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Abstract

Endosomal trafficking of receptors and associated proteins plays a critical role in signal pro-
cessing. Until recently, it was thought that trafficking was shut down during cell division.
Thus, remarkably, the regulation of trafficking during division remains poorly characterized.
Here we delineate the role of mitotic kinases in receptor trafficking during asymmetric divi-
sion. Targeted perturbations reveal that Cyclin-dependent Kinase 1 (CDK1) and Aurora
Kinase promote storage of Fibroblast Growth Factor Receptors (FGFRs) by suppressing
endosomal degradation and recycling pathways. As cells progress through metaphase, loss
of CDK1 activity permits differential degradation and targeted recycling of stored receptors,
leading to asymmetric induction. Mitotic receptor storage, as delineated in this study, may
facilitate rapid reestablishment of signaling competence in nascent daughter cells. However,
mutations that limit or enhance the release of stored signaling components could alter
daughter cell fate or behavior thereby promoting oncogenesis.

Introduction

Dividing cells undergo dynamic shifts in membrane trafficking. During mitotic entry, inter-
nalization of plasma membrane promotes cell rounding [1]. As cells exit mitosis, targeted recy-
cling promotes formation of the cytokinetic furrow [2,3]. Membrane and associated integral
membrane proteins are trafficked through a well-delineated system of endosomal compart-
ments [1,4]. In this endosomal trafficking network, Rab GTPases dictate compartment-specific
functions (Fig 1A). Newly endocytosed vesicles fuse to form early endosomes distinguished by
RAB4 and RAB5. These early endosomes can either recycle back to the plasma membrane
through RAB4-dependent fast recycling or mature into late endosomes through a RAB7-de-
pendent pathway. Recycling can also occur through a slow, RAB11-dependent pathway. Late
endosomes eventually fuse with lysosomes leading to degradation of integral membrane pro-
teins and other cargo [5]. Recent studies have provided some insights into trafficking during
mitotic exit, including a key role for RAB11-dependent effectors during assembly of the
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cytokinetic furrow [3,6-8]. However, trafficking during mitotic entry remains poorly charac-
terized. Bulk internalization during entry appears to be mediated by suppression of recycling
rather than an increase in endocytosis, but the specific endocytic pathways involved in entry
trafficking have not been identified [1].

Recent studies have begun to reveal essential roles for mitotic membrane trafficking in tis-
sue homeostasis and embryonic patterning. In the mammalian epidermis, symmetrically
dividing cells internalize Ceslrl (Cadherin EGF LAG seven-pass G-type receptor 1) and other
membrane proteins involved in planar cell polarization. Unbiased redistribution of these inter-
nalized proteins during mitotic exit appears to be critical for reintegration of dividing cells
into the epithelium [9]. In the developing wing of Drosophila embryos, unbiased redistribution
of transforming growth factor beta (TGF-B) receptors internalized during mitotic entry
ensures proper patterning [10]. In a range of asymmetrically dividing embryonic and stem cell
lineages, integral membrane proteins involved in Notch signaling are internalized during
mitosis [11-13]. Biased redistribution of these signaling components during mitotic exit
underlies asymmetric fate specification. Despite the importance of mitotic trafficking in
embryonic patterning and tissue integrity, insights into the regulatory hierarchy choreograph-
ing the uptake and redistribution of signaling components remain extremely limited.

Mitosis is choreographed by 3 major classes of mitotic kinases, CDK1, Aurora Kinases
(AurKs), and Polo-like Kinases (PLKs) [14]. During mitotic entry, these kinases regulate a diverse
set of cellular processes required for spindle assembly, centrosome dynamics, chromatid separa-
tion, and cytokinesis. As cells progress through metaphase, Cyclin B is degraded, and the resulting
loss of CDK1 activity is critical for promoting exit-specific cellular processes. Remarkably, due in
part to the long-standing assumption that trafficking was shut down during mitosis [2,3,15-17],
very few studies have addressed the regulatory roles of these kinases in mitotic trafficking. Excep-
tions include research on the mammalian epidermis demonstrating that PLK1-dependent phos-
phorylation of the planar cell polarity protein Celsr1 mediates mitotic internalization [18]. In
yeast, PLK1 has also been reported to phosphorylate ESCRT (endosomal sorting complexes
required for transport) proteins required for septation [19]. Poor characterization of the regula-
tory links between mitotic kinases and division-specific trafficking patterns represents a funda-
mental gap in our understanding of the interplay between cell division and signaling.

We have begun to address this gap by studying cranial-cardiac progenitor specification in
the invertebrate chordate, Ciona intestinalis (Type A, also referred to as Ciona robusta). In
Ciona embryos, the heart is derived from a set of 4 precardiac founder cells. Each founder cell
divides asymmetrically to produce 1 cranial-cardiac progenitor (or trunk ventral cell, TVC)
and 1 tail muscle progenitor (Fig 1A; [20,21]). Fibroblast Growth Factor (FGF) receptors are
unequally distributed during founder cell division [20]. Immediately following division, differ-
ential inheritance of FGF receptors generates asymmetric FGF-dependent induction of cra-
nial-cardiac progenitor cell fate [21-23]. Localized cell-matrix adhesion biases mitotic FGFR
redistribution through localized retention and/or recycling of Caveolin-rich membrane
domains and associated FGF receptors [20]. By characterizing the regulation of mitotic FGFR
redistribution in Ciona founder cells, we aim to reveal more general mechanisms for mitotic
trafficking and explore how these mechanisms are biased during asymmetric divisions.

Results
FGF receptor distribution patterns during founder cell mitosis

We precisely quantified mitotic FGFR redistribution through volumetric analysis (Fig 1).
These assays were conducted using Mesp>FGFR::Venus transgenic embryos [21]. Because the
Mesp enhancer specifically drives transgene expression in the heart founder cell lineage, we
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A. Differential FGFR Redistribution During Founder Cell Division
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Fig 1. Mitotic trafficking of FGF receptors during founder cell division. (A) Models depicting differential FGFR (green) redistribution during asymmetric founder
cell division based on previous data (left panel) [20,41] along with a summary of endosomal pathways (right panel). For simplicity, schematics depict lateral views of a
single founder cell. Regions of actin enrichment (purple; [40].) and adherent membrane (yellow, [41]) are indicated. (B-B”) Transverse sections and graphical
summary depicting 3D-volumetric analysis of FGFR::VENUS distribution (quantified as regional enrichment; Methods) in a representative mitotic founder cell.
Lines indicate region boundaries (white). Scale bars are indicated in micrometers. (C-D) Diagrammatic and graphical summaries of regional FGFR::VENUS
enrichment (green) during founder cell division. Some regions are labeled with an a or b to denote that significant changes (p < 0.05) occurred within this region
across cell cycle stages. Other regions are labeled n.s. to denote that no significant changes occurred for the indicated stages. Sample numbers for each stage are as
follows: premitotic n = 50, prophase #n = 36, metaphase n = 17, anaphase n = 24, and post-mitotic n = 34. Significance was determined using one-way ANOVA
followed by Tukey multiple comparison test. Numerical values for all graphs can be found in S1 Data. ATM, Anterior Tail Muscle Cell; FGFR, Fibroblast Growth
Factor Receptor; TVC, Trunk ventral cell/Cranial-cardiac progenitor.

