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Abstract Service systems often feature multiple classes of customers with
different service needs and multiple pools of servers with different skillsets.
How to efficiently match customers of different classes with servers of differ-
ent skillsets is of great importance to the management of these systems. In
this survey, we review works on skill-based routing in queues. We first sum-
marize key insights on routing/scheduling policies developed in the literature.
We then discuss complications brought by modern service operations manage-
ment problems, particularly, healthcare systems. These complications stimu-
late a growing body of literature on new modeling and analysis tools. Lastly,
we provide additional numerical experiments to highlight the complex nature
of a routing problem motivated from hospital patient-flow management, and
provide some useful intuitions to develop good skill-based routing policies in
practice. Our goal is to provide a brief overview of the skill-based routing
research landscape and to help generate interesting research ideas.

Keywords Queueing theory · Skill-based Routing · Asymptotic analysis

1 Introduction

In service systems, customers are typically grouped into different classes based
on their service needs. For example, in a call center, different customer types
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can represent different service requirements, e.g., individual banking, business
banking, and loans in a bank call center, or different priority levels. In a hospi-
tal inpatient department, different customer types can correspond to different
medical specialties of patients, e.g., general medicine, cardiology, and neurol-
ogy, or different severity levels, e.g., general ward, Intensive Care Unit, and
step-down unit. Correspondingly, servers (resources) are often grouped into
different server pools based on their skillset/specialization to serve different
types of customers. For example, call center staff are grouped into different
pools based on their training or language skills, e.g., English, Spanish, and
bilingual. Inpatient ward beds are grouped into different specialty wards to
better facilitate the coordination and standardization of care.

There are several interesting design questions that arise in these service
systems: (i) how to define the customer/server classes and how to design the
network structure; (ii) how to size each server pool; (iii) how to route customers
to match with servers. Note that these three design questions are often made
at different timescales: for example, in call centers or hospitals, (i) is usually
planned on a yearly basis, (ii) is on a monthly/weekly basis, while (iii) needs
to be implemented in the real-time fashion. These questions are also highly
interdependent. However, tackling them all at once is often too ambitious a
goal. Most of the literature looks at one of them while holding the others
fixed. In this survey paper, we focus on studying the third design question
listed above. We refer to this problem as skill-based routing (SBR) following
[40,43].

Queueing models are commonly used modeling tools to study the dynamics
of these service systems. In this paper, we consider a multi-class multi-pool
queue with I classes of customers and J types of parallel server pools. Cus-
tomer class i, i = 1, 2, . . . , I, is characterized by an arrival process with rate
λi and a patience time distribution with mean 1/θi. (The patience time of
a customer is the amount of time he/she is willing to wait for service before
abandoning the queue.) We allow each server pool to have multiple homoge-
neous servers. In particular, server pool j, j = 1, 2, . . . , J , has sj homogeneous
servers. Focusing on service operations applications, we assume each server
can only serve one customer and each customer can only be served by one
server at a time. Note that in some applications, it is possible that a server
can serve multiple customers at a time. For example, in an online chatting
system, an agent can chat with multiple customers at a time. It can also be
the case that multiple (types of) servers are required to serve a customer. For
example, in a healthcare facility, to treat a patient with complex medical con-
ditions, multiple resources from multiple pools are needed simultaneously. We
do not consider such models in this paper, but refer interested readers to [47,
64].

A customer from class i can potentially be matched with a server in more
than one server pool. If a customer from class i is served by a server from pool
j, we denote the mean of its service time distribution as 1/µij . Note that if
there is no “compatibility” between customer class i and server type j, we can
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define µij = 0. Figure 1 provides a illustration of such a system. Following
[54], we call it a parallel-server system (PSS).
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Fig. 1: A multi-class multi-pool queue

In a PSS, there are two types routing decisions to be made: 1) when a
server becomes available (finishes service), which customer, if any, should the
server attend to next; 2) when a customer arrives and there are multiple idle
servers, to which server, if any, should the customer be routed. A SBR policy
specifies how these decisions are made. The goal is to design a good policy
according to some performance criteria, e.g., waiting cost, abandonment cost,
matching (overflow) cost, or combinations of these.

To facilitate subsequent discussions, we introduce some notations and ter-
minology. First, to describe the system state, at a particular time t, let Xi(t)
denote the total number of class i customers in the system, Qi(t) denote the
number of class i customers waiting in queue, and Zij(t) denote the number
of class i customers in service in pool j. Note that

Xi(t) = Qi(t) +

J∑
j=1

Zij(t).

For ease of exposition and analytical tractability, we next introduce the sys-
tem dynamics for a Markovian system where interarrival times, service times,
and patience times all have exponential distributions. Let Ai, Sij , and Ri,
i = 1, . . . , I, j = 1, . . . , J , be unit rate Poisson processes modeling the arrival
processes, (non-interrupted) service completion processes, and abandonment
processes, respectively. Then, the system dynamics can be described as

Xi(t) = Xi(0) +Ai(λit)−
J∑
j=1

Sij

(
µij

∫ t

0

Zij(s) ds

)
−Ri

(
θi

∫ t

0

Qi(s) ds

)
,

where the evolution of Zij ’s are determined by the routing policy.
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We also consider a discrete-time version of the problem, X̃, for which,
at each time slot, arrivals follow Poisson distributions and departures follow
Binomial distributions. In this case, the system dynamics can be described as

X̃i(t+ 1) = X̃i(t) + Ãi(t)−
J∑
j=1

S̃ij(t)− R̃i(t).

where, given a scheduling policy Z̃ij(t)’s, Ãi(t) is a Poisson random variable

with rate λi, S̃ij(t) conditional on Z̃ij(t) is a Binomial random variable with

parameter Z̃ij(t) and µij , and R̃i(t) conditional on Q̃i(t) is a Binomial random

variable with parameter Q̃i(t) and θi.
The routing decisions are often to be made upon a customer’s arrival or

upon a service completion. We next introduce two major service disciplines:
preemptive versus non-preemptive. A policy is said to be preemptive if a cus-
tomer in service can be interrupted. Here, interruption can mean being trans-
ferred to a server in a different pool or being put back in the queue. Non-
preemption, on the other hand, means that once a customer starts service, it
stays with the assigned server until service completion.

Preemptive policies are typically easier to analyze. In particular, under
Markovian system primitives, one can view a non-anticipatory preemptive
scheduling policy as a mapping from X(t) := (Xi(t) : i = 1, . . . , I) to an
allocation of the servers, Z(t) := (Zij(t) : i = 1, . . . , I, j = 1, . . . , J). When
preemption is allowed, we in general can focus on work-conserving policies.
A policy is said to be work-conserving, or non-idling, if a server will not idle
whenever there is at least one compatible customer waiting in the queue. On
the other hand, work-conservation is in general sub-optimal when preemption
is not allowed. In particular, we can hold a server idle in anticipation of the
arrival of a more preferred customer, or we can hold a customer waiting in
anticipation of a more preferred server becoming available.

