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Abstract—
In the era of big data processing, more and more data centers in

cloud storage are now replacing traditional HDDs with enterprise SSDs.
Both developers and users of these SSDs require thorough bench-
marking to evaluate and configure the variable parameters of emerging
technologies. Multi-stream SSD [2], [3] is the recent development of the
SSD industry, which assists in placing data on SSDs in a smart way to
improve application performance and SSD endurance. The challenging
part to use multi-stream SSDs is to assign stream IDs to incoming
writes, such that each stream consists of data with a similar lifetime.
The benefit of the stream management algorithms varies over different
workloads. Thus, first, we propose a new framework, called Pattern
1/O generator (PatI0), to capture the enterprise storage behavior that
is prevailing across various user workloads, virtualization setup, file
systems, and volume managers for the database server applications on
flash-based storage. Second, using Pat 10, we study what type of appli-
cations may be benefited by which stream assignment algorithm. Third,
we design the framework to automatically tune the variable parameters
of different stream identification algorithms of the multi-stream SSDs.
Our evaluation shows 20% to 110% of the reward function increase,
measuring the cumulative impact on application performance and SSD
endurance.

Index terms— Flash Memory, 1/O Pattern Generator,
Benchmarking, Multi-stream SSDs

1 INTRODUCTION

Optimizing the operation of modern cloud storage sys-
tems for various big data applications is critical. Evaluat-
ing the effect of any storage device firmware or hardware
amendments using real system deployment requires a lot of
resources, time and efforts towards installation and running
of different workloads to test. Moreover, many different
virtualization and system setup options in a cloud environ-
ment also need to be tested for each workload. The research
advancement by evaluating a tiny subset of these possible
settings and workloads then becomes very limited. Thus,
benchmarking is very important for developers and users
of evolving cloud storage.

Most traditional I/O benchmarking tools [4], [5] were
designed for hard disk drives (HDDs). Hence, when bench-
marking storage, the I/O workloads generated by these
tools do not resemble the I/O activities of real workloads on
flash-based solid-state drives (55Ds). The main problems are
that with multiple design choices at the virtualization and
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Figure 1: I/O size of TPC-H-Spark with 50G workload comparing (a)
SSD reads, (b) SSD writes, (c) HDD reads, and (d) HDD writes.
system layer, (1) the data generated by traditional synthetic
I/0O generators might be too simple, or (2) it demands a lot
of time and storage space to generate and store different
trace logs for each workload with trace-based 1/O genera-
tors. Figure 1 compares the variance of 1/O size for reads
and writes over NVMe SSDs (top) and HDDs (bottom). We
run the TPC-H decision support benchmark with twenty-
two different queries executed on eight different input tables
of various sizes with Apache Spark application. We observe
that I/O sizes running on NVMe SSD are completely differ-
ent from those running on HDD. The size of both read and
write I/Os exhibits a periodic pattern when using NVMe
SSD. Large read/write 1/Os are periodically clustered to-
gether, with some idle intervals between 1/O size spikes.
Therefore, new benchmark methods that capture realistic
I/0 activities and require fewer resources, time, and efforts
are needed.

Motivated by this, first, we propose a new benchmarking
framework, called Pattern I/O generator (Pat I0) to capture
the enterprise storage behavior that is prevailing across
various user workloads, virtualization setup, file systems,
and volume managers for different database server appli-
cations on flash-based storage. Second, we integrate Pat I0
with multi-stream SSDs, to study the impact of the various
internal stream identification algorithms. Third, we design
and integrate the auto-tuning module within multi-stream
SSDs to tune the variable parameters of different stream
identification algorithms. The main contributions and fea-

tures of our solution are as follows.
1) Extract and Generate I/O Patterns: An I/O layout pattern