https://doi.org/10.1371/journal.pbio.3001029.9001

are able to analyze FGFR::VENUS distribution in vivo [20]. Thus, transverse sections (such as
Fig 1B) represent confocal stacks of mitotic founder cells that were dividing within intact
embryos (as illustrated in Fig 1A). Distribution patterns of transgenically expressed FGFR::
VENUS were assessed in 3 concentric regions (plasma membrane, peripheral cytoplasm, and
deep cytoplasm, Fig 1B-1B”; Methods). FGFR::VENUS expression in founder cells is very low,
precluding live imaging analysis (see Fig 31”). Instead, transgenic Mesp>FGFR::Venus embryos
were fixed at 15-min intervals spanning founder cell mitosis and costained with an anti-green
fluorescent protein (GFP) antibody to visualize FGFR::VENUS and a chromatin marker
(DRAQ5) to facilitate precise mitotic staging [20,22]. Volumetric analysis provided a rigorous
and highly reproducible measurement of FGFR::VENUS distribution at each cell cycle stage
that is not well represented by individual transverse sections. Thus, in this and subsequent fig-
ures, we focus on providing a complete set of graphical data (Fig 1C and 1D) rather than repre-
sentative confocal sections for each stage (Fig 1B). Through this analysis, we identified 3
significant, stage-specific shifts in FGFR distribution (Fig 1C and 1D). As founder cells entered
prophase, FGFR enrichment along the plasma membrane was dramatically reduced. As cells
progressed into metaphase, FGFR enrichment shifted from the peripheral to the deep cyto-
plasm. Thus, during mitotic entry, FGFR-enriched membranes were gradually internalized.
During mitotic exit, this trend was reversed as FGFR enrichment shifted from the deep cyto-
plasm to the plasma membrane-associated region. Our quantitative analysis demonstrates that
FGER distribution tightly correlates with mitotic progression. Critically, these mitotic patterns
of FGFR distribution are highly reproducible within stage-matched cells providing a robust
framework for further experimental analysis.

In order to determine whether FGFR redistribution is a mitotically regulated process, we
blocked founder cell division through targeted overexpression of a Ciona ortholog to Cyclin-
dependent Kinase Inhibitor/p27 (Mesp>Cdki-b/p27; [23,24]). Founder cells expressing CDKI-
b and FGFR::VENUS were fixed approximately 1 hour after control cells complete asymmetric
division (Hotta Stage 16; [22]). CDKI-b expression induced interphase arrest and blocked
FGEFR internalization (S1 Fig). Indeed, the FGFR distribution pattern in CDKI-b-expressing
founder cells at Stage 16 closely matched that of premitotic controls (Hotta Stage 14; S1 Fig).
Notably, arrested founder cells tended to undergo cranial-cardiac cell fate induction, indicat-
ing that mitotic internalization is not required for inductive signaling (S1 Fig). These results
indicate that temporal correlations between FGFR distribution patterns and mitotic stage
reflect a functional, regulatory relationship.

Endosomal pathways involved in mitotic redistribution of FGFR

We next began to investigate the endosomal pathways associated with each stage-specific shift
in FGFR distribution (Fig 2). Each shift correlated with discrete changes in colocalization
between labeled FGFR (FGFR::VENUS) and markers of late endosomes (CLIP:RAB7, Fig 2A-
2E”) or slow recycling endosomes (CLIP:RABI1, Fig 2D and 2F-2F"). In contrast, no
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Fig 2. Mitotic FGFR trafficking during founder cell division. (A-C’) Masked/thresholded transverse sections and graphical summary depicting 3D-volumetric
analysis of FGFR::VENUS/CLIP::RAB-GTPase colocalization (Manders’ overlap; MOC) in representative mitotic founder cells. Lines indicate region boundaries
(white). Scale bars are indicated in micrometers. (D) Graphical summary of regional FGFR::VENUS enrichment (green) and FGFR::VENUS/ CLIP:RAB-GTPase
colocalization (CLIP:RAB4, purple; CLIP::RAB7, orange; CLIP::RABI1, blue) during founder cell division. Some regions are labeled with an a or b to denote that
significant changes (p < 0.05) occurred within this region across stages. Other regions are labeled n.s. to denote that no significant changes occurred for the indicated
stages. (E-F’) Quantification of total (whole cell; E and F) and regional (E’-E”, F’-F””) FGFR::VENUS/ CLIP::RAB-GTPase colocalization during founder cell division
showing significant changes in RAB7 and RABI11 values. Significance was determined using one-way ANOVA followed by Tukey multiple comparison test.
Numerical values for all graphs can be found in S2 Data. (G) Model of mitotic FGFR trafficking illustrating stage-specific shifts as indicated. See also S2 Fig. FGFR,
Fibroblast Growth Factor Receptor; MOC, Manders’ overlap coefficient.

https://doi.org/10.1371/journal.pbio.3001029.g002

significant changes were observed in colocalization with a marker of fast recycling endosomes
(CLIP:RAB4; Fig 2D, S2 Fig). During prophase, whole cell colocalization between labeled
FGFR and RAB11 increased (Fig 2D and 2F). As cells entered metaphase, whole cell and deep
cytoplasmic FGFR/RAB? colocalization increased (Fig 2A, 2B’, 2D and 2E). During this phase,
FGFR/RABI11 whole cell colocalization remained stable (Fig 2F), but there was a significant
increase in deep cytoplasmic enrichment (Fig 2D and 2F”). This regional shift in RAB11 colo-
calization may reflect trafficking of existing FGFR-containing recycling endosomes toward the
spindle poles [23]. During anaphase, whole cell and deep cytoplasmic FGFR/RAB7 colocaliza-
tion decreased, while whole cell and peripheral FGFR/RAB11 colocalization increased (Fig
2A-2F7). As cells exited division, whole cell and peripheral FGFR/RAB11 colocalization
decreased (Fig 2D and 2F-2F”). Taken together, our colocalization data support a 3-part
model for mitotic FGFR trafficking (Fig 2G). FGF receptors are first internalized and stored in
slow recycling endosomes during prophase. During metaphase, stored receptors are either
retained in slow recycling endosomes or shunted to a maturation pathway. During mitotic
exit, receptors stored in slow recycling endosomes are returned to the plasma membrane,
while receptors stored in late endosomes are either recycled or degraded.