Finally, to optimize the routing policies, one needs to define a performance
metric or an objective function. The objective function is often defined as
some form of cumulative cost, and a good policy aims to minimize the cost
objective. Specifically, let C(t) denote the cost rate incurred at time t in the
continuous-time setting, or the cost incurred at epoch t in the discrete-time
setting. C(t) can include holding costs, e.g. hiQi(t), overflow costs (for using
non-preferred servers), e.g.,

∑
j φijZij(t), etc. The cumulative cost over a finite

time horizon is then defined as

E

[∫ T

0

C(t) dt

]
and E

[
T∑
t=1

C(t)

]
for the continuous-time and discrete-time problem settings, respectively. When
dealing with an infinite time horizon, we can define the objective function
either as a long-run average cost, i.e.,

lim sup
T→∞

1

T
E

[∫ T

0

C(t) dt

]
and lim sup

T→∞

1

T
E

[
T∑
t=1

C(t)

]
,
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or a cumulative discounted cost with a discount rate γ > 0, i.e.,

E
[∫ ∞

0

e−γtC(t) dt

]
and E

[ ∞∑
t=1

e−γtC(t)

]
.

The rest of the paper is organized as follows. Taking system stability as
the first-order goal, in Section 2, we review an important class of policies that
achieves the maximum stability region. In Section 3, we review a powerful
analytic tool – heavy-traffic asymptotic analysis – and discuss the structural
properties of optimal/asymptotically optimal SBR policies in some special
PSS’s. We note that some of the results in Sections 2 and 3 do not rely on
Markovian system primitives, i.e., they hold for more general arrival processes
and service time distributions. Next, in Section 4, we discuss the challenges
and opportunities when modeling healthcare applications. Lastly, we provide
a numerical study to demonstrate the effect of overflow cost in Section 5.

2 Stability

Before we discuss cost minimization, the first-order criterion that a good rout-
ing policy should achieve is to stabilize the system. There are several notions
of stability. Following [5], we say that the system is stable if

lim
t→∞

Qi(t)/t = 0, for i = 1, . . . , I, almost surely.

This notion of stability is also known as rate stability as it preserves job inflow-
outflow balance. In particular, in a PSS, rate stability implies that the arrival
rate of class i customers is equal to the departure rate of class i customers in
the long run.

If customers abandon after waiting for too long, the system is guaranteed to
be stable. However, when abandonment is absent, stability is not guaranteed.
For a system with given service rates, server-pool sizes, and a fixed SBR policy,
the set of arrival rates for which the system is stable is referred to as the
stability region. The maximum stability region S is the union of the stability
regions over all SBR policies, and can be characterized as

S =
{
λ : λi =

J∑
j=1

µijsjπij , for some πij ≥ 0 with
∑I
i=1 πij ≤ 1,

i = 1, 2, . . . , I, j = 1, . . . J
}
.

In the definition of S, πij can be interpreted as the proportion of time resources
from pool j are used to serve class i customers.

For any λ ∈ S, the system can be stabilized under some SBR policy re-
gardless of whether preemption is allowed [31]. However, different scheduling
policies may have very different stability regions. A SBR policy that achieves
the maximum stability region S is called throughput optimal. We next review
an important class of throughput optimal policies – the maximum pressure
policies [83].
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Maximum pressure policy For a PSS, we define the network pressure at time
t as

p(t) =

I∑
i=1

αiXi(t)
( J∑
j=1

µijZij(t)− λi
)

=
∑
i,j

αiXi(t)µijZij(t) +K,

for some α = (α1, . . . , αI) > 0, where K = −
∑I
i=1 αiXi(t)λi does not depend

on the server allocation Zij(t)’s. The weights αi’s are positive and are often
determined by the holding cost of each class, as we shall explain below. When
there are no cost concerns, we can set αi = 1/I, i.e., assigning equal weights
to each class. The maximum pressure policy tries to maximize p(t) among all
feasible server allocations. In the preemptive version, at each time t, we set

Z(t) = arg max
z

{
p(t) : zij ∈ N0,

I∑
i=1

zij ≤ sj ,
J∑
j=1

zij ≤ Xi(t),

i = 1, · · · , I, j = 1, . . . , J
}
,

where N0 denotes the set of nonnegative integers. In the non-preemptive ver-
sion, when a pool j server becomes available, the server will next serve a
waiting class i∗ customer if

i∗ ∈ arg max
i:Qi(t)>0

αiXi(t)µij .

Dai and Lin [29] show that maximum pressure policies are throughput op-
timal for a fairly general class of queueing networks. These networks allow,
for example, customers to be sent to another queue upon service completion,
and include as a special case PSS’s. To see the intuition behind the through-
put optimality of the maximum pressure policy, we consider a ‘counterpart’
deterministic fluid model

dx̄i(t)

dt
= λi −

J∑
j=1

µij z̄ij(t), i = 1, 2, . . . , I,

where
∑I
i=1 z̄ij(t) ≤ sj . Under the maximum pressure policy with preemption,

z̄(t) = arg max
z

{ I∑
i=1

αixi(t)

J∑
j=1

µijzij :

I∑
i=1

zij ≤ sj ,
J∑
j=1

zij ≤ xi(t),

i = 1, · · · , I, j = 1, . . . , J
}
.

Now, consider a quadratic Lyapunov function V (t) =
∑I
i=1 αix̄i(t)

2. Under the
maximum pressure policy, for any λ ∈ S, when xi(t) ≥ Nj for any compatible
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(i, j) pair,

dV (t)

dt
= 2

∑
i

αix̄i(t)
dx̄i(t)

dt

= 2
∑
i

αix̄i(t)
(
λi −

∑
j

µij z̄ij(t)
)

≤ 2
∑
i

αix̄i(t)
(
λi −

∑
j

µijsjπij
)
,

for any πij ≥ 0 satisfying
∑I
i=1 πij ≤ 1. If we choose πij such that λi ≤∑J

j=1 µijsjπij , which is feasible due to the definition of S, then,

2
∑
i

αix̄i(t)
(
λi −

∑
j

µijsjπij
)
≤ 0,

which implies that dV (t)
dt ≤ 0. The negative drift of the Lyapunov function

implies the stability of the fluid model.
One remarkable feature of the maximum pressure policy is that it is oblivi-

ous to the arrival rates. On the other hand, we emphasize that the policy does
require knowledge of the service rates. When the service rates are not known,
we may consider algorithms to learn them while doing the routing/scheduling
[62].

In addition to being throughput optimal, the maximum pressure policy
is also shown to be asymptotically cost optimal for certain cost structures.
In [30], Dai and Lin prove that for quadratic holding cost,

∑
i αiXi(t)

2, the
maximum pressure policy is asymptotically optimal under the conventional
heavy-traffic scaling (see Section 3.1 for details of the asymptotic regime).
Under the same scaling, Stolyar [81] studies discrete-time generalized switch
model and establishes the asymptotic optimality of a general class of maximum
pressure policies, which is also known as the Max-Weight policy. In particular,
at each time slot t, the policy is trying to maximize∑

i,j

αiXi(t)
βµijZij(t)

for some β > 0. Here, the holding cost takes the form
∑
i αiXi(t)

1+β .
We comment that developing throughput optimal policies can be highly

nontrivial. For example, a policy that maximizes the instantaneous processing
rate

∑
i,j µijZij(t) is in general not throughput optimal [5]. In addition to

the maximum pressure policy, Armony and Bambos [5] study other schedul-
ing policies that are throughput optimal. Examples include FastEmpty and
BatchAdapt. Under FastEmpty, Zij(t)’s are chosen to minimize the time un-
til the system is empty, assuming that there are no further arrivals. Under
BatchAdapt, customers are grouped and served in batches, where each batch
comprises the customers who arrived during the processing time of the previ-
ous batch. Within each batch, we try to maximize the processing rate. Similar
batching-and-matching ideas are also used in [48,53].
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There is a vast amount of literature studying stability and scaling proper-
ties (as the traffic intensity approaches 1) of various routing/scheduling poli-
cies. An important class of these policies are load-balancing policies [39], such
as join-the-shortest-queue [38], power-of-d [68], and join-idle-queue [63]. Even
though load-balancing is important in scheduling service systems, the above-
mentioned policies and analysis are more relevant for computer systems (e.g.,
cloud computing facilities), where there is often a huge number of parallel
servers, making it difficult to maintain a centralized queue [80].

