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Abstract

We design a Local Computation Algorithm (LCA) for
the set cover problem. Given a set system where each
set has size at most s and each element is contained in
at most t sets, the algorithm reports whether a given
set is in some fixed set cover whose expected size is
O(log s) times the minimum fractional set cover value.
Our algorithm requires sO(log s)tO(log s·(log log s+log log t))

queries. This result improves upon the application of
the reduction of [Parnas and Ron, TCS’07] on the result
of [Kuhn et al., SODA’06], which leads to a query
complexity of (st)O(log s·log t).

To obtain this result, we design a parallel set cover
algorithm that admits an efficient simulation in the LCA
model by using a sparsification technique introduced
in [Ghaffari and Uitto, SODA’19] for the maximal
independent set problem. The parallel algorithm adds
a random subset of the sets to the solution in a
style similar to the PRAM algorithm of [Berger et al.,
FOCS’89]. However, our algorithm differs in the way
that it never revokes its decisions, which results in a
fewer number of adaptive rounds. This requires a novel
approximation analysis which might be of independent
interest.

1 Introduction

The set cover problem is one of the classical problems
in optimization and computer science. In this problem,
we are given a universe of n elements E and a family
of m sets S ⊆ 2E , and our goal is to find a minimum
size set cover of E ; i.e., a collection of sets in S whose
union is equal to E . The set cover problem is a
well-studied problem with applications in many areas
such as machine learning, data mining and operation
research [19, 35, 24, 5].

A simple greedy algorithm for this problem, that
repeatedly adds a set containing the largest number
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of yet uncovered elements to the cover, guarantees a
O(log n)-approximation [23, 28]. Unless P = NP ,
this approximation guarantee is within a constant fac-
tor compared to the approximation guarantee of any
polynomial-time algorithm [33, 16, 1, 29, 14]. Unfor-
tunately, this standard greedy algorithm does not scale
very well for massive data sets (e.g., see Cormode et
al. [12] for an experimental evaluation of the greedy al-
gorithm on large data sets). This difficulty has led to
considerable interest in designing set cover algorithms
for computational models tailored to process massive
amounts of data such as parallel computation [7, 8, 9],
streaming [35, 27, 15, 13, 10, 20, 4, 3, 6, 21], sublinear
time/query algorithms [18, 25, 22] and local computa-
tion algorithms [30, 38].

In many scenarios we are interested in designing
extremely fast algorithms for learning only a minuscule
portion of a solution, rather than computing and stor-
ing the entire one. This has led to the model of local
computation algorithms (LCAs) introduced by Rubin-
feld et al. [34] and Alon et al. [2]. A LCA for the set
cover problem provides oracle access to some fixed set
cover C.1 That is, given some arbitrary set S, the LCA
needs to report whether S is part of the set cover C
by only having primitive query access to the input set
system (S, E). The only shared state across different
oracle calls is a tape of random bits. The performance
is measured by the approximation guarantee and the
query complexity of the LCA. In the LCA model, we
further assume that each set in S has size at most s
and each element in E is contained in at most t sets.
Section 1.1 contains additional information about the
underlying computational model.

Simulating the Greedy Algorithm There are
two main approaches for designing LCAs for set cover.
The first one is based on simulating the greedy algo-
rithm using a randomized ranking technique due to
Nguyen and Onak [30] which was later improved by
Yoshida et al. [38]. While the goal of [30, 38] is the de-

1Note that for any given input, there may be many set covers.

C is a unique set cover that depends only on the input and the
random bits used by the algorithm.
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sign of constant-time algorithms for approximating the
size of an optimal set cover solution on bounded degree
instances, one can turn their algorithms into O(log s)-
approximation LCAs with a respective query complex-
ity of 2O((st)4·2s) [30] and (st)O(s) [38].

LCAs via Distributed Algorithms The other
approach is via a generic reduction from distributed
algorithms to LCAs by Parnas and Ron [32]. Kuhn et
al. [26] designed a distributed algorithm that computes
a O(1)-approximate fractional solution in O(log s · log t)
many rounds. In each round, each set and each element
only requires local information, i.e., a set uses only
the information of the elements it contains and an
element uses only the information of the sets that it is
contained in. By the reduction of [32], the distributed
algorithm of [26] can be transformed into an LCA
with a query complexity of (st)O(log s·log t). The LCA
only outputs the fractional contribution of S in the
corresponding fractional set cover solution for some
given set S. However, via the standard randomized
rounding technique and a slight increase in the query
complexity by a factor of s·t, the LCA can be turned into
an LCA that outputs an O(log s)-approximate integral
solution for the set cover problem. There is no known
distributed algorithm for set cover that uses fewer than
O(log s · log t) iterations of computation, and hence
applying known reductions to any such algorithm would
not improve the query complexity implied by [26] and
[32]. It is thus natural to wonder:

Is it possible to obtain LCAs for the set cover
problem with a smaller query complexity com-
pared to the query complexity obtained via
standard reductions to distributed algorithms?

In this paper, we answer this question affirmatively by
presenting the following result.

Theorem 1.1. There exists an LCA with a query com-
plexity of sO(log s)tO(log s·(log log s+log log t)) that produces
a set cover with an expected size of O(log s)·OPT, where
OPT denotes the value of an optimal fractional set cover
solution.

This result is proved in Section 6. In Section 1.2 we give
an overview of our approach.

1.1 The Local Computation Model We consider
a graph representation of the input set system (S, E) and
adopt the definition of LCAs by Rubinfeld et al. [34]. In
the design of LCAs, the query access model to the input
instance plays an important role. Here we consider
standard neighbor queries: “what is the i-th element
in a given set S?” and “what is the i-th set containing
a given element e?”. In our analysis, we assume that

a query to a set (resp., element) returns all elements
contained in (resp., all sets containing) the required set
(resp., element). This will increase the query complexity
only by a factor of O(s+ t).

Definition 1.1. (LCA for set cover) An LCA for
the set cover problem is a (randomized) algorithm that
has access to neighbor queries, a tape of random bits and
local working memory. Given some set S from the input
set system (S, E), the LCA algorithm returns whether S
is part of the set cover by making queries to the input.
The answer must only depend on the given set S, the
input set system (S, E) and the random tape. Moreover,
for a fixed tape of random bits, the answer given by the
LCA to all sets, must be consistent with one particular
valid set cover.

We remark that by running the described LCA on
at most t sets, we can determine which set is covering a
given element in the approximate set cover constructed
(hypothetically) by the LCA.

The main complexity measures of the LCA for set
cover are the expected size of the solution, as well as
the query complexity of the LCA which is defined as
the maximum number of queries that the algorithm
makes to return an answer for any arbitrary element
e in the input universe. Note that all the algorithms
in this paper are randomized and, for any input set
system, provide guarantees on the expected size of
the solution, over the random tape. For simplicity,
we describe all our randomized algorithms using full
independence; however, they can be implemented using
a seed with a polylogarithmic number of random bits
by the techniques and concentration bounds in [36, 37].

1.2 Roadmap and Our Technical Contributions
The base algorithm (Section 3). The starting

point of our approach is a parallel algorithm that
constructs a set cover in log s · log t rounds. This
algorithm, that we present in Section 3, consists of log s
stages and each stage consists of log t iterations. The
stages are used to process sets that have a large number
of uncovered elements. That is, in stage i we consider
all the sets that have at least s/2i uncovered elements.
We call such sets large.

After the execution of stage i, a large set is either
added to the set cover constructed so far, or the number
of uncovered elements it contains dropped below s/2i

during the execution of stage i. Iterations are used
to progressively add large sets to the cover, while
attempting to assure that an element is not covered by
too many large sets. (We make this statement formal
in Lemma 3.3.) More precisely, in the k-th iteration,
each currently large set is added with probability 2k/t.
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This step is applied for all the large sets simultaneously.
Again, adding large sets with a probability of 2k/t is
supposed to ensure that an element contained in roughly
t/2k large sets will be covered Θ(1) times at the moment
it gets covered for the first time. We show that having
this kind of guarantee suffices to obtain an expected
O(log s)-approximate minimum set cover.

The base algorithm has a parallel depth of O(log s ·
log t) and directly simulating it in the LCA model
would result in a query complexity of (st)O(log s·log t). In
spirit, our parallel algorithm is similar to the algorithm
developed in [7], but there is also a crucial difference.
After randomly picking a family of sets in each round,
the algorithm in [7] verifies whether the number of newly
covered elements is large enough in comparison to the
number of chosen sets. If yes, then they add the family
of sets to the set cover. If not, they repeat the selection
process. A random family of sets is good with a constant
probability, yielding an O(log n) bound on the number
of times that the algorithm needs to repeat a round.
Therefore, the resulting algorithm has a larger parallel
depth compared to our algorithm.

Estimating set sizes (Section 4). In Section 4
we design and analyze Algorithm 2. Compared to Al-
gorithm 1, Algorithm 2 only estimates the number of
remaining free elements of a set. This is a crucial step
towards getting query-efficient LCAs. However, for rea-
sons explained in Section 4, Algorithm 2 does not ad-
mit an efficient LCA simulation. The reason for includ-
ing Algorithm 2 is twofold. First, all the later algo-
rithms that admit an efficient LCA simulation, are ba-
sically identical to Algorithm 2, except that they ensure
that certain conditions hold. Second, the approximation
guarantee of Algorithm 2 can be established in more or
less the same way as the approximation guarantee for
Algorithm 1. In contrast, establishing the approxima-
tion guarantee for Algorithm 3 and Algorithm 4 is much
harder. Therefore, it is easier to establish the approx-
imation guarantee of Algorithm 3 and Algorithm 4 by
relating them to Algorithm 2.

Sparsification of the element-neighborhoods
(Sections 5 and 6). Estimating the number of un-
covered elements within a given set, instead of count-
ing them exactly, reduces the number of queries that
a set has to perform. However, this optimization in
terms of set-size estimates does not affect the number
of direct set-queries that an element has to perform.
To achieve our advertised query complexity, we also re-
duce the number of queries directly performed by an
element. Our high-level approach for reducing the num-
ber of queries for elements follows the lines of the work
[17, 11] (and in Section 5 also the work [31]). [17] de-
sign an LCA for maximal independent set (MIS) and

maximal matching. These LCAs do not have a generic
reduction to other models.