CDK1 suppresses FGFR degradation during mitotic entry

We next sought to investigate the role of the primary mitotic entry kinase, CDK1, in FGFR
trafficking (Fig 3). By treating late gastrulae (Hotta Stage 14) with a fast-acting CDK1 inhibitor
(roscovitine/seliciclib), we were able to block CDK1 activity in mitotic founder cells. Through
DRAQS5 staining, we were able to identify treated founder cells displaying chromatin conden-
sation, indicating that they had been arrested in prophase. We began investigating the impact
of this treatment on FGFR trafficking using transgenic Mesp>FGFR::Venus, Mesp>CLIP::
Rab7 embryos. Intriguingly, arrested founder cells displayed a dramatic decrease in FGFR::
VENUS staining (Fig 3A, 3B’ and 3E). To investigate whether the observed reduction in
FGFR::VENUS was a nonspecific result of mitotic arrest, we treated founder cells with AurK
inhibitors (Aurora A/B inhibitor: VX-680 or Pan-Aurora Kinase inhibitor: AMG-900).
Because these drugs act relatively slowly, we treated embryos just prior to founder cell division
(Hotta Stage 13). Treatment with either inhibitor at this stage resulted in prophase arrest, but
there was no discernable reduction in FGFR::VENUS staining (VX680, Fig 3C-3C’). We used
the same assay to examine the impact of roscovitine treatment on another integral membrane
protein, E-CADHERIN::GFP (Mesp>E-Cadherin::GFP; Fig 3F-3H). In contrast with the
FGFR::VENUS results, roscovitine treatment had no discernable impact on E-CADHERIN::
GFP staining. Thus, it appears that CDK1 stabilizes a subset of membrane proteins during
mitotic entry rather than having a global, nonspecific impact.

Based on these results, we hypothesized that CDK1 activity promotes FGFR storage by sup-
pressing lysosomal degradation. To test this hypothesis, we inhibited lysosomal degradation in
founder cells through targeted expression of a dominant-negative form of the homotypic
fusion and protein sorting (HOPS) complex subunit VAM2 (Mesp>HALO::Vam2421 84l
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Fig 3. CDKI1 inhibits lysosomal degradation of FGFR. (A-D’) Ventral projections of founder cell pairs electroporated with Mesp>FGFR::Venus alone or in
combination with Mesp>HALO::Vam2421'841 as indicated and treated with vehicle (DMSO), Roscovitine (14 pmol/L) or VX-680 (21 pmol/L). In this experiment,
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was determined using Fisher exact test followed by Pearson chi-squared test. n = number of founder cell pairs scored. Treatment with AMG-900 (10 umol/L) also had no
significant impact on FGFR:VENUS intensity. Indeed, there was a nonsignificant increase in the number of cell pairs displaying strong FGFR:VENUS signal in the
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positive control for transfection. (H) Qualitative scoring of E-CADHERIN::GFP intensity in transfected founder cell pairs. No significant differences found between
treatments indicated. Significance was determined using Fisher exact test followed by Pearson chi-squared test. n = number of founder cell pairs scored. (I-I’) Ventral
projection of FGFR::VENUS distribution in transgenic representative live founder cell pairs coelectroporated with Mesp>FGFR::Venus and Mesp>CyclinB**’ (I) or a
control coelectroporated with Mesp>FGFR::Venus and Mesp>H2B::RFP (I). Note that GFP/YFP signal in the heart founder lineage in the control (outlined by a white
dashed line) are not above background levels. This image is representative of numerous observations of Mesp>FGFR::Venus in live embryos in which it is impossible to
discern any signal leading to the standard use of antibody staining in fixed samples to assay FGFR localization. (J) Model depicting proposed CDK1-dependent
inhibition of FGFR::VENUS degradation. (K) Quantification of FGFR::VENUS polarization in founder cells electroporated and treated as indicated. n = number of
founder cells analyzed. Significance was determined using one-way ANOVA followed by Tukey multiple comparison test. Numerical values for all graphs can be found
in S3 Data. Scale bars are indicated in micrometers. See also S3 Fig. CDK1, Cyclin-dependent Kinase 1; FGFR, Fibroblast Growth Factor Receptor; GFP, green
fluorescent protein; YFP, yellow fluorescent protein.

https://doi.org/10.1371/journal.pbio.3001029.g003

[24]). As predicted by our hypothesis, Vam2**'"**! expression restored FGFR:VENUS staining
in roscovitine-treated samples (Fig 3D-3D’ and 3E). We also tested this hypothesis through a
gain of function assay involving targeted expression of truncated Cyclin B (Mesp>Cyclin
B**’). Because CYCLIN B**° cannot be targeted for degradation by the anaphase-promoting
complex, expression of this protein leads to sustained CDK1 activity and inhibits mitotic exit
[25]. Despite high levels of transgene expression, observation of FGFR::VENUS in wild-type
founder cells requires antibody staining, presumably due to low abundance of the fusion pro-
tein [20]. Expression of Cyclin B**° led to a dramatic increase in FGFR::VENUS signal, allow-
ing direct observation of FGFR::VENUS in live, unstained embryos (Fig 3I). As seen
previously, no FGFR::VENUS signal was detected in live, matched controls (Fig 3T’). Taken
together, these results indicate that CDK1 activity suppresses lysosomal FGFR degradation
during mitotic entry (Fig 3]). We also treated embryos with roscovitine during interphase. As
predicted by our model, this treatment had no discernable impact on FGFR::VENUS staining.
Interestingly, Vam2**'"**! expression disrupted ventral FGFR::VENUS enrichment (Fig 3K).
This result suggests that lysosomal degradation contributes to the biased redistribution of
internalized FGFRs during asymmetric founder cell division.

CDK1-dependent phosphorylation of RAB4 suppresses FGFR recycling

We next investigated whether CDK1 regulates other aspects of FGFR trafficking. The recovery of
FGFR::VENUS staining in transgenic HALO: Vam2*'**! embryos allowed us to perform endocy-
tic pathway colocalization analysis in roscovitine-treated cells. While roscovitine treatment had
no discernable impact on regional FGFR:VENUS/CLIP::RAB11 colocalization (S3 Fig), we did
observe a significant decrease in FGFR::VENUS/CLIP::RAB4 colocalization in peripheral cyto-
plasm and plasma membrane-associated regions (Fig 4A-4C, S3 Fig). This result suggests that
CDK1 activity disrupts the delivery of FGFR-enriched fast recycling endosomes to the plasma
membrane along with the shedding of Rab4 which occurs during this process (Fig 4D, [26]). As
predicted by this hypothesis, sustained CDK1 activity resulting from transgenic expression of
Cyclin B** dramatically reduced FGFR::VENUS enrichment along the plasma membrane and
promoted robust enrichment of this protein at the spindle poles (S4 Fig). This hypothesis was also
supported by a robust increase in the plasma membrane-associated enrichment of FGFR::VENUS
in HALO:Vam2*"#" cells treated with roscovitine in comparison to DMSO controls (S5 Fig).
These results indicate that CDK1 suppresses the RAB4-dependent fast recycling pathway and
thereby promotes accumulation of internalized FGF receptors (Fig 4D). This model aligns with
previous studies indicating that bulk internalization of the plasma membrane during mitotic
entry involves decreased recycling rates while internalization rates remain constant [1,27].