3 Asymptotic Analysis: Insights into Special Cases

The exact analysis of SBR is usually analytically intractable due to the large
state space and policy space. In addition, even if we can solve for the optimal
SBR policy numerically, the instance-by-instance solutions may not provide
much insights into the structure of a good policy. One important method to
overcome the challenge is through heavy-traffic asymptotic analysis. In essence,
a sequence of queueing systems with the same architecture is considered. The
corresponding limiting processes (deterministic dynamical systems or diffusion
processes), which are justified by limit theorems such as functional laws of large
numbers or functional central limit theorems, are in some cases much more
tractable. The tractability often comes from the fact that, under the appropri-
ate scaling, one can leverage the “state-space collapse” (SSC) property, where
a multidimensional process can be represented by a much lower-dimensional
process in the limit [75].

In what follows, we first introduce the heavy-traffic asymptotic regimes
in Section 3.1. We then review works that apply the heavy-traffic asymptotic
framework to study SBR in Section 3.2. Many of these works focus on special
cases of the network presented in Figure 1, such as the V-model and the
N-model, because analyzing the full network can be very complicated. We
summarize the main insights gleaned from studying these special cases. In
Section 3.3, we discuss a few other related works/policies that enjoy certain
analytical tractability.

3.1 Heavy-traffic asymptotic regime

There are several heavy-traffic asymptotic regimes considered in the literature.
Policies that are appropriate for one regime may not be appropriate for the
others. In fact, a policy that is asymptotically optimal for one regime can cause
instability in another regime. Since in practice, we usually deal with only a
single system rather than a sequence of systems, it is essential to identify
the appropriate regime for analysis in order to determine a good scheduling
policy. We review two important asymptotic regimes here: the conventional
heavy traffic regime and the many-server heavy traffic regime.

Consider a sequence of systems indexed by n. We denote λn := (λni : i =
1, . . . , I) as the arrival rates of the n-th system, µn := (µnij : i = 1, . . . , I, j =
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1, . . . , J) as its service rates, and sn := (snj : j = 1, . . . , J) as the sizes of
the server pools. As we are dealing with multiple customer classes and server
pools, the traffic intensity ρn is defined through a linear program [54]:

minimize ρn (1)

subject to

J∑
j=1

snj µ
n
ijπij = λni for i = 1, . . . , I

I∑
i=1

πij ≤ ρn for j = 1, . . . , J

ρn ≥ 0, πij ≥ 0 for i = 1, . . . , I, j = 1, . . . , J .

When there is no abandonment, ρn ≤ 1 is necessary for stability.

Conventional Heavy Traffic Under the conventional heavy traffic scaling, the
number of servers is held fixed, while time is scaled up by n. The arrival rates
and service rates can vary with n as long as ρn → ρ as n → ∞ [58]. To keep
subsequent discussions concise, we keep the service rates fixed, i.e., µnij = µij ,
and assume that each server pool only has a single server. We then impose
the following complete resource pooling (CRP) condition: for some bi ∈ R,
i = 1, . . . , I,

√
n(λni − λi)→ bi, where λ = (λ1, . . . , λI) satisfies

λi =

J∑
j=1

µijπij for some πij ≥ 0 and
∑I
i=1 πij = 1.

Note that under CRP, ρ = 1. When there is customer abandonment, we scale
down the abandonment rates when scaling up time (see [74,86] for more de-
tails). In the special case of a sequence of single class GI/GI/1 queues, the
limiting diffusion scaled queue length process is a reflected Brownian motion
[58]. In this case, almost all arriving customers have to wait for service. Thus,
under the conventional heavy-traffic scaling, we can focus on the question:
which class should be prioritized when a server becomes available? In other
words, which server an arriving customer should be routed to is not relevant
(see, for example, [66]).

Many-server Heavy Traffic Under the many-server heavy traffic scaling, we
send the arrival rates and the number of servers to infinity while keeping the
service rates and abandonment rates fixed. We again denote ρ = limn→∞ ρn.
There are three commonly considered (sub)regimes in this setting: the Quality-
Driven (QD) regime where ρ < 1, the Efficiency-Driven (ED) regime where
ρ > 1, and the Quality-and-Efficiency-Driven (QED) regime where ρ = 1 and
ρn approaches 1 at rate 1/

√
n. For what follows, we focus on the QED regime.

As its name suggests, this regime is often able to strike a balance between
the quality of service and the server utilization rate (efficiency) [19]. We also
impose the following complete resource pooling condition in this case. For
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some ξi ∈ R, i = 1, . . . , I, and γj ∈ R, j = 1, . . . , J , (λni − uin)/
√
n → ξi and

(snj − vjn)/
√
n→ γj , where ui, vj > 0 satisfy

n∑
j=1

µijvjπij = ui for some πij ≥ 0 and
∑I
i=1 πij = 1.

In the special case of a sequence of single class GI/M/sn queues, the limiting
diffusion-scaled queue length process is a piecewise-linear diffusion process [52].
(The result is extended in [44] to accommodate abandonment.) In the limit,
there is a positive yet less than one probability that an arriving customer has to
wait. In this case, we need to specify both how to route customers to available
servers upon arrivals and how to prioritize different classes of customers upon
service completions (see, for example, [50]). It is also worth noticing that in
the heavy-traffic limit, the difference between preemption and non-preemption
sometimes diminishes [9].

Other asymptotic regimes In addition to the two asymptotic regimes discussed
above, there are other asymptotic regimes studied in the literature. For ex-
ample, the non-degenerate slowdown (NDS) regime is a “midpoint” between
the conventional heavy-traffic regime and the many-server QED regime [87].
Under NDS, we scale up the arrival rate and the number of servers while scal-
ing down the service rate. In the case of a single-class M/M/n model, for a
given α ∈ [0, 1], λ > 0, and v > 0, we set λn = n − λ

√
n, sn = vnα and

µn = v−1n1−α. The NDS regime enjoys the property that delay and service
times are of the same order under scaling [10]. Another asymptotic regime is
one where the arrival rates scale super-linearly in n while the service rates
and abandonment rates scale linearly in n. This asymptotic regime has been
applied to study systems with demand uncertainty [13,15].