One of the main challenges in adapting the ap-
proach of [17] to the set cover problem is that, in the
case of MIS or maximal matching it is needed to handle
only one type of objects, i.e., vertices or edges. How-
ever, in the case of set cover, our algorithm handles sets
and elements simultaneously.

2 Preliminaries

Notation. We will use S (respectively, E) with
added sub- and super-scripts to refer to subsets of
S (respectively, E). Given a set S at some step
of an algorithm, we use d(S) to denote the number
of uncovered elements of S in the current set cover.
When we use d̂(S), it refers to an estimated number
of uncovered elements of S in the current set cover.

Uncovered elements are also referred to by free.
Subscripts i, j, and k will have the following meaning:
i refers to a stage, j refers to a phase, and k refers to
an iteration.

Relevant Concentration Bounds. Throughout
the paper, we will use the following well-known variants
of Chernoff bound.

Theorem 2.1. (Chernoff bound) Let X1, . . . , Xk

be independent random variables taking values in [0, 1].

Let X
def
=
∑k

i=1Xi and µ
def
= E [X]. Then,

(A) For any δ ∈ [0, 1] it holds Pr [X ≤ (1− δ)µ] ≤
exp

(
−δ2µ/2

)
.

(B) For any δ ≥ 1 it holds Pr [X ≥ (1 + δ)µ] ≤
exp (−δµ/3).

3 The Base Algorithm

We now fully state and analyze the base algorithm
briefly described in Section 1.2. This algorithm is pre-
sented as Algorithm 1. As a reminder, this algorithm
constructs a set cover in log(s) many stages (Line 1 of
Algorithm 1) and each stage consists of log(t) many it-
erations (Line 2 of Algorithm 1). Algorithm 1 maintains
the invariant that no set contains more than s/2i un-
covered elements at the end of stage i. In iteration k
of stage i, each set containing at least s/2i uncovered
elements is added to the set cover with a probability of
2k/t. This step is executed for all the sets simultane-
ously. In Section 3.1 we show that the algorithm indeed
outputs a set cover, while in Section 3.2 we analyze the
approximation guarantee. Our approximation analysis
diverts from the prior work known to the authors and
might be of independent interest to the reader.
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Algorithm 1: The base algorithm for our
LCAs which runs in O(log s · log t) iterations.

1 for stage i = 1 to log s do
2 for iteration k = 1 to log t do
3 for each set S in parallel do
4 if d(S) ≥ s/2i then // d(S) denotes

the number of free (or yet uncovered)

elements in S

5 add S to Scover w.p. 2k

t .

6 return Scover

3.1 Correctness It is not hard to see that Algo-
rithm 1 indeed constructs a set cover. This stems from
the fact that in iteration k = log t, each set having at
least s/2i uncovered elements at that point is added to
the cover. A more elaborate argument is provided in
the proof of the following claim.

Lemma 3.1. For s ≥ 2 and t ≥ 2, Algorithm 1 returns
a valid set cover.

Proof. It suffices to show that each element is covered by
some set in the solution. Consider an arbitrary element
e. If e was covered before the last iteration of the last
stage, then we are fine. Otherwise, there is at least one
set S which contains e and was not chosen before the
last iteration of the last stage. As this set has at least
one free element, it is added to the set cover with a
probability of 2log t/t = 1. Hence, e will be covered by
S.

3.2 Analysis of the Approximation Guarantee
In this section we analyze the approximation guarantee
of Algorithm 1. Our analysis shows that the algorithm
matches, up to a constant factor and in expectation,
the guarantee of the best possible polynomial-time
algorithm unless P = NP.

Theorem 3.1. Let (S, E) be some set cover instance
and let Scover denote the solution returned by Algo-
rithm 1. Furthermore, let OPT denote the value of an
optimal fractional set cover solution for (S, E). Then,
E [|Scover|] = O(log s) ·OPT.

To prove this claim, we need the following result that
we establish in the rest of this section.

Lemma 3.2. Let (S, E) be a set cover instance with a
maximal set size of s and let Scover,1 denote the number
of sets that are added to Scover during the first stage of
Algorithm 1. Then, E[|Scover,1|] = O(n/s).

Proof of. Theorem 3.1. In Lemma 3.2, we show that
Algorithm 1 adds at most O(n/s) many sets, in expec-
tation, to the set cover during the first stage. Here we
show that this observation suffices to prove the theorem.
To see why, let (Si, Ei) denote the set cover instance with
Ei being the set of all uncovered elements prior to the
i-th stage and Si = {S ∩ Ei|S ∈ S}. Let ni = |Ei| de-
note the number of uncovered elements prior to the i-th
stage. Note that the maximal set size in Si is at most
si := s/2i−1. Let OPTi denote the value of an optimal
fractional set cover for (Si, Ei).

ni/si ≤ OPTi ≤ OPT(3.1)

Let Scover,i denote the collection of sets that Algo-
rithm 1 picks in stage i. Note that E [|Scover,i|] is equal
to the expected number of sets that Algorithm 1 would
pick in the first stage when given (Si, Ei) as an input.
Thus, by Eq. (3.1), E [|Scover,i|] = O(ni/si) = O(OPT)
which implies that

E [|Scover|] =
∑
i

E [|Scover,i|] ≤ log(s) ·O(OPT)

= O(log s) ·OPT.

The following is the main technical lemma that we use
to prove Lemma 3.2.

Lemma 3.3. Let e ∈ E be an arbitrary element and Xe

be a random variable which is equal to 0 if e does not
get covered during the first stage and otherwise is equal
to the number of sets that contain e and are added to
Scover in the same iteration in which e is covered for the
first time. Then, E[Xe] ≤ 5.

Let’s observe what happens with e during the first stage.
In each iteration, a set S is active if it contains e and
has more than s/2 free elements in the beginning of the
iteration. Suppose that there are N1 ≤ t active sets in
the first iteration. Since each active set joins the set
cover independently with probability 2/t, the number
of times that e is covered in the first iteration can be
described by a random variable Y1 ∼ Bin(N1, 2/t). If
Y1 > 0, then Xe = Y1. Otherwise, e is still uncovered
after the first iteration. In this case, there are N2 active
sets at the beginning of the second iteration. Note
that as the number of free elements in some of the
N1 active sets of the first iteration might have dropped
below s/2, N1 ≥ N2. More generally, given that e was
not covered prior to the k-th iteration, there are Nk

active sets and the number of times that e is covered
in this iteration can be described as a random variable
Yk ∼ Bin(Nk, 2

k/t). If Yk > 0, then Xe = Yk, otherwise
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we proceed to the next iteration. Note that for all
k ≥ 1, Nk ≥ Nk+1 and Nk+1 are random variables. To
analyze the random process it is however easier to think
of N1, · · · , Nlog t as being fixed in advance. To that end,
we think about an equivalent random process. We first
choose a random vector bS ∈ {0, 1}log(t) for each set
S such that Pr[(bS)k = 1] = 2k/t. Now, in the k-th
iteration we add a set S if it is an active set in the k-
th iteration and (bS)k = 1. It is easy to see that this
process is equivalent. Additionally, it allows us to use
the principle of deferred decision making by fixing all
the random vectors for those sets which do not contain
e in advance. After fixing those, it is easy to see that Nk

is also fixed if e is a free element in the k-th iteration.

Definition 3.1. Let seq = (n1, ..., nlog t) be an integer
sequence such that t ≥ n1 ≥ n2 ≥ ... ≥ nlog t ≥
0. Let Y1, ..., Ylog t be random variables with Yk ∼
Bin(nk, 2

k/t). Let Yseq = Yk∗ with k∗ being the smallest
index for which Yk∗ > 0 if such a k∗ exists and 0
otherwise.

We now prove the following result that we will use to
upper-bound E [Xe].

Lemma 3.4. E [Xe] can be upper-bounded as follows

E [Xe] ≤ max
t≥n1≥...≥nlog t≥0

E
[
Y(n1,...,nlog t)

]
.

Proof. Let N denote the collection of all possible values
for the random variable (N1, . . . , Nlog t). The proof is
given by the following sequence of inequalities:

E [Xe]

=
∑

(n1,...,nlog t)∈N

E [Xe|(N1, . . . , Nlog t) = (n1, . . . , nlog t)]

· Pr[(N1, . . . , Nlog t) = (n1, . . . , nlog t)]

=
∑

(n1,...,nlog t)∈N

E
[
Y(n1,...,nlog t)

]
· Pr[(N1, . . . , Nlog t) = (n1, . . . , nlog t)]

≤ max
(n1,...,nlog t)∈N

E
[
Y(n1,...,nlog t)

]
≤ max

t≥n1≥...≥nlog t≥0
E
[
Y(n1,...,nlog t)

]

Following Lemma 3.4, it only remains to upper-bound
E
[
Y(n1,...,nlog t)

]
for any arbitrary sequence n1, · · · , nlog t

such that t ≥ n1 ≥ . . . ≥ nlog t ≥ 0. We will do this in
two steps.

First, we will find an upper bound for
E
[
Y(n1,...,nlog t)

]
and define a function f such that

f((n1, . . . , nlog t), t) is equal to this upper bound. Then,

we will show by induction on the sequence length that
for some restrictions on the input parameters the value
of the function can be bounded by a constant. The
restricted input parameters still capture the parameters
produced by Algorithm 1 and what we require for the
analysis. We upper-bound E

[
Y(n1,...,nlog t)

]
as follows

E
[
Y(n1,...,nlog t)

]
= E [Y1]

+

log t∑
k=2

E [Yk] · Pr[Y1 = . . . = Yk−1 = 0]

= n1 ·
2

t
+

log t∑
k=2

nk ·
2k

t

k−1∏
j=1

(
1− 2j/t

)nj

≤ n1 ·
2

t
+

log t∑
k=2

nk ·
2k

t

k−1∏
j=1

e−nj · 2
j

t .