We next began to examine the molecular mechanism by which CDK1 impacts the fast
recycling pathway. In mammalian cells, CDK1-dependent phosphorylation of RAB4 leads to
dissociation of RAB4 from endosomal membranes [28]. However, the impact of this phos-
phorylation event on mitotic receptor trafficking has not been previously examined. We
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Fig 4. CDK1 inhibits RAB4-dependent fast recycling of FGFR during mitotic entry. (A-B’) Masked/thresholded
transverse sections of founder cells electroporated with Mesp>FGFR::Venus alone or in combination with
Mesp>HALO::Vam2421'841 and treated with vehicle (DMSO) or Roscovitine (14 pmol/L) as indicated. For clarity,
images showing only the colocalized FGFR::VENUS/ CLIP:RAB-GTPase puncta in representative sections are
provided (OVERLAP; Manders’ overlap; MOC) (A’ and B). (C) Quantification of regional FGFR::VENUS/CLIP::
RAB4 colocalization for founder cells electroporated and treated as indicated. (D) Model depicting proposed
CDK1-dependent regulation of FGFR::VENUS trafficking. (E) Schematic depiction of C. robusta RAB4 protein.
ClustalW alignment shows conservation of previously reported CDK1 phosphorylation motif (bold; [27]). Red asterisk
indicates the serine residue phosphorylated by CDK1 in human cells. Putative phosphorylated serine residues in
orthologs are indicated (S, red). (F-G) Lateral sections of prophase founder cells electroporated with either
Mesp>FGFR::Venus along with either Mesp>HALO::Rab4 or Mesp>HALO:Rab45'*** as indicated. (H)
Quantification of regional FGFR::VENUS enrichment in prophase founder cells electroporated as indicated.

n = number of founder cells analyzed. (I-J) Lateral sections of anaphase founder cells electroporated with either
Mesp>FGFR::Venus along with either Mesp>HALQ:Rab4 or Mesp>HALO::Rab4*"**?' 2P 35 indicated. (K)
Quantification of regional FGFR:VENUS enrichment in anaphase founder cells electroporated as indicated.

n = number of founder cells analyzed. Significance was determined using one-way ANOVA followed by Tukey
multiple comparison test (C, H, K). Numerical values for all graphs can be found in S4 Data. Dashed lines indicate cell
membranes that were delineated by phalloidin staining (F-G and I-J; red). White arrowheads (F-G and I-J) indicate
dorsal boundaries of membrane-associated FGFR::VENUS puncta. Scale bars are indicated in micrometers. See also
$4 Fig, S5 Fig and S6 Fig. CDK1, Cyclin-dependent Kinase 1; FGFR, Fibroblast Growth Factor Receptor; MOC,
Manders’ overlap coefficient.

https://doi.org/10.1371/journal.pbio.3001029.9004

hypothesized that CDK1-dependent RAB4 phosphorylation suppresses recycling (Fig 4D).
The previously reported CDK1 phosphorylation site in RAB4 is highly conserved across verte-
brate and invertebrate chordate taxa (Fig 4E). Thus, we were able to test this hypothesis
through targeted expression of phospho-deficient forms of Ciona RAB4 in which the putative
CDK1 phosphorylation site has been mutated (Mesp>HALO:Rab4°"***). As predicted by our
hypothesis, founder cell-specific expression of phospho-deficient Rab4 (Mesp>HALO::
Rab4°**) led to increased enrichment of FGFR:VENUS along the plasma membrane during
prophase (Fig 4F-4H). We also observed a complementary reduction in FGFR::VENUS
enrichment in the peripheral cytoplasm. To determine whether CDK1-dependent phosphory-
lation was sufficient to inhibit RAB4-dependent recycling of FGF receptors, we generated a
phospho-mimetic RAB4 (Mesp>HALO:Rab4>'**P'T2°°P)_ As predicted by our hypothesis,
Mesp>HALO:RAB4*"**P"2°P appeared to block recycling during mitotic exit, leading to the
accumulation of large FGFR-containing puncta in the deep cytoplasm during anaphase (Fig
41-4K). Quantitative analysis revealed a significant increase in FGFR:VENUS enrichment in
the peripheral cytoplasm complemented by significantly reduced enrichment at the plasma
membrane. To explore the impact of CDK1-dependent regulation of RAB4 on FGF-dependent
induction of the cranio-cardiac progenitor lineage, we coelectroporated embryos with
Mesp>Ensc::GFP to label all founder lineage cells, FoxF>RFP to label cranio-cardiac progeni-
tors along with either phospho-deficient Mesp>HALO:RAB4%"***T2%4 bhospho-mimetic
Mesp>HALO:RAB4%"¥°P'2%°P o1 a control construct (Mesp>LacZ or Mesp>HALO::RAB4).
As predicted by our model, expression of phospho-deficient RAB4 resulted in a significant
increase in cranial-cardiac progenitor induction, while expression of phospho-mimetic RAB4
resulted in a significant decrease in cranial-cardiac progenitor induction (S6 Fig). Taken
together, these results indicate that the previously characterized CDK1-dependent phosphory-
lation of RAB4 serves to inhibit receptor recycling during mitotic entry (Fig 4D). Additionally,
these results indicate that CDK1-mediated inhibition of receptor recycling can modulate sub-
sequent cell fate decisions.

Aurora Kinase suppresses slow recycling of FGFR containing endosomes

We next examined the role of AurK in mitotic FGFR trafficking. The Ciona genome contains
a single ortholog for AurK (Aurora A/B; [29]). As mentioned previously, treatment with AurK
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inhibitors (VX-680 and AMG-900) did not reduce FGFR::VENUS staining (Fig 3C and 3C’).
Instead we observed that inhibitor treatment led to a dramatic and significant increase in
FGFR:VENUS enrichment in the plasma membrane-associated region (Fig 5A-5C, S7 Fig).
Based on this result, we hypothesized that AurK blocks delivery of FGFR from RAB11 slow
recycling endosomes to the plasma membrane during mitotic entry, complementing inhibi-
tion of the RAB4-dependent fast recycling pathway by CDK1. In line with this hypothesis, we
found that inhibitor treatment also significantly decreased FGFR::VENUS/CLIP::RABI11
whole cell colocalization in prophase arrested cells (Fig 5D-5T", S7 Fig). In contrast, these
inhibitors had no discernable impact on FGFR::VENUS/CLIP::RAB4 colocalization (S7 Fig)
and had variable and contradictory impacts on FGFR/RAB7 colocalization (S7 Fig). Our
results indicate that CDK1 and AurK work in tandem to promote storage of internalized
FGF receptors during mitotic entry, suppressing both fast and slow recycling pathways

(Fig 5K).

Discussion

Based on our data, we propose a new model for mitotic regulation of FGFR trafficking (Fig 6).
According to our model, CDK1 and AurK synergize to promote FGFR storage during mitotic
entry. We propose that mitotic receptor storage generates 2 functionally discrete pools. One
pool consists of FGF receptor-enriched vesicles shunted into either fast or slow recycling path-
ways. CDK1 and AurK maintain this pool by suppressing recycling pathways. The second pool
consists of FGFR-enriched vesicles that have been shunted into the maturation pathway.
CDK1 maintains this pool by suppressing degradation. As cells exit division, the associated
inactivation of CDK1 releases both pools of accumulated receptors. Reinitiation of fast recy-
cling restores receptor enrichment on the plasma membrane. Reinitiation of degradation may
bias this process, leading to nonuniform receptor redistribution. In Ciona founder cells, it
appears that matrix adhesion polarizes FGFR trafficking during mitosis, leading to elevated
receptor accumulation on the nascent heart progenitor membrane and differential induction
(Fig 1A, [20]). Our current model posits that integrin-dependent enrichment of caveolin
within adhesive membranes dictates polarized FGFR trafficking [20]. Current studies are
focused on determining the specific contributions of integrin and caveolin to this process. We
are also investigating whether adhesion suppresses FGFR degradation or promotes FGFR recy-
cling, thereby biasing the redistribution of “stored” FGFR during mitotic exit (Fig 6). Previous
studies suggest that PLK1-mediated activation of slow recycling may also contribute to recep-
tor recycling and/or receptor redistribution [18,19]. We are currently exploring whether this
conserved role for PLK1 overcomes AurK-dependent suppression of slow recycling (Fig 2D
and 2F’) to promote delivery of FGF receptors from the RAB11 recycling compartment to the
plasma membrane as illustrated in our model (Fig 6).