3.2 Special cases

Much of the literature focuses on certain special cases of PSS’s, generating
interesting insights into the management of such systems. Four important
special cases are: (a) the V-model, where there is a single pool of servers but
two or more classes of customers that typically differ by their service times
and/or holding cost; (b) the inverted V-model, where there is a single class of
customers but two or more pools of servers, which typically differ by their rates
of service; (c) the N-model; and (d) the X-model. In the latter two models,
there are two classes of customers, classes 1 and 2, and two pools of servers,
pools 1 and 2, which are primarily dedicated to the two classes of customers,
respectively. The N-model allows only one way of ‘helping’, i.e., pool 2 can help
serve class 1 customers but not the other way around. The X-model, on the
other hand, allows ‘helping’ in both directions, i.e., pool 1 can help serve class
2 customers and pool 2 can also help serve class 1 customers. However, there
is often a cost for helping. For example, customers served by servers from the
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non-primary pool may experience a a slower service rate (service slowdown),
or there might be an overflow penalty cost for each non-primary assignment.
Figure 2 illustrates these four special cases.

λ1 λ2

s1

µ11 µ21

λ1

s1 s2

µ11 µ12

λ1 λ2

s1 s2

µ11 µ12 µ22

λ1 λ2

s1 s2

µ11
µ21

µ22
µ12

(a) V-model (b) Inverted V-model (c) N-model (d) X-model

Fig. 2: Special cases of multi-class multi-pool queueing systems

We next summarize high-level insights from the special cases developed in
the literature. One aspect that we will not cover in its full complication is cus-
tomer abandonment, especially when the patience time has a non-exponential
distribution. This is nevertheless a very important aspect in service operations.
Indeed, there is a growing body of literature analyzing customer abandonment
behavior from both empirical and modeling perspectives. We refer to [72] for
more details on the modeling and analysis of customer abandonment.

In what follows, our default assumption is that the system parameters
(arrival rates, service rates, abandonment rates, and the number of servers)
are time-homogeneous. We also assume there is no overflow cost for a non-
primary assignment. We delay the discussion of overflow cost to Sections 4
and 5. We write Ci(qi) as the holding cost rate for class i when there are qi
class i customers in the queue.

V-model In the V-model, the relevant scheduling decision is: when a server
becomes available, which customer class it should serve next.

We start with a single-server system with no abandonment and set the
objective function as the total cumulative cost over a finite time horizon. If
static priority is imposed (i.e. the relative priority of different classes is not
state-dependent), the conventional heavy-traffic asymptotic framework leads
to a state-space collapse where the scaled queue in the limit only contains
customers in the lowest priority class [75]. We also note that under any work-
conserving scheduling policies, the workload-process is the same. Thus, if work-
conservation is imposed, the holding cost rate is approximately Cĩ(W (t)µĩ1),
where ĩ is the class with the lowest priority and W (t) is the workload process.
(Note that in this model, there is one server pool (J = 1) but each customer
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class can have a different service rate. Hence, we use µi1 to denote the class-
dependent service rate.) This holding cost rate suggests that we should give
lower priority to the class with a smaller holding cost rate and a smaller service
rate (longer average service time). More generally, as our goal is to minimize
the holding cost, when there is a single server and no abandonment is allowed,
a good heuristic is to maximize the cost reduction rate in a myopic way. In
particular, when a server becomes available, it should next serve class i∗ if

i∗ = arg max
i
{C ′i(Qi(t))µi1}. (2)

This policy is known as the generalized cµ-rule. In a multi-class M/G/1 queue
with linear holding cost, i.e., Ci(q) = ciq for some ci > 0, [27] establishes
the optimality of the cµ-rule where one prioritizes the class with a larger
ciµi1 index (see [21] for an elegant proof of the discrete-time model). [67]
studies the multi-class G/G/1 queue with convex holding cost and establishes
the asymptotic optimality of the generalized cµ rule in (conventional) heavy
traffic.

For multi-class M/M/n+M queues in the QED regime, the above state-
space collapse phenomenon is absent. This can change the structure of the
optimal scheduling policy. Consider a linear holding cost with the objective of
minimizing the infinite-horizon discounted cost. When allowing preemption,
[55] derives a diffusion limit (approximation) for the scaled queue length pro-
cess and studies the associated diffusion control problem. They find that the
optimal control is extremal in the sense that it is optimal to have strict prior-
ity. Notably, the priority is state-dependent, i.e., not static. Thus, the optimal
policy is no longer as simple as the cµ-rule. [11] takes a similar approach as
[55], but considers more general cost functions and allows non-preemption.
Moreover, [11] establishes the asymptotic optimality of the scheduling pol-
icy constructed by translating the optimal diffusion control to the pre-limit
queueing systems.

Inverted V-model In this model, different server pools in general differ in the
service rates only. The relevant decision to be made is: upon a customer’s
arrival, to which available server should this customer be routed? From the
perspective of maximizing the system’s efficiency, a good heuristic is to pri-
oritize the pool with faster servers. This is known as the fastest-server-first
(FSF) policy. Indeed, when we allow preemption, FSF has shown to be optimal
[4]. However, when service is non-preemptive, implementing FSF in a work-
conserving fashion is not optimal in general. In particular, we might want to
hold the customer waiting for a faster server while keeping the slower server
idling [90]. In [4], Armony studies the Markovian inverted V-model without
abandonment, and shows that FSF is asymptotically optimal with respect to
minimizing the steady-state queue length in the QED regime. She proves this
by showing that the non-preemptive FSF is ‘close’ to the preemptive FSF in
the limit. She also establishes a state-space collapse result, which shows that,



Skill-based routing 13

under FSF, all the faster servers are constantly busy, and the only possible
idleness is within the slowest servers.

While FSF is optimal to minimize costs, it may be considered as ‘unfair’ to
the servers in terms of how the workload is distributed. It is of interest to de-
termine good policies subject to ‘fairness’ constraints (e.g., idleness should be
distributed across different server pools). SBR subject to such fairness consid-
erations are studied in [7,85]. There, good routing policies also take server idle
times into account. One such policy is called the longest-idle-server-first. An
attractive feature of the longest-idle-server-first policy is that the stationary
distribution of systems under this policy often has a product form [1], which
makes it analytically tractable for performance analysis.

N-model In the N-model, one usually assumes that class 1 customers have
a higher holding cost, in which case, pool 2 servers should be used to help
class 1 customers. We start by considering the N-model without abandonment.
In this case, letting pool 2 give strict priority to class 1 can lead to system
instability under non-preemption even for ρ < 1 [43,53]. This is because pool
2 may provide too much help, leaving pool 1 idling while there are still class 2
customers waiting. One way to overcome the unwanted idleness is to impose
a threshold. In particular, pool 2 gives priority to class 1 only when the class
1 queue is larger than the threshold. This idea can be viewed as having a
safety stock for class 1. [16] shows that if the threshold is properly chosen and
preemptive priority is allowed for class 1 customers when their queue length is
larger than the threshold, the threshold-based priority rule is asymptotically
optimal in the conventional heavy-traffic regime. The cost structure in [16]
contains linear holding cost and the objective is to minimize the infinite horizon
discounted cost.