Definition 3.2. Let f((x1, . . . , xl), r) := x1 · 2
r +∑l

k=2 xk ·
2k

r ·
∏k−1

j=1 e
−xj · 2

j

r . For l ∈ N, let P (l) be the
property that for all (x1, . . . , xl) ∈ R>0 and r ∈ R>0

such that r ≥ x1 ≥ x2 ≥ . . . ≥ xl ≥ 0, we have
f((x1, . . . , xl), r) ≤ 5.

We have that P (log(t)) being true directly implies
E
[
Y(n1,...,nlog t)

]
≤ 5, which in turn implies Lemma 3.3.

Lemma 3.5. Let P (l) be as defined in Definition 3.2.
Then, P (l) holds for all l ≥ 1.

Proof. We prove this statement by induction on l. We
first show P (1). Let x1 and r ∈ R>0 be arbitrary such
that r ≥ x1 ≥ 0. We have f((x1), r) = x1 · 2/r ≤ 5.

Now, let l ∈ N be arbitrary. We assume P (l) to
be true and need to show P (l + 1). Let r ∈ R>0 and
x1, . . . , xl+1 be arbitrary such that r ≥ x1 ≥ . . . ≥
xl+1 ≥ 0.

f((x1, . . . , xl+1), r)

= x1 ·
2

r
+

l+1∑
k=2

xk ·
2k

r
·
k−1∏
j=1

e−xj · 2
j

r

= x1 ·
2

r
+ e−x1· 2r ·

x2 · 22

r
+

l+1∑
k=3

xk ·
2k

r
·
k−1∏
j=2

e−xj · 2
j

r


= x1 ·

2

r

+ e−x1· 2r · (2x2 ·
2

r
+

l∑
k=2

(2xk+1) · 2k

r
·
k−1∏
j=1

e−(2xj+1)· 2
j

r )

= x1 ·
2

r
+ e−x1· 2r · f((2x2, 2x3, . . . , 2xl+1), r)
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We would like to use the induction hypothesis to bound
f((2x2, 2x3, . . . , 2xl+1), r). However, it might be the
case that 2x2 > r. Therefore we need to do a case
distinction. First, assume that x1 ≤ r/2 which implies
that 2x2 ≤ r. Thus we can indeed use the induction
hypothesis:

f((x1, . . . , xl+1), r) ≤ x1 ·
2

r
+ e−x1· 2r · 5 ≤ 5

Next we consider the case where 2x2 > r.

f((x1, . . . , xl+1), r)

≤ x1 ·
2

r
+ e−x1· 2r · f((2x2, 2x3, . . . , 2xl+1), r)

≤ x1 ·
2

r
+ e−x1· 2r · 2 · f((x2, x3, . . . , xl+1), r)

≤ x1 ·
2

r
+ e−x1· 2r · 10 ≤ 5 B since 1 ≤ x1 ·

2

r
≤ 2

We are now ready to prove Lemma 3.2.

Proof of. Lemma 3.2. We have (s/2) · |Scover,1| ≤∑
e∈E Xe as during the first stage, Algorithm 1 only

adds sets which have at least s/2 free elements at the
beginning of the iteration. As E

[∑
e∈E Xe

]
≤ 5 · n, we

get E [|Scover,1|] = O(n/s) as desired.

4 A Generic Algorithm

In this section we present Algorithm 2. The algorithm
differs from Algorithm 1 in two ways. First, it only
estimates the number of uncovered elements contained
in a given set. Second, it fixes all the randomness right
at the beginning of Algorithm 2. After Line 4, the
algorithm just executes a deterministic process. Both
of these modifications are crucial to get efficient LCAs
and will be explained in more detail in Section 4.1.

Although Algorithm 2 estimates set sizes instead
of computing them exactly (as Algorithm 1 does) it
is, however, not clear how to simulate Algorithm 2 in
the local computation model with significantly less than
(st)O(log s·log t) many queries. The main reason for this
is the following. The efficiency of a LCA is measured
by its worst-case query complexity. In our case, this
means that in order for a (randomized) LCA to have a
query complexity of T (s, t), each set S needs to decide
after at most T (s, t) queries whether it is contained
in the set cover or not with high probability (in n).
As we aim for a query complexity independent of n,
this essentially implies that for each set S, S needs to
decide after at most T (s, t) queries whether it is part

of the set cover or not, even if all the random bits are
chosen adversarially. Although the subsequent LCAs
will essentially simulate Algorithm 2, crucially, they will
bound the influence that “bad randomness” can have
on the query complexity by, e.g., immediately adding
sets to the set cover for which the number of sampled
elements is too large. However, these tests make it
hard to directly establish an approximation guarantee
for those algorithms. To deal with that problem, we first
establish the approximation guarantee for Algorithm 2
in Section 4.2. After that, we use the approximation
guarantee of Algorithm 2 to establish the approximation
guarantee of the subsequent algorithms by relating them
to Algorithm 2.

Algorithm 2: A generic set cover algorithm

1 Let (S, E) be some set cover instance.
2 for each pair of (i, k) where i ∈ [log s] and

k ∈ [log t] do
3 Bi(S)← a subset of S s.t. each element is

included indep. w.p.

pi = min(1, log10 s · log10 t · 2
i

s ).
4 Si,k ← a subfamily of S s.t. each set is

included indep. w.p. 2k/t.

5 for stage i = 1 to log s do
6 for iteration k = 1 to log t do

7 d̂Bi(S)
def
=
|Bi(S)∩Ei,k|

pi
. // Ei,k denotes the

set of free elements at the beginning of the

current iteration

8 for each S ∈ Si,k with d̂Bi(S) ≥ s
2i do

9 add S to Scover.

10 return Scover

4.1 Details of Algorithm 2 In this section, we fur-
ther elaborate on the design decisions made in Algo-
rithm 2. For a given set S, Algorithm 2 estimates the
number of free elements within stage i by counting the
number of uncovered elements in Bi(S). The set Bi(S)
is a random subset of S such that each element in S is
contained in Bi(S) with a probability of pi. Note that

if pi = 1, then d̂Bi
(S) is equal to the actual number

of free elements of S at the beginning of iteration k in
stage i. Otherwise, if pi < 1, d̂Bi(S) estimates the num-
ber of free elements to be at least s/2i if the number of
uncovered elements in Bi(S) is at least log10 s · log10 t

and otherwise d̂Bi(S) estimates that S has fewer than
s/2i free elements. Note that if we would not reuse the

samples within the same stage, then d̂Bi
(S) would be

an unbiased estimator of d(S). However, reusing the
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samples will be helpful in the analysis as we get the fol-
lowing monotonicity property within stage i: S does not
get added to the set cover in stage i once the estimated
number of uncovered elements in S is smaller than s/2i.
This fact will turn out to be very useful in order to es-
tablish the approximation guarantee of Algorithm 2.

Note that we only need to decide on Bi(S) at the
beginning of stage i and on Si,k at the beginning of
iteration k in stage i. The reason why we have decided
to fix all the Bi(S)’s and all the Si,k’s at the beginning is
to make the connection of Algorithm 2 to the subsequent
algorithms more obvious.

4.2 Approximation Analysis of Algorithm 2
In this section we prove the following approximation
guarantee for Algorithm 2.

Theorem 4.1. Let Scover be the solution returned by
Algorithm 2. Then, E [|Scover|] = O(log s) ·OPT.

Now we give a roadmap of our analysis. In Line 4, we
include each set S in Si,k with a probability of 2k/t. If S
is not contained in Si,k, then S will not be added to the
set cover in iteration k of stage i. If S is contained in
Si,k, then S will be added to the set cover in iteration k
of stage i if the estimated number of free elements in S
at the beginning of iteration k in stage i is at least s/2i.
In this section we show that E [Scover] = O(log s) ·OPT.
To that end, we upper-bound the expected size of

• Sbig,i: Sets which contain at least 4· s2i free elements
at the beginning of stage i.

• Ssmall: Sets which contained fewer than 1
2 ·

s
2i free

elements in the iteration they got added to the set
cover

• Snormal,i: Sets which contained between 1
2 ·

s
2i and

4 · s
2i free elements in the iteration they got added

to the set cover

Bounding E [Sbig,i] and E [Ssmall] is straightforward. Let
ni denote the number of free elements at the beginning
of stage i and let si := s/2i. We show that E [Snormal,i] =
O(ni/si) in a similar way as in the approximation
analysis of Algorithm 1 by relying on the monotonicity
property of the estimates established in the previous
subsection. However, unlike Algorithm 1, the bound
OPT = Ω(ni/si) does not generally hold in Algorithm 2,
as we are loosing the guarantee that all sets contain no
more than 2 · si uncovered elements at the beginning of
stage i. Nevertheless, we can still relate E [Snormal,i] to
OPT by using the bound on E [Sbig,i].

Lemma 4.1. Let S be some arbitrary set and i be some
arbitrary stage. The probability that S gets added to

the set cover in some arbitrary iteration of stage i such
that S had fewer than 1

2 · s/2
i many free elements at

the beginning of the iteration in which it was added is

at most O
(

1
(st)log5 s·log5 t

)
.

Lemma 4.2. Let S be some arbitrary set and i be some
arbitrary stage. The probability that S has more than
2 · s/2i many free elements at the end of stage i is at

most O
(

1
(st)log5 s·log5 t

)
.

Proof of. Lemma 4.1 and Lemma 4.2. Note that we can
assume that pi < 1 as otherwise the estimated number
of free elements of a set as computed in Line 7 is equal
to the actual number of free elements of the set. In this
case, both Lemma 4.1 and Lemma 4.2 trivially hold as
the bad events cannot happen.

Next, note that the set of random bits used in Algo-
rithm 2 are set right at the beginning. After Line 4 the
algorithm basically executes a deterministic process. By
the principle of deferred decision making, assume that
we fix all the random bits except for those ones deter-
mining Bi(S). Let k be the first iteration for which S is
contained in Si,k. Since pi,log t = 1, there always exists
such an iteration.

Since the algorithm uses the same set of elements for
estimation within one stage, if in iteration k, the number
of free elements in S is estimated to be less than s/2i,
then S will not be added to the set cover within stage i
in any subsequent iteration. Furthermore, if the number
of free elements in S is estimated to be at least s/2i in
iteration k, then S will be added to the set cover and
after that the estimated number of free elements will
always be 0.

