
Practical Machine-Checked Formalization of

Change Impact Analysis

Karl Palmskog1, Ahmet Celik2, and Milos Gligoric3

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Facebook, Seattle, WA, USA

3 The University of Texas at Austin, Austin, TX, USA
palmskog@kth.se, celik@fb.com, gligoric@utexas.edu

Abstract. Change impact analysis techniques determine the compo-
nents affected by a change to a software system, and are used as part
of many program analysis techniques and tools, e.g., in regression test
selection, build systems, and compilers. The correctness of such analyses
usually depends both on domain-specific properties and change impact
analysis, and is rarely established formally, which is detrimental to trust-
worthiness. We present a formalization of change impact analysis with
machine-checked proofs of correctness in the Coq proof assistant. Our
formal model factors out domain-specific concerns and captures system
components and their interrelations in terms of dependency graphs. Us-
ing compositionality, we also capture hierarchical impact analysis for-
mally for the first time, which, e.g., can capture when impacted files are
used to locate impacted tests inside those files. We refined our verified im-
pact analysis for performance, extracted it to efficient executable OCaml
code, and integrated it with a regression test selection tool, one regres-
sion proof selection tool, and one build system, replacing their existing
impact analyses. We then evaluated the resulting toolchains on several
open source projects, and our results show that the toolchains run with
only small differences compared to the original running time. We believe
our formalization can provide a basis for formally proving domain-specific
techniques using change impact analysis correct, and our verified code
can be integrated with additional tools to increase their reliability.

Keywords: Change impact analysis · Regression test selection · Coq.

1 Introduction

Change impact analysis aims to determine the components affected by a change
to a software system, e.g., the modules or files affected by a modified line of
code [3,4]. Change impact analysis techniques are used in many program analyses
and tools, such as regression test selection (RTS) tools [26, 52, 59, 61], build
systems [15,21,43,45], and incremental compilers [48].

Change impact analysis techniques typically mix domain- and language-
specific concepts, such as method call graphs and class files, with more abstract
notions, such as dependencies, transitive closures, and topological sorts. This can

2 K. Palmskog et al.

complicate reasoning about the correctness (safety) of a technique. For exam-
ple, to the best of our knowledge, RTS techniques for Java-like languages have
never been argued to be safe (i.e., to never omit tests affected by a change) by
machine-checked reasoning—only by high-level pen-and-paper proofs [51,55,60].

In this paper, we present a formalization of key concepts used in many change
impact analysis techniques—concepts that are independent of any language or
application domain. Our formalization represents system components and their
interrelations as vertices and edges in explicit dependency graphs. We consider
whether components are impacted by changes between two system revisions by
computing transitive closures of modified graph vertices in the inverse of the
dependency graph from the old revision. This has been described as “invalidating
the upward transitive closure” [14]. Among impacted vertices, we identify those
that are checkable, representing, e.g., a test method, that can be re-executed.

We encoded our formal model as a library in the Coq proof assistant, and
proved two key correctness properties: soundness and completeness. Soundness,
intuitively, states that the outcomes of executing checkable vertices that are
unimpacted in the new revision are the same as they would be in the previ-
ous revision. Completeness roughly states that all checkable vertices in the new
revision are members of the set of all added, impacted, and unimpacted vertices.

Based on our correctness approach, we also defined and proved correct two
strategies for hierarchical change impact analysis that are roughly analogous
to, on the one hand, file-based incremental builds [43, 54], and on the other
hand, hybrid regression test selection [46, 60]. To the best of our knowledge,
hierarchical change impact analysis is previously unexplored in formal settings
like ours. Ultimately, by proving some basic properties about relations between
vertices and results of executing checkable vertices, developers can use our model
and library to obtain end-to-end guarantees for domain-specific impact analyses.

To capture our model of system components and their dependencies in Coq,
we used the Mathematical Components (MC) library [42] and its representation
of relations, finite graphs, and subtypes [25,28,29]. For the formal proofs, we used
the SSReflect proof language and followed the idiom of the MC library of lever-
aging boolean decision procedures in proofs via small-scale reflection [9, 30, 31].
To obtain efficient executable code, we performed several verified refinements of
our initial Coq encoding. From our refined functions and datatypes, we then de-
rived a practical tool, dubbed Chip, by carefully extracting Coq code to OCaml
and linking it with an assortment of OCaml libraries. Chip can be viewed as a
verified component for change impact analysis that can either be integrated into
verified systems or used in conventionally developed systems.

To ensure the adequacy of our formal model, we performed an empirical
study using Chip. Specifically, we integrated Chip with Ekstazi [26], a tool for
class-based regression test selection in Java, with iCoq [11], a tool for regression
proof selection in Coq itself, and with Tup [54], a build system similar to make,
replacing the existing components for change impact analysis in all these tools.
We then compared the outcome and running time between the respective mod-
ified and original tool versions when applied to the revision histories of several

Practical Machine-Checked Formalization of Change Impact Analysis 3

open-source projects. This approach is along the lines of previous evaluations of
formal specifications [8, 20, 33] and RTS techniques [26, 37,60]. During our eval-
uation of Chip, we also located and addressed several performance bottlenecks.

We make the following contributions:
– Basic formal model: We present a formalization of change impact analysis

in terms of finite graphs and sets, encoded in the Coq proof assistant via the
MC library. We formulated and proved in Coq key correctness requirements
for our analysis, namely, soundness and completeness.

– Hierarchical formal model: We extended our model to capture two strate-
gies for hierarchical change impact analysis, where higher-level components
are implicitly tied to lower-level components, and proved them both correct.

– Library: Our Coq development forms a library of definitions and lemmas
that can assist in formally proving various techniques based on change impact
analysis, such as regression test selection for Java, correct inside Coq.

– Optimizations: We refined our verified Coq functions and data structures
to significantly improve performance in practice of code extracted to OCaml.

– Tool: From our refined Coq code, we derived a verified executable tool in
OCaml for change impact analysis, Chip, by carefully leveraging Coq’s code
extraction mechanism. Chip can be used as a verified component for both
regular and hierarchical change impact analysis in other tools. The Chip code,
compatible with Coq 8.9, MC 1.7, and OCaml 4.07, is publicly available [47].

– Evaluation: We integrated Chip with a tool for regression test selection
in Java projects, Ekstazi, one regression proof selection tool for Coq itself,
iCoq, as well as one build system, Tup, and evaluated the resulting toolchains
on several medium to large-scale open source projects.

2 Background

In this section, we give some brief background on change impact analysis and
its applications, and on the Coq proof assistant.

2.1 Change Impact Analysis

Broadly, we consider change impact analysis as the activity of identifying the
potential consequences of a change to a software system. Formulated in this way,
change impact analysis is an old concern in software engineering [4], and remains
an active research topic as part of techniques and tools [1,34,53]. In early work,
Arnold posited computing transitive closures of statically derived program call
graphs as the fundamental technique for change impact analysis [3]. However,
later research argues that dynamic analysis can be more precise [36] and lead to
faster dependency collection for use in future analyses [26]. Our work aims to
capture general concepts used in both static and dynamic approaches [10, 38].