In the many-server QED regime, the idleness induced by strict priority is of
less concern. This is because each class 1 customer only takes a 1/sn2 fraction
of the service capacity from pool 2, which is almost negligible when n is large.
This reflects a fundamental difference between the conventional heavy traffic
scaling and the many-server heavy-traffic scaling. [84] studies the N-model
with pool-dependent service rates and linear holding costs in the QED regime.
In particular, pool-dependent service rates require that µ12 = µ22 = µ2. They
show that a cµ-type greedy policy is asymptotically optimal. The policy keeps
servers non-idling; when a server becomes available, it next serves the waiting
customer from the more expensive queue; and when an arriving customer (in
class 1) can choose from multiple servers, it picks a faster server. The intuition
is that, in general, a good policy should aim to keep all of the servers busy
except the slowest one and all of the queues empty except the cheapest one.
[84] also allows abandonment, assuming the abandonment rates are smaller
than the service rates.

We note that abandonment can sometimes change the structure of the op-
timal policy. For example, if the more expensive class (class 1) also happens to
have a higher abandonment rate, then when there are many customers in the
system, it can be more cost effective to give priority to class 2 jobs. In partic-
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ular, by keeping a longer class 1 queue, we can take advantage of the higher
abandonment rate of class 1 to help reduce the queue more quickly. [45] stud-
ies the N-model with abandonment and establishes the asymptotic optimality
of a two-threshold policy under the conventional heavy-traffic regime. Under
this policy, when the abandonment rate of class 1 is large enough, the pool 2
server gives priority to class 1 customers when the class 1 queue is larger than
a threshold but the total workload is smaller than another threshold.

X-model and beyond When the holding cost is increasing and (strongly) con-
vex, [66] considers a general PSS with multiple customer classes and multiple
pools of fully flexible (multi-skilled) servers. They show that the generalized
cµ-rule minimizes the instantaneous and cumulative queueing costs, asymptot-
ically, over essentially all scheduling disciplines, preemptive or non-preemptive,
under the conventional heavy-traffic scaling. (Each pool has only one server in
[66] and there is no abandonment.) The generalized cµ-rule says that when a
pool j server becomes available (at time t), it serves a class i∗ customer next,
where

i∗ ∈ arg max
i:Qi(t)>0

C ′i(Qi(t))µij .

The policy essentially aims at myopically maximizing the instantaneous cost
decreasing rate, which agrees with the intuition developed in the V-model.

Gurvich and Whitt [50] consider a similar multi-class multi-pool system,
but allow each server pool to have multiple servers. ([50] also allows abandon-
ment.) They propose a family of routing policies called queue-idleness-ratio
(QIR) rules. Under QIR, a newly available server next serves the customer class
(among the eligible ones) whose queue length most exceeds a state-dependent
proportion of the total queue length, and an arriving customer is routed to the
server pool whose idleness exceeds the most a state-dependent proportion of
the total idleness. In the QED regime, this policy achieves state-space collapse
under certain regularity conditions (see Theorem 3.1 in [50]). See also [32] for
a similar result. In particular, the state-space collapse result indicates that
the scaled queue length of each class is a pre-specified state-dependent ratio
of the total queue length. Similarly, the scaled idleness at each pool is a a pre-
specified state-dependent ratio of the aggregate idleness. Thus, in the limit, we
only need to keep track of the total queue length and the aggregated idleness
processes. Utilizing the state-space collapse result, [49] establishes that when
costs Ci’s are convex and the service rates are only pool-dependent, a properly
specified QIR control is asymptotically optimal in the QED regime. The ob-
jective there is to minimize the cumulative holding cost over a finite horizon.
Intuitively, the optimal QIR control works as follows: the routing component
places all the idleness to the slowest server pool, and the scheduling component
distributes the total queue length among the individual customer classes so
that the instantaneous holding cost is minimized. In particular, the scheduling
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policy is try to mimic/stay close to the solution of the following:

minimize

I∑
i=1

Ci(qi) (3)

subject to

I∑
i=1

qi = q̄

qi ≥ 0 for i = 1, . . . , I.

This indicates that when there are q̄ customers in queue, the queue ratio is
q∗i (q̄)/q̄ where q∗i (q̄) is the solution to (3).

The most general asymptotic optimality result for PSS’s in the QED regime
is established in [9]. The objective is to minimize the infinite horizon discounted
cost. It derives asymptotically optimal policies by properly “translating” the
optimal policy for the associated limiting diffusion control problem to the
stochastic systems. However, it is worth pointing out that, due to the general-
ity of the result, the Hamilton-Jacobi-Bellman (HJB) equation associated with
the diffusion control problem cannot be solved analytically in general. Thus,
it is hard to derive structural insights from this class of HJB-derived policies.
Atar [9] studies both the preemptive version and non-preemptive version of
the problem and show that the two versions are not, in general, asymptotically
equivalent in this regime. However, he also shows that under appropriate as-
sumptions on the structure of the system, the two versions of the problem are
asymptotically equivalent. In particular, the structural assumption requires
the graph describing the compatibility of the network to form a tree and all
the compatible class-pool pairs to have non-negligible flow in the correspond-
ing fluid model.

Perry and Whitt [70,71] study how to use overflow (routing class i cus-
tomers to pool j, i 6= j) to handle unexpected demand shocks (overload) in the
X-model. They assume overflow incurs an efficiency loss, i.e., µ11µ22 > µ12µ21,
so that each pool in general prefers to serve its own customer class. To han-
dle demand shocks, they propose a fixed-queue-ratio policy with threshold
(FQR-T). The fixed-queue-ratio policy is studied in [51] for PSS’s with pool-
dependent service rates. The extra thresholds in FQR-T are introduced to
avoid unwanted (excessive) sharing in normal load. The thresholds are also
used to automatically detect when one class becomes overloaded.

3.3 Other related works

Our focus in this section is on asymptotically optimal scheduling policies. Most
work reviewed above rely on some heavy-traffic asymptotic mode of analysis.
Beyond these works, many other analytically tractable scheduling policies have
been studied in the literature. An important class of policies are those under
which the PSS has an explicit product-form stationary distribution. One such
policy is First-Come-First-Served-and-Assign-Longest-Idle-Server [2]. Under
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this policy, a server always choose to serve the longest waiting compatible
customer, and a customer is assigned to the longest idle compatible server.
Other policies that lead to closed-form stationary distributions include queues
with redundant requests in computer scheduling [42], and store-and-forward
allocation policy in processor-sharing queues [18]. See also [41] for a survey on
product forms for PSS’s under FCFS scheduling.

For the cost objective, we only considered different forms of holding cost.
We will discuss the effect of overflow cost in Section 5. In addition to these
costs, other performance metrics have been considered in the literature. These
include chance constraints [46], deadline constraints [57], fairness constraints
[88], etc. The optimal routing policies with respect to these performance met-
rics remain largely open.

4 Complications Brought by Healthcare Applications

In this section, we review some recent developments of SBR in the context of
healthcare applications, especially in patient-flow management.

Various specialized queueing models have been developed to study patient
flow in hospitals [6]. For example, to capture the fact that the patients may
return to service (consulting the physician) several times during their stay in
the Emergency Department, Yom-Tov and Mandelbaum propose and study a
queueing model that explicitly accommodates re-entrant customers [92]. The
paper [57] then studies how to prioritize new versus re-entrant patients with
deadline constraints. To capture the batch departure phenomenon in inpatient
wards, models with special discharge mechanisms have been proposed and
studied in [36,77].

