REVIEW

Anno Genominis XX: 20 Years of Arabidopsis Genomics

Nicholas J. Provart^{1a}, Siobhan M. Brady², Geraint Parry³, Robert J. Schmitz⁴, Christine Queitsch⁵, Dario Bonetta⁶, Jamie Waese¹, Korbinian Schneeberger⁷, Ann E. Loraine^{8a}

⁴ Department of Genetics, University of Georgia, GA, 30602, USA

⁶ Faculty of Science, Ontario Tech University, Oshawa ON., L1G 0C5, CANADA

One-sentence summary: The publication of the Arabidopsis genome sequence 20 years ago has had an enormous impact on the global plant science community.

ABSTRACT

Twenty years ago, the *Arabidopsis thaliana* genome sequence was published. This was an important moment, as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.

INTRODUCTION

¹ Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON. M5S 3B2, CANADA

² Dept. of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA

³ GARNet, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK

⁵ Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA/Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA

⁷ Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Cologne, GERMANY/Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, GERMANY

⁸ Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA

^a Corresponding Authors: <u>nicholas.provart@utoronto.ca</u>, <u>ann.loraine@uncc.edu</u>

2 The internet was just a small network called NSFNET, the Sony Walkman cassette

3 player was the choice of music delivery for teenagers and lab workers, and it was

4 possible to read around 1,000 nucleotides of DNA sequence a day after running

5 radioactively labeled Sanger sequencing reactions on a vertical polyacrylamide gel and

6 waiting a couple of days for a film to be exposed. No doubt inspired by the nascent

7 effort to sequence the human genome (workshops for which were held in 1985 in Santa

8 Fe, New Mexico and Santa Cruz, California), earlier adopters of *Arabidopsis thaliana*

9 (Arabidopsis) as a research organism (Provart et al., 2016) met at four workshops

sponsored by the U.S. National Science Foundation (NSF) in 1989 and early 1990. This

led to the release of a draft document in June 1990 at that year's International

12 Conference on Arabidopsis Research in Vienna called "A Long-Range Plan for the

13 Multinational Coordinated *Arabidopsis thaliana* Genome Research Project"

14 (http://arabidopsisresearch.org/images/publications/mascreports/1990 MASCPlan.pdf)".

15

16

17

20

23

This project was developed "based on the recognition that a profound understanding of

plant biology is essential in order to meet the immediate and future challenges facing

world agriculture and the global environment". The mission statement of this project was

19 "to identify all of the genes by using a functional biological approach leading to the

determination of the complete sequence of the Arabidopsis genome by the end of this

[i.e. the 20th] century". At the outset, the authors of the report recognized the importance

of international coordination for "rapid and efficient advances" in Arabidopsis genome

research. Furthermore, they foresaw the need for biological resources centers (at least

24 two, "advisable for security reasons, if nothing else") and an informatics program to

enable the sharing of data. Somerville and Koornneef (2002) describe the process by

which the Arabidopsis Genome Initiative came together in the 1990s to sequence the

genome – lots of cooperation and coordination were involved!

28

31

32

33

27

29 In this review, we cover the initial efforts to sequence the genome, and how the genome

30 has been updated over time. We discuss how the genome became a platform for many

other 'omics-based approaches, from early functional genomics efforts to document the

expression pattern of all Arabidopsis genes and create T-DNA knockout collections, to

more recent interactomic, epigenomic and single-cell RNA-seq-based approaches. We

emphasize how international cooperation has led to breakthroughs in our understanding of plant biology, and we finish by looking to the future in which the Arabidopsis genome will continue to play an important role.

37

38

39

40

36

34

35

CREATING A PLATFORM FOR GENOMICS RESOURCES FROM RAW

NUCLEOTIDE SEQUENCES

From BACs and TACs to Araport 11

- The sequences of chromosomes 2 and 4 from Arabidopsis were published in December
- 42 1999 (Lin et al., 1999; Mayer et al., 1999), a year before a paper presenting the
- 43 sequences of the final three chromosomes and an overall description of genome
- 44 analysis was published in *Nature* in December 2000 (Arabidopsis Genome Initiative,
- 45 2000). These manuscripts described an elaborate strategy consisting of physical
- 46 mapping via fingerprinting (either by restriction fragment analysis, hybridization, or
- 47 PCR), integration with genetic maps, and end sequence analysis of 47,788 BAC
- 48 (bacterial artificial chromosome) clones to create 10 contigs covering the chromosome
- 49 arms and centromeric heterochromatin (assembled from 1,569 BAC, TAC
- [transformation-competent artificial chromosome], cosmid, and P1 [bacteriophage P1]
- 51 clones). Telomeric sequences were assembled from separate YAC (yeast artificial
- 52 chromosome) and phage clones. The Arabidopsis Genome Initiative paper reported
- 25,498 genes and ancient whole genome duplications. In the two decades since then,
- 54 there have been 11 genome annotation revisions, from J. Craig Venter's The Institute
- for Genomic Research iteration 1 (TIGR1) released in August of 2001 through The
- Arabidopsis Information Resource's 6th update (TAIR6) in November 2005, to the
- 57 current Araport11 version containing 27,655 genes in June 2016 (Cheng et al., 2017).
- The history of the 11 genome annotation versions may be explored online at
- 59 https://www.arabidopsis.org/portals/genAnnotation/genome_snapshot.jsp. The original
- 60 paper is one of the most impactful papers in plant research and has been cited 5,960
- times in the scientific literature, across a broad range of disciplines and by researchers
- around the world (see **Figure 1**).

6364

The Arabidopsis Genome as a Seed for Plant Genomic Research

65 Over the past 30 years, the Multinational Arabidopsis Steering Committee (MASC) has 66 advised on the activities of the Arabidopsis community, documenting its continuing 67 evolution via an annual progress report (Parry et al., 2020) and facilitating community 68 integration through oversight of the annual International Conference on Arabidopsis 69 Research (http://arabidopsisresearch.org). In the lead up to the preparation of this 70 manuscript, MASC circulated a survey to understand what the sequencing of the 71 Arabidopsis genome has meant to members of the global community. 72 73 Publication of the Arabidopsis genomic sequence sent a message to the wider scientific 74 community about the legitimacy of using plant experimental systems as a tool for 75 fundamental discoveries in cell and molecular biology. Professor Klaus Mayer at the 76 Helmholtz Center in Munich was part of the sequencing team and recalls, "The 77 experience of a truly visionary and ambitious international collaboration and approach 78 the new challenge in plant research changed my life and scientific career forever. The 79 size and complexity of this project (remember no next generation sequencing [NGS] at 80 that time!) as well as coordination over US, Europe and Japan was a pioneering 81 challenge but opened lots of opportunities, funding-wise, science-wise etc. Probably the 82 alliance of some remarkable personalities and talents, organizations, infrastructures 83 (sequencing and computing) and the overall spirit of pioneering a game changer in plant 84 research was the basis for the remarkable success." 85 86 Lessons learned from assembly and analysis of the Arabidopsis genome were a 87 prelude for the use of genomic-led techniques in plants with more complex genomes. 88 As Mayer summarizes "...the experiences in Arabidopsis were extremely important and 89 [were crucial in] developing strategies to approach the size- and complexity-wise holy 90 grails in plant genomics (e.g. maize & Triticeae)". This is corroborated by Dr. Miriam 91 Gifford at the University of Warwick: "[the Arabidopsis Genome Initiative]...pushed 92 ahead the sequencing of other plant genomes, set a standard for genome publication

and access, and highlighted the depth and complexity of even a simple plant genome to

researchers studying non-plant organisms".

93

94

96 The Multinational Coordinated Arabidopsis Functional Genomics Project and 97 **AtGenExpress** 98 The Multinational Coordinated Arabidopsis Functional Genomics Project was an idea 99 that developed from a workshop funded by the NSF that was held in early 2000 at the 100 Salk Institute in California entitled "Functional Genomics and the Virtual Plant: A 101 blueprint for understanding how plants are built and how to improve them" (text 102 available online at https://www.arabidopsis.org/portals/masc/workshop2010.jsp). This 103 workshop proposed "to determine the function of all Arabidopsis genes during the next 104 decade, using a systems approach" and was intended to build on the success of the 105 genome sequence. More than 60 projects were funded under the "Arabidopsis 2010" 106 designation, ranging from studies to elucidate the ionome and translational regulons, to 107 many others using mutational and overexpression approaches on subsets of 108 Arabidopsis genes to understand their functions. One of the most useful aspects of the 109 2010 Project was the generation of expression profiles for (almost) all Arabidopsis 110 genes. 111 112 The idea of developing AtGenExpress, an effort to document the expression patterns of 113 all Arabidopsis genes using high-throughput expression profiling technologies, first 114 appeared in the 2003 MASC report 115 (http://arabidopsisresearch.org/images/publications/mascreports/2003 MASCReport.pd 116 f) and was in fact hinted at in the 2000 publication of the Arabidopsis genome: "at a 117 biochemical level, the specificity conferred by nucleotide sequence, and the 118 completeness of the survey allow complex mixtures of RNA and protein to be resolved 119 into their individual components using microarrays and mass spectrometry". 120 121 Several funding agencies, notably the NSF in the US, the DFG in Germany, RIKEN in 122 Japan, and BBSRC in the UK, awarded grants to generate large expression data sets 123 using both custom cDNA microarrays and the Affymetrix ATH1 array. The generation of 124 a developmental atlas (Schmid et al., 2005) and an abiotic response map (Kilian et al., 125 2007), along with unpublished – but publicly-available – transcriptomic data sets for 126 hormone responses, chemical inhibitors, plant-pathogen interactions, and others, plus 127 easy access provided by tools like the Arabidopsis eFP Browser (Winter et al., 2007)

and Genevestigator (Zimmermann et al., 2004; Hruz et al., 2008) provided thousands of plant researchers with instantaneous access to expression profiles of their genes of interest, saving each hundreds of hours of research time by obviating the need to perform RNA gel blot analyses in their individual laboratories. These data would help tease apart "functional redundancy" brought about by "extensive gene duplications" seen through careful analysis of the Arabidopsis genome (Arabidopsis Genome Initiative, 2000). In addition, these data sets act as databases of not only positive results but also negative results, letting researchers know where genes are not expressed. The papers describing these data sets and tools, although now superseded by RNA-seq technology (which too benefits from a high-quality reference genome), are among the most highly cited in Arabidopsis research. From the perspective of technological breakthroughs, the first microarray profiling experiment on any organism was conducted using 45 cDNAs from Arabidopsis (Schena et al., 1995 - with a whopping 13,000 citations!), as was the first strand-specific RNA-seq experiment (Lister et al., 2008).