This implies that in order to prove Lemma 4.2,
we can assume that S has less than 1

2 ·
s
2i many free

elements at the beginning of iteration k in stage i
and we only need to show that the probability that
the estimated number of free elements in S is at least
s/2i is O

(
1

(st)log5 s·log5 t

)
. Note that the first condition

implies that the expected number of free elements in
Bi(S) is at most 1

2 · log10 s · log10 t. We only estimate
S to have a size of at least s/2i if Bi(S) contains at
least log10 s · log10 t many free elements. A Chernoff
bound (Theorem 2.1-B) implies that this happens with

a probability of O
(

1
(st)log5 s·log5 t

)
.

Similarly, to prove Lemma 4.1, we can assume that
S has at least 2·s/2i many free elements at the beginning
of iteration k in stage i and we need to bound the
probability that the estimated number of free elements
of S is less than s/2i. A Chernoff bound (Theorem 2.1-
A) implies that this happens with a probability of

O
(

1
(st)log5 s·log5 t

)
.
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Lemma 4.3. Let Ssmall be the family of sets containing
those sets which were added to the set cover in some
arbitrary stage i despite having fewer than 1

2 ·
s
2i many

free elements at the beginning of the iteration in which
they were added. Then, E [|Ssmall|] = O(OPT).

Proof. By Lemma 4.1 and a union bound over the log s
many stages, any set S is in Ssmall with a probability of

log s ·O
(

1
(st)log5 s·log5 t

)
. The lemma follows as there are

at most m ≤ n · t many sets and OPT ≥ n/s.

Lemma 4.4. Consider some arbitrary stage i. Let e

be an arbitrary element and X
(i)
e the random variable

which equals 0 if e does not get covered for the first time
during stage i, and otherwise is equal to the number of
sets that contain e and were added to the set cover in
the same iteration in which e was covered for the first

time. Then, E
[
X

(i)
e

]
≤ 5. Furthermore, this bound

even holds if we fix all the randomness needed for all
stages up to stage i in some arbitrary way.

Proof. Let Se be the family of sets that contain e.
We show this lemma by using the principle of deferred
decision making. Suppose that we have fixed all the
randomness used in stage i other than the sets in Se at
the beginning: e.g. it is not yet determined whether S ∈
Si,k or not for S ∈ Se. We will fix those decisions only in
the iteration for which we need them. Let Ni,k denote
the random variable (with respect to the randomness
which we have not fixed) that is equal to the number of
sets in Se whose estimated size is at least s/2i at the
beginning of iteration k in stage i. As we always use the
same elements to estimate the size of a particular set
within stage i, we have t ≥ Ni,1 ≥ Ni,2 ≥ ... ≥ Ni,log t.
As we have fixed all the randomness needed to execute
all the stages up to stage i, Ni,1 is just equal to some
number ni,1. Now, each of those ni,1 sets is considered
in the first iteration in stage i with probability 2

t . Thus,
the number of sets which cover e in the first iteration
is a random variable Y1 ∼ Bin(ni,1, pi,1). If Y1 > 0,

then X
(i)
e = Y1. Otherwise, none of the sets in Se is

added to the set cover. Given that information, Ni,2 is
equal to some number ni,2. Then, the number of sets
containing e in the second iteration is a random variable
Y2 ∼ Bin(n2, pi,2) and so on. Note that this process
is completely analogous to the process in the proof of

Lemma 3.3. Thus, we can conclude that E
[
X

(i)
e

]
≤ 5.

Lemma 4.5. Let Sbig,i be a family of sets that contains
those sets which have more than 4· s2i many free elements
at the beginning of stage i. Then, E [|Sbig,i|] ≤ n

t·s3 and
Pr[|Sbig,i| > n

s2 ] ≤ 1
st .

Proof. Consider an arbitrary set S. For i = 1, S is
never contained in Sbig,i. For i > 1, S is only in Sbig,i
if S has at least 2 · (s/2i−1) many free elements at the
end of stage i − 1. By Lemma 4.2, this only happens

with a probability of O
(

1
(st)log5 s·log5 t

)
. As we have at

most t ·n many sets, E [|Sbig,i|] ≤ n
t·s3 . Hence, a Markov

bound implies that Pr[|Sbig,i| > n
s2 ] ≤ 1

st .

Lemma 4.6. Consider the beginning of stage i. Let
Snormal,i be the family of sets consisting of those sets
which are added to the set cover in some arbitrary stage
i and additionally, at the beginning of the iteration in
which they are added to the set cover, contain at least
1
2 · (s/2i) and at most 4 · (s/2i) many free elements.
Suppose that the randomness needed for all stages up
to i are fixed in advance. Let ni denote the number of
free elements at the beginning of stage i and si := s/2i.
Then, E [|Snormal,i|] = O(ni/si).

Proof. Let Ei denote the set of uncovered elements at
the beginning of stage i. As all sets in Snormal,i have at
least 1

2 · (s/2
i) many free elements at the beginning of

the iteration in which they are added to the set cover,

|Snormal,i| ≤
1

1
2 · si

·
∑
e∈Ei

X(i)
e

Thus, as |Ei| = ni and E
[
X

(i)
e

]
≤ 5,

E [|Snormal,i|] ≤
5 · ni
1
2 · si

= O(ni/si)

Lemma 4.7. Consider the beginning of stage i. Let
Snormal,i be the family of sets that are added to the set
cover in stage i and additionally, at the beginning of
the iteration in which they are added to the set cover,
contain at least 1

2 · (s/2
i) and at most 4 · (s/2i) many

free elements. Then, E [|Snormal,i|] = O(OPT).

Proof. Assume that we are at the beginning of stage
i. As before, we denote with ni the number of free
elements at the beginning of stage i and si := s/2i. As
a reminder, Sbig,i was defined as the sets which have
more than 4 · s/2i many free elements at the beginning
of stage i. We have the following lower bound for OPT

OPT ≥ ni − s · |Sbig,i|
4 · si

.

This holds because after adding all sets in Sbig,i
to the set cover, at least ni − s · |Sbig,i| free elements
remain and the maximal number of free elements any
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set contains is at most 4 · si. Assume that |Sbig,i| ≤ n
s2 .

Then

OPT ≥ ni − s · |Sbig,i|
4 · si

≥ Ω(ni/si)−
n

s
≥ Ω(ni/si)−OPT.

Hence, in this case OPT = Ω(ni/si) ≥ Ω(E [|Snormal,i|]).
(Note that |Sbig,i| only depends on the randomness
needed for all stages prior to stage i and therefore we
can apply the previous lemma)
By Lemma 4.5, Pr[|Sbig,i| > n

s2 ] ≤ 1
s·t . Therefore

E [Snormal,i] = E
[
|Snormal,i| | |Sbig,i| >

n

s2

]
· Pr

[
|Sbig,i| >

n

s2

]
+ E

[
|Snormal,i| | |Sbig,i| ≤

n

s2

]
· Pr

[
|Sbig,i| ≤

n

s2

]
≤ n · t · 1

s · t
+ E

[
|Snormal,i| | |Sbig,i| ≤

n

s2

]
≤ O(n/s) +O(OPT) = O(OPT).

We are now ready to prove the main result of this
section.

Proof of. Theorem 4.1. First, observe that

E [|Scover|] ≤ E [|Ssmall|] +

log s∑
i=1

E [|Sbig,i|] + E [|Snormal,i|] .

Then, from Lemmas 4.3, 4.5 and 4.7 we conclude

E [|Scover|] ≤ O(n/s) +

log s∑
i=1

n

t · s3
+O(OPT)

≤ O(log s) ·OPT.

4.2.1 Bounding the Probability of “Bad”
Events In this section we introduce the notion of bad
elements and bad sets. Bounding the probability of some
element or set being bad will play a central role in relat-
ing all the subsequent algorithms to Algorithm 2. The
connection we get is the following: Consider that we are
executing Algorithm 2 and some subsequent algorithm
with the same randomness. Let S be some arbitrary set
and assume that there does not exist a bad element or a
bad set in the (c · log s · log t)-hop neighborhood of S for
some large enough constant c. Then, S is either added
to the set cover in both algorithms or in none of them.
As the probability is fairly large that there does not ex-
ist such a bad element or bad set in the neighborhood

of S, by the approximation analysis of Algorithm 2, we
conclude that the subsequent algorithm returns a set
cover with an expected size of O(log s) ·OPT.

An element e is a bad element iff there exist i ∈
[log s] and 1 ≤ k1 ≤ k2 ≤ log t such that the following
conditions hold:

1. e is uncovered at the beginning of iteration k1 of
stage i.

2. e is contained in more than log20 s · log20 t · 2k2−k1

sets in Si,k2
with an estimated size of at least s/2i

at the beginning of iteration k1 of stage i.

Lemma 4.8. For any element e, Pr[e is bad ] =

O
(

1
(st)log4 s·log4 t

)
.

Proof. First consider the case k1 = 1. The expected
number of sets in Si,k2 which contain e is at most

t · 2
k2

t = 2k2 . Hence, an application of Chernoff bound
(Theorem 2.1-B) implies that the probability, that the
number of sets in Si,k2

exceeds log20 s · log20 t · 2k2−k1 ,

is at most O
(

1
(st)log5 s·log5 t

)
.

Next, consider the case k1 > 1 and we consider two
subcases for this case.

• There are at least log10 s · log10 t · t
2k1−1 many

sets that contain e and have estimated size
of at least s/2i at the beginning of iteration
k1 − 1 in stage i. Then, the probability that e
remains uncovered at the beginning of iteration k1
is at most(

1− 2k1−1

t

)log10 s·log10 t· t

2k1−1

= O

(
1

(st)log
5 s·log5 t

)
.

• There are less than log10 s · log10 t · t
2k1−1 many

sets that contain e and have estimated size
of at least s/2i at the beginning of iteration
k1 − 1 in stage i. This implies that the expected
number of sets in Si,k2

that contain e and have
estimated size of at least s/2i at the beginning of
iteration k1 of stage i is at most log10 s · log10 t ·

t
2k1−1 · 2

k2

t . Hence, an application of Chernoff bound
(Theorem 2.1-B) implies that the number of sets in
Si,k2

that contain e and have an estimated size of at
least s/2i at the beginning of iteration k1 in stage i
exceeds log20 s · log20 t ·2k2−k1 with a probability of

at most O
(

1
(st)log5 s·log5 t

)
. The lemma follows by a

union bound over the at most O(log s · log2 t) many
choices for i, k1 and k2.
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A set S is a bad set iff there exist 1 ≤ i1 ≤ i2 ≤ log s
such that the number of free elements in Bi2(S) at the
beginning of stage i1 exceeds log20 s · log20 t · 2i2−i1 .