In what follows, we focus on how routing decisions may affect patient out-
comes, and how that in turn may affect the routing decisions. The challenge of
balancing the delicate tradeoff between system efficiency and quality of care
in face of this interplay stimulates a lot of interesting research opportunities.

The effect of admission delay on patient outcome. Delay arises often in various
healthcare settings due to the high utilization of resources and the high vari-
ability in demand. Delay in receiving care can lead to adverse outcomes such
as a longer length of stay [24] or even a higher mortality rate [22]. The paper
[35] shows that when delay leads to longer service requirement, even a sim-
ple single-class multi-server queue with abandonment can exhibit bi-stability.
In particular, the system can alternate randomly between two performance
regimes. The underlying mechanism can be intuitively understood as a snow-
ball effect where delayed patients have increased service requirements, causing
further delays to other patients, who in turn might require even longer service
times [76].

When there are multiple classes of patients and a single pool of servers, the
more severe patients are often prioritized. However, delayed treatment of less
critical patients may cause them to deteriorate into the more severe classes.
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This deterioration phenomenon can be captured by allowing patients to ‘tran-
sition’ from a less severe class to a more severe one while waiting. In this case,
how to prioritize different patient classes can be highly nontrivial. On one
hand, providing care for patients when they are less critical could mean that
fewer resources are needed. This can be beneficial from the system through-
put perspective. On the other hand, utilizing limited capacity for less severe
patients takes the resource away from other more critical patients. [56] studies
this problem using fluid approximations and optimal control theory. More gen-
erally, analyzing the benefit of proactive care or proactive services (providing
service to less critical/urgent patients) in a limited resource environment has
attracted much attention recently, see, for example, [34,69].

The effect of off-service placement on patient outcome. Inpatient ward beds
are usually grouped into different specialized units, with each unit designated
to serve patients in certain primary specialties. This focused care model is
known to facilitate better coordination of care and nurse training [17]. How-
ever, to avoid excessive admission delay, many hospitals choose to assign pa-
tients whose designated unit (server pool) is full to an available bed in a unit
of a different specialty. This is referred to as off-service placement. Empirical
evidence has shown that off-service placement can lead to adverse outcomes
such as a longer length of stay or a higher readmission rate [79]. This poses
an interesting tradeoff. On one hand, off-service placement can help create
more resource pooling and thus reduce admission delay. On the other hand,
patients who are placed off-service may require a longer service time, which
can create more congestion in the system. This can further lead to a snowball
effect as well: delayed patients are placed off-service, leading to increased ser-
vice times that can cause more delays for future patients. Recently, [37] takes
a data-driven approach to study this tradeoff.

From an analysis point of view, when the service rate is both class-dependent
and pool-dependent, the state space and policy space soon grows prohibitively
large to conduct any exact or even numerical analysis. Adding to the com-
plication is the non-preemption assumption in most healthcare settings. To
optimize the routing decisions, good approximation techniques are needed.
Recent developments in solving these constrained Markov decision processes
include approximate dynamic programming [20,28] and Lagrangian relaxation
[12,33].

When patients are placed off-service, in addition to a longer length of
stay, there might be other costs incurred from the hospital’s perspective. For
example, nurses in the off-service unit may incur a heavier workload as they
now have to take care of multiple types of patients. Physicians may also incur
more workloads as they now have to travel from the primary unit to the
off-service units to see the patients. These can be modeled via an overflow
cost (penalty). Adding the overflow cost to the cost objective can change the
structure of the optimal policy. We conduct detailed numerical experiments of
this setting in Section 5.
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Readmission. A prominent feature in patient flow management and a key mea-
sure for quality of care is patient readmission. Several operational measures
are associated with the readmission rate. We have mentioned that off-service
placement can lead to a higher readmission rate. It has also been shown that
shortening service time (service speed-up) is likely to cause a higher readmis-
sion rate [61]. This poses an interesting tension. Hospitals tend to use early
discharge (speed-up service rate) to alleviate congestion at present [59,60],
which will allow newly arrived patients to get timely treatment. However, this
may substantially increase the future workload due to increased readmissions.
If this tradeoff is not managed properly, it can lead to bi-stability due to,
again, a snowball effect [25]. More generally, analyzing the trade-off between
service speed and service quality is an active area of research, see, for example,
[23,93].

Routing with predictive information. In recent years, the growing availability
of data and the development of statistical learning techniques have provided
us with various accurate predictive models. For example, predictive models
have been developed to evaluate hospital-acquired infection risk, the risk of
Intensive Care Unit (ICU) admission, the risk of Cardiovascular events, etc.
There is a growing number of works studying how to effectively incorporate the
predictive information into operational decision making. [91] studies admission
control in the Emergency Department using predicted patient demand infor-
mation. [14] and [65] study scheduling using customers’ patience time. [26] and
[89] study scheduling using predicted service times. [3] and [82] study patient
prioritization using predicted class information. [78] studies patient discharge
using predicted readmission risk.

5 Patient Routing with Overflow Cost: A Numerical Study

In this section, we focus on one specific example motivated by the patient
routing problem in hospital inpatient flow management. In particular, on top
of the typical SBR setting reviewed earlier, we incorporate a one-time overflow
cost when a patient is routed to a bed (server) in a non-primary ward (non-
dedicated server pool). Overflow cost has not been extensively studied in the
literature, and adding it to the cost objective can change the structure of
the optimal policy from the ones discussed in Section 3. To understand the
complexity in this case, we first introduce the Markov decision process (MDP)
formulation for modeling the routing problem. We then numerically solve the
MDP for some small problem instances to generate insights into the structure
of the optimal routing policy. Finally, we adapt several existing heuristics, such
as the cµ-rule and the maximum pressure policy, to incorporate the overflow
cost, and compare their performance numerically.
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5.1 MDP Formulation

We consider a discrete-time model where each unit of time can be thought
of as a day. For the simplicity of exposition, we assume the service rate is
pool-dependent and there is no abandonment. Motivated by patient-flow ap-
plication, we do not allow preemption. The order of events is as follows. At
the start of each day t, we observe the queue length of each class, Qi(t)’s,
and number of busy servers in each pool, Zj(t)’s. (Note that since the service
rate is pool-dependent, we do not need to track each Zij(t); we only need to
know the total number of busy servers in pool j.) After observing the state,
we make the admission decision aij(t), which is how many class i patients to
admit to pool j. This incurs a cost of

∑
i,j φijaij(t). In addition, a holding cost

of
∑
i hi(Qi(t)−

∑
j aij(t)) is incurred. After the admission decision is made,

random departures occur, followed by random arrivals, bringing the system
into new states Qi(t+ 1)’s and Zj(t+ 1)’s at the start of the next day.

We consider a long-run average cost-minimization problem and focus on
the class of Markovian policies (non-anticipatory). Let

S(t) = (Q1(t), . . . , QI(t), Z1(t), . . . , ZJ(t))

be the state of the system. For a given state S(t) = ζ, we denote by A(ζ) the
set of feasible actions:

A(ζ) =

(aij)i=1,...,I,j=1,...,J : aij ≥ 0,
∑
i

aij + zj ≤ sj ,
∑
j

aij ≤ qi

 .