THE RISE OF NGS, 1001 GENOMES, AND "NEXT" NGS

NGS: Get your cheap genomes here!

The availability of a mature genome annotation (then at TAIR6) together with its small genome made Arabidopsis the optimal plant system for the rising next generation sequencing (NGS) technologies in first decade of this century (see **Figure 2** for a depiction of the types of research and technologies the genome sequence has enabled). Such technologies dramatically reduced the cost of sequencing a genome. It was no surprise that soon after initial pilot studies (Nordborg et al., 2005; Ossowski et al., 2008), an ambitious 1001 Genomes Project for Arabidopsis was launched in 2009 (Weigel and Mott, 2009). Following multiple, individual genome analyses of larger collections of different Arabidopsis populations (Cao et al., 2011; Gan et al., 2011; Long et al., 2013; Schmitz et al., 2013), the 1001 Genomes Consortium published their integrative analysis of 1,135 Eurasian *A. thaliana* genomes in 2016 (1001 Genomes Consortium, 2016).

One of the major findings of this analysis was that the vast majority of the Eurasian accessions were derived from a recent expansion of a single clade, which spread along

the Eurasian east-west axis, possibly supported by the rapid expansion of agriculture, and finally reached northern America and central Asia, where the youngest populations could be observed. This post-glacial spread into new ecosystems required adaptation to new environmental challenges, introducing geographical changes in allele frequency and allele distribution across the species range (1001 Genomes Consortium, 2016). In addition to the Eurasian clade, a few samples revealed the existence of five highly diverged "relict" lineages all located in either African or southern European regions, most prominently on the Iberian Peninsula. A more recent study on the genomic diversity in Africa revealed that Arabidopsis is actually native not only to Eurasia and North Africa but also to the Afro-alpine regions of sub-Saharan Africa and South Africa, including the greatest variation among Arabidopsis accessions identified so far (Durvasula et al., 2017).

Besides population demography, a main motivation for the 1001 Genomes Project was to build genetic resources that would enable the global community of Arabidopsis researchers to perform genome-wide association studies (GWAS). Since Arabidopsis accessions are inbred, they have stable homozygous genomes. Thus, individual accessions included in the 1001 Genomes Consortium can be distributed as seeds and readily used in association mapping without the need to sequence them over and over again. Seeds from all these accessions are available at the Arabidopsis Biological Resource Center (ABRC), and the genome sequences can be downloaded from the 1001genomes.org web portal. It should be pointed out that there are companion methylomes and transcriptomes available for these accessions, too (Kawakatsu et al., 2016).

The density of genetic markers in the 1001 Genomes data set is sufficient to find associations across the entire genome. However, with the improvement of next generation sequencing from short to long read technologies, it is becoming increasingly clear that genome resequencing misses large and complex genomic variation (Zapata et al., 2016). A recent comparison of eight *de novo* assembled genomes revealed a huge amount (up to 6 Mb or 5% of the genome) of non-reference sequences in each of the individual accessions' genomes (Jiao and Schneeberger, 2020). This additional

sequence introduced copy-number changes in ~5,000 genes, including ~1,900 genes that were not part of the reference annotation. Together, the assemblies revealed a pan-genome size of 135 Mb, including a total of approximately 30,000 genes across the entire population of Arabidopsis, which is likely to be an underestimation, as most of the African diversity was not included in this set of assembled accessions. In addition to sequence differences, differences in collinearity could be observed between the genomes. In some genomic regions, all eight genomes were completely rearranged, forming eight distinct haplotypes. These hotspots of rearrangements were enriched for genes implicated in biotic stress responses. This suggested that such hotspots of rearrangements undergo different evolutionary dynamics, including the rapid accumulation of new mutations to generate quick responses in the interminable battle against biotic stressors.

"Next" NGS

However, genomics has not yet reached its limits. The latest revolution in genome sequencing introduced high-quality long reads (e.g. Pacific Biosciences' HiFi reads) without the high sequencing error rate that used to be the unifying shortcoming of all long-read technologies. Assemblies based on HiFi reads outcompete the quality of the widely used reference sequence, including the reconstruction of telomere-to-telomere sequences (Miga et al., 2020). The unlimited access to genomic variation at all levels will help deepen our understanding of the molecular basis of natural variation and help unravel the genomic basis of adaptation to new environments. While we will soon have access to many reference-quality genome sequences, the data will require new bioinformatics solutions to make full use of all the new information. Thus, 20 years after the release of the reference sequence, the peak of plant genomics is yet to come.

RNA-seq and Splice Variants, Reannotating the Genome

Assembling a genomic sequence into chromosomes or pan-genomes is only the first step toward defining the genome of a species. In addition, we also need notations on the sequence that indicate the locations of genes and details about how gene sequences are copied into RNA. These details, called "annotations" and "gene models", delineate the start and stop positions of introns, exons, and open reading frames, which

define how transcription, RNA processing, and translation (in the case of protein-coding 224 225 genes) occur at a locus. NGS has also enabled unprecedented understanding of such 226 details. 227 228 In the early days, these annotations came from two sources: ab initio gene prediction 229 programs and high-throughput cDNA sequencing projects. The cDNA sequencing 230 projects produced expressed sequence tags (ESTs) that genome project scientists 231 aligned onto the genome and used to define gene models. Later, assembled RNA-seg 232 data served much the same goal, and in fact, 113 RNA-seq data sets were used to 233 reannotate the most recent Arabidopsis genome annotation release, Araport 11 (Cheng 234 et al., 2017). 235 236 Early on, it became clear that many genes produce more than one mature transcript 237 species due to alternative splicing, alternative promoters, and alternative 238 polyadenylation. At first, we were limited to simply observing and documenting these 239 variants. Now, thanks to the large number of RNA-seq data sets available in the public 240 databases, we are beginning to quantify how often and where these transcript variants 241 occur. 242 243 Bioinformatics analysis of ESTs (Ner-Gaon et al., 2004; English et al., 2010) 244 discovered, and RNA-seq studies later confirmed, that the retention of introns in spliced 245 transcripts is unusually common in Arabidopsis relative to mammals. In plants, introns 246 are smaller and lack the polypyrimidine tracts present in introns in other species. The 247 SR (serine- and arginine-rich) family of splicing regulator proteins is larger in plants than 248 in other species, with several plant-specific members (Barta et al., 2010). Taken 249 together, these observations suggest that splicing biochemistry has plant-specific 250 features. Alternative splicing is especially common in splicing-related genes and in 251 genes involved in regulating circadian cycling. The type B response regulator family 252 illustrates this phenomenon. One branch of this family undergoes normal levels of 253 alternative splicing and is involved in cytokinin signal transduction. Members of a related 254 branch, first designated the "pseudo-response regulators", regulate clock pathways and 255

are highly alternatively spliced (Matsushika et al., 2000). Another key finding is that

temperature changes trigger changes in splicing patterns, particularly among genes involved in splicing (Gulledge et al., 2012; Calixto et al., 2018). These observations have led to speculation that the splicing machinery remodels itself via alternative splicing in response to temperature changes and that the temperature-dependent regulation of splicing may in turn intersect with the regulation of circadian rhythms. Finally, most alternatively spliced genes appear to produce the same or similar proportions of splice variants in diverse tissues and sample types (Loraine et al., 2013). When viewed through the lens of bulk RNA-seq data, splicing patterns appear remarkably stable across diverse treatments and conditions.

RNA-seq of Individual Cells

The most recent transformative technology to arise in biology is single cell sequencing. This methodology was first applied in plants in studies of the Arabidopsis root. The first version of single cell sequencing sorted single cells into a welled plate and carried out subsequent miniaturized synthesis of RNA-seq libraries (Efroni et al., 2016). These libraries were used to elucidate the developmental trajectories that individual cells undertake in root regeneration. If cut within a particular distance from the root tip, cells remaining at the cut end are able to form a re-organized stem cell niche within several days. This sequencing determined that this regeneration follows a developmental program similar to the program that occurs during embryogenesis (Efroni et al., 2016).

Several years later, DropSeq and 10X technologies, both involving microfluidic devices, were used in a flurry of publications at the end of 2018 and early 2019 (Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse et al., 2019; Zhang et al., 2019). These approaches utilized the well-deduced spatiotemporal reference maps of the Arabidopsis root in order to ascribe cell identity. While these studies differed in the numbers of cells sequenced, they were able to obtain generally similar groups of cell types, as partitioned by transcriptome variation. Novel biological advances included inferences made from mapping the trajectory of root epidermal cells into hair cell and non-hair cell identity, as well as multiple states in the endodermis developmental trajectory.

Single cell studies have also elucidated the influence of heat shock or sucrose on cell identity (Jean-Baptiste et al., 2019; Shulse et al., 2019). Heat shock results in subtle changes in cell identity, while sucrose changes in the proportion of cell types but not in their identity *per se*: instead, many cell type- or tissue-specific responses were observed. Finally, the use of genetics or inducible lines highlights the power of single cell RNA-sequencing in revealing the complex regulation of cell type identity.