2.2 Regression Test Selection and Regression Proof Selection

Regression test selection (RTS) techniques optimize regression testing – running
tests at each project revision to check correctness of recent changes – by dese-
lecting tests that are not affected by the recent changes [50, 59]. Traditionally,

4 K. Palmskog et al.

RTS techniques maintain for each test a set of code elements (e.g., statements,
methods, classes) on which the test depends. When code elements are modified,
change impact analysis is used to detect those tests that are potentially affected
by the changes. Prior work has studied RTS for various programming languages
(e.g., C, C++, and Java), built dependency graphs statically or dynamically,
and used various granularities of code elements (e.g., statements, methods, and
classes). The meaning of the dependency graph is language-specific, but if the
graph is properly constructed, the change impact analysis is independent of the
language. For example, Ekstazi [26], a recent RTS tool for Java projects, builds
and maintains Java class file dependency graphs dynamically, and when a class
file is modified, Ekstazi uses change impact analysis to select all test classes
that depend, directly or indirectly, on the modified class.

Regression proof selection (RPS) is the analogue of RTS for formal proofs,
which, similarly to tests, can take a long time to check. The RPS technique
implemented in the iCoq tool for Coq [12] uses hierarchical selection [11], where
impacted files are used to locate impacted proofs to be checked.

2.3 Build Systems

The classic build system make uses file timestamp comparisons to decide whether
a task defined in a build script should be run. Dependency graphs are implic-
itly defined by tasks depending on the completion of other tasks, or on certain
files, as expressed in the build script. In contrast to test execution, build script
task execution typically produces side effects in the form of new files, e.g., files
with object code in ELF format. Modern build systems such as Bazel [5] and
CloudMake [21, 27] can use other ways than timestamps to find modified files,
e.g., comparing cryptographic hashes of files across revisions. Recent alternative
build systems that aim to replace make include Tup [54] and Shake [43]; the
former uses an explicit persisted dependency graph.

2.4 The Coq Proof Assistant and Mathematical Components

Coq consists of, on the one hand, a small and powerful purely functional pro-
gramming language, and on the other hand, a system for specifying properties
about programs and proving them [6]. Coq is based on a constructive type the-
ory [17, 18] which effectively reduces proof checking to type checking, and puts
programming on the same foot as proving. Mathematical Components (MC) [42]
is an extensive Coq library that provides many structures from mathematics, in-
cluding finite sets, relations, and subtypes; we use the module fingraph, which
was derived from Gonthier’s proof of the four-color theorem [28].

Datatypes and functions verified inside Coq to have some correctness prop-
erty can be extracted to a practical programming language such as OCaml [40],
and then integrated with libraries; extraction is used in several large-scale soft-
ware verification projects [39, 57]. Obtaining efficient programs via extraction
may require significant engineering because of discord between the requirements
for formal correctness and agreeable program runtime behavior [19]. When target
languages lack fully formal semantics, as is the case for OCaml, extraction cannot
be fully trusted, but empirical evaluations are nevertheless encouraging [24,58].

Practical Machine-Checked Formalization of Change Impact Analysis 5

3 Formal Model

This section introduces our model, assumptions, and correctness approach.

3.1 Definitions

Components: Our model of change impact analysis uses two finite sets of ver-
tices V and V ′, where V ⊆ V ′. Members of these sets represent the components
of a system (e.g., files or classes) before and after a change, respectively.
Artifacts: We let A be a set of artifacts. An artifact is intended to be a concrete
underlying representation of a component, e.g., an abstract syntax tree or the
content of a file. We assume that the equality of two artifacts is decidable, i.e.,
that we can compute for all a, a′ ∈ A whether a = a′ or a 6= a′. To associate
vertices with artifacts, we use two total functions f : V → A and f ′ : V ′ → A.
In practice, we expect these functions to map vertices to compact summaries of
component representations, such as checksums computed by cryptographic hash
functions. Whenever f(v) 6= f ′(v) for some v ∈ V , we say that the artifact for v
is modified after the revision; otherwise, it is unmodified.
Graphs: Let g be a binary relation on V . For v, v′ ∈ V , we say that v directly

depends on v′ if g(v, v′) holds. For example, if v and v′ represent classes in a Java-
like language, v may be a subclass of v′. We will usually refer to relations like g
as (dependency) graphs. We write g−1 for the inverse of g, i.e., we have g−1(v, v′)
iff g(v′, v). Moreover, we write g∗(v, v′) for when v and v′ are transitively related
in g, and say that v transitively depends on v′. We define the reflexive-transitive

closure of a vertex v ∈ V with respect to a graph g as the set {v′ | g∗(v, v′)},
i.e., as the set of all vertices reachable from v in g (which includes v itself).
Execution: We assume there is a subset E ⊆ V ′ of checkable vertices, i.e., it is
meaningful to apply some (side-effect free) function check on them and obtain
some result. For example, a checkable vertex may represent a test method that
either passes or fails when executed.
Impactedness: Let g be a dependency graph. We then say that a vertex v ∈ V
is impacted if it is reachable in g−1 from some modified vertex. Equivalently,
v is impacted iff there is a v′ ∈ V such that f(v′) 6= f ′(v′) and (g−1)∗(v′, v).
Additionally, a vertex v′′ ∈ V ′ is considered fresh whenever v′′ /∈ V .

We take the (disjoint) union of the set I of impacted vertices and the set F
of fresh vertices, and consider the checkable vertices in this set, i.e., vertices in
(

I ∪ F
)

∩ E. Intuitively, these are the only vertices that we need to consider in
the new revision, since all other vertices in V ′ are unimpacted—and using check

on unimpacted vertices will have the same outcome as in the old revision.

3.2 Example

Figure 1 illustrates the core idea of the graph-based change impact analysis ap-
proach we model. Figure 1(a) shows the original dependency graph, where, e.g.,
component 3 depends directly on components 1 and 2, and 5 depends directly
on 3 and transitively on 1 and 2; dotted components are checkable. Figure 1(b)
shows the inverse graph, with the modified component 1 bolded, and the com-
ponents impacted by the change in gray (the reflexive-transitive closure of 1 in
the inverse graph). Based on these results, we call check on 5, but not on 6.

6 K. Palmskog et al.

1 2

3 4

5 6

(a)

1 2

3 4

5 6

(b)

Fig. 1. Dependency graph where component 1 is changed, impacting 3 and 5.

3.3 Correctness Approach

For correctness, we intuitively show that executing only impacted and fresh
vertices that are checkable is enough in the new revision, since the result of
executing unimpacted vertices is the same as in the old revision. This means
that if we have access to the results of checking vertices in the old revision, we
can use those results to obtain the complete outcome for all checkable vertices
in the new revision, without going through the work usually required.