Recall that sj is the capacity of pool j. Under suitable regularity conditions
on the ergodicity of the Markov process, let g be the gain and V (ζ) be the
bias of the MDP, see e.g. [73]. Then,

g + V (ζ) = min
a∈A(ζ)

∑
i,j

φijaij +
∑
i

hi

Qi(t)−∑
j

aij

+
∑
ζ′

V (ζ ′)P (ζ ′; ζ, a)

 ,

where P (ζ ′; ζ, a) denotes the transition probability from state ζ to state ζ ′

under the policy a = {aij}. Specifically, for q′i = qi−
∑
j aij + ki and 0 ≤ z′j ≤

zj +
∑
i aij :

P (ζ ′; ζ, a) =
∏
i

P (Ãi = ki)
∏
j

P

(
S̃j = zj +

∑
i

aij − z′j

∣∣∣∣∣ zj +
∑
i

aij

)
,

where Ãi is a Poisson random variable with rate λi and S̃j given zj +
∑
i aij

is a Binomial random variable with parameter zj +
∑
i aij and µj .
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5.2 Optimal Solution

In this subsection, we consider two small instances of the problem and solve the
corresponding MDPs numerically. Motivated by the patient flow application,
we assume I = J and each class i has a primary server pool j = i. When
sending a customer from class i to the dedicated server pool i, we incur no
overflow cost, i.e. φii = 0. However, when sending a customer from class i to
a non-primary server pool j, j 6= i, we incur some overflow cost, i.e., φij > 0.

To enable efficient computation, we implement two simplifications. First,
to handle the infinite state space, we truncate the state space by imposing a
common pre-specified threshold m for each class i. In particular, if so many
class i customers arrive such that the queue length of class i will exceed m,
the excess customers (beyond m) are rejected from the system at no cost.
Second, we enforce maximum primary assignments. In particular, as many
primary assignments aii’s as possible are made at each epoch, and only then
are overflow decisions aij ’s (j 6= i) made.

5.2.1 Two-class example

We set m = 45 and numerically solve the MDP in a two-class two-pool setting
where each pool has a capacity of 5. The arrival rates are (0.65, 0.85) and the
service rates are 0.25 for each pool. The holding costs are 1 for each class and
we try different values of the overflow cost, i.e., (i) φij = 0.2, (ii) φij = 2,
and (iii) φij = 10 for i 6= j. Note that the classes are symmetric in everything
except the arrival rates, and class 2 has a higher arrival rate than class 1.

Figures 3 – 5 illustrate the optimal policy under different overflow costs.
We make a few observations from the figures. First, as the overflow cost in-
creases, we do less overflow. In particular, when φij = 0.2 (Figure 3), we do as
much overflow as possible after maximum primary assignment. When φij = 2
(Figure 4), we start to reserve some pool 2 capacity even when there are class
1 customers waiting. For example, when pool 2 has two available servers and
class 1 has 1 customer waiting after its primary assignment, the optimal pol-
icy keeps the two servers in pool 2 idling while keeping the class 1 customer
waiting. When φij = 10 (Figure 5), we only overflow when the queue is large
enough. For example, when pool 2 has one idle server, the optimal policy only
starts overflowing class 1 customers to pool 2 when there are more than 7 class
1 customers waiting after its primary assignment. Likewise, when pool 1 has
an idle server, the optimal policy only starts overflowing class 2 customer to
pool 1 when there are more than 4 class 2 customer waiting after its primary
assignment. Second, we observe from Figure 5 that the number of customers
we overflow is increasing in the queue length and increasing in the number
of idle servers. For instance, when φij = 10 and pool 2 has 3 idle servers, we
overflow 1 class 1 customer when there are seven class 1 customers waiting,
and we overflow 3 class 1 customer when there are more than nine waiting.
Lastly, because class 2 is more heavily loaded than Class 1, i.e., λ2 > λ1, we
tend to do more overflow for class 2. In particular, when φij = 2, we start
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reserving pool 2 capacity by keeping them idling when there are still class 1
customers waiting. In contrast, we still do the maximum possible overflow for
class 2 customers.
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Fig. 3: The number overflowed when φ = 0.2, class i has a queue and pool j
has idleness
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Fig. 4: The number overflowed when φ = 2, class i has a queue and pool j has
idleness

5.2.2 Three-class example

We next consider a three-class three-pool setting where each pool has capacity
5. The arrival rates are (0.65, 0.75, 0.85) and the service rates are 0.25 for each
pool. The holding costs are 1 for each class and we test two different overflow
costs: (i) φij = 0.2 and (ii) φij = 2 for i 6= j. We set m = 15.
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Fig. 5: The number overflowed when φ = 10, class i has a queue and pool j
has idleness

Figures 6 – 9 illustrate the optimal policy under different overflow costs.
We make the following observations from the figures.

When deciding which pool (if any) to overflow a customer (Figures 6 and
7), we tend to overflow the customer to the pool with more idleness. When
two pools have the similar numbers of idle servers, we tend to prioritize the
pool that has a smaller primary offered load. For example, in the first plot
in Figure 6, when there are 2 idle servers in pool 3, we overflow the class 1
customer to pool 3 when pool 2 has less than 2 idle servers, but overflow to
pool 2 when it has more than 2 idle servers. When both pool 2 and pool 3
have 2 idle servers, we overflow the class 1 customer to pool 2 as class 2 has
a smaller offered load than class 3. Comparing the three cases in Figure 6,
we also note that the larger the difference between the primary offered loads,
the more preferred the pool with a lighter load is to overflow the customer.
Moreover, similar to the two-class case, as φij increases, we do less overflow,
especially when the number of idle servers is small. For example, when φij = 2,
we do not overflow the waiting class 1 customer when pool 2 and pool 3 both
have less than 2 idle servers.

When deciding which non-primary class a newly available server should
help next (Figures 8 and 9), we tend to help the class with a larger queue. For
example in the first plot in Figure 8, when class 3 has 3 customers waiting after
its primary assignment, the idling pool 1 server helps class 3 when there are
less than or equal to 3 class 2 customers wanting, but switches to help class 2
when there are more than 3 class 2 customers waiting. When two queues have
similar lengths, we prioritize the queue with a larger arrival rate. For example,
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in the second plot in Figure 8, when both queues have 6 customers waiting,
the idling pool 2 server helps serve class 3, which is the more overloaded class.
Moreover, similar to the two-class case, as φij increases, we do less overflow,
especially when the queue lengths are small.
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Fig. 6: The overflow pool when φij = 0.2, there is one class i in queue and the
other pools have different numbers of idle servers
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Fig. 7: The overflow pool when φij = 2, there is one class i in queue and the
other pools have different numbers of idle servers

The above numerical results suggest that when deciding which pool to route
customers to, the system state should be taken into account. We in general
would prioritize the pool with more idleness and a lighter primary offered load.
Similarly, we should consider the system state when deciding which class to
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Fig. 8: The overflow class when φ = 0.2, there is 1 idle server in pool j and
the other two queues have different number of customers waiting
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Fig. 9: The overflow class when φ = 2, there is 1 idle server in pool j and the
other two queues have different number of customers waiting

prioritize when scheduling servers. We in general would prioritize the class
with a longer queue and a larger arrival rate.