Our data also suggest that the previously characterized CDK1-dependent phosphorylation
of RAB4 [28] directly suppresses RAB4-mediated recycling during mitotic entry (Fig 4E-4K).
This regulatory relationship appears to be broadly conserved as indicted by sequence conserva-
tion of the CDK1 phosphorylation site across a wide range of vertebrate Rab4a genes, along
with orthologous genes from a variety of tunicates (including Ciona, Fig 4E) amphioxus, echi-
noderms, mollusks, cnidarians, and even potentially in slime molds. Interestingly, this phos-
phorylation site does not appear to be conserved in vertebrate Rab4b genes, although they do
contain a potential alternate CDK1 phosphorylation site. We also hypothesize that CDK1-de-
pendent suppression of fast recycling may be a general feature of mitotic entry deployed in a
wide variety of cell types to reduce membrane surface area during mitotic rounding which
leads, incidentally, to storage and sequestration of associated membrane proteins. Indeed, this
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Fig 5. AurK promotes endosomal maturation and inhibits slow recycling of FGFR during mitotic entry. (A-C)
Lateral sections, graphical summary, and quantitative analysis of regional FGFR::VENUS enrichment for founder cells
electroporated with Mesp>FGFR::Venus and treated with vehicle (DMSO) or VX-680 (21 pmol/L) as indicated.

n = number of founder cells analyzed. (D-E) Masked/thresholded transverse sections of founder cells electroporated
with Mesp>FGFR::Venus and Mesp>HALO:RABI 1. For clarity, images showing only colocalized FGFR::VENUS/
CLIP:RAB-GTPase puncta in representative sections are provided (OVERLAP; Manders’ overlap; MOC) (D’ and F’).
(F) Graphical summary of total (whole cell) or regional FGFR:VENUS/CLIP::RABI11 colocalization (Manders’
overlap). (G-H) Masked/thresholded transverse sections of founder cells electroporated with Mesp>FGFR::Venus and
Mesp>HALO::RAB?7. For clarity, images showing only colocalized FGFR::VENUS/ CLIP::RAB-GTPase puncta in
representative sections are provided (MOC for panel H* = 0.119+0.027) (G” and H’). (I) Graphical summary of total
(whole cell) or regional FGFR::VENUS/CLIP::RAB7 colocalization (Manders’ overlap). (J) Quantification of FGFR::
VENUS ventral/dorsal polarization in founder cells treated with vehicle (DMSO) or VX-680 (21 umol/L) as indicated.
Significance was determined using one-way ANOVA followed by Tukey multiple comparison test (C, F, I, J).
Numerical values for all graphs can be found in S5 Data. (K) Proposed model of CDK1 and AurK-dependent
regulation of mitotic FGFR:VENUS trafficking during mitotic entry. In all micrographs, red dashed lines indicate cell
membranes as delineated by phalloidin staining. Scale bars are indicated in micrometers. White arrowheads (A-B)
indicate dorsal boundaries of membrane-associated FGFR::VENUS puncta. See also S7 Fig. AurK, Aurora Kinase;
CDK1, Cyclin-dependent Kinase 1; FGFR, Fibroblast Growth Factor Receptor; MOC, Manders’ overlap coefficient.

https://doi.org/10.1371/journal.pbio.3001029.9005

hypothesis aligns with previous data showing that reduced recycling rates during mitotic entry
are required for mitotic cell rounding [1]. Intriguingly, the CDK1 phosphorylation motif in
Rab4 (SPKK; Fig 4E) is a hotspot for cancer-associated mutations (https://www.cbioportal.org;
[30,31]). Future work will investigate whether these specific mutations impact receptor traf-
ficking in dividing cells. We are also currently exploring whether other key regulatory nodes in
our model involve direct interactions between the mitotic kinases and Rab GTPases or if they
involve a more complex regulatory circuit. For instance, AurK may suppress slow recycling
through direct phosphorylation of—Rab11, Rab 11 effectors such as FIPs, Myosin VB, the
kinesin Kif13A, or the exocyst subunit EXOC6 [4,32]. Alternatively, AurK may directly disrupt
downstream factors associated with delivery of slow recycling endosomes to the plasma mem-
brane including Arf6 and its effectors [33]. It is also possible that AurK suppresses slow recy-
cling through an indirect mechanism similar to documented cascades involved in AurK-
dependent regulation of cytokinesis [34,35]. Additionally, our data indicate that CDK1 specifi-
cally suppresses degradation for a subset of membrane proteins, including FGFR, rather than
uniformly influencing the degradation pathway (Fig 3F-3H). We are currently investigating
the range of receptors subjected to the mitotic trafficking pathways we have identified and the
molecular basis for this selectivity.

Mitotic receptor storage, as delineated in this study, poses a number of potential benefits
and risks. Suppression of lysosomal degradation may facilitate retention of signaling compo-
nents allowing daughter cells to rapidly reacquire signaling competence. In asymmetrically
dividing cells, stored receptors can be rapidly redistributed in response to polarized intrinsic
or extrinsic cues generating robust asymmetry in nascent daughter cells. Furthermore, mitotic
internalization may serve to sequester receptors during the dynamic process of cell division
and prevent spurious signaling. Cell rounding during mitotic entry entails extensive remodel-
ing of the cell membrane and actin cortex along with disassembly of cell-cell and cell-matrix
adhesions [36]. Thus, signal modulation provided by membrane microdomains [37,38] or by
extensive cross-talk between adhesion and signaling complexes [39] are compromised in
dividing cells. Moreover, alterations in cell composition and morphology associated with tissue
growth and repair can dramatically alter the signaling environment of dividing cells exacerbat-
ing the potential for signal misinterpretation. Thus, sequestration of growth factor receptors
during division may play a key role in the suppression of unintended signaling and associated
oncogenic behaviors. Conversely, mutations that lead to precocious release of stored receptors
could reverse this sequestration and promote oncogenesis.
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Fig 6. Model for mitotic regulation of FGFR trafficking. Diagrams illustrating hypothesized kinase-dependent shifts in trafficking and their impact on FGFR storage
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Methods
Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be
tulfilled by the Lead Contact, Brad Davidson (bdavidsl@swarthmore.edu).