Lemma 4.9. For any set S, Pr[S is bad ] =

O
(

1
(st)log4 s·log4 t

)
.

Proof. We first consider the case that S has more than
2 · s/2i1−1 many free elements at the beginning of
stage i1. Lemma 4.2 implies that this happens with

a probability of O
(

1
(st)log5 s·log5 t

)
. Next, suppose that

S has less than 2 · s/2i−1 free elements at the beginning
of stage i1. This implies that the expected number of
free elements in Bi2(S) is at most 2 · s/2i1−1 · pi2 ≤ 4 ·
log10 s · log10 t ·2i2−i1 . Hence, an application of Chernoff
bound (Theorem 2.1-B) implies that the number of free
elements in Bi2(S) is more than log20 s · log20 t · 2i2−i1

with a probability of at most O
(

1
(st)log5 s·log5 t

)
. The

lemma follows by a union bound over the O(log2(s))
many possible choices for i1 and i2.

Consider the bipartite graph G induced by the set
system (S, E). A set S (resp., An element e) has a bad
neighborhood iff there exists a bad element (resp., a bad
set) in the 10-hop neighborhood of S (resp., e) in G.

Lemma 4.10. The probability that an arbitrary set
or element has a bad neighborhood is at most

O
(

1
(st)log3 s·log3 t

)
.

Proof. The lemma directly follows by Lemma 4.8 and
Lemma 4.9 together with a union bound over the at
most poly(st) many sets and elements in the 10-hop
neighborhood of S.

5 Beyond the Parnas-Ron Paradigm

By applying the standard reduction of Parnas and
Ron [32] for transforming distributed algorithms into
LCAs, Algorithm 1 and Algorithm 2 can be simulated
in the local computation model with a query complexity
of (st)O(log s log t). In this section, we present an LCA
that can be implemented with a query complexity of

(st)O(log s
√
log t).

Overview of Our Approach We now discuss our
general ideas for obtaining a query-efficient LCA sim-
ulation. These ideas will be applied to the algorithms
developed in this section and in Section 6. The main
purpose of the discussion that follows is to illustrate a
way to design LCAs for the set cover so that it suffices
to access only a “small” number of sets and elements in
the direct neighborhood of another set/element.

LCA from the point of view of a set. Our LCA
simulations test whether a given set S is in the cover or
not by recursively testing whether S has been added
to the cover in any of the rounds, starting from round
log s · log t. To be more detailed, consider a round r of
stage i. To decide whether S has been added to the set
cover by the end of round r in Algorithm 2, we perform
two steps:

(1) We test whether S is added to the cover during the
first r − 1 rounds of the algorithm.

(2) If S has not been added to the set cover yet, we
count the number of yet uncovered elements in
Bi(S) at the beginning of round r and proceed
based on the count.

To perform step (1), it suffices to perform the same two
steps for only round r − 1. For step (2), as we already
know the outcome of step (1), we expect that S does not
have more than 10 · s/2i many free elements at the be-
ginning of stage i. As each element of S is contained in

Bi(S) with a probability of min
(

1, log10 s · log10 t · 2
i

s

)
,

we furthermore expect that Bi(S) does not have more
than poly(log s log t) many free elements at the begin-
ning of stage i, and therefore at the beginning of round
r. Intuitively, the sooner we detect those uncovered el-
ements, the more efficient LCA we are likely to obtain.
The reason is that testing whether an element is free
or not requires performing additional recursive tests.
Since in general Bi(S) may contain a lot of elements
that are covered before stage i, these recursive tests for
each covered element can be very expensive query-wise.
To alleviate that, informally speaking, we remove all
previously covered elements at the beginning of a stage
i (see Algorithm 4) or at the beginning of some phase
j that consists of multiple iterations (see Algorithm 3).
Therefore, within a phase j (or stage i), S only needs
to check for all elements in this “sparsified” version of
Bi(S), which only includes the free elements in Bi(S),
whether they are covered or not at the beginning of
round r. We expect this “sparsified” version of Bi(S)
to only consist of O(poly(log s log t)) many elements.

LCA from the point of view of an element.
In the following, assume that round r corresponds to
iteration k in stage i. Furthermore, assume that we
merge iterations into multiple phases, with iteration k
being part of phase j. In order to test whether an
element e is covered for the first time in round r of
Algorithm 2, our LCA simulation performs the following
test:

• Given that e was not yet covered, does any of the
sets e is contained in get added to the set cover in
round r?
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To answer this question efficiently, ideally, e should
invoke tests on a small number of sets. We develop the
following two ideas to reduce the number of sets that
the above question should be answered for:

(i) As in Algorithm 2, we sample all sets that are
potentially considered in stage i of iteration k
beforehand. This sample is denoted by Si,k.

(ii) At the beginning of phase j, we remove all sets
from Si,k that have an estimated set size smaller
than s/2i.

These ideas have the following positive consequence.
Assume that each phase has length T and that round
r corresponds to the `-th iteration within phase j. If e
is still uncovered at the beginning of phase j, then we
expect e to be contained in fewer than 10 · t

2j·T
many

“large” sets, as each “large” set is added to the set cover

with a probability of 2j·T−1

t in iteration j ·T−1. Each of
those large sets is contained in Si,k with a probability

of 2j·T+l

t . Hence, we expect that the number of sets
containing e and belonging to the sparsified version of
Si,k is at most 2l ≤ 2T , which for our choice of T is
significantly less than t.

Handling expectations. In the previous para-
graphs, most of the statements we provided on the spar-
sified neighborhoods of elements and sets were stated
only in expectation. However, as noted in Section 4,
the query complexity still needs to be guaranteed even
if the random bits are chosen adversarially. To guaran-
tee this, we immediately add a set to the set cover if the
sparsified version of Bi(S) contains much more elements
than expected at the beginning of a phase (Algorithm 3)
or stage (Algorithm 5). Likewise, we “pretend” that an
element is covered if e is contained in much more sets
than expected in the sparsified version of Si,k. This is
also the only difference to Algorithm 2. As e reports
to be covered, it might happen that e is still uncovered
at the end of the algorithm. In that case, we simply
add one set to the set cover that contains e. In this
way, bad randomness can only affect the approximation
guarantee, but not the query complexity of the LCA. In
this way, intuitively, while not completely true, one can
think about executing one phase in a sparsified set sys-
tem where the maximal set size is O(poly(log s log t))
and the maximal number of sets any element is con-
tained in is 2O(T ). Note that there is a trade-off for
the phase length T . With increasing T , the sparsified
versions are becoming less and less sparse. Likewise, in
order to produce the illusion of a sparsified set system,
we need to query the set system corresponding to the
previous phase poly(st) many times for each query that
we receive for the sparsified set system. We balance this
tradeoff by setting T =

√
log t.

5.1 Details about Algorithm 3 In this section
we design Algorithm 3. Compared to Algorithm 2,
Algorithm 3 processes iterations in groups of T . Each
group is called a phase. Algorithm 3 also samples sets
Bi(S), for each stage i and each set S. At the beginning
of phase j, we compute the set Bi,j(S) by removing all
elements in Bi(S) that are covered at the beginning of
phase j. The LCA can efficiently estimate the number
of free elements within phase j by only counting the
number of free elements in Bi,j(S). Furthermore, Ŝi,k
denotes the family of sets obtained by removing all
the sets from Si,k that have an estimated number of
free elements smaller than s/2i at the beginning of the
respective phase.

5.2 Simulation of Algorithm 3 in LCA In the
rest of this section we describe the LCA simulation of
Algorithm 3 and analyze its query complexity. Our
final goal is to provide oracle access to the set cover
produced by Algorithm 3. We call this oracle Oset.
That is, Oset(S) answers if S is part of the set cover
or not. It is convenient to define intermediate oracles
for the analysis. Namely, Oset

i (S) outputs if S is part
of the set cover at the end of the i-th stage, Oset

i,j(S)
outputs if S is part of the set cover at the end of
phase (i, j) and Oset

i,j,`(S) outputs if S is part of the set
cover at the end of iteration (i, j, `). We remark that
Oset

i,j,0(S) is defined to output whether S is added to the
set cover at the beginning of iteration (i, j, 1). Note
that the oracle Oset

i,j,T is always equal to the oracle Oset
i,j

and Oset
i,T−1 is always equal to Oset

i . However, Oset
log(s)

is not equal to Oset because of Line 20. We also define
oracles Oel

i (e), Oel
i,j(e) and Oel

i,j,`(e) which answer if e
was covered at the end of stage i, phase (i, j) or iteration
(i, j, `), respectively. Note that they also answer that e
is covered even if e only pretends that it is covered. We
also remark that Oel

i,j,0(e) is defined to output whether e
is covered by any of the sets at the beginning of iteration
(i, j, 1).

Description of Oset
i,j and Oel

i,j given query ac-
cess to (Si,j , Ei,j). In this section, we assume to have
query access to (Si,j , Ei,j) which respectively denote the
collection of unselected sets and uncovered elements at
beginning of phase (i, j). Given that, we describe how
to answer oracles Oset

i,j(S) and Oel
i,j(e) for some set S

or element e by querying (Si,j , Ei,j) at most poly(st)
times. We first note that it takes O(1) many queries to
decide for a set S and some k ∈ [log t] if S ∈ Si,k: S is

contained in Si,k with a probability of 2k

t .
Furthermore, for a given set S, we can get

all elements in Bi,j(S) with O(s) many queries to
(Si,j , Ei,j) and for a given element e ∈ Ei,j and some
k ∈ {j · T + 1, ..., (j + 1) · T}, we can get all the sets
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Algorithm 3: A variant of Algorithm 2
that can be simulated by an LCA with
(st)O(log s

√
log t) queries.