Having constructed the set T of tuples of checkable vertices and outcomes
from the impacted, fresh, and unimpacted vertices, we can ask (1) whether T
is complete, i.e., whether it contains outcomes for all checkable vertices in V ′,
and (2) whether the outcomes in T are sound, i.e., if they are same as if we had
explicitly called check on the associated vertices.

To be able to prove soundness and completeness, we need to assume several
properties relating the dependency graphs and outcomes of executing vertices in
both revisions. Informally, we make the following assumptions:

A1: The direct dependencies of a vertex v are the same in both revisions if the
artifact of v is the same in both revisions, i.e., if f(v) = f ′(v).

A2: A vertex v with the same artifact in both revisions is checkable in the new
revision iff v is checkable in the old revision.

A3: The outcome of executing a checkable vertex v is the same in both revisions
if the sets of vertices v depends on transitively are the same, and the artifact
of each dependency is the same.

The last assumption implicitly rules out that the underlying operation (e.g., test
execution) on a vertex is nondeterministic, which it can be in practice [41].

4 Model Encoding

In this section, we give an overview of our encoding in Coq of the formal model
described in the previous section, using theories of finite sets and graphs from the
MC library. We use a simplified version of Coq’s specification language, Gallina.

4.1 Encoding in Coq

We represent the vertex set V ′ as a finite type (finType) V’ , and its subset V as
a subtype (subType) V, induced by a decidable predicate P on vertices in V’ (of
type pred V’). This allows us to define the graph g as a binary decidable relation
g on V, i.e., a variable of type rel V, and use the MC library predicate connect

Practical Machine-Checked Formalization of Change Impact Analysis 7

to express whether two vertices are transitively related in g. The inverse of g is
defined as [rel x y | g y x] , which we write as g−1. We use connect to form the
set of vertices in the reflexive-transitive closure of a given vertex x with respect
to a graph g, and a canonical big operator [7] to form the union of all such
closures for elements in a given set m of modified vertices:

Def impacted (g : rel V) (m : {set V}) : {set V} :=
\bigcup_(x | x \in m) [set y | connect g x y].

We characterize this function through MC’s reflect (“if and only if”):

Thm impactedP g m x : reflect (∃ v, v \in m & connect g v x) (x \in impacted g m).

The MC library function val injects a subtype element into the corresponding
supertype. We use this to capture impacted and fresh vertices in V’ :

Def impacted_V’ m : {set V’} := [set (val v) | v in impacted g−1 m].
Def fresh_V’ : {set V’} := [set v | ¬ P v].

We represent the set of artifacts A as a type A with decidable equality (eqType),
and functions f and f ′ as regular Coq functions f and f’ . This allows us to
define the set of modified vertices in V’ , and then take the union (operator :|:)
of impacted and fresh vertices:

Def mod_V : {set V} := [set v | f v != f’ (val v)].
Def impacted_fresh_V’ : {set V’} := impacted_V’ mod_V :|: fresh_V’.

We then use a predicate checkable to form the subset of vertices in V’ that can
be executed:

Def chk_impacted_fresh_V’:{set V’} := [set v in impacted_fresh_V’ | checkable v].

We use a function check, which takes a vertex and returns a term in a result
type R (an eqType, e.g., bool), to define a sequence of vertices and results:

Def res_impacted_fresh_V’ : seq (V’ ∗ R) :=
[seq (v, check v) | v ← enum chk_impacted_fresh_V’].

Note that by using a sequence instead of a finite set for these tuples, we ensure
R can be any type with decidable equality, such as a message of arbitrary length.

4.2 Correctness Statements

For stating and proving correctness, we assume we have dependency graphs for
the old and new revision, as well as definitions of whether vertices are checkable,
and checking functions:

Vars (g : rel V) (g’ : rel V’).
Vars (checkable : pred V) (checkable’ : pred V’) (check : V → R) (check’ : V’ → R).

We then define the graph g for vertices in V’ , named g_V’:

Def insub_g (x y : V’) : bool := match insub x, insub y with

Some x’, Some y’ ⇒ g x’ y’ | _, _ ⇒ false end.
Def g_V’ : rel V’ := [rel x y | insub_g x y].

8 K. Palmskog et al.

This allows us to formulate the assumption A1 from above:

Hyp fg_eq : ∀ (v : V), f v = f’ (val v) → ∀ (v’ : V’), g_V’ (val v) v’ = g’ (val v) v’.

The assumption A2 is equally straightforward to define:

Hyp chk_f : ∀ v, f v = f’ (val v) → checkable v = checkable’ (val v).

Finally, the assumption A3, when formalized, establishes a relation between
vertices in g and g’ :

Hyp chk_V : ∀ (v : V), checkable v → checkable’ (val v) →
(∀ (v’ : V’), connect g_V’ (val v) v’ = connect g’ (val v) v’) →
(∀ (v’ : V’), connect g_V’ (val v) (val v’) →
f v’ = f’ (val v’)) → check v = check’ (val v).

We now assume we are given a sequence of results for checkable vertices in the
old revision, and that this sequence is sound, complete, and duplicate-free:

Var res_V : seq (V ∗ R).
Hyp res_VP : ∀ v r, reflect (checkable v ∧ check v = r) ((v,r) \in res_V).
Hyp res_v_uniq : uniq [seq vr.1 | vr ← res_V].

We can then filter the sequence of old results to locate unimpacted vertices in
the new revision:

Def res_unimpacted_V’ : seq (V’ ∗ R) := [seq (val vr.1, vr.2) |
vr ← res_V & val vr.1 \notin impacted_V’ mod_V].

This allows us to form a final sequence of vertex-result pairs:

Def res_V’ : seq (V’ ∗ R) := res_impacted_fresh_V’ ++ res_unimpacted_V’.

For sanity-checking, we prove the absence of duplicates:

Def chk_V’ : seq V’ := [seq vr.1 | vr ← res_V’].
Thm chk_V’_uniq : uniq chk_V’.

We prove that the sequence contains all checkable vertices in V’ (completeness):

Thm chk_V’_complete (v : V’) : checkable’ v → v \in chk_V’.

Finally, we prove that the results in the sequence are consistent with explicitly
calling check’ on all vertices in V’ (soundness):

Thm chk_V’_sound (v : V’) (r : R) : (v, r) \in res_V’ → checkable’ v ∧ check’ v = r.

The formal proofs, which we elide here, mostly reduce to reasoning over the
connect predicate and inductively on graph paths.

5 Component Hierarchies

Let V be a set of vertices representing fine-grained components (e.g., methods),
with dependency graph g⊥. Let U be a different set of vertices representing
coarse-grained components (e.g., files), associated with a function p: U → 2V

that defines a partition of V . The partition indicates how components in U encap-

sulate components in V , and is associated with a graph g⊤ of vertices in U that is

Practical Machine-Checked Formalization of Change Impact Analysis 9

U

p

V

Fig. 2. Hierarchy with component sets U and V , partition p, and dependencies.

consistent with dependencies expressed in g⊥. This approach can be repeated to
produce component hierarchies, each time coalescing sets of finer-grained depen-
dencies into single coarser-grained dependencies. Figure 2 illustrates a two-level
hierarchy and its component dependencies.