Experimental model and subject details

Ciona intestinalis adults were collected and supplied by M-Rep (Carlsbad, California, United
States of America) and maintained in the laboratory at 16 to 18 °C under constant illumina-
tion. Fertilization, dechorionation, and electroporation were carried out as previously
described [40]. Embryos were staged according to [22].
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Method details

See S1 Table for a list of key Reagents/Resources used to generate the data presented in this
study.

Molecular cloning

The Ci-Mesp and FoxF enhancers were described previously [39,21]. Mesp>LacZ, Mesp>FGFR::
Venus, and Mesp>E-Cadherin::GFP were previously described [20,21,41]. The CLIP and HALO
open reading frames (ORFs) were PCR amplified from CLIP-rGBD Rho and HALO-rGBD Rho
plasmids generously provided by William M. Bement using the primers: F ClipSnapNot/R Halo-
CLIP Bam and inserted downstream of the Mesp enhancer using NotI and BlpI. To make
Mesp>Cyclin B**°, we PCR amplified Ciona Cyclin B from cDNA clone VES88_L15 using prim-
ers CyBDN Not1F and CyBDN EcoR1R to remove the sequence encoding the destruction

box [25]. This fragment was swapped in place of LacZ in the Mesp>LacZ plasmid using the NotI
and EcoRlI sites. Ciona Rab4, Rab7, and Rab11 were PCR amplified using the following primer
sets: Rab4_BamHI_F/ Rab4_Blpl_R, Rab7_BamHI_F/ Rab7_BIpI_R, and Rab11_BamHI_F/
Rabl1_BIpI_R, from full ORF unigene collection (Cogenics) clones and inserted in frame using
the BamHI and BlpI sites. The existing BlpI site was removed from Rab7 prior to amplification
by site directed mutagenesis using Rab7noBlp_F/ Rab7noBlp_R primer set. Mesp>HALO::
Rab4%"%74/ 12004 Mesp>HALO:Rab4*'***, and Mesp>HALO:Rab4®'**”' 2% yere generated by
site-directed mutagenesis of the Mesp>HALO::Rab4 expression plasmid using following primer
sets: Rab4ST_AA_F/Rab4ST_AA_R, Rab4S_A_F/Rab4S_A_R, and Rab4ST_DD_F/
Rab4ST_DD_R. To make Mesp>HALO:Vam2*'#*!, the region of Ciona Vam2 corresponding
to amino acids 421-841 was PCR amplified from a unigene collection clone using the following
primers: VAM2_Forward/VAM2_Reverse and inserted downstream of HALO using the
BamHI and BlplI sites. To make Mesp>Cdki(p27), Ciona Cdki(p27) was PCR amplified from
cDNA clone VES103_M15 using the primers: CKI_NotIF/CKI_BIpR and swapped in place of
LacZ in the Mesp>LacZ plasmid using NotI and Blp1.

Antibody staining/CLIP labeling

Embryos were fixed immediately after collection in approximately 2 mL of buffered parafor-
maldehyde (PFA) solution (4% PFA w/v, 0.1 M MOPS, 0.5 M NaCl, 0.1 mM EGTA, 2 mM
MgSO, (pH 7)) in PBS overnight at 4°C on a nutating mixer. Antibody staining was performed
as previously described [20,40]. Briefly, embryos were washed 5 times in PBS-Triton X-100
(0.1% v/v), blocked with PBS-BSA (1% w/v) for 1 hour at room temperature and stained with
0.1% GFP Tag Monoclonal Antibody (3E6) in PBS-BSA overnight at 4°C. Embryos were then
washed 3 times in PBS-Triton, stained with 0.02% DRAQS5 in PBS-Triton for 1 hour at room
temperature, washed 2 times in PBS-BSA, blocked with PBS-NDS (2% v/v) for 1 hour at room
temperature, stained with 0.1% Alexa Fluor 488 donkey a-mouse antibody (Invitrogen
A21202), Alexa Fluor Phalloidin 633 (to detect F-actin), and 0.5% CLIP-Cell TMR-Star in
PBS-NDS for 2 hours at room temperature, washed 3 times in PBS-BSA, and mounted in
approximately 75% glycerol.

Inhibitor treatments

In order to inhibit CDKI1 activity and induce prophase arrest in founder cells, Ciona embryos
grown at 18°C in filter sterilized sea water were treated with 5 pg/mL of Roscovitine approxi-
mately 10 minutes after blastopore closure (early Hotta Stage 14) and incubated for approxi-
mately 1 hour before fixation at Hotta Stage 16. In order to inhibit AurK activity and induce
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prophase arrest in founder cells, Ciona embryos grown at 18 C in filter sterilized sea water
were treated with 10 pg/mL of VX-680 (Tozasertib) or 5 ug/mL of AMG-900 at Hotta Stage 13
and incubated for approximately 1.5 hour before fixation at Hotta Stage 16.

Confocal microscopy and image processing

All images were acquired with a Leica SP5 confocal microscope (Leica Microsystems, Buffalo
Grove, Illinois). For volumetric analysis, 12-bit z-stacks through the founder cells or TVC/
ATM pairs were obtained through a 40x oil objective (N.A. 1.25) and 4x digital zoom with a
step size of 0.3 pm. For live imaging, 12-bit z-stacks through the founder cells or TVC/ATM
pairs were obtained through a 20x objective (N.A. 0.7) and 5x digital zoom with a step size of
1.0 um. We scanned bidirectionally with a scan speed of 700 Hz and with cropping in the y-
dimension to reduce imaging time. All images were recorded with 12-bit depth and the resolu-
tion set at 1024 x 1024. Image processing was performed using FIJI (Image], N.I.H., Bethesda,
Maryland) and Matlab (MathWorks, Natick, Massachusetts).

Quantification and statistical analysis

Cell segmentation. Using FIJI (Image]) software, z-stacks were cropped to isolate individ-
ual founder cells for segmentation. Cell segmentation was performed using Matlab. Cropped
images were smoothed using a 2D Gaussian filter and then binarized by thresholding. The
threshold value was automatically calculated using Otsu’s method and then scaled by the
threshold level [42]. To fill in gaps, the cell mask was dilated, the holes were filled, and the cell
mask was eroded in each z-plane. To remove regions outside of the cell, each mask was eroded
in 3D, and objects with a volume of less than 10 um’ were deleted before the mask was redi-
lated in 3D. This post-processing step was done to smooth the masks and to delete discon-
nected and minimally connected objects. Each cell mask was manually reviewed and, if
necessary, the masks were adjusted for accuracy.