More recently, single cell profiles of the female gametophyte (Song et al., 2020) and stomata (Liu et al., 2020) have been published. It is likely that these profiles will soon be joined by profiles of a diversity of cell types in Arabidopsis found throughout the plant body and in more recalcitrant tissues (Rodriguez-Villalon and Brady, 2019). Single cell chromatin accessibility profiles have also been published as a preprint, which further illustrate the complexity of gene regulation at cellular resolution (Dorrity et al., 2020; Farmer et al., 2020). It is very exciting that we can now examine the genomes of single cells, which is sure to provide more insight into plant biology.

CrY2H-Seq Me A River (Of Data)

Given the rapidly decreasing costs and vastly improved capacity of next generation sequencing platforms, making an assay "sequenceable" is one way to dramatically increase its throughput. Mike Snyder and colleagues have documented the proliferation of "-seq"-based methods over the first part of the past decade, plotting these methods by year of publication and by the magnitude of impact in terms of number of citations of the method (Reuter et al., 2015). While RNA-seq has had the greatest impact of these high-throughput sequencing technologies, the CrY2H-seq method (Trigg et al., 2017) is sure to have a large influence in our ability to decipher the interactome of Arabidopsis and other plants in the coming years. In this method, the coding sequences for proteins of interest are cloned into activation-domain and DNA-binding domain "bait" and "prey" vectors using specially designed plasmids. These vectors are brought together in a yeast strain with a Cre reporter. If two proteins interact, a Cre recombinase is produced in this reporter strain, such that a new plasmid is formed to create fused fragments of the coding sequences of the interacting pairs. This fused product can be rapidly sequenced using next-generation sequencing technologies. Reverse edgetic-methods

(Charloteaux et al., 2011) can be used to determine exactly how two proteins interact to in a rapid and efficient manner. That said, good old Y2H performed using standard cloning and sequencing procedures has identified hundreds of thousands of protein-protein interactions. Some of these interactions were identified in small-scale screens, while others were uncovered in massive efforts (more on this later). We also touch on other notable "-seq" methods below.

326

327

320

321

322

323

324

325

EPIGENOMICS AND CHROMATIN ACCESSIBILITY SURVEYS

The discovery of gene silencing in plants mediated by small RNAs in the late 1999s by
Sir David Baulcombe and colleagues (Dalmay et al., 2000; Hamilton and Baulcombe,
1999) spurred the growth of the plant epigenetics field. Modifications to histones and to
the genome itself via methylation are referred to as the epigenome (Bernstein et al.,
2010); their discovery has been instrumental during the last two decades for helping to
decipher the functional elements of plant genomes.

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

Studies in Arabidopsis have led the way in decoding plant epigenomes. Many of the original plant epigenome studies mapped the location of small RNAs, DNA methylation, and histone modifications using massively parallel signature sequencing (Meyers et al., 2004) or chromatin-immunoprecipitation followed by hybridization to tiling microarrays (Lu et al., 2005; Yazaki et al., 2007; Zhang et al., 2007, 2006; Zilberman et al., 2007; Bernatavichute et al., 2008; Zhang et al., 2009; Roudier et al., 2011; Coleman-Derr and Zilberman, 2012; Li et al., 2015), both enabled by a high-quality genome assembly and annotation. These epigenomics studies uncovered highly distinct properties that demarcate euchromatin (gene-rich) and heterochromatin (gene-poor, transposon and repeat rich) based on small RNA and chromatin modification patterns. Since these original studies, numerous epigenomic studies have been carried out in a variety of Arabidopsis accessions (Vaughn et al., 2007; Schmitz et al., 2013; Dubin et al., 2015; Hagmann et al., 2015; Kawakatsu et al., 2016) and in numerous plant species (Gent et al., 2013; West et al., 2014; Niederhuth et al., 2016; Oka et al., 2017; Lu et al., 2019; Ricci et al., 2019; Li et al., 2019; Zhao et al., 2020), indicating that the patterns and distributions originally discovered in Arabidopsis Col-0 are generally found throughout the eukaryotes.

352 353 'Active' genomic regions were originally identified based on sensitivity to endonuclease 354 cleavage (Weintraub and Groudine, 1976; Keene et al., 1981; Feng and Villeponteau, 355 1992; Gottesfeld et al., 1975; Wu et al., 1979). With the advent of high-throughput 356 sequencing, endonuclease hypersensitivity (DNase-seq, MNase-seq) and transposase-357 mediated insertions (ATAC-seq) have been used to delineate regulatory DNA (i.e. 358 accessible chromatin) genome-wide in hundreds of human cell types, animals, and 359 several plant species (Yue et al., 2014; Neph et al., 2012; Lu et al., 2017; Thomas et al., 360 2011; Oka et al., 2017; Sullivan et al., 2014; Rodgers-Melnick et al., 2016; Thurman et 361 al., 2012; Ricci et al., 2019), including Arabidopsis and maize (Zea mays), among 362 others. Although most data sets have been generated in Arabidopsis, with its unusually 363 compact, repeat-poor genome, some general features of plant regulatory landscapes 364 have emerged. As in animals, the regulatory compartment in plants is small, scales with 365 genome size (ranging from 4% in Arabidopsis to 0.6% in maize), and is depleted for 366 DNA methylation (Lu et al., 2019; Crisp et al., 2020). Unlike in animals, the majority of 367 accessible chromatin sites in Arabidopsis and other plants tend to be closely associated 368 with genes, localizing just upstream of transcription start sites, in addition to residing in 369 intergenic regions and 5' UTRs; however, as expected, the number of distal accessible 370 sites increases with genome size (Maher et al., 2018; Lu et al., 2019). A subset of distal 371 accessible sites, i.e. putative long-range enhancers, do share some of the histone 372 modifications associated with enhancers in animals; however, clear distinctions are 373 emerging (Oka et al., 2017; Lu et al., 2019; Ricci et al., 2019). 374 375 In both plants and animals, trait-associated variants are enriched in accessible 376 chromatin. In humans, of the 5,654 non-coding variants associated with 207 diseases 377 and 447 quantitative phenotypes, ~80% reside either within accessible chromatin sites

and 447 quantitative phenotypes, ~80% reside either within accessible chromatin sites or in linkage disequilibrium with variants at these sites (Maurano et al., 2012). Although GWAS in Arabidopsis have only been performed on a few strains (<200, ~100 quantitative traits), genetic variants associated with over 70 traits tend to reside in accessible chromatin sites (Sullivan et al., 2014).

383 Somewhat paradoxically, the vast majority of differentially accessible sites in divergent 384 Arabidopsis strains show no underlying genetic variation or differences in chromatin 385 modifications (Alexandre et al., 2018), implying indirect effects on chromatin 386 accessibility at many individual loci. In general, chromatin accessibility is only weakly 387 correlated with the expression of nearby genes; this correlation improves when 388 considering sites with dynamically changing accessibility across different tissues, 389 developmental stages, or in response to treatments (Sullivan et al., 2014; Maher et al., 390 2018; Sullivan et al., 2019). However, even if an accessible site is fully deleted, as 391 frequently found among diverse Arabidopsis strains, only 25% of nearby genes show 392 significant changes in gene expression (Alexandre et al., 2018). This weak correlation is 393 observed in both ways: despite the massive changes in gene expression, the majority of 394 accessible chromatin sites in Arabidopsis show few changes across tissues, 395 developmental stages, and in response to treatments (Sullivan et al., 2014; Maher et al., 396 2018; Sullivan et al., 2019). The relative stasis of the Arabidopsis regulatory landscape 397 compared to animals suggests that cell and tissue identity might be less rigidly 398 epigenetically encoded in plants; alternatively, tissue heterogeneity in bulk studies may 399 contribute to this effect. The latter interpretation is supported by results of a single-cell 400 ATAC-seg study of Arabidopsis and maize roots, in which approximately 30% of all 401 accessible sites showed cell type-specific patterns (Dorrity et al., 2020; Farmer et al., 402 2020; Marand et al., 2020), greatly exceeding the estimates of 5-10% of dynamic sites 403 in bulk studies (Sullivan et al., 2019). Although single-cell approaches discovered many 404 more differentially accessible sites, they did not resolve the weak correlation between 405 chromatin accessibility and gene expression at individual loci. This is consistent with the 406 relevance of indirect effects, such as the binding of transcription factors (TFs) that poise 407 a gene for activation and/or the binding of TFs that mediate gene repression. Further 408 confounding these results is the lack of direct measurements of mRNA abundance and 409 chromatin accessibility from the exact same cell. Future efforts to utilize multi-omic 410 methods will no doubt resolve these questions. Nevertheless, a cell's entire regulatory 411 landscape or its transcriptome independently can capture a cell's identity, arguing 412 against simplistic single-locus models to explain regulatory output (Dorrity et al., 2020).

