KnlTree 12.9 1.0% 0.0% 0.0%
SynTree 5.8 0.0% 0.0% 0.0%

Stmt 15.7 3.2% 0.0% 0.0%

- Retrieval-based 18.3 5.7% 0.0% 0.0%
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Table 17: Results of ROOSTERIZE Models with Training and Validation Sets

from Tier 2 and Testing Set from Tier 2.
Group Model BLEU Frag.Acc. Topl Top5
Multicinput Stmt+ChopKnlTree+ChopSynTree+attn+copy 31.8 17.6% 5.8% 9.2%
u+ _tt PUY g¢mt+ChopKnlTree+attn-+copy 29.5 17.5% 4.2% 8.3%
+a . Stmt+ChopSynTree+attn+copy 28.8 9.6% 0.0% 2.5%
COPY  ChopKnlTree+ChopSynTree+attn+copy 30.5 15.8% 5.0% 10.8%
ChopKnlTree+attn+copy 33.6 18.2% 4.2% 5.8%
Single-input ChopSynTree+attn+copy 29.3 9.9% 0.8% 5.0%
+attn KnlTree+attn+copy 31.2 17.2% 4.2% 7.5%
+copy  SynTree+attn+copy 25.0 2.8% 0.0% 0.0%
Stmt+attn+copy 29.7 15.4% 2.5% 5.8%
Stmt+ChopKnlTree+ChopSynTree+attn 22.3 10.0% 1.7% 1.7%
Multi-input Stmt+ChopKnlTree+attn 21.4 8.1% 0.8% 2.5%
+attn Stmt+ChopSynTree+attn 24.3 14.2% 1.7% 7.5%
ChopKnlTree+ChopSynTree+attn 18.0 6.9% 0.8% 3.3%
ChopKnlTree+attn 15.7 1.1% 0.0% 0.0%
Sinelei " ChopSynTree+attn 17.5 3.5% 0.0% 0.0%
‘“ie;lt“p“ KnlTree+attn 11.2 0.0% 0.0% 0.0%
attn— gynTreetattn 11.3 0.0% 0.0% 0.0%
Stmt+attn 20.6 7.8% 0.8% 6.7%
Stmt+ChopKnlTree4+ChopSynTree 15.5 3.5% 0.0% 0.0%
Multicinput Stmt+ChopKnlTree 15.3 2.6% 0.0% 0.0%
PUY gt mt+ChopSynTree 11.4 0.3% 0.0% 0.0%
ChopKnlTree+ChopSynTree 11.1 0.0% 0.0% 0.0%
ChopKnlTree 9.7 1.4% 0.0% 0.0%
ChopSynTree 12.8 0.0% 0.0% 0.0%
Single-input KnlTree 8.7 0.0% 0.0% 0.0%
SynTree 6.8 0.0% 0.0% 0.0%
Stmt 14.6 1.9% 0.0% 0.0%
- Retrieval-based 27.7 25.2% 0.0% 0.0%
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Table 18: Results of ROOSTERIZE Models with Training and Validation Sets
from Tier 3 and Testing Set from Tier 3.

Group Model BLEU Frag.Acc. Topl Top5
Multiinput Stmt+ChopKnlTree+ChopSynTree+4attn+copy 33.5 19.5% 2.3% 5.9%
u—i—'_tt PUY S¢mt+ChopKnlTree+attn+copy 31.2 16.9% 0.8% 6.3%
+d . Stmt+ChopSynTree+attn+copy 32.0 17.3% 3.3% 7.6%
€OPY ChopKnlTree+ChopSynTree+attn-+copy 31.8 15.5% 1.3% 5.0%
ChopKnlTree+attn+copy 29.9 15.7% 1.3% 6.1%
Single-input ChopSynTree+attn+copy 32.7 15.3% 4.0% 6.3%
+attn KnlTree+attn+copy 30.7 12.4% 1.3% 5.0%
+copy  SynTreetattn+copy 28.4 12.6% 2.0% 6.4%
Stmt+attn+copy 34.3 19.8% 3.3% 5.3%
Stmt+ChopKnlTree+ChopSynTree+attn 14.5 1.4% 0.0% 0.0%
Multi-input Stmt+ChopKnlTree+attn 17.9 5.3% 0.0% 0.0%
+attn Stmt+ChopSynTree+attn 19.0 6.6% 0.2% 0.2%
ChopKnlTree+ChopSynTree+attn 12.4 2.2% 0.0% 0.0%
ChopKnlTree+attn 14.8 2.3% 0.0% 0.0%

Sineledi tChopSynTree+attn 17.0 2.8% 0.0% 0.0%
mie;‘t“p“ KnlTree+attn 13.1 0.2% 0.0% 0.0%
atth gunTreetattn 4.8 0.3% 0.0% 0.0%
Stmt+attn 17.6 5.8% 0.0% 0.0%
Stmt+ChopKnlTree+ChopSynTree 12.6 0.7% 0.0% 0.0%
Multi-input Stmt+ChopKnlTree 14.4 1.4% 0.0% 0.0%
PUY g¢mt+ChopSynTree 9.1 0.2% 0.0% 0.0%
ChopKnlTree+ChopSynTree 11.1 0.0% 0.0% 0.0%
ChopKnlTree 11.7 0.1% 0.0% 0.0%
ChopSynTree 10.1 0.0% 0.0% 0.0%
Single-input KnlTree 14.3 0.2% 0.0% 0.0%
SynTree 14.4 0.2% 0.0% 0.0%

Stmt 14.4 1.4% 0.0% 0.0%

- Retrieval-based 22.1 9.6% 2.5% 3.0%

Table 19: Results of the Generalization Study with ROOSTERIZE Pre-trained on
All Tiers.

#Lemmas BLEU Frag.Acc. Topl Top5

0 33.9 21.3% 4.4% 8.9%
105 32.6 21.5% 3.3% 5.3%
223 34.1 22.7% 3.8% 6.9%
505 35.7 24.3% 5.0% 8.7%
580 37.4 26.5% 7.4% 12.5%
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