Volumetric analysis. Volumetric analysis was performed using Matlab. Images were
smoothed using a 2D Gaussian filter with standard deviation of 0.1 pm, and then binarized by
thresholding at the 95th percentile of pixel intensity within the cell mask. Thresholding was
done to normalized the volume of the puncta to the volume of the cell mask, and the level of
thresholding was selected based on the separation of signal from background across a set of
sample of images taken from our dataset. To capture signal distribution and spatial colocaliza-
tion, segmented cell volumes were divided into 3 regions based on the distance to the edge of
the mask: plasma membrane-associated (0 to 1 pm), peripheral cytoplasm (1 to 3 um), and deep
cytoplasm (>3 pum). The 3D Euclidean distance was calculated with the linear time algorithm
described by Maurer [43]. Importantly, the distance was adjusted to account for the voxel size
of the 3D image. The FGF receptor fold enrichment was calculated for each region according
to:

/v

FGF receptor in region region

Regional FGFR Enrichment =
VFGF receptor in cell/Vcell

where V = volume. The amount of signal in each region was normalized by volume to account for
changes in cell morphology across images and mitotic stages. The resulting fold enrichment values
were averaged and presented as mean + standard error of the mean. Manders’ Colocalization
Coefficient [44] was calculated for whole cells and each region within these cells according to:

. . FGF torNRAB i 11
Colocalization ;, = Lol e

FGF receptor in cell
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FGF receptor in region

where VEGE receptor 1 RAB in cell = the volume of FGFR:VENUS puncta that overlap with HALO::
RAB endosome puncta.

Founder cells display a strong adhesion-dependent cell polarity that results in ventrally
biased FGFR distribution [20,41]. To determine whether ventral FGFR polarization impacted
the results of our volumetric analysis, total cell volume for each segmented founder cell was
divided in half along the dorsal-ventral axis. Analysis of the mitotic FGFR distribution in ven-
tral regions of our founder cells mirrored the results from whole cell analysis. These results
indicate that stage-specific shifts in FGFR distribution primarily reflect changes on the ventral
side of polarized founder cells. consistent with previous data [20]. We also used these Ventral/
Dorsal volumes to calculate Ventral/Dorsal enrichment ratios,

V receptor in ventral region
Ventral /Dorsal FGFR Enrichment = —— <" ral reg

FGF receptor in dorsal region

Statistical analysis

In all graphs, error bars represent standard error of mean (SEM) as stated in the results and
figure legends. Statistical significance was determined using one-way ANOV A followed by
Tukey multiple comparison test unless otherwise indicated in the results or figure legends.

Supporting information

S1 Fig. Inhibition of mitotic entry suppresses FGFR mitotic trafficking but does not
impact TVC induction (related to Fig 1). (A-B’) Ventral projections and lateral sections for
founder cells electroporated as indicated. Dashed lines (A and B; orange) indicate position of
sections (A’ and B’). (C) Graphical summary of regional FGFR::VENUS enrichment for
founder cells electroporated as indicated. No significant changes in regional FGFR:VENUS
enrichment were detected in arrested Mesp>Cdki(p27) transgenic founder cells (plasma mem-
brane-associated p = 0.489, peripheral cytoplasm p = 0.527, deep cytoplasm p = 0.899). Data
were obtained from 2 independent trials, n > 16. (D) Graphical summary of mitotic arrest at
different stages as observed for founder cells electroporated with either Mesp>LacZ or
Mesp>Cdk1(p27) as indicated. Data were obtained from 3 independent trials, #n > 13 per trial.
(E-F”) Representative micrographs of late tailbud embryos showing cranial-cardiac progenitor
induction (indicated by overlapping Mesp>Ensc::GFP and FoxF>RFP reporter expression)
versus noninduced precardiac founder lineage cells (indicated by Mesp>Ensc::GFP reporter
expression alone) in embryos coelectroporated with either Mesp>LacZ or Mesp>Cdkl1(p27) as
indicated [20,40,41,21]. (G-H) Graphical summary of mitotic arrest and heart progenitor
induction in embryos cotransfected as indicated. Data were obtained from 3 independent tri-
als, n > 17 per trial. Scale bars are indicated in micrometers. Significance indicated; n.s., not
significant. Significance was determined using one-way ANOVA followed by Tukey multiple
comparison test. Error bars represent SEM. Numerical values for all graphs can be found in S6
Data. ATM, Anterior Tail Muscle Cell; FGFR, Fibroblast Growth Factor Receptor; SEM, stan-
dard error of mean; TVC, Trunk ventral cell/Cranial-cardiac progenitor.

(PDF)

S2 Fig. Stage-specific quantitation of mitotic FGFR trafficking patterns (related to Fig 2).
(A-A™) Graphical summary of whole cell (A) and regional FGFR:VENUS/ CLIP::RAB7
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colocalization (A’-A”; Manders’ overlap) during founder cell division (data shown correspond
to data presented in Fig 2D). n > 6 for each mitotic stage. Regional overlap was measured in 3
concentric regions, plasma membrane, peripheral cytoplasm, and deep cytoplasm (Fig 1A-A”;
Methods). Lack of any significant change (p > 0.05) is indicated by no change in lettering (a for
all columns). Significance was determined using one-way ANOVA followed by Tukey multiple
comparison test. Numerical values for all graphs can be found in S7 Data. Error bars represent
SEM. FGFR, Fibroblast Growth Factor Receptor; SEM, standard error of mean.

(PDF)

$3 Fig. Inhibition of CDK1 does not impact endosomal maturation or slow recycling of
FGF receptors during mitotic entry (related to Figs 2 and 3). (A-B’) Masked/thresholded
transverse sections of founder cells electroporated with Mesp>FGFR::Venus and
Mesp>HALO::RABI1 and treated as indicated. For clarity, panels showing only colocalized
FGFR:VENUS/CLIP::RABI11 puncta are provided (OVERLAP; Manders’ overlap; MOC) (A’
and B’). (C-E) Graphical summary of whole cell (C) and regional FGFR::VENUS/ CLIP::
RABI11 colocalization (D-E; Manders’ overlap) in founder cells treated as indicated. (F-H)
Graphical summary of whole cell (F) and regional FGFR:VENUS/ CLIP::RAB4 colocalization
(G-H; Manders’ overlap) in founder cells treated as indicated. Data were obtained from 2 inde-
pendent trials, n > 14. Scale bars are indicated in micrometers. Significance indicated by p-
value or a change in lettering (a versus b). Lack of significance indicated by n.s. Significance
was determined using one-way ANOVA followed by Tukey multiple comparison test. Numer-
ical values for all graphs can be found in S8 Data. CDK1, Cyclin-dependent Kinase 1; FGF,
Fibroblast Growth Factor; n.s., not significant.

(PDF)

S4 Fig. Prolongation of CDKI1 activity leads to excessive FGFR internalization and blocks
TVC induction (related to Fig 2). (A-B’) Ventral projections and lateral sections for founder
cells electroporated as indicated. Dashed lines (A and B; orange) indicate position of sections
(A’ and B). (C) Graphical summary of regional FGFR::VENUS enrichment for founder cells
electroporated as indicated (deep cytoplasm; p = 0.264). Data were obtained from 2 indepen-
dent trials, n > 7. (D) Graphical summary of mitotic arrest observed for founder cells electro-
porated. Data were obtained from 3 independent trials, #n > 22 per trial. (E-F”) Representative
micrographs of late tailbud embryos showing cranial-cardiac progenitor induction (indicated
by overlap of Mesp> Ensc::GFP and FoxF>RFP reporter expression along with migration into
the head/trunk region) versus noninduced precardiac founder lineage cells (indicated by
Mesp>Ensc::GFP reporter expression alone along with lack of migration) in embryos coelec-
troporated with either Mesp>LacZ or Mesp>CyclinB**’ as indicated [20,40,41,21]. Note that
prolongation of CDK1 activity appears to disrupt induction. This may be due to failure of
transgenic cells to properly exit mitosis or it may reflect observed FGFR internalization. (G-H)
Graphical summary of mitotic arrest and heart progenitor induction in embryos cotransfected
as indicated. Data were obtained from 3 independent trials, #n > 8 per trial. Arrested
Mesp>CyclinB**° transgenic embryos (A-C) were fixed and analyzed at Hotta Stage 16 [22],
approximately 1 hour after control cells (Mesp>LacZ) complete asymmetric division. Scale
bars are indicated in micrometers. Significance was determined using one-way ANOVA fol-
lowed by Tukey multiple comparison test. Numerical values for all graphs can be found in S9
Data. Error bars represent SEM. ATM, Anterior Tail Muscle Cell; CDK1, Cyclin-dependent
Kinase 1; FGFR, Fibroblast Growth Factor Receptor; SEM, standard error of mean; TVC,
Trunk ventral cell/Cranial-cardiac progenitor.