414	A promising strategy to understand regulatory elements at nucleotide resolution is
415	STARR-seq, a massively parallel plasmid-based assay that determines the activity and
416	strength of putative promoters and enhancers by testing large libraries of fragments for
417	their ability to enhance transcription (Arnold et al., 2013). Recent efforts in plants (Ricci
418	et al., 2019; Sun et al., 2019; Jores et al., 2020) showcase this method's potential for
419	identifying distal enhancers and using saturation mutagenesis to define functional
420	residues, which commonly overlap with clusters of TF motifs. The comprehensive
421	enumeration of Arabidopsis TF motifs has been a major step toward interpreting
422	accessible chromatin and STARR-seq data. Numerous groups have contributed to this
423	effort with ChIP-seq data for specific TFs and with protein-binding microarrays for
424	multiple TFs (Weirauch et al., 2014). However, DNA affinity purification sequencing
425	(DAP-seq), a high-throughput assay that uses in-vitro-expressed TFs to interrogate
426	naked genomic DNA, was a true game changer (O'Malley et al., 2016). When applied to
427	all 1,725 Arabidopsis TFs, this approach identified high-confidence motifs for 529 TFs,
428	representing all major TF families. However, the typically short binding motifs often do
429	not suffice to resolve TF identity beyond TF families. That said, it is hard to imagine that
430	this method would have been developed without a robust genome sequence.
431	
432	How will we resolve the complexity of gene regulation? We posit that the existing motif
433	information, together with integrated single-cell ATAC-seq and single-cell RNA-seq
434	data, will ultimately allow us to resolve the direct and indirect effects in gene regulation.
435	Single-cell ATAC-seq can identify cell type-specific TF family motif enrichments. In turn,
436	single-cell RNA-seq will identify the specific TF family member whose expression
437	changes across cells can explain accessibility changes in sites containing the
438	respective TF motif (Dorrity et al., 2020). However, building these anticipated models of
439	gene regulatory networks will require many more cells than have currently been
440	sampled to fully capture the range of possible cell states.
441	
442	GENOMICS FOR MY RESEARCH: RESOURCES FOR IDENTIFYING MUTATIONS,
443	FUNCTIONS, INTERACTIONS, AND NETWORKS

Mapping by Sequencing

It goes without saying that the ability to conduct exploratory genetics has underpinned the success of Arabidopsis among model plants. The linking of genes with a biological process in an unbiased manner remains an unparalleled approach for understanding gene function. Since this approach is typically based on mutagenesis with a chemical mutagen, which induces a large number of mutations per genome, it increases the chance of identifying plants with a relevant phenotype and of isolating a wide spectrum of mutations ranging from amorphs to neomorphs. The process of identifying a causative mutation via positional cloning through the association of phenotype with genotype has changed dramatically over the past few decades. In the 1990s, mapping causative mutations was a laborious, time-consuming process that involved chromosome walking, whereby a physical map was assembled from YACs and markers had to be identified one by one (Goodman et al., 1995). Once a map position was established, significant work remained to pinpoint the gene containing the causative mutation. It is perhaps not surprising that this process often consumed all of a graduate student's time at the bench.

A decade later, when the Arabidopsis whole genome sequence became available, researchers could easily identify mapping markers, which sped up the process of gene cloning from a multiyear process to a year or less (Arabidopsis Genome Initiative, 2000; Lukowitz et al., 2000; Jander et al., 2002). Although faster, this process was still tedious since, after initial rough mapping using bulk-segregant analysis, fine mapping required the researcher to follow markers in approximately 1000 segregating plants. Another decade later, a third generation of mapping, spurred on by next-generation whole genome sequencing technology, offered an even faster trajectory from phenotype to gene (Schneeberger et al., 2009; Cuperus et al., 2010; Austin et al., 2011). In addition, third generation mapping or mapping-by-sequencing afforded a number of different options for cloning a causative mutation (for a more extensive review, see Schneeberger, 2014). With mapping-by-sequencing, it is also possible to sequence mutant genomes directly (Ashelford et al., 2011; Nordström et al., 2013). The advantage of this approach is that it has the potential to capture multiple mutations responsible for a specific phenotype. Although sorting and filtering the large number mutagen-induced

mutations is not trivial, it is possible to improve the odds of successfully identifying the causative mutation(s) if multiple mutant alleles are available from the same mutant pool.

Apart from deciding which crossing scheme to use, mapping-by-sequencing experiments must also consider the number of recombinant plants to sequence, the sequencing coverage, and the type of sequencing (single- or paired-end). These practical aspects are important, since they will not only influence the overall success of the mapping experiment but also the overall cost associated with the mapping experiment (James et al., 2013). Wilson-Sanchez et al. (2019) used computer simulations to assess different mapping scenarios, with the goal of creating a guide for better experimental design. Here they considered whether different sequencing technologies are better suited to mapping experiments and the sequencing depth required for calling single nucleotide variants at high confidence. As with James et al. (2013), the authors also considered outcross versus backcross schemes, the number of genomes that should be sequenced for ultimate accuracy, and the best ways to differentiate between background mutations versus induced mutations. In addition, they also considered what they call "pseudo-backcrossing", where two mutants with additive phenotypes are combined to produce the F2 mapping population, which can then be used to simultaneously clone the causative genes of both mutants.

Another important practical aspect of mapping-by-sequencing is of course data analysis. In practice, this means sorting through mutations that were induced by the mutagen as well as those that are naturally occurring between diverged strains. For example, commonly used mutagens such as ethyl-methanesulfonate (EMS), depending on the dose applied, can cause in excess of a thousand mutations per genome (Jander et al., 2002). In addition, polymorphisms between the two most commonly used ecotypes of Arabidopsis, Col-0 and Ler, are on the order of 55,000 (Jander et al., 2002). The best available tools to conduct this type of analysis in Arabidopsis vary in their requirement for the researcher to have some coding knowledge or to prepare data prior to their implementation (Schneeberger et al., 2009; Austin et al., 2011; Wachsman et al., 2017). For example, while all the tools support variant calling, mutation mapping, and filtering of mutations for their effects, the SHOREmap tool (Schneeberger et al.,

508	2009; Sun and Schneeberger, 2015) and the SIMPLE tool (Wachsman et al., 2017) are
509	both command line pipelines, while the next-generation mapping (NGM) tool (Austin et
510	al., 2011) is a web-based tool which, in contrast to the other tools, looks for
511	homozygosity islands linked to the causative mutation rather than allele frequencies.
512	This means that the NGM tool is only viable for mapping outcrossed populations, while
513	the SHOREmap and SIMPLE tools can be used to analyze backcrossed populations.
514	The choice of tool will therefore depend on the starting mapping population and on the
515	confidence of the researcher in implementing the mapping tool. These tools are a
516	testament to how far we have come from the early days of positional cloning and to the
517	power of a mature genome sequence: rather than a chromosome walk, we now conduct
518	a digital walk.
519	
520	The aforementioned forward genetic approaches, while transformative in their own way,
521	have been complemented by reverse genetic approaches enabled in the past 20 years
522	by the sequencing of large T-DNA collections, notably the SALK, SAIL, WiscDsLox, and
523	GABI-KAT lines (Alonso et al., 2003; Sessions et al., 2002; Woody et al., 2007;
524	Kleinboelting et al., 2012). The availability of these lines, especially those made
525	available in an open manner from their inception, has permitted knock-out mutations for
526	almost any desired gene to be ordered (from the two stock centers that had been set up
527	as recommended in 1990, the Arabidopsis Biological Resource Center in Ohio and the
528	Nottingham Arabidopsis Stock Centre in the UK) at the click of a mouse, through
529	websites like the Ecker Laboratory's SIGnAL T-DNA Express site. These mutants can
530	easily be examined for phenotypes to support presumed biological roles for the affected
531	gene (O'Malley and Ecker, 2010). Next generation sequencing (with mapping done to a
532	high-quality reference genome) has amplified the power of these lines by allowing the
533	identification of multiple insertions, sometimes with complex architectures (O'Malley et
534	al., 2007; Jupe et al., 2019). The availability of a high-quality reference sequence also
535	allows targeted genetic modifications to be made for reverse genetics with the
536	CRISPR/Cas9/sgRNA system (Jiang et al., 2013).

Genomic Databases for Hypothesis Generation

539 How do we know which genes to focus on for reverse genetic approaches? Databases 540 provide many leads (Brady and Provart, 2009). The first database for Arabidopsis 541 genomics to come online was AtDB, the Arabidopsis thaliana Database (Flanders et al., 542 1998; Rhee et al., 1999), which provided a link between physical maps and sequences 543 as they became available and provided a visualization of the AGI's sequencing 544 progress. This was followed soon after by The Arabidopsis Information Resource (TAIR; 545 Garcia-Hernandez et al., 2002; Rhee et al., 2003), which enables the exploration of 546 other gene sequences in a gene's neighborhood, identification of similar sequences via 547 BLAST (Altschul et al., 1990), gene functional classification using Gene Ontology (GO; 548 Ashburner et al., 2000), gene family membership, and more. Early gene expression 549 databases, such as Genevestigator (Zimmermann et al., 2004) and the Bio-Analytic Resource (BAR, originally published at the "Botany Array Resource"; Toufighi et al., 550 551 2005), provided access to gene expression data sets that were being generated and 552 published as part of the AtGenExpress effort. 553 554 The Arabidopsis eFP Browser (Winter et al., 2007) at the BAR displays a selected 555 gene's expression pattern by dynamically coloring the tissues in a pictographic 556 representation of a plant based on gene transcript levels from multiple experiments. 557 This tool is deceptively simple, but it provides a powerful interface for exploring and 558 visualizing early and more recent atlases of development (Schmid et al., 2005; 559 Klepikova et al., 2016), abiotic stress (Kilian et al., 2007), biotic stress (AtGenExpress 560 initiative), chemical experiments (Goda et al., 2008), and many tissue-specific 561 experiments. These data sets contain more than 35 million records, representing "big 562 data" exploration in under five clicks. 563 564 While gene expression data can provide useful ideas for narrowing down the phenotypic 565 search space, other types of data, such as protein-protein interaction data and network-566 based data, are also increasingly being used for hypothesis generation. The Arabidopsis Interactome 1 (Dreze et al., 2011) measured ~6,200 interactions between 567 568 ~2,700 Arabidopsis proteins. Further large- and meso-scale studies (e.g. Lumba et al., 569 2014; Smakowska-Luzan et al., 2018; Cao et al., 2019; Carianopol et al., 2020) and 570 hundreds of small-scale experiments, collated in tools such as the Arabidopsis

Interactions Viewer 2 (Dong et al., 2019), are also valuable resources. Many of these data are collected in unbiased ways, and thus, being able to identify interaction partners can provide high-quality candidate genes for a researcher's biological system. Likewise, networks based on coexpression, functional association, or gene regulation (Bassel et al., 2011; Lee et al., 2010; Taylor-Teeples et al., 2015 as a few examples) can provide avenues for hypothesis generation.