is the property of an I/O workload, which is the key to
the application performance (efficiency) and storage health
(endurance). Multiple dimensions, including disk offset,
time, read /write rate (also called data temperature) and I/O
size, frame an I/O layout pattern. Each workload may have
many different patterns representing different real database
activities like compaction and log management. We collect
and study 1/0O patterns of different big data workloads with
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a different setup for various database server applications us-
ing flash-based cloud storage. Specifically, we ran more than
1000 workloads of each database server application with
different SSDs of various capacities (from 100GB to 1TB)
and different file systems such as xfs and ext4. Our pattern
extraction methodology involves a three-step process, i.e.,
dissect, construct, and integrate. We dissect the overall I/O
activities of real workloads to extract distinct repetitive I/O
patterns. Then, we identify different input features of an
I/0 generating engine (e.g., FIO, a popular I/O engine),
to construct jobs that generate I/Os resembling different
I/0 activities of a real workload. We generate unique I/O
patterns using various combinations of multiple I/O jobs.
We finally construct a pattern warehouse as the collection
of these I/O patterns. Different combinations of syntheti-
cally generated I/O patterns can reproduce comprehensive

characteristics of various real workloads.
2) Ensure Scalability and Usability: The second contribu-

tion of our work is to make Pat I0 scalable to generate I/Os
over different sizes of storage disks and different storage
volumes consisting of multiple SSDs in cloud storage. The
user is allowed to specify the storage size and the expected
execution time of the desired workload. PatIO can then
automatically change all I/O jobs at the low level and
modify the necessary input options in 1/O patterns on-
the-fly for all jobs. To provide an easy-to-use experience,
we further develop a graphical user interface (GUI) and
an automatic plotting wrapper for Pat I0. It decouples the
user from the complexity of underlying code modification,
integration, compilation, and execution. The open-source of
our benchmarking framework will be available at GitHub.
3) Ensure Expandability and Integrability: We aim to
capture a variety of different patterns from samples of
I/0O workloads that we know in a pattern warehouse. It
is also easy to expand our pattern warehouse by adding
new patterns based on the new knowledge of applications
and workloads. In addition, our I/O generator can be inte-
grated into different environments of the storage industry
to fasten research, development, and evolution phases. For
example, a possible deployment could be to run PatIO
on FIO using FPGAs for next-generation SSD hardware
development (e.g., key-value SSDs) or to use PatIO for
a firmware configuration such as the proportion of over-
provisioning in SSDs.

4) Practical Application: We further enhance our frame-
work to evaluate the efficiency and endurance of multi-
stream SSDs. We evaluate the performance of two existing
automatic stream assignment algorithms known as auto-
stream: SFR and MQ proposed in [6], for different I/O
patterns. It helps service providers of cloud storage learn
what types of workloads are more benefited by using flash-
based multi-stream SSDs. It also helps users of cloud storage
to understand if the stream identification is appropriately
made, and how their stream assigning algorithms can be
further improved to further leverage performance by flash-
based SSDs.

5) Auto-tuning Module: Our final contribution is to con-
struct an infrastructure for auto-tuning internal variable
parameters of the multi-stream SSDs. In particular, we build
a peripheral infrastructure to tune variable parameters for
those two existing stream assignment algorithms [6]. In

2

our experiments, we observe that without proper tuning,
the benefits of multi-stream technologies may be restrained
when some factors like the SSD version, SSD capacity, un-
derlying firmware are changed. Moreover, tuning manually
could take a very long time, like a couple of months. Moti-
vated by this, we build an infrastructure on top of PatI0 to
support automatic tuning for different I/O patterns.

We evaluate our framework by using different container-
ized workloads running using standalone and simultane-
ous database applications such as MySQL, Cassandra, and
ForestDB. Specifically, we compare I/O characteristics (such
as arrival address, I/0 size, and read over write ratio), and
I/0 performance (such as throughput, average latency, tail
latencies and Write Amplification Factor (WAF)) of gener-
ated workloads with those of real-world workloads. Finally,
we discuss the scalability of workloads generated by PatI0

to adapt to the SSDs of different capacities.
The rest of the paper is structured as follows. Section 2,

discusses the existing techniques. Section 3 presents the
Pat IO architecture. Section 4 evaluates our technique. The
research direction enabled by Pat I0 towards evolving flash
based storage devices is explained in Section 5. We describe
and evaluate our auto-tuning module in Section 6. Finally,
we draw our conclusions in Section 7.