(PDF)
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S5 Fig. Inhibition of both CDK1 Kinase activity and lysosomal degradation increases the
plasma membrane-associated enrichment of FGF receptors. (A-B’) Lateral sections and
graphical summary of regional FGFR::VENUS enrichment for founder cells electroporated
with Mesp>FGFR::Venus alone or in combination with Mesp>HALO::Vam2*'"**! and treated
with vehicle (DMSO) or Roscovitine (14 umol/L) as indicated. Mesp>HALO::Vam2421 -84
alone also resulted in a modest, but not significant, increase in plasma membrane-associated
FGFR::VENUS. Because phalloidin staining obscures FGFR::VENUS localization, red dashed
lines were used to indicate phalloidin-stained cell membranes (A-B). Some regions are labeled
with an a or b to denote significant changes (p < 0.05) that occurred within this region across
stages. Other regions are labeled n.s. to denote that no significant changes occurred for the
indicated stages. Significance was determined using one-way ANOVA followed by Tukey mul-
tiple comparison test. (C) Quantification of the FGFR::VENUS enrichment in the plasma
membrane-associated region of founder cells electroporated and treated as indicated. Signifi-
cance was determined using one-way ANOV A followed by Tukey multiple comparison test.
Numerical values for all graphs can be found in S10 Data. Scale bars are indicated in microme-
ters. CDK1, Cyclin-dependent Kinase 1; FGF, Fibroblast Growth Factor.

(PDF)

S6 Fig. RAB4 phosphomutants impact TVC induction (related to Fig 4). (A-D”) Represen-
tative micrographs of late tailbud embryos showing induced cranial-cardiac progenitors
(TVCs, arrowheads point to cells showing overlapping Mesp>GFP and FoxF>RFP reporter
expression) versus noninduced anterior muscle lineage cells (ATMs, arrows point to cells
showing Mesp>GFP reporter expression alone) in embryos coelectroporated with Mesp>LacZ
(n = 258), HALO::Rab4 (n = 235), HALO:Rab4>'**V1?°°4 (4 = 277), or HALO::Rab4®'??P/27P
(n =130) as indicated [20,40,41,21]. (E) Graphical summary of heart progenitor induction in
embryos cotransfected as indicated. Embryos electroporated with HALO::Rab4>'%%4/T2004
show increased induction as indicated by the increased proportion of cells with overlapping
Mesp>Ensc::GFP and FoxF>RFP in comparison to control embryos electroporated with
Mesp>LacZ (p = 0.02) or HALO::Rab4 (p = 0.02). Embryos electroporated with HALO::
Rab4¥1#°P/T29D show decreased induction as indicated by the increased proportion of cells
with Mesp>Ensc::GFP but no FoxF>RFP in comparison to control embryos electroporated
with Mesp>LacZ (p = 0.0001) or HALO::Rab4 (p = 0.006). Data were obtained from 3 indepen-
dent trials, n > 31 per trial. Scale bars are indicated in micrometers. Significance was deter-
mined using a f test with an arcsine square root transformation. Numerical values for all
graphs can be found in S11 Data. Error bars represent SEM. ATM, Anterior Tail Muscle Cell;
SEM, standard error of mean; TVC, Trunk ventral cell/Cranial-cardiac progenitor.

(PDF)

S7 Fig. Inhibition of Aurora Kinase activity does not impact fast recycling of FGF recep-
tors during mitotic entry or RAB7 or RAB11 overlap in the deep cytoplasm (related to Fig
4). (A-C) Graphical summary and quantitative analysis of regional FGFR::VENUS enrichment
for founder cells electroporated with Mesp>FGFR::Venus and treated with vehicle (DMSO) or
AMG-900 (10 pmol/L) as indicated. (D) Quantification of regional FGFR::VENUS/CLIP::
RABI11 overlap in founder cells electroporated and treated as indicated. (E-G) Masked/thre-
sholded transverse sections and quantification of regional FGFR::VENUS/CLIP::RAB4 overlap
for founder cells electroporated and treated as indicated. MOCs for whole cell analysis are
indicated (E and F) Note that treatment with VX-680 had no significant impact on Rab4 colo-
calization (E-G). Treatment with AMG-900 also had no significant impact [whole cell overlap
for DMSO-treated cells MOC = 0.155 + 0.019 (n = 7) and AMG-900 treated cells

MOC =0.112 £ 0.015 (n = 3) p = 0.118]. (H-K) Graphical summary and quantification of
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regional FGFR::VENUS/CLIP::RAB7 overlap in founder cells electroporated and treated as
indicated. (L-O) Graphical summary and quantification of regional FGFR:VENUS/CLIP::
RAB7 overlap in founder cells electroporated and treated as indicated. Data were obtained
from 2 independent trials. n = number of founder cells analyzed. Scale bars are indicated in
micrometers. Significance indicated by asterisk and/or change in letter. n.s., not significant.
Significance was determined using one-way ANOVA followed by Tukey multiple comparison
test. Numerical values for all graphs can be found in S12 Data. FGF, Fibroblast Growth Factor;
MOC, Manders’ overlap coefficient.

(PDF)

S1 Table. Key Reagents/Resources used to generate the data presented in this study.
(PDF)

S1 Data. The raw data associated with all graphs found in Fig 1.
(XLSX)

$2 Data. The raw data associated with all graphs found in Fig 2.
(XLSX)

S$3 Data. The raw data associated with all graphs found in Fig 3.
(XLSX)

S$4 Data. The raw data associated with all graphs found in Fig 4.
(XLSX)

S5 Data. The raw data associated with all graphs found in Fig 5.
(XLSX)

$6 Data. The raw data associated with all graphs found in S1 Fig.
(XLSX)

S$7 Data. The raw data associated with all graphs found in S2 Fig.
(XLSX)

S8 Data. The raw data associated with all graphs found in S3 Fig.
(XLSX)

S9 Data. The raw data associated with all graphs found in S4 Fig.
(XLSX)

$10 Data. The raw data associated with all graphs found in S5 Fig.
(XLSX)

S11 Data. The raw data associated with all graphs found in S6 Fig.
(XLSX)

$12 Data. The raw data associated with all graphs found in S7 Fig.
(XLSX)
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