VISUALIZING THE FUTURE

Being able to explore data in a unified manner helps leverage the incredible genomic data that have been generated for Arabidopsis over the past 20 years. ePlant (Waese et al., 2017) introduces the concept of a zoomable user interface to help users explore Arabidopsis data from the kilometer level down to the nanometer level of data using a combination of chart types. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. The molecule viewer module is especially interesting because it maps information from four separate databases onto a 3D model of the selected protein's molecular structure: complete protein sequences (Krishnakumar et al., 2015); non-synonymous single nucleotide polymorphism locations in the underlying gene sequence (Joshi et al., 2012) with a list of ecotypes in which they are found; Pfam domains (Bateman et al., 2002 and updates); and CDD feature hits (Marchler-Bauer et al., 2002 and updates). These features make it easy to see where polymorphisms occur within a protein molecule and speculate how they might interact with binding sites and other domains of interest. Zhang et al. (2020) just released ARS, an Arabidopsis RNA-seq database for exploring expression levels in ~20,000 RNA-seq data sets.

A genome browser is also essential for exploring Arabidopsis genome data. This graphical tool allows users to visualize data mapped to the genomic sequence axis alongside gene model annotations and data from other laboratories' experiments. Currently, there are three major genome browsers available for plant scientists, which vary with respect to interactivity, number of features, speed, and usability: Integrated Genome Browser from BioViz.org (Freese et al., 2016), Integrative Genome Viewer

603 from the Broad Institute (Robinson et al., 2011), and JBrowse, a web-based tool data 604 providers must incorporate into their web sites (Buels et al., 2016). TAIR has most 605 recently rescued Araport's extensive collection of JBrowse tracks for display in its own 606 version of JBrowse running on its locus pages (Pasha et al., 2020). This provides a 607 centralized framework for adding new tracks showing non-coding transcripts (Kindgren 608 et al., 2020), epigenomic data (Hofmeister and Schmitz, 2018), and other emerging data 609 sets. 610 611 IGB and IGV are both stand-alone desktop tools that users download, install, and run on 612 their local machines. These tools can open files stored locally or on the internet via 613 URLs. IGV from the Broad Institute is better known, but IGB has more features, such as 614 ProtAnnot for exploring the effects of alternative splicing on protein-coding genes (Mall 615 et al., 2016), and it provides access to RNA-seq, ChIP-seq, T-DNA, and other 616 Arabidopsis data sets. This reflects IGB's early funding from the National Science 617 Foundation's Arabidopsis 2010 program 618 (https://www.nsf.gov/awardsearch/showAward?AWD_ID=0820371). 619 620 The impact of the publication of the Arabidopsis genome continues to this day with the 621 sequence and associated tools still guiding the daily activities of researchers. Dr. Sara 622 Farrona from the National University of Ireland, Galway recalls, "I still remember when 623 the publication of the Arabidopsis genome came out in 2000. I had started my PhD 624 project focused on chromatin remodeling proteins in Arabidopsis just a few months prior 625 and having access to its genome completely shaped the way I tackled my research. In 626 the following years, the Arabidopsis genome, its browser and all the information publicly available for each of its genes would have and still has an extraordinary impact. I and 627 628 members of my lab still use it on a daily basis". 629 630 Overall, the impact of the genome is perfectly summed up by Dr. Piers Hemsley from 631 the University of Dundee "Almost every aspect of my research, from cloning and 632 expression analysis to proteomics and EvoDevo work, would be next to impossible 633 without it. As an enabling resource it has yet to be surpassed in its application to almost

every aspect of my work". The impact is also evident outside of the Arabidopsis

research community in the myriad of plant genome papers that use the Arabidopsis genome sequence to help with assembly or to annotate genes, most recently ones for eggplant (*Solanum melongena*; Wei et al., 2020) and tea (*Camellia sinensis* var. *sinensis*; Xia et al., 2020). The generation of other types of 'omics data from agronomically-important plants will benefit from landmark methods and data sets first generated in Arabidopsis, all predicated on a high-quality genome sequence.

The "ultimate expression" of the researchers who met at the "Functional Genomics and the Virtual Plant: A blueprint for understanding how plants are built and how to improve them" workshop that led to the Multinational Coordinated Arabidopsis Functional Genomics Project was "nothing short of a virtual plant which one could observe growing on a computer screen, stopping this process at any point in that development, and with the click of a computer mouse, accessing all the genetic information expressed in any organ or cell under a variety of environmental conditions." Now, 10 years after the Arabidopsis 2010 projects wrapped up, are we there yet?

The answer is that we are getting closer (e.g. Shapiro et al., 2015; Banwarth-Kuhn et al., 2019; Maheshwari et al., 2020), but there is still a long way to go. Further documenting other types of molecules and their modifications in different Arabidopsis tissues will increase our knowledge of plant biology beyond transcripts and genomes: atlases of lipids, proteins, hormones, and SUMOylation anyone? Single cell methods are sure to provide vast amounts of new data, but understanding how cells, tissues and whole plants respond to environmental cues and perturbations, let alone being able to model this at a multi-scale level, is perhaps another decade away. The Plant Cell Atlas project (Rhee et al., 2019; http://www.plantcellatlas.org/) will map "molecular machineries to cellular and subcellular domains, follow their dynamic movements, and describe their interactions [to] accelerate discovery in plant science and help to solve imminent societal problems". Undoubtedly, Arabidopsis will be one of the Plant Cell Atlas's subject species. A recent virtual meeting attracted over 300 participants from around the world interested in this project, upholding the spirit of cooperation that kicked off the Arabidopsis genome project more than 30 years ago.

667	ACKNOWLEDGEMENTS
668	CQ was funded by NSF RESEARCH-PGR 1748843. SMB was partially funded by an
669	HHMI Faculty Scholar Fellowship, NSF-PGRP1856749. and USDA BTT-EAGER 2019-
670	67013-29012. NJP was funded by grants from NSERC and Genome Canada/Ontario
671	Genomics. GP received support from the UKRI-BBSRC grant BB/M004376/1,
672	GARNet2020. AEL was funded by NIH NIGMS R01GM103463 (Integrated Genome
673	Browser and IGB Apps) and NSF 0820371 (Arabidopsis 2010: Visualization Software
674	and Data Server for Arabidopsis). RJS was supported by the National Science
675	Foundation (MCB-1856143) and the National Institutes of Health (R01-GM134682). KS
676	was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
677	Foundation) under Germany's Excellence Strategy – EXC 2048/1– 390686111, and the
678	European Research Council (ERC) Grant "INTERACT" (802629). We are grateful to
679	David Galbraith from the University of Arizona for Latin declension guidance for the title
680	of this paper, to the reviewers for suggestions, and to the editors at The Plant Cell for
681	wordsmithing.
682	
683	AUTHOR CONTRIBUTIONS
684	NJP outlined the review with input from all authors and The Plant Cell. NJP and GP
685	wrote the Introduction, and GP conducted the MASC survey for this review. SMB
686	covered single cell genomics, while RJS and CQ reviewed epigenomics articles. DB
687	covered forward genomics and mapping by sequencing. JW, NJP, and AEL wrote the
688	Visualizing the Future section. KS summarized papers covering 1001 genomes. NJP
689	prepared the figures and assembled the manuscript. All authors helped to edit the
690	manuscript.
691	
692	REFERENCES
693 694	1001 Genomes Consortium (2016). 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell 166 : 481–491.
695 696	Alexandre, C.M. et al. (2018). Complex Relationships between Chromatin Accessibility, Sequence Divergence, and Gene Expression in Arabidopsis thaliana. Mol. Biol. Evol. 35 : 837–854.
697 698	Alonso, J.M. et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 : 653–657

699 700	Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 : 403–410.
701 702	Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 : 796–815.
703 704	Arnold, C.D., Gerlach, D., Stelzer, C., Boryń, Ł.M., Rath, M., and Stark, A. (2013). Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339: 1074–1077.
705	Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nat. Genet. 25: 25–29.
706 707 708	Ashelford, K., Eriksson, M.E., Allen, C.M., D'Amore, R., Johansson, M., Gould, P., Kay, S., Millar, A.J., Hall, N., and Hall, A. (2011). Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis. Genome Biol. 12: R28.
709 710 711	Austin, R.S., Vidaurre, D., Stamatiou, G., Breit, R., Provart, N.J., Bonetta, D., Zhang, J., Fung, P., Gong, Y., Wang, P.W., McCourt, P., and Guttman, D.S. (2011). Next-generation mapping of Arabidopsis genes. Plant J. 67: 715–725.
712 713 714 715	Banwarth-Kuhn, M., Nematbakhsh, A., Rodriguez, K.W., Snipes, S., Rasmussen, C.G., Reddy, G.V., and Alber, M. (2019). Cell-Based Model of the Generation and Maintenance of the Shape and Structure of the Multilayered Shoot Apical Meristem of Arabidopsis thaliana. Bull. Math. Biol. 81: 3245–3281.
716 717 718	Barta, A., Kalyna, M., and Reddy, A.S.N. (2010). Implementing a Rational and Consistent Nomenclature for Serine/Arginine-Rich Protein Splicing Factors (SR Proteins) in Plants. Plant Cell 22: 2926–2929.
719 720 721	Bassel, G.W., Lan, H., Glaab, E., Gibbs, D.J., Gerjets, T., Krasnogor, N., Bonner, A.J., Holdsworth, M.J., and Provart, N.J. (2011). Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci. 108: 9709–9714.
722 723 724	Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., and Sonnhammer, E.L.L. (2002). The Pfam Protein Families Database. Nucleic Acids Res. 30: 276–280.
725 726 727	Bernatavichute, Y.V., Zhang, X., Cokus, S., Pellegrini, M., and Jacobsen, S.E. (2008). Genome-Wide Association of Histone H3 Lysine Nine Methylation with CHG DNA Methylation in Arabidopsis thaliana. PLoS ONE 3 .
728 729	Bernstein, B.E. et al. (2010). The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28 : 1045–1048.
730 731	Brady, S.M. and Provart, N.J. (2009). Web-Queryable Large-Scale Data Sets for Hypothesis Generation in Plant Biology. Plant Cell 21 : 1034–1051.
732 733 734	Buels, R., Yao, E., Diesh, C.M., Hayes, R.D., Munoz-Torres, M., Helt, G., Goodstein, D.M., Elsik, C.G., Lewis, S.E., Stein, L., and Holmes, I.H. (2016). JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17: 66.