Some change impact analysis techniques consider both fine-grained and coarse-
grained component levels [11, 46, 60]. A key idea behind these techniques is to
exploit the relationships between vertices across granularity levels. In particular,
if a vertex u ∈ U is unmodified after a change, we may be able to immediately
conclude that all vertices v ∈ p(u) are unmodified as well, potentially ruling out
that a large subset of V is impacted. In this section, we formalize this intuition
using our existing notions to express hierarchical change impact analysis.

5.1 Formal Model of Hierarchies

Let f⊥ and f ′
⊥
be the functions mapping vertices to artifacts for V and V ′ with

V ⊆ V ′, and let f⊤ and f ′
⊤

be the corresponding functions for U and U ′ with
U ⊆ U ′. Let p and p′ be partition-inducing functions from U and U ′ to subsets
of V and V ′, respectively. We make the following assumptions:

H1: For all u, u′ ∈ U and v, v′ ∈ V , if u 6= u′, g⊥(v, v
′), v ∈ p(u), and v′ ∈ p(u′),

then g⊤(u, u
′).

H2: For all u ∈ U , if f⊤(u) = f ′
⊤
(u), then p(u) = p′(u).

H3: For all u ∈ U and v ∈ V , if f⊤(u) = f ′
⊤
(u) and v ∈ p(u), then f⊥(v) = f ′

⊥
(v).

Intuitively, H1 expresses that whenever two fine-grained components that reside
in different coarse-grained components are related, there must be a correspond-
ing relation between their respective coarse-grained components. H2 expresses
that whenever a coarse-grained component is unchanged, it contains the same
fine-grained components as before. Finally, H3 expresses that a fine-grained com-
ponent is unchanged if the coarse-grained component that contains it is un-
changed. Under these assumptions, there are essentially two distinct strategies
we can use to leverage impact analysis for coarse-grained components to analyze
fine-grained components.
Overapproximation strategy: Let U ′

i be the set of impacted and fresh vertices
in U ′, computed as above without considering vertices in V ′. Consider the set
V ′
p =

⋃

u∈U ′

i

p′(u) which contains fresh and potentially impacted vertices in V ′.

10 K. Palmskog et al.

Executing all checkable vertices in V ′
p may perform needless work for unimpacted

vertices, but completely elides analysis of g⊥. This approach essentially corre-
sponds to relying on comparing whole files to decide whether to rerun commands
that operate on every component inside these files, as in make.
Compositional strategy: Let Ui be the set of impacted vertices in U , com-
puted as above. Consider the set Vp =

⋃

u∈Ui
p(u) of potentially impacted ver-

tices in V . We use this set to scope further analysis. In particular, we use the
subgraph gp of g⊥ induced by Vp to precisely find the impacted vertices in V .
While unimpacted vertices are then avoided, the additional analysis of gp may
be time-consuming to perform compared to the first strategy. At a high level,
this strategy corresponds to the one used in RPS [11] and hybrid RTS [60].

5.2 Encoding and Correctness in Coq

To encode hierachical analysis, we use finite types and functions (now suffixed by
top and bot) in the same way as before, while adding partitioning assumptions:

Vars (p : U → {set V}) (p’ : U’ → {set V’}).
Hyp p_pt : partition (\bigcup_(u | u \in U) [set (p u)]) [set: V].
Hyp p’_pt : partition (\bigcup_(u | u \in U’) [set (p’ u)]) [set: V’].

For the overapproximation strategy, we first define impacted sets:

Def if_top : {set U’} := impacted_fresh_V’ f’_top f_top g_top.
Def p’_if_bot : {set V’} := \bigcup_(u | u \in if_top) (p’ u).

Under the assumptions outlined above, we then show formally that p’_if_bot is
a superset of the results of analysis of V, V’ , and the graph g_bot:

Thm in_p’ (v : V’) : v \in impacted_fresh_V’ f’_bot f_bot g_bot → v \in p’_if_bot.

The key fact we use to prove this theorem is the following:

Thm connect_top_bot v v’ u u’ : v \in (p u) → v’ \in (p u’) →
connect g_bot v v’ → connect g_top u u’.

To encode the compositional strategy, we first define impacted sets:

Def i_top : {set U} := impacted g_top−1 (mod_V f’_top f_top).
Def p_i_bot : {set V} := \bigcup_(u | u \in i_top) (p u).

Then, we define a subtype and accompanying graph:

Def P_V_sub : pred V := fun v ⇒ v \in p_i_bot.
Def V_sub : finType := sig_finType P_V_sub.
Def g_bot_sub : rel V_sub := [rel x y | g_bot (val x) (val y)].

This allows us to use our previously defined analysis functions compositionally:

Def mod_V_sub := [set v : V_sub | val v \in mod_V f’_bot f_bot].
Def impacted_V_sub := impacted g_bot_sub−1 mod_V_sub.
Def impacted_V’_sub := [set val (val v) | v in impacted_V_sub].
Def impacted_fresh_V’_sub := impacted_V’_sub :|: fresh_V’ P_bot.

We finally show that the last set is the same as the one we would have obtained
by directly analysing the graph g_bot:

Practical Machine-Checked Formalization of Change Impact Analysis 11

Thm impacted_fresh_V’_sub_eq :
impacted_fresh_V’_sub = impacted_fresh_V’ f’_bot f_bot g_bot.

Using these definitions and results, we proved soundness and completeness for
both strategies using the same approach as in Section 4.2.

6 Tool Implementation

While our core definitions of change impact analysis described in Section 4 are
executable inside Coq, this does not mean they are efficient or that code ex-
tracted from the definitions is immediately usable. We describe two aspects of
bringing verified Coq code into our tool Chip: optimizations and encapsulation.

6.1 Optimizations

Our basic transitive closure function impacted is simple to reason about but not
particularly fast in practice, since it fully explores the closures of all elements
in the set of modified vertices. To mitigate this, we refined the function by
leveraging the depth-first search function dfs from the fingraph MC module
to incrementally compute the closure. dfs takes a graph as a function from
vertices to neighbor sequences and a depth bound, and terminates as soon as it
encounters a known vertex. We perform a stack-efficient left fold with dfs over
an input sequence of vertices:

Def clos (l : seq V) : seq V := foldl (dfs g #|V|) [::] l.

Note that we set the dfs depth bound to the number of elements in the finite
type V (written #|V|) to fully explore the graph g. However, one limitation of the
MC dfs function is its linear-time sequence membership lookups. We therefore
defined a better closure function with logarithmic membership lookup time using
sets backed by red-black trees as found in the Coq standard library [2, 23]:

Fixpoint sdfs (g : V → seq V) (n : nat) (s : RBT.t) (x : V) : RBT.t :=
if RBT.mem x s then s else

if n is n’.+1 then foldl (sdfs g n’) (RBT.add x s) (g x) else s.
Def sclos (l : seq V) : seq V := RBT.elements (foldl (sdfs g #|V|) RBT.empty l).