5.3 Heuristic policies

To manage large-scale systems, numerically solving the MDP is computation-
ally prohibitive due to the large state space and action space. In such cases, it
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is natural to come up with some heuristic policies. In this section, we compare
five heuristic policies: (i) the classic cµ-rule, (ii) the classic maximum pressure
policy, (iii) the modified cµ-rule, which takes the overflow cost into account,
(iv) the modified maximum pressure policy, which takes the overflow cost into
account, and (v) a policy based on estimated waiting time. We provide more
details about policies (iii)-(v) next.

For the modified cµ rule, we derive the assignment action aij(t)’s accord-
ing to the following integer program:

max

I∑
i=1

J∑
j=1

(hiµij − φij)aij(t)

s.t. aij(t) ≥ 0,

I∑
i=1

aij(t) + Zij(t) ≤ sj and

J∑
j=1

aij(t) ≤ Qi(t).

(4)

The optimization problem (4) suggests that we rank the patient-bed assign-
ment pair using the (hiµij − φij) index. This index is adjusting the original
cµ-index, hiµij , by subtracting an overflow cost φij . Our goal here is to max-
imize the instantaneous cost reduction rate.

For the modified maximum pressure policy, we derive the assignment
action {aij} from the following integer program:

max

I∑
i=1

J∑
j=1

(hiQi(t)µij − φij)aij(t)

s.t. aij(t) ≥ 0,

I∑
i=1

aij(t) + Zij(t) ≤ sj and

J∑
j=1

aij(t) ≤ Qi(t).

(5)

Compared to the original max-pressure policy, we now adjust the index hiQi(t)µij
with the overflow cost φij .

The last heuristic we consider takes estimated waiting time into account.
In particular, we balance the overflow cost and the waiting cost by solving the
following integer program:

max

I∑
i=1

J∑
j=1

(hiWi(t)− φij)aij(t)

s.t. aij(t) ≥ 0,

I∑
i=1

aij(t) + Zij(t) ≤ sj and

J∑
j=1

aij(t) ≤ Qi(t).

(6)

Here, Wi(t) represents an estimate of the waiting time for the Class i cus-
tomers. We refer to this policy as the look-ahead policy.

Different methods for estimating the waiting time have been developed in
the literature. Here we take a conservative approach, as in [8], and set

Wi(t) = Qi(t)/(siµii − λi). (7)
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Wi(t) as defined in (7) can be interpreted as an approximation of the time to
clear the current queue using dedicated capacity only.

We consider the same three-class three-pool model as studied in Section
5.2.2. We test both a small-scale setting where exact analysis is still feasible,
and a larger-scale setting with higher arrival rates and more servers in each
pool.

We start with the small system that is exactly the same as the three-pool
system studied in Section 5.2.2. In this setting, we are able to compare the
performance of different heuristics with the performance under the optimal
policy we have numerically solved. Table 1 reports the corresponding long-
run average cost evaluated through simulation. We simulate 10 replications
for each policy to evaluate the mean and standard error of the average cost.
Each replication contains 5× 105 days, with the first 104 days excluded when
calculating the average to eliminate the initial transiency. A common sequence
of random numbers is used when comparing different policies. We observe
that when φij is small, i.e., φij = 0.2, the modified cµ rule (mod. cµ), the
modified maximum pressure policy (mod. max-p.), and the look-ahead policy
all perform very well. In this case, not incorporating the overflow cost, as in
the original cµ rule (cµ) or the original maximum pressure policy (max-p.),
leads to too much overflow. However, when φij is large, i.e., φij = 2, naively
incorporating the overflow cost into the cµ-index or the max-pressure index,
as in the modified cµ rule or the modified maximum pressure policy, leads to
too little overflow. In this case, the look-ahead policy works very well, while
the cµ-rule and the max-pressure policy still induce too much overflow.

optimal cµ max-p. mod. cµ mod. max-p. look-ahead
φij = 0.2

total cost 0.11 0.33 0.22 0.11 0.12 0.12
holding 0.07 0.06 0.06 0.07 0.07 0.07
overflow 0.04 0.26 0.15 0.05 0.05 0.05

φij = 2
total cost 0.50 2.71 1.57 1.12 0.91 0.57
holding 0.12 0.06 0.07 1.12 0.88 0.12
overflow 0.38 2.65 1.50 0.00 0.03 0.45

Table 1: Performance comparison for a small system (sj = 5, µj = 0.25,
λ = (0.65, 0.75, 0.85)). The standard error for each entry is less than 0.001.

We next compare the five heuristic policies for a larger-scale system. In
particular, we increase the arrival rates to (6.5, 7.5, 8.5) and the number of
servers to (33, 36, 39). This system size is more realistic for the hospital inpa-
tient setting. In our collaborating hospital, each inpatient ward (server pool)
contains 20 to 40 beds. Solving the MDP is computationally prohibitive in this
case. Thus, Table 2 only reports the performance (estimated long-run average
cost) for the heuristic policies. We again run the simulation experiments for
10 replications, with 5 × 105 days in each replication and the first 104 being
days excluded. A common sequence of random numbers is used when compar-
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ing different policies. We make similar observations as for the small systems.
When φij is small, the modified cµ rule, the modified maximum pressure pol-
icy, and the look-ahead policy all perform quite well. When φij is large, the
modified maximum pressure and the look-ahead policy perform much better
than the other policies.

cµ max-p. mod. cµ mod. max-p. look-ahead
φij = 0.2

total cost 1.70 2.02 0.34 0.40 0.40
holding 0.19 0.18 0.19 0.19 0.19
overflow 1.51 1.83 0.15 0.21 0.21

φij = 2
total cost 15.26 18.53 3.21 1.76 1.85
holding 0.19 0.19 3.21 0.24 0.21
overflow 15.07 18.34 0.00 1.52 1.64

Table 2: Performance comparison for a large system (s = (33, 36, 39), µj =
0.25, λ = (6.5, 7.5, 8.5)). The standard error for each entry is less than 0.005.

Above all, the observations suggest that when we design heuristic algo-
rithms in this setting, the overflow cost plays an important role and a more
dynamic priority rule in general performs better than static priority rules.
In this section, we have not considered other complications in patient flow
management, such as class-and-pool-dependent service rates and time-varying
arrival rates. How to derive good routing policies when incorporating these
realistic features is a topic for fruitful future research.

6 Conclusion

In this survey, we study skill-based routing problems in multi-class multi-
pool parallel-server systems. These problems arise in various service operations
management settings. We start by discussing stability and reviewing the max-
imum pressure policy, which is throughput optimal in a variety of settings. We
then review good policies that can minimize different cost objectives in vari-
ous special cases of PSS’s. Heavy-traffic asymptotic analysis is a powerful tool
for generating structural insights into the optimal policy for these systems.
Lastly, we discuss complications brought by modern healthcare applications.
The goal is to help generate interesting future research directions. We also
provide a numerical study on one complication raised in the hospital inpatient
flow: whether and where to overflow a waiting patient. We show that adding
an overflow penalty cost to the objective function significantly changes the
optimal policy. We compare a few heuristic policies adapted from the litera-
ture, and show that it is important to adjust for the overflow cost in these
heuristics.
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