1 T
def
=
√

log(t)
2 for each pair of (i, k) where i ∈ [log s] and

k ∈ [log t] do
3 Bi(S) and Si,k are generated in the exact

same way as in Algorithm 2

4 for i = 1 to log s do
5 for phase j = 0 to T − 1 do
6 for each set S ∈ S do
7 Bi,j(S)← Bi(S) ∩ Ei,j // Ei,j denotes

the set of free elements at the beginning

of the phase

8 if |Bi,j(S)| ≥ log20 s · log20 t then
// whether S is a bad set

9 add S to Scover.

10 for each
k ∈ {j ·T + 1, j ·T + 2, ..., (j+ 1) ·T} do

11 Ŝi,k ← {S | S ∈ Si,k, d̂Bi(S) ≥ s/2i}
12 for each e ∈ Ei,j in parallel do

13 if dŜi,k(e) ≥ log20 s · log20 t · 2T

then // whether e is a bad element

14 pretend that e is covered. // e

will be covered in Line 20.

15 for iteration ` = 1 to T do

16 for each S ∈ Ŝi,j·T+` in parallel do

17 if d̂Bi
(S) ≥ s/2i then

18 add S to Scover.

19 for each free element in parallel e do // Handling

bad elements

20 add the set with smallest ID which
contains e to Scover.

in Ŝi,k that contain e with O(st) many queries to
(Si,j , Ei,j).

To answer Oset
i,j,`(S), we first check whether S was

already added to the set cover at the beginning of
iteration (i, j, `) or not:

1. ` = 0: we simply check whether S /∈ Si,j

2. ` > 0: we recursively invoke Oset
i,j,`−1(S).

If S was indeed added, then we can immediately
answer Oset

i,j,`(S). Otherwise, we need to figure out
whether S gets added in iteration (i, j, `) or not. To
that end, we again consider two cases:

1. ` = 0: S gets added to the set cover iff |Bi,j(S)| ≥
log20 s · log20 t.

2. ` > 0: we first check whether S ∈ Si,j·T+`. If
S ∈ Si,j·T+`, then for each element e ∈ Bi,j(S),
we invoke the oracle Oel

i,j,`−1(e). If the estimated

number of free elements in S is at least s/2i,
then S gets added to the set cover in iteration
(i, j, `), otherwise not. This step requires at most
log20 s · log20 t many recursive calls to the oracle
Oel

i,j,`−1.

Next, we describe how to answer Oel
i,j,`(e). To do so, we

first check whether e was already covered (or pretends
to be covered) at the beginning of iteration (i, j, `).

1. ` = 0: we simply check whether e /∈ Ei,j ,

2. ` > 0: we recursively invoke Oel
i,j,`−1(e).

If e is not covered, then we proceed as follows:

1. ` = 0: we first invoke Oset
i,j,0 for all sets which

contain e. If none of them is added to the set cover
by iteration (i, j, 0), then we check if e pretends
to be covered in Line 14 by checking for each
k ∈ {j · T + 1, ..., (j + 1) · T} if e is contained in
more than log20 s · log20 t · 2T many sets in Ŝi,k.

2. ` > 0: Otherwise, for all sets in Ŝi,j·T+` containing
e, we invoke the oracle Oset

i,j,` to check if any of
them is added to the set cover by the end of
iteration (i, j, `). If that’s the case, then e is covered
after iteration (i, j, `). This step requires at most
log20 s · log20 t · 2T recursive calls to Oset

i,j,`−1 oracle.

Let Qset(`) and Qel(`) be an upper bound on the
total number of queries to (Si,j , Ei,j) that we need
in order to answer Oset

i,j,`(S) and Oel
i,j,`(e) respectively.

From the description, we derive the following recursions:

Qset(0) = O(poly(st))

Qset(`) = Qset(`− 1) + log20 s · log20 t ·Qel(`− 1) +O(s)

≤ poly(log s) · 2O(T ) · (Qset(`− 1) +Qel(`− 1))

+O(st) for ` > 0

Qel(0) = O(poly(st))

Qel(`) = Qel(`− 1) + log20 s · log20 t · 2T ·Qset(`) +O(st)

≤ poly(log s) · 2O(T ) · (Qset(`− 1) +Qel(`− 1))

+O(st) for ` > 0

Therefore, we get Qset(`) = Qel(`) = O(poly(st)) ·
(poly(log s) · 2O(T ))`. This implies Qset(T ) = Qel(T ) =
O(poly(st)). Recall that we have Oset

i,j,T = Oset
i,j and

Oel
i,j,T = Oel

i,j . Thus, we can answer both Oset
i,j and Oel

i,j

with O(poly(st)) many queries.
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Description of Oset
i,j and Oel

i,j given query ac-

cess to Oset
i,j−1 and Oel

i,j−1 (j > 1). It is easy to ver-
ify that we can give query access to (Si,j , Ei,j) by using
O(st) many queries toOset

i,j−1, Oel
i,j−1 and the original set

cover instance. Together with the previous paragraph,
this implies that we can answer Oset

i,j(S) and Oel
i,j(e) with

O(poly(st)) many oracle calls to Oset
i,j−1, Oel

i,j−1 and the
original set cover instance.

Description of Oset
i and Oel

i given query ac-
cess to (Si,0, Ei,0). The query complexity analysis of
the previous case together with a simple induction ar-
gument implies that we can answer Oset

i,j(S) and Oel
i,j(e)

with (st)O(j) many queries to (Si,0, Ei,0). In particu-
lar, this implies that we can answer the oracles corre-
sponding to the last phase in stage i, namely Oset

i,T−1(S)

and Oel
i,T−1(e), with (st)O(

√
log(t)) many queries to

(Si,0, Ei,0) and the original set cover instance. Remem-
ber that Oset

i,T−1(S) = Oset
i (S) and Oel

i,T−1(e) = Oel
i (e).

This implies that we can answer Oset
i (S) and Oel

i (e) with

(st)O(
√

log(t)) many queries to (Si,0, Ei,0) and the origi-
nal set cover instance.

Description of Oset
i and Oel

i given query access
to Oset

i−1 and Oel
i−1 (i > 1). It is easy to verify that

we can give query access to (Si,0, Ei,0) by using O(st)
many queries to Oset

i−1, Oel
i−1 and the original set cover

instance. Together with the query complexity analysis
of the previous paragraph, this implies that we can

answer Oset
i (S) and Oel

i (e) with (st)O(
√

log(t)) many
oracle calls to Oset

i−1 and Oel
i−1 and the original set cover

instance.
Description of Oset given query access to

(S, E). Note that (S1,0, E1,0) = (S, E). Hence, a simple
induction argument implies that we can answer Oset

i (S)

and Oel
i (e) with (st)O(i·

√
log(t)) many queries to (S, E).

In particular, this implies that we can answer Oset
log(s)(S)

with (st)O(log(s)·
√

log(t)) many queries to (S, E). Now,
it is straightforward to implement Oset(S) with O(st)
many calls to Oset

log(s) and (S, E). This implies that the

total query complexity is (st)O(log(s)·
√

log(t)).

5.3 Approximation Proof In this section we ana-
lyze the approximation guarantee of Algorithm 3 and
prove the following result.

Theorem 5.1. Let Scover be the solution returned by
Algorithm 3. Then, E [|Scover|] = O(log s) ·OPT.

To prove Theorem 5.1, we highly reuse the state-
ments proved for Algorithm 2. In particular, Theo-
rem 4.1 shows that Algorithm 2 in expectation returns
a O(log s)-approximate solution. In this section, we will
analyze the similarity between Algorithm 3 and Algo-

rithm 2, and show that from the point of view of most of
the elements and sets these two algorithms are identical.
Then we apply Theorem 4.1 to prove Theorem 5.1.

We now briefly describe the notation and the setup
that is used for proving the required lemmas. First,
we randomly choose sets Bi(S) and families Si,k as
described in Line 3 and Line 4 of Algorithm 2. Af-
ter that we execute Algorithm 2 and Algorithm 3 “si-
multaneously” with the same Bi(S)’s and Si,k’s. For
r ∈ {0, 1, . . . , log s · log t}, some set S is considered to
have the same state after r rounds in both algorithms
iff S was either added to the set cover in both algo-
rithms or in none of them after r rounds. Similarly, an
element e is considered to be in the same state in both
algorithms after r rounds iff e is still free after r rounds
in both algorithms or e is covered in both algorithms
after r rounds. We say that the T -hop neighborhood of
some set S (resp., element e) is in the same state after
r rounds in both algorithms iff all the sets and all the
elements in the T -hop neighborhood of S (resp., e) have
the same state in both algorithms after r rounds.

Lemma 5.1. Consider an arbitrary round r < log s ·
log t. For a set S (an element e, respectively) let EQ

(r)
S,10

(EQ
(r)
e,10, respectively) denote the event that the 10-hop

neighborhood of S (e, respectively) in Algorithm 2 and
Algorithm 3 is in the same state after r rounds. Further-

more, let DIF
(r+1)
S (DIF

(r+1)
e , respectively) denote the

event that S (e, respectively) is in a different state in Al-
gorithm 2 compared to Algorithm 3 after r + 1 rounds.

Assume that Pr
[
EQ

(r)
S,10

]
≥ 1

2 and Pr
[
EQ

(r)
e,10

]
≥ 1

2 .

Then,

Pr
[
DIF

(r+1)
S | EQ(r)

S,10

]
= O

(
1

(st)log
3 s·log3 t

)
, and

Pr
[
DIF (r+1)

e | EQ(r)
e,10

]
= O

(
1

(st)log
3 s·log3 t

)
.

Proof. We provide the proof for S, but the same argu-
ment works for e. Assume that the 10-hop neighbor-
hood of S is in the same state after r rounds in both
algorithms. In order for S to be in a different state after
r + 1 rounds, either

(A) there exists a set S′ in the 5-hop neighborhood of
S such that S′ is added to the set cover in Line 9
of Algorithm 3 during round r + 1; or

(B) there exists an element e′ in the 5-hop neighbor-
hood of S such that e′ pretends to be covered in
Line 14 of Algorithm 3 during round r + 1.