2 RELATED WORKS

Most benchmarking techniques [5], [7]-[17] use samples
of proprietary data to first record the overall average statis-
tics (e.g., average I/O rate and average read to write ratio) of
real workloads and then reproduce I/Os synthetically based
on averages. Such benchmarking tools results in a uniform
distribution of I/Os on disk and a constant throughput
during the execution. Thus, we argue that although these
synthetic I/O generators operate with low overhead and
negligible resource requirements, they are not sufficient to
capture the working of modern cloud workloads on evolv-
ing flash technology. Thus, SSDs behave differently on these
traditional synthetic workloads, compared with what they
do on real-world workloads.

Apart from widely used synthetic I/O generators, an-
other popular benchmarking technique in the storage indus-
try is workload replay. The replay tools [4], [18]-[21], record
the characteristics of real I/O data for different granularities
like blocks, data chunks, and sectors. By using the recorded
logs, these tools can almost exactly replicate I/O activities
of real workloads. Recent replay tools [19] have enhanced
capability to generate additional data dependency graphs
and be able to accurately replay the I/O workload. This
technique has high precision. However, capturing all possi-
ble workload traces to frame a trace repository is challeng-
ing. Storing these traces also demands a large amount of
storage resources. One way to generate “real” I/Os with a
low storage requirement for characterizing data would be
to increase the recording granularity of I/O characteristics
and get a short trace that only abstracts the characteristics
of a real workload. However, it still requires efforts to run
different real application workloads to record traces and
needs more storage resources when the number of traces
increases.

Application level benchmarks [7], [18], [22]-[27] strive to
mimic I/O behaviours of specific applications, but require
time and efforts for installation, configuration and database
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Table 1: Pat IO vs existing storage benchmarking tools (Bench. - Bench-
marking, Req. - Require, Endu. - Endurance, Cap. - Capture, Var. - Variance, Gen.
- Generate, Int. - Interface, Across - Acr.)

Bench. Flash Cap. Cap. Cap. Auto GUI Req.

Tool based Var. Var. Endu. Gen. Int. Trace
Bench. Acr. Acr. of Output Logs

SSDs | Time | SSDs Plots

PatIO v v v v v v

Ezfio [14] v v v

10A [11] v v

Tom. [8] v v

SDG. [18] v v

hfp. [19] v v

blkr. [4] v

CH [10] v v v

FB [29] v v

DB [33] v v

loading before running. YCSB [22] is a framework and
common set of workloads to evaluate the performance of
different “key-value” and “cloud” serving stores. Another
widely used database management system (DBMS) bench-
mark, DBbench [23], can evaluate the performance of a
plurality of DBMS’s stores both DBMS independent and
DBMS specific files in computer memory.

Filesystem level benchmarks [28], [29] spawn several
threads or processes doing a particular type of I/O action
as specified by the user. They help to answer the trivial
question such as, “Which file system is better.” However,
our focus is to characterize the performance of SSDs, so
it is useful to compare with the benchmarks that report
bandwidth and latency when reading from and writing
to the disk in various-sized increments without filesystem

layer.

yBlock level benchmarks [19], [28], [30]-[32] provide the
ability to record and replay block-level I/Os. However, they
have heavy overheads to maintain ordering, CPU map-
pings, and time-separation of 1/Os. BlkTrace [30] provided
the ability to collect detailed traces from the kernel for
each I/O processed by the block IO layer. HFPlayer [19]
used the generated dependency graph and can replay the
1/0 workload in a scaled environment. Buttress [31] used

synchronous I/O to replay block traces.
In contrast, Pat IO does not require to store, read, and

follow any I/O trace file while regenerating 1/Os. Thus,
Pat IO is more cost-efficient and less time-consuming com-
pared to existing I1/O replay techniques, and more impor-
tantly, it is much more precise compared to naive I/O
generators (i.e., naive FIO [5]). We finally summarize the fea-
tures of Pat 10 and different popular existing benchmarking
techniques in Table 1. To the best of our knowledge, this
is the first attempt to analyze and improve the impact of
variable parameters of the internal algorithms of emerging
SSDs such as multi-stream SSDs.