We used this closure function to define a function seq_impacted_fresh which we
proved extensionally equivalent to impacted_fresh_V’ defined in Section 4.1. We
also added many custom extraction directives in Coq to ensure the extracted
code uses efficient OCaml library functions, e.g., for list operations [22].

6.2 Encapsulation

Before extraction to OCaml, we instantiate the finite types for graph vertices
to ordinal finite types, which intuitively contain all natural numbers from 0 up
to (but not including) some bound k. These numbers can then become machine
integers during extraction, which allows us to provide a simple OCaml interface:

val impacted_fresh : int -> int -> (int -> string) ->

(int -> string) -> (int -> int list) -> int list

12 K. Palmskog et al.

Here, the first argument is the number of vertices in the new graph, while the
second is the number of vertices in the old graph. After these integers follow two
functions that map new and old vertices, respectively, to their artifacts in the
form of OCaml strings. Then comes a function that defines the adjacent vertices
of vertices in the old graph. The result is a list of impacted and fresh vertices.

Not all computationally meaningful types in Coq can be directly represented
in OCaml’s type system. Some function calls must therefore circumvent the type
system by using calls to the special Obj.magic function [40]. We use this approach
in our implementation of the above interface:

let impacted_fresh num_new num_old f’ f succs =

Obj.magic (ordinal_seq_impacted_fresh num_new num_old

(Obj.magic (fun x -> char_list_of_string (f’ x)))

(Obj.magic (fun x -> char_list_of_string (f x)))

(Obj.magic succs))

The interface and implementation for two-level compositional hierarchical se-
lection is a straightforward extension, with an additional argument p of type
int -> int list for between-level partitioning.

7 Evaluation of the Model

To evaluate our model and its Coq encoding, we performed an empirical study
by integrating Chip with a recently developed RTS tool, Ekstazi, one RPS
tool, iCoq, and one build system, Tup. We then ran the modified RTS tool on
open-source Java projects used to evaluate RTS techniques [26,37], the modified
RPS tool on Coq projects used in its evaluation [11], and the modified build
system on C/C++ projects. Finally, we compared the outcomes and running
times with those for the unmodified versions of Ekstazi, iCoq, and Tup.

7.1 Tool Integration

Integrating Chip with Ekstazi was challenging, since Ekstazi collects depen-
dencies dynamically and builds only a flat list of dependencies rather than an
explicit graph. To overcome this limitation, we modified Ekstazi to build an ex-
plicit graph by maintaining a mapping from method callers to their callees. The
integration with iCoq was also challenging because of the need for hierarchical
selection of proofs and support for deletion of dependency graph vertices. We
handle deletion of a vertex in iCoq by temporarily adding it to the new graph
with a different artifact (checksum) from before, marked as non-checkable; then,
after selection, we purge the vertex. In contrast, the integration with Tup was
straightforward, since Tup stores dependencies in an SQLite database. We sim-
ply query this database to obtain a graph in the format expected by Chip.

7.2 Projects

RTS: We use 10 GitHub projects. Table 1 (top) shows the name of each project,
the number of lines of code (LOC) and the number of tests in the latest version
control revision we used in our experiments, the SHA of the latest revision, and

Practical Machine-Checked Formalization of Change Impact Analysis 13

Table 1. List of Projects Used in the Evaluation (RTS at the Top, RPS in the Middle,
and Tup at the Bottom).

Project LOC #Tests SHA URL (github.com/)

Asterisk 57,219 257 e36c655f asterisk-java/asterisk-java
Codec 22,009 887 58860269 apache/commons-codec
Collections 66,356 24,589 d83572be apache/commons-collections
Lang 81,533 4,119 c3de2d69 apache/commons-lang
Math 186,388 4,858 eb57d6d4 apache/commons-math
GraphHopper 70,615 1,544 14d2d670 graphhopper/graphhopper
La4j 13,823 799 e77dca70 vkostyukov/la4j
Planner 82,633 398 f12e8600 opentripplanner/OpenTripPlanner
Retrofit 20,476 603 7a0251cc square/retrofit
Truth 29,591 1,448 14f72f73 google/truth

Total 630,643 39,502 N/A N/A

Project LOC #Proofs SHA URL

Flocq 33,544 943 4161c990 gitlab.inria.fr/flocq/flocq
StructTact 2,497 187 8f1bc10a github.com/uwplse/StructTact
UniMath 45,638 755 5e525f08 github.com/UniMath/UniMath
Verdi 57,181 2,784 15be6f61 github.com/uwplse/Verdi

Total 138,860 4,669 N/A N/A

Project LOC #Cmds SHA URL (github.com/)

guardcheader 656 5 dbd1c0f kalrish/guardcheader
LazyIterator 1,276 18 d5f0b64 matthiasvegh/LazyIterator
libhash 347 10 b22c27e fourier/libhash
Redis 162,366 213 39c70e7 antirez/redis
Shaman 925 7 73c048d HalosGhost/shaman
Tup 200,135 86 f77dbd4 gittup/tup

Total 365,705 339 N/A N/A

URL on GitHub. We chose these projects because they are popular Java proj-
ects (in terms of stars) on GitHub, use the Maven build system (supported by
Ekstazi), and were recently used in RTS research [37,60].
RPS: We use 4 Coq projects. Table 1 (middle) shows the name of each project,
the number of LOC and the number of proofs in the latest revision we used,
the latest revision SHA, and URL. We chose these projects because they were
used in the evaluation of iCoq [11]; as in that evaluation, we used 10 revisions
of StructTact and 24 revisions of the other projects.
Build system: We use 6 GitHub projects. Table 1 (bottom) shows the name
of each project, the number of LOC and the number of build commands in
the latest revision we used, the latest revision SHA, and URL. We chose these
projects from the limited set of projects on GitHub that use Tup. We looked
for projects that could be built successfully and had at least five revisions; the
largest project that met these requirements, in terms of LOC, was Tup itself.

7.3 Experimental Setup

Our experimental setup closely follows recent work on RTS [37, 60]. That is,
our scripts (1) clone one of the projects; (2) integrate the (modified) Ekstazi,
iCoq, or Tup; and (3) execute tests on, check proofs for, or build the (up to) 24
latest revisions. For each run, we recorded the end-to-end execution time, which
includes time for the entire build run. We also recorded the execution time for
change impact analysis alone. Finally, we recorded the number of executed tests,

14 K. Palmskog et al.

Table 2. Execution Time and CIA Time in Seconds for Ekstazi and Chip.