We consider these two cases independently.
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Case A. Let i be the stage that r is part of. This
implies that Bi(S

′) contains more than log20 s · log20 t
many free elements at the beginning of stage i in
Algorithm 3. As the 5-hop neighborhood of S′ is
contained in the 10-hop neighborhood of S, this implies
that Bi(S

′) also contains more than log20 s·log20 t many
elements in Algorithm 2. This implies that S′ is a bad
set in round r.

Case B. Observe that an element can start pre-
tending to be covered from round r+ 1 onwards only if
r + 1 corresponds to the first iteration of some phase
(i, j). Hence, assume that r + 1 corresponds to the
first iteration of phase j in stage i of Algorithm 3 and
to iteration k1 = j · T + 1 in stage i of Algorithm 2.
As e′ pretends to be covered, e′ was still uncovered at
the beginning of iteration k1. Therefore, there exists
k2 ∈ {j · T + 1, . . . , (j + 1) · T} such that Si,k2 had
more than log20 s · log20 t · 2T ≥ log20 s · log20 t · 2k2−k1

many sets that contain e′ with an estimated set size of
at least s/2i at the beginning of iteration k1 in stage i
(see Line 13 of Algorithm 3). This implies that e′ is a
bad element in Algorithm 2.

Combining the two cases. Both cases imply that
S has a bad neighborhood in Algorithm 2. Therefore,
from Lemma 4.10 we conclude

Pr
[
DIF

(r+1)
S | EQ(r)

S,10

]
≤ Pr

[
“S has a bad neighborhood” | EQ(r)

S,10

]
≤ Pr [“S has a bad neighborhood”]

Pr
[
EQ

(r)
S,10

]
≤ 2 · Pr [“S has a bad neighborhood”]

≤ 2 ·O
(

1

(st)log
3 s·log3 t

)
.

In the same way we derive Pr
[
DIF

(r+1)
e | EQ(r)

e,10

]
=

O
(

1
(st)log3 s·log3 t

)
.

Lemma 5.2. Consider a round r ∈ {0, . . . , log s · log t}.
Define Tr := 10·(log s·log t+1−r). Let pr be equal to the
maximum probability, over all sets S and all elements
e, that the Tr-hop neighborhood of S or e looks different
in Algorithm 2 compared to Algorithm 3 after r rounds.
Then, it holds

(5.2) pr ≤ r · c ·
1

(st)log s·log t
,

for an absolute constant c.

Proof. We proof the lemma by induction over r. The
base case r = 0 holds trivially. Let r ∈ {0, . . . , log s ·

log t−1} be an arbitrary round. Assuming that Eq. (5.2)
holds for r, we will show that Eq. (5.2) holds for r + 1
as well.

Let S be a set. Assume that the Tr+1-hop neigh-
borhood of S looks different in Algorithm 2 compared
to Algorithm 3 after r + 1 rounds. This could happen
for one of the two following reasons. First, the Tr-hop
neighborhood of S looked different after r rounds in
Algorithm 2 compared to Algorithm 3, which happens
with a probability of at most pr. Second, there exists
a set S′ (an element e′, respectively) in the Tr+1-hop
neighborhood of S such that the 10-hop neighborhood
of S′ (e′, respectively) looks the same after r rounds,
but S′ (e′, respectively) is not in the same state after
r + 1 rounds in the two different algorithms. Condi-
tioned that the first case does not happen, Lemma 5.1
together with a union bound over at most (st)O(log s·log t)

many sets and elements in the Tr+1-hop neighborhood
of S implies that this case happens with a probability of
at most c · 1

(st)log s·log t , where c is an absolute constant.

This implies that

pr+1 ≤ pr + c · 1

(st)log s·log t

≤ r · c · 1

(st)log s·log t
+ c · 1

(st)log s·log t

= (r + 1) · c · 1

(st)log s·log t
,

as desired.

We are now ready to prove the main theorem of this
section.

Proof of. Theorem 5.1. Let pS (p′S , respectively) be the
probability that S is added to the set cover constructed
by Algorithm 2 (Algorithm 3, respectively). Lemma 5.2
implies that the Tlog(s)·log(t)-hop neighborhood of S
is in a different state in Algorithm 3 compared to
Algorithm 2 with a probability at most plog s log t ≤ 1

s·t .
In particular, this implies that |pS−p′S | ≤ 1

s·t . Together
with Theorem 4.1, this implies that the expected size
of Scover is at most O(log s) · OPT + n·t

t·s . This implies
E [|Scover|] = O(log s) ·OPT as desired.

6 Repeated Sparsification

We now discuss how to reduce the query complexity
from (st)O(log s

√
log t) to sO(log s)tO(log s·(log log s+log log t)),

and hence prove Theorem 1.1. We will first present
the high-level ideas of our approach and convey the
main intuition behind our algorithm, that we present
as Algorithms 4 to 6.

Estimating set sizes will be still done in the same
way as in Algorithm 2. Thus, our main focus lies on
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improving the sparsification of the element side. For
the sake of cleaner presentation, we first review how
sparsification works in Algorithm 3. Let i be a stage.
Consider the moment when Algorithm 3 tests whether
an element e is covered or not in the iteration log t of
stage i. First, note that the family Si,log t contains all
the sets in the set cover instance. Hence, e might be
contained in up to t sets in Si,log t. However, recall that
we sparsify Si,log t at the beginning of the last phase
by removing all the sets which have a small estimated
number of free elements. The resulting family of sets is
called Ŝi,log t and e only needs to check for all sets in

Ŝi,log t containing e whether they get added to cover in
iteration log t of stage i.

However, to obtain the relevant sets in Ŝi,log t, we
need to estimate the degree of t sets at the beginning
of the last phase. This can be query-wise wasteful,
in a sense that invoking oracles that answer queries
about the last iteration/phase is significantly more
expensive than invoking oracles which answer queries
about iterations that happen early in the computation.
Motivated by this observation, our goal now is to
sparsify Si,log t rather “earlier” than “later”. We achieve
that in multiple steps. More concretely, we first estimate
the degree of all the sets that contain e in Si,log t after
log(t)/2 iterations. Given that e is still uncovered after
iteration log(t)/2, we expect no more than

√
t sets to

have a large degree. For all of the at most
√
t sets,

we now estimate the degree after 3
4 log t iterations. If e

is still uncovered after iteration 3
4 log t, we expect no

more than t1/4 of those sets to have a large degree.
This process is repeated until we expect no more than
poly(log t) of the sets to have a large degree. At that
point, e is contained in a small number of sets that have
to be tested, and we simply test for each of those sets
whether they get added to the set cover during iteration
log(t) of stage i or not.

Now we describe the structure of Algorithm 4.
In order to execute stage i, Algorithm 4 calls the
recursive procedure Algorithm 5. The top-level call of
Algorithm 5 executes log(t) iterations. As the input,
Algorithm 5 receives the families of sets Ŝ1, . . . , Ŝlog t,
which contain all the sets that will potentially be added
to the set cover in iterations 1 to log t. Given that,
Algorithm 5 calls itself recursively to execute the first
log(t)/2 iterations. It passes down the families of sets
Ŝ1, . . . , Ŝlog(t)/2 that contain all the sets that potentially
get added to the set cover between iterations 1 and
log(t)/2. Note that we expect e to be contained in
no more than

√
t sets of Ŝlog(t)/2. After executing the

first log(t)/2 iterations, we recursively call Algorithm 5
to execute the remaining log(t)/2 iterations. However,
we do not simply pass down the recursion families of

sets Ŝlog(t)/2+1, . . . , Ŝlog(t). Instead, we first sparsify
the families of sets by removing all the sets with an
estimated degree less than s/2i. Then, the resulting
families of sets S ′log(t)/2+1, . . . ,S

′
log(t) get passed down

to the second recursive call. Furthermore, for a free
element e, we do not expect e to be contained in more
than

√
t sets in any of the families of sets that get

passed to the second recursive call. If we detect any
such element e′, as before, we mark e′ as pretending to
be covered.

Algorithm 4: A variant of Algorithm 2
that can be simulated by an LCA with
sO(log s)tO(log s·(log log s+log log t)) queries.

1 for each pair of (i, k) where i ∈ [log s] and
k ∈ [log t] do

2 Bi(S) and Si,k are generated in the exact
same way as in Algorithm 2

3 for stage i = 1 to log s do
4 for each set S ∈ S do

5 B̂i(S)← Bi(S) ∩ Ei // Ei denotes the set of

free elements in the beginning of the stage

6 if |B̂i(S)| ≥ log20 s · log20 t then // test

whether S is a bad set

7 add S to Scover.

8 for each k ∈ [log(t)] do

9 Ŝi,k ← {S|S ∈ Si,k, d̂Bi
(S) ≥ s/2i}

10 for each e ∈ Ei in parallel do

11 if dŜi,k(e) ≥ log20 s · log20 t · 2T then

// test whether e is a bad element

12 pretend that e is covered.// e will

be covered in Line 15.

13 Êi ← all elements in Ei which are uncovered
(and don’t pretend to be covered)
RecursiveSplitting(1, log t, i,
(Ŝi,1, Ŝi,2, ..., Ŝi,log t), Êi)

14 for each free element e do // Handling bad

elements

15 add the set with smallest ID which
contains e to Scover.

6.1 Establishing an Invariant

Invariant 6.1. We define the following invariant for
RecursiveSplitting(k′, R, i, Ŝ[k′,k′+R−1], Êi):

(1) For l ∈ {0, ..., R − 1}, each element e in Êi is
contained in at most log20 s · log20 t · 2l+1 many sets
of Ŝk′+l.
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This invariant directly follows from Line 12 of Algo-
rithm 4 and Line 9 of Algorithm 5 together with a sim-
ple induction argument. In particular, Invariant 6.1
implies that each uncovered element is contained in
at most poly(log s) · 2O(R) many sets in Ŝk for any
k ∈ {k′, ..., k′ +R− 1}.