3 PATIO FRAMEWORK

In this section, we discuss the overall architecture and
then elaborate on the three components of methodology -
dissect, construct, and integrate for PatIO 1 The driving
force of building Pat I0 is to study the diversities of I/O ac-
tivities using different data processing workloads on flash-
based cloud storage and then regenerate I/O characteristics

1. We use “Disk” interchangeably with “SSD” to represent flash
storage throughout this work.

3

representing the complex transaction forms like compaction,
log management, and key-value store that are performed by

different database applications on flash-based SSDs.
In PatIO, we extract the common 1/O patterns by observ-

ing many different workloads of various applications over
different SSDs. We carefully design ready to use 1/O work-
loads to replicate many common I/O patterns observed
while running real applications. Particularly, the combina-
tion of our I/O patterns replicates the cumulative activities
generated by different workloads of any applications. Thus,
PatIO strives to capture the common characteristics of a
group of similar workloads rather than exactly resembling
just one particular workload. PatI0 is lightweight, as it
does not require to record, store, and retrieve logs of I/O
activities. PatI0 is also designed to be scalable to generate
I/0 workloads over different storage sizes. The main con-
tributions and features of our solution are as follows.

3.1 Architecture of Pat 10
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Figure 2: Block diagram: pattern generation

Figure 2 shows the architecture of our framework. First,
the front end GUI allows the user to configure a workloads’
I/0 patterns and its expected execution time and to select
the size of the storage disk and the desired level of back-
ground noise. The pattern generator then dynamically pulls
corresponding files of patterns from the pattern warehouse

based on the selected options.
A workload is a combination of single or multiple

patterns. Each pattern is a multi-threaded system process
and consists of multiple I/O jobs, where a single thread
executes each job. Different patterns are executed together
to construct a workload. However, before simultaneously
executing all jobs of selected patterns, the pattern generator
needs to modify the input parameters of these jobs accord-
ing to the specified execution time and disk size by the user.
In addition, the programming commands given by jobs of
different processes may have conflicts, e.g., simultaneously
writing different values at a specific SSD address. Then, the
pattern generator also needs to perform a workload modifi-
cation to ensure that all job files of the selected workload run
correctly during the parallel execution. This whole process

of modifying I/O jobs is called workload concatenation.
Figure 2 shows the process of workload concatenation by

a loop of events around Pattern Generator, which contains
exception handling, identifying conflicts, and modifying
patterns. Sometimes, job modification to resolve a conflict
may cause new conflicts. Thus, workload concatenation is
repeated until there are no more conflicts. Later, in Sec-
tion 3.4, we explain details about job modification and types
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Figure 3: Disk access patterns over time by real data processing applications

Table 2: Workload configurations of different real applications (KV -

of conflicts. Finally, according to the concatenated workload, key/value, col. - columns)

the I/O engine generates 1/Os that will be performed by

FIO [5] on back-end SSDs to resemble I/O activities of real Application | Workload Size Operations Type
parallel applications. Pat 10 also provides detailed reports | MySQL TPCC | 4200 warehouse 100 SQL
d hs t h I / 0 £ th h t size connections Transactions
and graphs to show performance (e.g., throug put, Cassandra | Cassandra 10 million 15 R/W: 70% /30%,
latency, and tail latency) and SSD endurance, such as Write stress records minutes fixed(1024) col.
Amplification Factor (WAF). All results can be stored as a MongoDB YCSB 220 million 50 million 100% update,
backup log for future analysis. records operations 24/1000-KV
p 108 y . ForestDB DB_bench 200 million 10 100% update,
3.2 Study of Real I/O Patterns: Dissect records hours JSON objects
An I/O pattern is a cluster of I/O activities of a workload that | RocksDB DB_bench 560 million 250 million 100% update,
records operations 24/1000-KV