Project
Total CIA

RetestAll Ekstazi Chip Ekstazi Chip

Asterisk 461.92 188.67 194.65 2.74 6.51
Codec 896.00 135.11 136.35 2.44 4.10
Collections 2,754.99 342.07 350.95 2.87 9.31
Lang 1,844.19 359.36 367.16 2.71 8.68
Math 2,578.09 1,459.98 1,495.71 1.79 7.13
GraphHopper 1,871.01 423.63 449.94 11.19 21.33
La4j 272.96 202.10 209.41 1.12 3.91
Planner 4,811.63 1,144.09 1,228.61 40.62 89.17
Retrofit 1,181.09 722.14 747.76 11.30 19.97
Truth 745.11 700.26 724.22 3.03 8.82

Total 17,416.99 5,677.41 5,904.76 79.81 178.93

Table 3. Execution/CIA Time in Seconds for iCoq and Chip.

Project
Total CIA

RecheckAll iCoq Chip iCoq Chip

Flocq 1,028.01 313.08 318.19 50.65 53.43
StructTact 45.86 43.90 44.49 14.45 14.98
UniMath 14,989.09 1,910.56 2,026.75 124.79 239.12
Verdi 37,792.07 3,604.23 4,637.27 139.09 1,171.57

Total 53,855.03 5,871.76 7,026.70 328.98 1,479.10

proofs, or commands, which we use to verify the correctness of the results, i.e.,
we checked that the results for the unmodified tool and Chip were equivalent.
We ran all experiments on a 4-core Intel i7-6700 CPU @ 3.40GHz machine with
16GB of RAM, running Ubuntu Linux 17.04. We confirmed that the execution
time for each experiment was similar across several runs.

7.4 Results

RTS: Table 2 shows the execution times for Ekstazi. Column 1 shows the
names of the projects. Columns 2 to 4 show the cumulative end-to-end time for
RetestAll (i.e., running all tests at each revision), the unmodified RTS tool, and
the RTS tool with Chip. Columns 5 and 6 show the cumulative time for change
impact analysis (CIA time). The last row in the table shows the cumulative ex-
ecution time across all projects. We have several findings. First, Ekstazi with
Chip performs significantly better than RetestAll, and only slightly worse than
the unmodified tool. Considering that we did not prioritize optimizing the inte-
gration, we believe that the current execution time differences are small. Second,
the CIA time using Chip is slightly higher than the CIA time for the unmodified
tool, but we believe this could be addressed by integrating Chip via the Java
Native Interface (JNI). The selected tests for all projects and revisions were the
same for the unmodified Ekstazi and Ekstazi with Chip.
RPS: Table 3 shows the total proof checking time for iCoq and the CIA time
for iCoq and Chip. All time values are cumulative time across all the revi-
sions we used. We find that iCoq with Chip has only marginal differences in
performance from iCoq for all but the largest project, Verdi. While iCoq with

Practical Machine-Checked Formalization of Change Impact Analysis 15

Chip is notably slower in that case, it still saves a significant fraction of time
from checking every revision from scratch (RecheckAll). StructTact is an outlier
in that RecheckAll is actually faster than both iCoq and iCoq with Chip, due
to the overhead from bookkeeping and graph processing in comparison to the
project’s relatively small size. The selected proofs for all projects and revisions
were the same for the unmodified iCoq and iCoq with Chip.

Table 4. Execution Time in
Milliseconds for Tup and Chip.

Project Tup
CIA

Tup Chip

guardcheader 20,358 1,788 1,785
LazyIterator 61,476 869 1,007
libhash 15,279 433 446
Redis 68,076 1,919 4,779
Shaman 8,702 609 614
Tup 87,547 1,949 4,168

Total 261,438 7,567 12,799

Build system: Table 4 shows the total execu-
tion time for Tup and the CIA time for Tup

and Chip. All time values are cumulative time
across all the revisions we used. Unfortunately,
the build time for most of the projects is short.
However, we can still observe that Chip takes
only slightly more time than the original tool to
perform change impact analysis. In the future,
we plan to evaluate our toolchain on larger proj-
ects. The lists of commands for all projects and
all revisions were the same for the unmodified Tup and Tup with Chip.

Overall, we believe these results indicate that our formal model is practically
relevant and that it is feasible to use Chip as a verified component for change
impact analysis in real-world tools.

8 Related Work

Formalizations of graph algorithms: Pottier [49] encoded and verified Kosa-
raju’s algorithm for computing strongly connected graph components in Coq. He
also derived a practical program for depth-first search by extracting Coq code
to OCaml, demonstrating the feasibility of extraction for graph-based programs.
Théry subsequently formalized a similar encoding of Kosaraju’s algorithm in
Coq using the MC fingraph module [56]. Théry and Cohen then formalized
and proved correct Tarjan’s algorithm for computing strongly connected graph
components in Coq [13,16]. Our formalization takes inspiration from Théry and
Cohen’s work, and adapts some of their definitions and results in a more applied
context, with focus on performance of extracted code. Similar graph algorithm
formalizations have also been done in the Isabelle/HOL proof assistant [35]. In
work particularly relevant to build systems, Guéneau et al. [32] verified both
the functional correctness and time complexity of an incremental graph cycle
detection algorithm in Coq. In contrast to our reasoning on pure functions and
use of extraction, they reason directly on imperative OCaml code.
Formalizations of build systems: Christakis et al. [15] formalized a general
build language called CloudMake in the Dafny verification tool. Their language
is a purely functional subset of JavaScript, and allows describing dependencies
between executions of tools and files. Having embedded their language in Dafny,
they verify that builds with cached files are equivalent to builds from scratch.
In contrast to the focus on generating files in CloudMake, we consider a formal
model with an explicit dependency graph and an operation check on vertices
whose output is not used as input to other operations. The CloudMake for-
malization assumes an arbitrary operation exec that can be instantiated using

16 K. Palmskog et al.

Dafny’s module refinement system; we use Coq section variables to achieve sim-
ilar parametrization for check . We view our Coq development as a library useful
to tool builders, rather than a separate language that imposes a specific idiom
for expressing dependencies and build operations.

Mokhov et al. [45] presented an analysis of several build systems, including
a definition what it means for such systems to be correct. Their correctness
formulation is similar to that of Christakis et al. for cached builds, and relies
on a notion of abstract persistent stores expressed via monads. Our vertices and
artifacts correspond quite closely to their notions of keys and values, respectively.
However, their basic concepts are given as Haskell code, which has less clear
meaning and a larger trusted base than Coq or Dafny code. Moreover, they
provide no formal proofs. Mokhov et al. [44] subsequently formalized in Haskell
a static analysis of build dependencies as used in the Dune build system.

Stores could be added to our model, e.g., by letting checkable vertices be
associated with commands that take lists of file names and the current store
state as parameters, producing a new state. However, this would in effect entail
defining a specific build language inside Coq, which we consider outside the scope
of our library and tool.