Algorithm 5: RecursiveSplitting(k′, R, i,
Ŝ[k′,k′+R−1] = (Ŝk′ , Ŝk′+1, . . . , Ŝk′+R−1), Êi)

Input:
Simulates iterations k′ to k′ +R− 1 of the

i-th iteration
For k ∈ {k′, ..., k′ +R− 1}, Ŝk consists of

sets that will be added to the set cover as long
as the estimated number of free elements is at
least s/2i in the beginning of the k-th iteration
of stage i.
Êi consists of all elements which are

uncovered (and don’t pretend to be covered) at
the beginning of iteration k′

1 if R ≤ log log t then

2 BaseCase(k′, R, i, (Ŝk′ , . . . , Ŝk′+R−1))
3 return

4 RecursiveSplitting(k′, R/2, i,

(Ŝk′ , Ŝk′+1, . . . , Ŝk′+R/2−1), Êi)
5 for each k ∈ {k′ +R/2, . . . , k′ +R− 1} do

6 S ′k ← {S|S ∈ Ŝk, d̂Bi
(S) ≥ s/2i}

7 for each uncovered element e in parallel do

8 if dS′k(e) ≥ log20 s · log20 t · 2k−(k′+R/2)

then // only happens if e is a bad element

9 pretend that e is covered.

10 E ′i ← all uncovered elements in Êi
11 RecursiveSplitting(k′ +R/2, R/2, i,

(S ′k′+R/2,S
′
k′+R/2+1, . . . ,S

′
k′+R−1), E ′i)

6.2 LCA Simulation of Algorithm 5 and Algo-
rithm 6 In this section we describe the LCA imple-
mentation of Algorithm 5 and Algorithm 6. To sim-
plify notation, we sometimes treat Ŝ[k′,k′+R−1] as a set

consisting of all sets S which are contained in Ŝk for
k ∈ {k′, ..., k′ +R− 1}.

For the sake of analysis, we define two or-
acles Oset

k′,R,i(S) and Oel
k′,R,i(e). Oset

k′,R,i takes as
an input a set S and returns whether S gets
added to the set cover during the execution of
RecursiveSplitting(k′, R, i, Ŝ[k′,k′+R−1], Êi). Simi-

larly, Oel
k′,R,i takes as an input an arbitrary element e

and returns whether e gets covered for the first time
(or pretends to be covered) during the execution of

RecursiveSplitting(k′, R, i, Ŝ[k′,k′+R−1], Êi). In the
following two paragraphs, we show how to implement
the two oracles by having query access to the following
type of queries for some arbitrary element e or some
arbitrary set S:

(1) For some k ∈ {k′, . . . , k′+R− 1}, is S contained in
Ŝk?

(2) For some k ∈ {k′, . . . , k′ +R− 1} and some e ∈ Êi,
give me all sets in Ŝk which contain e.

(3) Is e contained in Êi?

(4) Give me all elements contained in B̂i(S).

We then derive a bound for the number of query
accesses the algorithm needs.

Base Case: Description of Oset
k′,R,i(S) and

Oel
k′,R,i(e) (R ≤ log log t) As R ≤ log log t, we only

need to focus on Algorithm 6. In the following, we
assume that S ∈ Ŝ[k′,k′+R−1] and e ∈ Êi, as these

two cases are easy to check and S /∈ Ŝ[k′,k′+R−1]
implies that S won’t be added to the set cover and
e /∈ Êi implies that e was already previously covered (or
pretended to be covered). Now, consider the directed
bipartite graph G = (Ŝ[k′,k′+R−1] ∪ Êi, E1 ∪ E2) with

(S, e) ∈ E1 iff e ∈ B̂i(S) and (e, S) ∈ E2 iff e ∈
Ŝ[k′,k′+R−1]. Note that in order to decide for some set

S ∈ Ŝ[k′,k′+R−1] if it gets added to the set cover, or some

element e ∈ Êi whether e gets covered, it is sufficient
to gather all the information within the O(log log t)-
hop neighborhood of S or e, respectively. Note that
the maximal out-degree of some set in G is log20 s ·
log20 t and Invariant 6.1 ensures that the maximal out-
degree of an element is poly(log s) · 2O(R). Thus, the
maximal out-degree of G is O(poly(log s · log t)). We
can therefore gather all the relevant information with
O(log log t) · (log s · log t)O(log log t) many queries. This
implies that we can answer Oset

k′,R,i(S) and Oel
k′,R,i(e)

with (log s · log t)O(log log t) many queries.

Algorithm 6: BaseCase(k′, R, i, (Ŝk′ , . . . ,
Ŝk′+R−1))

1 for iteration k = k′ to k′ +R− 1 do
2 for all sets S in parallel do

3 if S ∈ Ŝk is not in the cover and

d̂Bi
(S) ≥ s/2i then // Bi is computed in

Line 5

4 Add S to the set cover
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Recursive Case: Description of Oset
k′,R,i(S) and

Oel
k′,R,i(e) (R > log log t) Let Q(R) denote the query

complexity to answer Oset
k′,R,i(S) and Oel

k′,R,i(e), respec-
tively. For R > log log t, we will establish that

Q(R) ≤ poly(logS) · 2O(R) ·Q(R/2)2

For some arbitrary set S, we first check if S
gets added to the set cover during the first recursive
call by invoking Oset

k′,R/2,i(S). Note that Oset
k′,R/2,i(S)

assumes query access to 4 different types of queries.
However, those queries are basically the same queries
(slightly more restricted) as the ones we assume to
have to implement oracles Oset

k′,R,i and Oel
k′,R,i. Hence,

we can answer Oset
k′,R/2,i(S) with Q(R/2) many queries.

Similarly, we can decide with Q(R/2) many queries if e
gets covered during the first recursive call.

Note that the oracles corresponding to the second
recursive call assume to have access to the following
queries:

(1) For some k ∈ {k′+R/2, ..., k′+R−1}, is S contained
in S ′k?

(2) For some k ∈ {k′ + R/2, ..., k′ + R − 1} and some
e ∈ E ′i , give me all sets in S ′k which contain e.

(3) Is e contained in E ′i?

(4) Give me all elements contained in B̂i(S).

To decide if S is contained in S′k, we first check if S is

contained in Ŝk. If yes, then we check for each element
e in B̂i(S) if e is still uncovered after the first recursive
call. Given this information, we can decide if S is con-
tained in S′k. Hence, it takes O(poly(log s) poly(log t)) ·
Q(R/2) many queries to decide whether S is contained
in S′k.
In order to return all the sets in S′k which contain e (We

only assume e ∈ Êi instead of e ∈ E ′i), we first get all

of the at most poly(log s) · 2O(R) many sets in Ŝk which
contain e. This takes one query. Then, we check for
each of them whether it is also contained in S′k. Hence,
we can answer this query with poly(log s)·2O(R) ·Q(R/2)
many queries.
To decide if e ∈ E ′i , we first check if e ∈ Êi. If yes,
then we check if e gets covered during the first recursive
call. If not, then we check if e pretends to be covered
by checking for each of the at most poly(log s) · 2O(R)

many sets in Ŝ[k′,k′+R−1] which contain e whether they
get added to one or more of the S′k. Thus, answering if
e ∈ E ′i takes poly(log s)·2O(R)·O(poly(log s) poly(log t))·
Q(R/2) many queries.
The last query does not change across different recur-
sive calls. Hence, we can answer each of those 4 queries

with at most poly(log s) · 2O(R) many queries. Hence,
we need poly(log s) · 2O(R) · Q(R/2)2 many queries to
decide if a set is added to the set cover during the sec-
ond recursive call or some element gets covered during
the second recursive call. Thus, we can answer the ora-
cles Oset

k′,R,i and Oel
k′,R,i with poly(log s) ·2O(R) ·Q(R/2)2

many queries.

6.2.1 Bounding the Recursion By the previous
two subsections, there exist two constants c1 and c2
such that we can upper bound the query complexity
as follows

(6.3) Q(R) ≤

{
(log s log t)c1·log log t, R ≤ log log t

(log s · 2R)c2Q(R/2)2, R > log log t

We will now show by induction that there exists
some constant c such that for R ≥ 1

2 · log log t, we have:

Q(R) ≤
(
(log s) · 2R

)c·(R−1)
Note that this implies Q(log t) ≤ (log s)O(log t) ·

tO(log log t) = tO(log log t+log log s). For c large enough, it
is easy to see that it holds for 1

2 log log t ≤ R ≤ log log t.
Now, consider some R > log log(t). We get

Q(R) ≤ (log s · 2R)c2 · (Q(R/2))
2

≤ (log s · 2R)c2 ·
((

log s · 2R/2
)c·(R/2−1)

)2

≤ (log s · 2R)c2 ·
(

log s · 2R/2
)c·R−2c

≤
(
log s · 2R

)c·(R−1)
as desired.

6.3 LCA implementation and query complexity
of Algorithm 4 For some stage i, we need to answer
Q(log(t)) many of the following queries:

(1) For some k ∈ {1, ..., log t}, is S contained in Ŝi,k?

(2) For some k ∈ {1, ..., log t} and some e ∈ Ei, give me
all sets in Ŝi,k which contain e.

(3) Is e contained in Êi?

(4) Give me all elements contained in B̂i(S).

Each one of those can be answered with O(st) many
queries to (Si, Ei) and the original set cover instance.
Given that, we can “glue” different stages together in
the same way as in Algorithm 3. Thus, the query
complexity of Algorithm 4 is (poly(st) · Q(log t))log s.
Plugging in tO(log t log t+log log s) for Q(log t) leads to a
query complexity of tO(log s(log log s+log log t)) · sO(log s) =
sO(log t(log log s+log log t)+log s).
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6.4 Approximation Proof

Theorem 6.1. Let Scover be the solution returned by
Algorithm 4. Then, E [|Scover|] = O(log s) ·OPT.

Proof. The proof is completely analogous to the proof
of Theorem 5.1. The only thing to show is the following:
For some set S (element e), given that the 10-hop
neighborhood of S looks the same after r rounds in
both algorithms, S can only be in a different state after
round r + 1 in Algorithm 2 compared to Algorithm 4
if S has a bad neighborhood in Algorithm 2. This can
be seen as follows: S can only be in a different state
after r+ 1 rounds if either some element e′ in the 5-hop
neighborhood of S pretends to be covered during round
r+1 or some set S′ in the 5-hop neighborhood of S gets
added to the set cover in Line 7 of Algorithm 4. This
would however imply that S has a bad neighborhood in
Algorithm 2 as desired.
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