735 736 737	Calixto, C.P.G., Guo, W., James, A.B., Tzioutziou, N.A., Entizne, J.C., Panter, P.E., Knight, H., Nimmo, H.G., Zhang, R., and Brown, J.W.S. (2018). Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. Plant Cell 30: 1424–1444.
738 739 740	Cao, F.Y., Khan, M., Taniguchi, M., Mirmiran, A., Moeder, W., Lumba, S., Yoshioka, K., and Desveaux, D. (2019). A host–pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. Plant J. 100: 187–198.
741 742	Cao, J. et al. (2011). Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat. Genet. 43: 956–963.
743 744 745	Carianopol, C.S., Chan, A.L., Dong, S., Provart, N.J., Lumba, S., and Gazzarrini, S. (2020). An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Commun. Biol. 3: 145.
746 747 748 749	Charloteaux, B., Zhong, Q., Dreze, M., Cusick, M.E., Hill, D.E., and Vidal, M. (2011). Protein—Protein Interactions and Networks: Forward and Reverse Edgetics. In Yeast Systems Biology: Methods and Protocols, J.I. Castrillo and S.G. Oliver, eds, Methods in Molecular Biology. (Humana Press: Totowa, NJ), pp. 197–213.
750 751 752	Cheng, CY., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel, S., and Town, C.D. (2017). Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89: 789–804.
753 754	Coleman-Derr, D. and Zilberman, D. (2012). Deposition of Histone Variant H2A.Z within Gene Bodies Regulates Responsive Genes. PLoS Genet. 8.
755 756 757	Crisp, P.A., Marand, A.P., Noshay, J.M., Zhou, P., Lu, Z., Schmitz, R.J., and Springer, N.M. (2020). Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. Proc. Natl. Acad. Sci.
758 759 760	Cuperus, J.T., Montgomery, T.A., Fahlgren, N., Burke, R.T., Townsend, T., Sullivan, C.M., and Carrington, J.C. (2010). Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc. Natl. Acad. Sci. 107: 466–471.
761 762 763	Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D.C. (2000). An RNA-Dependent RNA Polymerase Gene in Arabidopsis Is Required for Posttranscriptional Gene Silencing Mediated by a Transgene but Not by a Virus. Cell 101 : 543–553.
764 765 766	Denyer, T., Ma, X., Klesen, S., Scacchi, E., Nieselt, K., and Timmermans, M.C.P. (2019). Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Dev. Cell 48: 840-852.e5.
767 768	Dong, S. et al. (2019). Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer. Plant Physiol. 179 : 1893–1907.
769 770 771	Dorrity, M.W., Alexandre, C., Hamm, M., Vigil, AL., Fields, S., Queitsch, C., and Cuperus, J. (2020). The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. bioRxiv: 2020.07.17.204792.

772 773	Dreze, M. et al. (2011). Evidence for Network Evolution in an Arabidopsis Interactome Map. Science 333 : 601–607.
774 775	Dubin, M.J. et al. (2015). DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4 : e05255–e05255.
776 777 778 779	Durvasula, A., Fulgione, A., Gutaker, R.M., Alacakaptan, S.I., Flood, P.J., Neto, C., Tsuchimatsu, T., Burbano, H.A., Picó, F.X., Alonso-Blanco, C., and Hancock, A.M. (2017). African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 114: 5213–5218.
780 781 782	Efroni, I., Mello, A., Nawy, T., Ip, PL., Rahni, R., DelRose, N., Powers, A., Satija, R., and Birnbaum, K.D. (2016). Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions. Cell 165: 1721–1733.
783 784	English, A.C., Patel, K.S., and Loraine, A.E. (2010). Prevalence of alternative splicing choices in Arabidopsis thaliana. BMC Plant Biol. 10: 102.
785 786 787	Farmer, A., Thibivilliers, S., Ryu, K.H., Schiefelbein, J., and Libault, M. (2020). The impact of chromatin remodeling on gene expression at the single cell level in Arabidopsis thaliana . bioRxiv: 2020.07.27.223156.
788 789	Feng, J. and Villeponteau, B. (1992). High-resolution analysis of c-fos chromatin accessibility using a novel DNase I-PCR assay. Biochim. Biophys. Acta 1130: 253–258.
790 791 792	Flanders, D.J., Weng, S., Petel, F.X., and Cherry, J.M. (1998). AtDB, the Arabidopsis thaliana Database, and graphical-web-display of progress by the Arabidopsis Genome Initiative. Nucleic Acids Res. 26 : 80–84.
793 794	Freese, N.H., Norris, D.C., and Loraine, A.E. (2016). Integrated genome browser: visual analytics platform for genomics. Bioinforma. Oxf. Engl. 32 : 2089–2095.
795 796	Gan, X. et al. (2011). Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477 : 419–423.
797 798	Garcia-Hernandez, M. et al. (2002). TAIR: a resource for integrated Arabidopsis data. Funct. Integr. Genomics 2 : 239–253.
799 800	Gent, J.I., Ellis, N.A., Guo, L., Harkess, A.E., Yao, Y., Zhang, X., and Dawe, R.K. (2013). CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 23 : 628–637.
801 802 803	Goda, H. et al. (2008). The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J. Cell Mol. Biol. 55 : 526–542.
804	Goodman H.M. Ecker J.R. and Dean C. (1995). The genome of Arabidonsis thaliana. Proc. Natl. Acad.

Gottesfeld, J.M., Murphy, R.F., and Bonner, J. (1975). Structure of transcriptionally active chromatin.

805

806

807

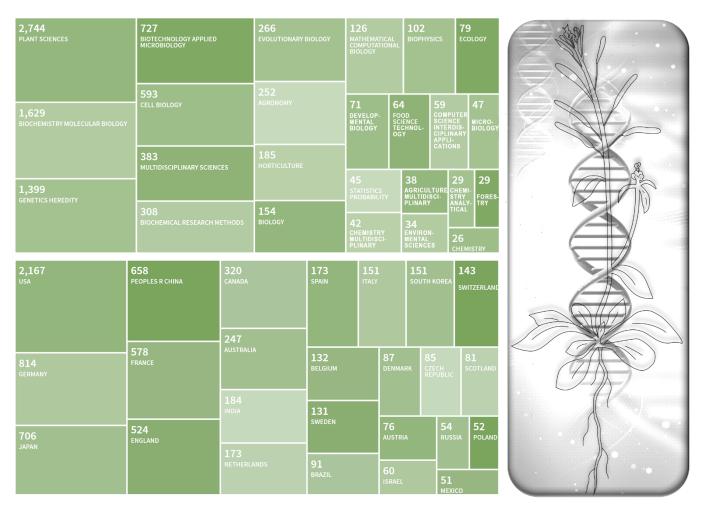
Sci. **92**: 10831–10835.

Proc. Natl. Acad. Sci. U. S. A. 72: 4404–4408.

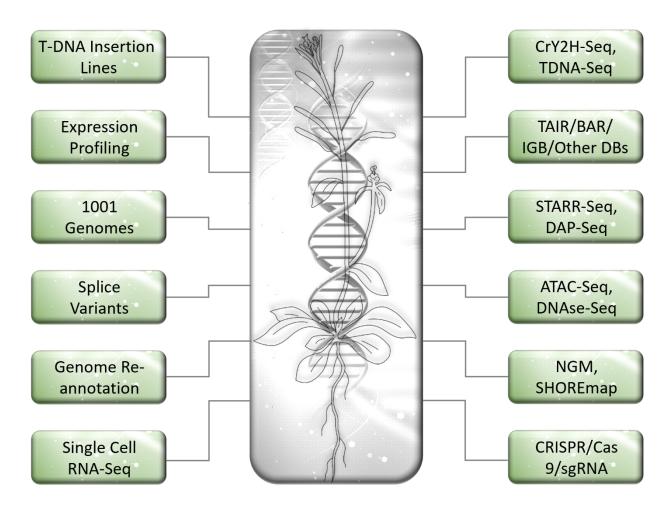
808 809 810	Gulledge, A.A., Roberts, A.D., Vora, H., Patel, K., and Loraine, A.E. (2012). Mining Arabidopsis thaliana RNA-seq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a. Am. J. Bot. 99 : 219–231.
811 812 813	Hagmann, J., Becker, C., Müller, J., Stegle, O., Meyer, R.C., Wang, G., Schneeberger, K., Fitz, J., Altmann, T., Bergelson, J., Borgwardt, K., and Weigel, D. (2015). Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 11: e1004920.
814 815	Hamilton, A.J. and Baulcombe, D.C. (1999). A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science 286 : 950–952.
816 817	Hofmeister, B.T. and Schmitz, R.J. (2018). Enhanced JBrowse plugins for epigenomics data visualization. BMC Bioinformatics 19 : 159.
818 819 820	Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W., and Zimmermann, P. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinforma. 2008: 420747.
821 822	James, G.V., Patel, V., Nordström, K.J., Klasen, J.R., Salomé, P.A., Weigel, D., and Schneeberger, K. (2013). User guide for mapping-by-sequencing in Arabidopsis. Genome Biol. 14 : R61.
823 824	Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., and Last, R.L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440–450.
825 826 827	Jean-Baptiste, K., McFaline-Figueroa, J.L., Alexandre, C.M., Dorrity, M.W., Saunders, L., Bubb, K.L., Trapnell, C., Fields, S., Queitsch, C., and Cuperus, J.T. (2019). Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana. Plant Cell 31: 993–1011.
828 829 830	Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., and Weeks, D.P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41 : e188–e188.
831 832 833	Jiao, WB. and Schneeberger, K. (2020). Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat. Commun. 11: 989.
834 835 836	Jores, T., Tonnies, J., Dorrity, M.W., Cuperus, J., Fields, S., and Queitsch, C. (2020). Identification of Plant Enhancers and Their Constituent Elements by STARR-seq in Tobacco Leaves. Plant Cell 32: 2120–2131.
837 838 839 840	Joshi, H.J., Christiansen, K.M., Fitz, J., Cao, J., Lipzen, A., Martin, J., Smith-Moritz, A.M., Pennacchio, L.A., Schackwitz, W.S., Weigel, D., and Heazlewood, J.L. (2012). 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions. Bioinforma. Oxf. Engl. 28: 1303–1306.
841 842 843	Jupe, F., Rivkin, A.C., Michael, T.P., Zander, M., Motley, S.T., Sandoval, J.P., Slotkin, R.K., Chen, H., Castanon, R., Nery, J.R., and Ecker, J.R. (2019). The complex architecture and epigenomic impact of plant T-DNA insertions. PLOS Genet. 15: e1007819.
844 845	Kawakatsu, T. et al. (2016). Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell 166 : 492–505.