9 Conclusion

We presented a formalization of change impact analysis and its encoding and
correctness proofs in the Coq proof assistant. Our formal model uses finite sets
and graphs to capture system components and their interdependencies before
and after a change to a system. We locate impacted vertices that represent,
e.g., tests to be run or build commands to be executed, by computing transitive
closures in the pre-change dependency graph. We also considered two strategies
for change impact analysis of hierarchical systems of components. We extracted
optimized impact analysis functions in Coq to executable OCaml code, yielding
a verified tool dubbed Chip. We then integrated Chip with a regression test
selection tool for Java, Ekstazi, one regression proof selection tool for Coq
itself, iCoq, and one build system, Tup, by replacing their existing components
for impact analysis. We evaluated the resulting toolchains on several open-source
projects by comparing the outcome and running time to those for the respective
original tools. Our results show the same outcomes with only small differences
in running time, corroborating the adequacy of our model and the feasibility of
practical verified tools for impact analysis. We also believe our Coq library can
be used as a basis for proving correct domain-specific incremental techniques
that rely on change impact analysis, e.g., regression test selection for Java and
regression proof selection for type theories.

Acknowledgments

The authors thank Ben Buhse, Cyril Cohen, Pengyu Nie, Zachary Tatlock,
Thomas Wei, Chenguang Zhu, and the anonymous reviewers for their comments
and feedback on this work. This work was partially supported by the US National
Science Foundation under Grant No. CCF-1652517.

Practical Machine-Checked Formalization of Change Impact Analysis 17

References

1. Acharya, M., Robinson, B.: Practical change impact analysis based on static
program slicing for industrial software systems. In: International Conference
on Software Engineering. pp. 746–755. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1985793.1985898

2. Appel, A.W.: Efficient verified red-black trees (2011), https://www.cs.princeton.
edu/∼appel/papers/redblack.pdf, last accessed 21 Feb 2020.

3. Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society, Los
Alamitos, CA, USA (1996)

4. Arnold, R.S., Bohner, S.A.: Impact analysis - towards a framework
for comparison. In: International Conference on Software Maintenance.
pp. 292–301. IEEE Computer Society, Washington, DC, USA (1993).
https://doi.org/10.1109/ICSM.1993.366933

5. Bazel team: Bazel Blog, https://blog.bazel.build, last accessed 20 Feb 2020.
6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:

Coq’Art: the calculus of inductive constructions. Springer, Heidelberg, Germany
(2004). https://doi.org/10.1007/978-3-662-07964-5

7. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) International Conference on Theorem
Proving in Higher Order Logics. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg,
Germany (2008). https://doi.org/10.1007/978-3-540-71067-7 11

8. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and sockets. In: SIGCOMM Conference. pp. 265–276.
ACM, New York, NY, USA (2005). https://doi.org/10.1145/1080091.1080123

9. Boutin, S.: Using reflection to build efficient and certified decision proce-
dures. In: Abadi, M., Ito, T. (eds.) Theoretical Aspects of Computer Soft-
ware. LNCS, vol. 1281, pp. 515–529. Springer, Heidelberg, Germany (1997).
https://doi.org/10.1007/BFb0014565

10. Cai, H., Santelices, R.: A comprehensive study of the predictive accuracy
of dynamic change-impact analysis. J. Syst. Softw. 103(C), 248–265 (2015).
https://doi.org/10.1016/j.jss.2015.02.018

11. Celik, A., Palmskog, K., Gligoric, M.: iCoq: Regression proof selection for large-
scale verification projects. In: International Conference on Automated Software
Engineering. pp. 171–182. IEEE Computer Society, Washington, DC, USA (2017).
https://doi.org/10.1109/ASE.2017.8115630

12. Celik, A., Palmskog, K., Gligoric, M.: A regression proof selection tool for Coq. In:
International Conference on Software Engineering, Tool Demonstrations. pp. 117–
120. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3183440.3183493

13. Chen, R., Cohen, C., Lévy, J.J., Merz, S., Théry, L.: Formal Proofs of Tarjan’s
Strongly Connected Components Algorithm in Why3, Coq and Isabelle. In: Har-
rison, J., O’Leary, J., Tolmach, A. (eds.) International Conference on Interactive
Theorem Proving. pp. 13:1–13:19. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.13

14. Chodorow, K.: Trimming the (build) tree with Bazel, https://www.kchodorow.
com/blog/2015/07/23/trimming-the-build-tree-with-bazel/, last accessed 20 Feb
2020.

15. Christakis, M., Leino, K.R.M., Schulte, W.: Formalizing and verifying a modern
build language. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) Symposium on For-

18 K. Palmskog et al.

mal Methods. LNCS, vol. 8442, pp. 643–657. Springer, Cham, Switzerland (2014).
https://doi.org/10.1007/978-3-319-06410-9 43

16. Cohen, C., Théry, L.: Formalization of Tarjan 72 algorithm in Coq with Math-
ematical Components and SSReflect, https://github.com/CohenCyril/tarjan, last
accessed 21 Feb 2020.

17. Coquand, T., Huet, G.: The calculus of constructions. Information and Computa-
tion 76(2), 95–120 (1988). https://doi.org/10.1016/0890-5401(88)90005-3

18. Coquand, T., Paulin-Mohrin, C.: Inductively defined types. In: Martin-Löf, P.,
Mints, G. (eds.) International Conference on Computer Logic. LNCS, vol. 417,
pp. 50–66. Springer, Heidelberg, Germany (1990). https://doi.org/10.1007/3-540-
52335-9 47

19. Cruz-Filipe, L., Letouzey, P.: A large-scale experiment in executing extracted pro-
grams. Electronic Notes in Theoretical Computer Science 151(1), 75–91 (2006).
https://doi.org/10.1016/j.entcs.2005.11.024

20. Delaware, B., Suriyakarn, S., Pit-Claudel, C., Ye, Q., Chlipala, A.: Narcissus:
Correct-by-construction derivation of decoders and encoders from binary formats.
Proc. ACM Program. Lang. 3(ICFP) (2019). https://doi.org/10.1145/3341686

21. Esfahani, H., Fietz, J., Ke, Q., Kolomiets, A., Lan, E., Mavrinac, E., Schulte,
W., Sanches, N., Kandula, S.: CloudBuild: Microsoft’s distributed and caching
build service. In: International Conference on Software Engineering, Soft-
ware Engineering in Practice. pp. 11–20. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2889160.2889222

22. ExtLib team: OCaml Extended standard Library, https://github.com/ygrek/
ocaml-extlib, last accessed 20 Feb 2020.

23. Filliâtre, J.C., Letouzey, P.: Functors for proofs and programs. In: Schmidt, D. (ed.)
European Symposium on Programming. LNCS, vol. 2986, pp. 370–384. Springer,
Heidelberg, Germany (2004). https://doi.org/10.1007/978-3-540-24725-8 26

24. Fonseca, P., Zhang, K., Wang, X., Krishnamurthy, A.: An empirical study on
the correctness of formally verified distributed systems. In: European Confer-
ence on Computer Systems. pp. 328–343. ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3064176.3064183

25. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Interna-
tional Conference on Theorem Proving in Higher Order Logics. LNCS, vol. 5674,
pp. 327–342. Springer, Heidelberg, Germany (2009). https://doi.org/10.1007/978-
3-642-03359-9 23

26. Gligoric, M., Eloussi, L., Marinov, D.: Practical regression test selection
with dynamic file dependencies. In: International Symposium on Software
Testing and Analysis. pp. 211–222. ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2771783.2771784