846	Keene, M.A., Corces, V., Lowenhaupt, K., and Elgin, S.C. (1981). DNase I hypersensitive sites in
847	Drosophila chromatin occur at the 5' ends of regions of transcription. Proc. Natl. Acad. Sci. U. S.
848	A. 78 : 143–146.
849	Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D'Angelo, C., Bornberg-Bauer, E.,
850	Kudla, J., and Harter, K. (2007). The AtGenExpress global stress expression data set: protocols,
851	evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. Cell
852	Mol. Biol. 50 : 347–363.
853	Kindgren, P., Ivanov, M., and Marquardt, S. (2020). Native elongation transcript sequencing reveals
854	temperature dependent dynamics of nascent RNAPII transcription in Arabidopsis. Nucleic Acids
855	Res. 48 : 2332–2347.
856	Kleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P., and Weisshaar, B. (2012). GABI-Kat
857	SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids
858	Res. 40 : D1211-1215.
859	Klepikova, A.V., Kasianov, A.S., Gerasimov, E.S., Logacheva, M.D., and Penin, A.A. (2016). A high
860	resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq
861	profiling. Plant J. 88 : 1058–1070.
862	Krishnakumar, V. et al. (2015). Araport: the Arabidopsis Information Portal. Nucleic Acids Res. 43:
863	D1003-D1009.
864	Lee, I., Ambaru, B., Thakkar, P., Marcotte, E.M., and Rhee, S.Y. (2010). Rational association of genes
865	with traits using a genome-scale gene network for Arabidopsis thaliana. Nat. Biotechnol. 28:
866	149–156.
867	Li, Y., Mukherjee, I., Thum, K.E., Tanurdzic, M., Katari, M.S., Obertello, M., Edwards, M.B., McCombie,
868	W.R., Martienssen, R.A., and Coruzzi, G.M. (2015). The histone methyltransferase SDG8
869	mediates the epigenetic modification of light and carbon responsive genes in plants. Genome
870	Biol. 16 : 79–79.
871	Li, Z. et al. (2019). The bread wheat epigenomic map reveals distinct chromatin architectural and
872	evolutionary features of functional genetic elements. Genome Biol. 20 : 139–139.
873	Lin, X. et al. (1999). Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature
874	402 : 761–768.
875	Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R.
876	(2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:
877	523–536.
878	Liu, Z. et al. (2020). Global Dynamic Molecular Profiling of Stomatal Lineage Cell Development by Single-
879	Cell RNA Sequencing. Mol. Plant 13 : 1178–1193.
880	Long, Q. et al. (2013). Massive genomic variation and strong selection in Arabidopsis thaliana lines from
881	Sweden. Nat. Genet. 45 : 884–890.
882	Loraine, A.E., McCormick, S., Estrada, A., Patel, K., and Qin, P. (2013). RNA-seq of Arabidopsis pollen
883	uncovers novel transcription and alternative splicing. Plant Physiol. 162: 1092–1109.

884 885	Lu, C., Tej, S.S., Luo, S., Haudenschild, C.D., Meyers, B.C., and Green, P.J. (2005). Elucidation of the small RNA component of the transcriptome. Science 309 : 1567–1569.
886 887	Lu, Z., Hofmeister, B.T., Vollmers, C., DuBois, R.M., and Schmitz, R.J. (2017). Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res. 45:
888	e41.
889	Lu, Z., Marand, A.P., Ricci, W.A., Ethridge, C.L., Zhang, X., and Schmitz, R.J. (2019). The prevalence,
890	evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5 : 1250–1259.
891 892	Lukowitz, W., Gillmor, C.S., and Scheible, WR. (2000). Positional Cloning in Arabidopsis. Why It Feels Good to Have a Genome Initiative Working for You. Plant Physiol. 123 : 795–806.
893	Lumba, S., Toh, S., Handfield, LF., Swan, M., Liu, R., Youn, JY., Cutler, S.R., Subramaniam, R.,
894	Provart, N., Moses, A., Desveaux, D., and McCourt, P. (2014). A mesoscale abscisic acid
895	hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Dev. Cell 29: 360-
896	372.
897	Maher, K.A. et al. (2018). Profiling of Accessible Chromatin Regions across Multiple Plant Species and
898	Cell Types Reveals Common Gene Regulatory Principles and New Control Modules. Plant Cell
899	30 : 15–36.
900	Maheshwari, P., Assmann, S.M., and Albert, R. (2020). A Guard Cell Abscisic Acid (ABA) Network Model
901	That Captures the Stomatal Resting State. Front. Physiol. 11 .
902	Mall, T., Eckstein, J., Norris, D., Vora, H., Freese, N.H., and Loraine, A.E. (2016). ProtAnnot: an App for
903	Integrated Genome Browser to display how alternative splicing and transcription affect proteins
904	Bioinforma. Oxf. Engl. 32 : 2499–2501.
905	Marand, A.P., Chen, Z., Gallavotti, A., and Schmitz, R.J. (2020). A cis-regulatory atlas in maize at single-
906	cell resolution. bioRxiv: 2020.09.27.315499.
907	Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A., Geer, L.Y., and Bryant, S.H.
908	(2002). CDD: a database of conserved domain alignments with links to domain three-
909	dimensional structure. Nucleic Acids Res. 30 : 281–283.
910	Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000). Circadian waves of expression of the
911	APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant
912	circadian clock. Plant Cell Physiol. 41 : 1002–1012.
913	Maurano, M.T. et al. (2012). Systematic Localization of Common Disease-Associated Variation in
914	Regulatory DNA. Science 337 : 1190–1195.
915	Mayer, K. et al. (1999). Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.
916	Nature 402 : 769–777.
917	Meyers, B.C., Lee, D.K., Vu, T.H., Tej, S.S., Edberg, S.B., Matvienko, M., and Tindell, L.D. (2004).
918	Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol. 135:
919	801–813.


920 921	Miga, K.H. et al. (2020). Telomere-to-telomere assembly of a complete human X chromosome. Nature: 1–9.
922 923	Neph, S. et al. (2012). An expansive human regulatory lexicon encoded in transcription factor footprints Nature 489 : 83–90.
924 925 926	Ner-Gaon, H., Halachmi, R., Savaldi-Goldstein, S., Rubin, E., Ophir, R., and Fluhr, R. (2004). Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J. Cell Mol. Biol. 39 877–885.
927 928	Niederhuth, C.E. et al. (2016). Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17 : 194.
929 930 931	Nordborg, M., Hu, T.T., Ishino, Y., Jhaveri, J., Toomajian, C., Zheng, H., Bakker, E., Calabrese, P., Gladstone, J., Goyal, R., and others (2005). The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3: 1289.
932 933 934 935	Nordström, K.J.V., Albani, M.C., James, G.V., Gutjahr, C., Hartwig, B., Turck, F., Paszkowski, U., Coupland, G., and Schneeberger, K. (2013). Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat. Biotechnol. 31 : 325–330.
936 937 938	Oka, R., Zicola, J., Weber, B., Anderson, S.N., Hodgman, C., Gent, J.I., Wesselink, JJ., Springer, N.M., Hoefsloot, H.C.J., Turck, F., and Stam, M. (2017). Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 18: 137–137.
939 940 941	O'Malley, R.C., Alonso, J.M., Kim, C.J., Leisse, T.J., and Ecker, J.R. (2007). An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat. Protoc. 2: 2910–2917.
942 943	O'Malley, R.C. and Ecker, J.R. (2010). Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. Cell Mol. Biol. 61 : 928–940.
944 945 946	O'Malley, R.C., Huang, SS.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R. (2016). Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape Cell 165: 1280–1292.
947 948 949	Ossowski, S., Schneeberger, K., Clark, R.M., Lanz, C., Warthmann, N., and Weigel, D. (2008). Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res. 18: 2024–2033.
950 951	Parry, G., Provart, N.J., Brady, S.M., and Uzilday, B. (2020). Current status of the multinational Arabidopsis community. Plant Direct 4: e00248.
952 953	Pasha, A., Subramaniam, S., Cleary, A., Chen, X., Berardini, T.Z., Farmer, A., Town, C., and Provart, N.J. (2020). Araport Lives: An Updated Framework for Arabidopsis Bioinformatics. Plant Cell.
954 955	Provart, N.J. et al. (2016). 50 years of Arabidopsis research: highlights and future directions. New Phytol 209 : 921–944.

956	Reuter, J.A., Spacek, D.V., and Snyder, M.P. (2015). High-Throughput Sequencing Technologies. Mol.
957	Cell 58 : 586–597.
958	Rhee, S.Y., Beavis, W., Berardini, T.Z., Chen, G., Dixon, D., Doyle, A., Garcia-Hernandez, M., Huala, E.,
959	Lander, G., Montoya, M., and others (2003). The Arabidopsis Information Resource (TAIR): a
960	model organism database providing a centralized, curated gateway to Arabidopsis biology,
961	research materials and community. Nucleic Acids Res. 31 : 224–228.
962	Rhee, S.Y., Birnbaum, K.D., and Ehrhardt, D.W. (2019). Towards Building a Plant Cell Atlas. Trends Plant
963	Sci. 24 : 303–310.
964	Rhee, S.Y., Weng, S., Bongard-Pierce, D.K., García-Hernández, M., Malekian, A., Flanders, D.J., and
965	Cherry, J.M. (1999). Unified display of Arabidopsis thaliana physical maps from AtDB, the
966	A.thaliana database. Nucleic Acids Res. 27 : 79–84.
967	Ricci, W.A. et al. (2019). Widespread long-range cis-regulatory elements in the maize genome. Nat.
968	Plants 5 : 1237–1249.
969	Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, J.P
970	(2011). Integrative genomics viewer. Nat. Biotechnol. 29 : 24–26.
971	Rodgers-Melnick, E., Vera, D.L., Bass, H.W., and Buckler, E.S. (2016). Open chromatin reveals the
972	functional maize genome. Proc. Natl. Acad. Sci. U. S. A. 113: E3177-3184.
973	Rodriguez-Villalon, A. and Brady, S.M. (2019). Single cell RNA sequencing and its promise in
974	reconstructing plant vascular cell lineages. Curr. Opin. Plant Biol. 48 : 47–56.
975	Roudier, F. et al. (2011). Integrative epigenomic mapping defines four main chromatin states in
976	Arabidopsis. EMBO J. 30 : 1928–1938.
977	Ryu, K.H., Huang, L., Kang, H.M., and Schiefelbein, J. (2019). Single-Cell RNA Sequencing Resolves
978	Molecular Relationships Among Individual Plant Cells. Plant Physiol. 179: 1444.
979	Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene
980	expression patterns with a complementary DNA microarray. Science 270 : 467–470.
981	Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D.,
982	and Lohmann, J.U. (2005). A gene expression map of Arabidopsis thaliana development. Nat.
983	Genet. 37 : 501–506.
984	Schmitz, R.J., Schultz, M.D., Urich, M.A., Nery, J.R., Pelizzola, M., Libiger, O., Alix, A., McCosh, R.B.,
985	Chen, H., Schork, N.J., and Ecker, J.R. (2013). Patterns of population epigenomic diversity.
986	Nature 495 : 193–198.
987	Schneeberger, K. (2014). Using next-generation sequencing to isolate mutant genes from forward
988	genetic screens. Nat. Rev. Genet. 15 : 662–676.
989	Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A.H., Nielsen, K.L., Jørgensen, JE., Weigel,
990	D., and Andersen, S.U. (2009). SHOREmap: simultaneous mapping and mutation identification
991	by deep sequencing. Nat. Methods 6 : 550–551.


992 993	Sessions, A. et al. (2002). A High-Throughput Arabidopsis Reverse Genetics System. Plant Cell 14: 2985–2994.
994 995	Shapiro, B.E., Tobin, C., Mjolsness, E., and Meyerowitz, E.M. (2015). Analysis of cell division patterns in the Arabidopsis shoot apical meristem. Proc. Natl. Acad. Sci. 112: 4815–4820.
996 997 998	Shulse, C.N., Cole, B.J., Ciobanu, D., Lin, J., Yoshinaga, Y., Gouran, M., Turco, G.M., Zhu, Y., O'Malley, R.C., Brady, S.M., and Dickel, D.E. (2019). High-Throughput Single-Cell Transcriptome Profiling of Plant Cell Types. Cell Rep. 27: 2241-2247.e4.
999 1000	Smakowska-Luzan, E. et al. (2018). An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553 : 342–346.
1001 1002	Somerville, C. and Koornneef, M. (2002). A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3 : 883–889.
1003 1004 1005	Song, Q., Ando, A., Jiang, N., Ikeda, Y., and Chen, Z.J. (2020). Single-cell RNA-seq analysis reveals ploidy dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol. 21: 178.
1006 1007	Sullivan, A.M. et al. (2014). Mapping and Dynamics of Regulatory DNA and Transcription Factor Networks in A. thaliana. Cell Rep. 0 .
1008 1009	Sullivan, A.M. et al. (2019). Mapping and Dynamics of Regulatory DNA in Maturing Arabidopsis thaliana Siliques. Front. Plant Sci. 10 .
1010 1011	Sun, H. and Schneeberger, K. (2015). SHOREmap v3.0: fast and accurate identification of causal mutations from forward genetic screens. Methods Mol. Biol. Clifton NJ 1284 : 381–395.
1012 1013	Sun, J., He, N., Niu, L., Huang, Y., Shen, W., Zhang, Y., Li, L., and Hou, C. (2019). Global Quantitative Mapping of Enhancers in Rice by STARR-seq. Genomics Proteomics Bioinformatics 17: 140–153.
1014 1015	Taylor-Teeples, M. et al. (2015). An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517 : 571–575.
1016 1017 1018 1019	Thomas, S., Li, XY., Sabo, P.J., Sandstrom, R., Thurman, R.E., Canfield, T.K., Giste, E., Fisher, W., Hammonds, A., Celniker, S.E., Biggin, M.D., and Stamatoyannopoulos, J.A. (2011). Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biol. 12: R43.
1020 1021	Thurman, R.E. et al. (2012). The accessible chromatin landscape of the human genome. Nature 489 : 75-82.
1022 1023	Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. (2005). The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J. 43 : 153–163.
1024 1025	Trigg, S.A. et al. (2017). CrY2H-seq: a massively-multiplexed assay for deep coverage interactome mapping. Nat. Methods 14 : 819–825.
1026 1027	Vaughn, M.W. et al. (2007). Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5: e174–e174.

1028 1029	Wachsman, G., Modliszewski, J.L., Valdes, M., and Benfey, P.N. (2017). A SIMPLE Pipeline for Mapping Point Mutations. Plant Physiol. 174 : 1307–1313.
1030 1031	Waese, J. et al. (2017). ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. Plant Cell 29 : 1806–1821.
1032 1033	Wei, Q., Wang, J., Wang, W., Hu, T., Hu, H., and Bao, C. (2020). A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Hortic. Res. 7: 153.
1034 1035	Weigel, D. and Mott, R. (2009). The 1001 Genomes Project for Arabidopsis thaliana. Genome Biol. 10: 107.
1036 1037	Weintraub, H. and Groudine, M. (1976). Chromosomal subunits in active genes have an altered conformation. Science 193 : 848–856.
1038 1039	Weirauch, M.T. et al. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158 : 1431–1443.
1040 1041 1042	West, P.T., Li, Q., Ji, L., Eichten, S.R., Song, J., Vaughn, M.W., Schmitz, R.J., and Springer, N.M. (2014). Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PloS One 9: e105267–e105267.
1043 1044 1045	Wilson-Sánchez, D., Lup, S.D., Sarmiento-Mañús, R., Ponce, M.R., and Micol, J.L. (2019). Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Res. 47: e140–e140.
1046 1047 1048	Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PloS One 2: e718.
1049 1050 1051	Woody, S.T., Austin-Phillips, S., Amasino, R.M., and Krysan, P.J. (2007). The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J. Plant Res. 120: 157–165.
1052 1053	Wu, C., Wong, Y.C., and Elgin, S.C. (1979). The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell 16: 807–814.
1054 1055	Xia, E. et al. (2020). The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Mol. Plant 13: 1013–1026.
1056 1057	Yazaki, J., Gregory, B.D., and Ecker, J.R. (2007). Mapping the genome landscape using tiling array technology. Curr. Opin. Plant Biol. 10: 534–542.
1058 1059	Yue, F. et al. (2014). A comparative encyclopedia of DNA elements in the mouse genome. Nature 515 : 355–364.
1060 1061 1062 1063	Zapata, L., Ding, J., Willing, EM., Hartwig, B., Bezdan, D., Jiao, WB., Patel, V., Velikkakam James, G., Koornneef, M., Ossowski, S., and Schneeberger, K. (2016). Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc. Natl. Acad. Sci. U. S. A. 113: E4052-4060.

1064 1065 1066	Zhang, H., Zhang, F., Yu, Y., Feng, L., Jia, J., Liu, B., Li, B., Guo, H., and Zhai, J. (2020). A Comprehensive Online Database for Exploring ~20,000 Public Arabidopsis RNA-Seq Libraries. Mol. Plant 13: 1231–1233.
1067 1068	Zhang, TQ., Xu, ZG., Shang, GD., and Wang, JW. (2019). A Single-Cell RNA Sequencing Profiles the Developmental Landscape of Arabidopsis Root. Mol. Plant 12 : 648–660.
1069 1070 1071	Zhang, X., Bernatavichute, Y.V., Cokus, S., Pellegrini, M., and Jacobsen, S.E. (2009). Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10 : R62.
1072 1073	Zhang, X., Henderson, I.R., Lu, C., Green, P.J., and Jacobsen, S.E. (2007). Role of RNA polymerase IV in plant small RNA metabolism. Proc. Natl. Acad. Sci. U. S. A. 104: 4536–4541.
1074 1075 1076	Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.WL., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E., and Ecker, J.R. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189–1201.
1077 1078	Zhao, L. et al. (2020). Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11 : 2658–2658.
1079 1080 1081	Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S. (2007). Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39 : 61–69.
1082 1083	Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiol. 136 : 2621–2632.
1084	

Figure 1. Breakdown of the top 25 Web of Science categories (top panel) and top 25 countries (bottom panel) for the 5,960 papers that have cited the original Arabidopsis genome paper (AGI, 2000) as of August 1, 2020, illustrating the impact that the genome sequence of Arabidopsis has had across scientific disciplines and around the world.

Figure 2. The Arabidopsis genome sequence as a platform. The Arabidopsis genome sequence has allowed a vast ecosystem of research areas and technologies to flourish.