27. Gligoric, M., Schulte, W., Prasad, C., van Velzen, D., Narasamdya, I., Livshits,
B.: Automated migration of build scripts using dynamic analysis and search-
based refactoring. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications. pp. 599–616. ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2714064.2660239

28. Gonthier, G.: Formal proof—the four-color theorem. Notices of the American
Mathematical Society 55(11), 1382–1393 (2008), http://www.ams.org/notices/
200811/tx081101382p.pdf

29. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,
S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev,

Practical Machine-Checked Formalization of Change Impact Analysis 19

A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) International Conference on
Interactive Theorem Proving. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg,
Germany (2013). https://doi.org/10.1007/978-3-642-39634-2 14

30. Gonthier, G., Mahboubi, A.: An introduction to small scale reflec-
tion in Coq. Journal of Formalized Reasoning 3(2), 95–152 (2010).
https://doi.org/10.6092/issn.1972-5787/1979

31. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad
hoc proof automation less ad hoc. In: International Conference on Func-
tional Programming. pp. 163–175. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2034773.2034798

32. Guéneau, A., Jourdan, J.H., Charguéraud, A., Pottier, F.: Formal proof and
analysis of an incremental cycle detection algorithm. In: Harrison, J., O’Leary,
J., Tolmach, A. (eds.) International Conference on Interactive Theorem Proving.
pp. 18:1–18:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.18

33. Kell, S., Mulligan, D.P., Sewell, P.: The missing link: Explaining ELF static
linking, semantically. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications. pp. 607–623. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2983990.2983996

34. Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: Op-
portunities, applications, and challenges. In: Workshop on Future of Soft-
ware Engineering Research. pp. 201–204. ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1882362.1882405

35. Lammich, P., Neumann, R.: A framework for verifying depth-first search algo-
rithms. In: Conference on Certified Programs and Proofs. pp. 137–146. ACM, New
York, NY, USA (2015). https://doi.org/10.1145/2676724.2693165

36. Law, J., Rothermel, G.: Whole program path-based dynamic im-
pact analysis. In: International Conference on Software Engineering.
pp. 308–318. IEEE Computer Society, Washington, DC, USA (2003).
https://doi.org/10.1109/ICSE.2003.1201210

37. Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., Marinov, D.: An extensive
study of static regression test selection in modern software evolution. In: Inter-
national Symposium on Foundations of Software Engineering. pp. 583–594. ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2950290.2950361

38. Lehnert, S.: A review of software change impact analysis. Tech. rep., Technis-
che Universität Ilmenau, Ilmenau, Germany (2011), https://nbn-resolving.org/urn:
nbn:de:gbv:ilm1-2011200618

39. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

40. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) Types
for Proofs and Programs. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg,
Germany (2003). https://doi.org/10.1007/3-540-39185-1 12

41. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: International Symposium on Foundations of Software Engineering. pp. 643–653.
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2635868.2635920

42. MathComp team: Mathematical Components project, https://math-comp.github.
io, last accessed 20 Feb 2020.

43. Mitchell, N.: Shake before building: Replacing Make with Haskell. In: International
Conference on Functional Programming. pp. 55–66. ACM, New York, NY, USA
(2012). https://doi.org/10.1145/2364527.2364538

20 K. Palmskog et al.

44. Mokhov, A., Lukyanov, G., Marlow, S., Dimino, J.: Selective applica-
tive functors. Proc. ACM Program. Lang. 3(ICFP), 90:1–90:29 (2019).
https://doi.org/10.1145/3341694

45. Mokhov, A., Mitchell, N., Peyton Jones, S.: Build systems à la carte. Proc. ACM
Program. Lang. 2(ICFP), 79:1–79:29 (2018). https://doi.org/10.1145/3236774

46. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large
software systems. In: International Symposium on Foundations of Soft-
ware Engineering. pp. 241–251. ACM, New York, NY, USA (2004).
https://doi.org/10.1145/1041685.1029928

47. Palmskog, K., Celik, A., Gligoric, M.: Chip code release 1.0, https://github.com/
palmskog/chip/releases/tag/v1.0, last accessed 20 Feb 2020.

48. Pollock, L.L., Soffa, M.L.: Incremental compilation of optimized code. In: Sym-
posium on Principles of Programming Languages. pp. 152–164. ACM, New York,
NY, USA (1985). https://doi.org/10.1145/318593.318629

49. Pottier, F.: Depth-first search and strong connectivity in Coq. In: Baelde, D.,
Alglave, J. (eds.) Journées francophones des langages applicatifs (JFLA). Le Val
d’Ajol, France (2015), https://hal.inria.fr/hal-01096354

50. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: A tool for change
impact analysis of Java programs. In: Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. pp. 432–448. ACM, New York, NY,
USA (2004). https://doi.org/10.1145/1028976.1029012

51. Rothermel, G.: Efficient, Effective Regression Testing Using Safe Test Selection
Techniques. Ph.D. thesis, Clemson University, Clemson, SC, USA (1996)

52. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
Transactions on Software Engineering and Methodology 6(2), 173–210 (1997).
https://doi.org/10.1145/248233.248262

53. Rungta, N., Person, S., Branchaud, J.: A change impact analysis to character-
ize evolving program behaviors. In: International Conference on Software Main-
tenance. pp. 109–118. IEEE Computer Society, Washington, DC, USA (2012).
https://doi.org/10.1109/ICSM.2012.6405261

54. Shal, M.: Build system rules and algorithms (2009), http://gittup.org/tup/build
system rules and algorithms.pdf, last accessed 21 Feb 2020.

55. Skoglund, M., Runeson, P.: Improving class firewall regression test se-
lection by removing the class firewall. International Journal of Soft-
ware Engineering and Knowledge Engineering 17(3), 359–378 (2007).
https://doi.org/10.1142/S0218194007003306

56. Théry, L.: Formally-Proven Kosaraju’s algorithm (2015), https://hal.
archives-ouvertes.fr/hal-01095533, last accessed 21 Feb 2020.

57. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the Raft consensus protocol. In: Conference on
Certified Programs and Proofs. pp. 154–165. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2854065.2854081

58. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding
bugs in C compilers. In: Conference on Programming Language Design
and Implementation. pp. 283–294. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1993498.1993532

59. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
A survey. Journal of Software Testing, Verification and Reliability 22(2), 67–120
(2012). https://doi.org/10.1002/stvr.430

Practical Machine-Checked Formalization of Change Impact Analysis 21

60. Zhang, L.: Hybrid regression test selection. In: International Conference on
Software Engineering. pp. 199–209. ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3180155.3180198

61. Zhang, L., Kim, M., Khurshid, S.: FaultTracer: a spectrum-based approach to lo-
calizing failure-inducing program edits. Journal of Software: Evolution and Process
25, 1357–1383 (2013). https://doi.org/10.1002/smr.1634

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

	Practical Machine-Checked Formalization of Change Impact Analysis