has similar characteristics. Here, we present our observations
on I/O patterns of real applications, which inspires our
design of PatI0. In our study of the I/O activities of var-
ious real applications on SSDs, we consider instrumenting
general purpose applications such as Kmeans clustering and
Pagerank as well as database applications such as MySQL
and RocksDB. However, we observed that for generic appli-
cations, the processing time is dominated by computation,
and intermediate shuffling data generated by them is small
and fits in main memory. The data dependencies within
such intermediate data that are cached are served from
memory. Moreover, these applications perform most of their
I/0 activities only at the beginning to read the data into
memory and at the end to write the final outputs. Thus, we
mainly discuss the I/O intensive database workloads whose

execution time is dominated by I/O processing.
We study the I/O activities of at least 10 different

workloads for each of the 100 different applications on
various models and capacities of SSDs. Figure 3 shows
the I/O access patterns for some representative real SQL
and NoSQL database applications on SSDs. The workload
configurations of these real applications are listed in Ta-
ble 2. We observe that a real application exhibits variance
in I/O activities on SSDs (also called disk) over time. For
example, some applications perform their I/Os in a uniform
horizontal stripe wise fashion, see MySQL and Cassandra
in Figures 3 (a) and (b). While some other applications
show a periodic pattern of I/O layout over time, such as
MongoDB and ForestDB in Figures 3 (c) and (d). Also,
there exist applications like RocksDB in Figure 3 (e) that
present a horizontal stripe wise pattern. One 1/O stripe
of RocksDB (see the upper region of Figure 3 (e)) further
exhibits a phase-wise pattern of I/ O layout where I/O activ-
ities slowly start spreading over the disk and then construct
a uniform horizontal strip when the workload has run for
a prolonged duration. Thus, the diversity in I/O access
patterns motivates us to develop a new I/O generator that
can capture these I/O behaviors and dynamically generate

1/0 workloads for different SSD devices.
First, we dissect the overall I/O activities of different user

workloads, virtualization setup, file systems, and volume

managers for various real database server applications on
flash-based storage. We identify the prevailing attributes
in distinct visual I/O patterns. The I/O characteristics in-
clude I/0 sizes, I/O densities, ratios of read to write, and
I/0 inter-arrival time. We analyze the distribution of these
I/0 characteristics across different address space of flash-
based SSDs and the variation of these I/O characteristics
over workload execution time. For example, MongoDB (see
Figure 3 (c)) comprises of different I/O patterns, such
as straight horizontal lines representing overwrites on the
same disk offset, and inclined vertical lines across the disk
representing a form of sequential writes. To extract different
I/0O patterns, we perform data classification using the K
Nearest Neighbour (K-NN) pattern classifier with different
distance measures (such as Euclidean, Manhattan, Cheby-
chev, and Percent disagreement) and then study classifica-
tion results with different K in K-NN to distinguish various
1/0 patterns following the majority.

3.3 Pattern Warehouse: Construct

Pattern warehouse is a collection of I/O patterns used
to construct different I/O workloads. Our framework is
expandable because we can add new patterns into the
pattern warehouse once we obtain the knowledge of other
applications and workloads. Our pattern warehouse cur-
rently includes 15 different workload patterns. It provides
some recommended pattern combinations to resemble real
applications, like MySQL, Cassandra, and MongoDB.

Multiple I/O generating jobs constructs each 1/O pat-
tern. A real application often exhibits variance in I/O ac-
tivities across storage space over time. We observe that
real workload I/O patterns can be grouped into different
categories, such as horizontal stripe wise, periodic, phase-
wise, and abrupt. To capture this variance, we develop
different I/O jobs. A job is responsible for rendering 1/Os
for part of the I/O workload pattern to represent some
specific I/O layout. Each job is composed of a set of I/O
generating features of the FIO engine. Thus, integrating
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Table 3: Building I/O Patterns: The input features for jobs of different I/O patterns

1/O Pattern

Feature_Set{}

Random I/O with Density Variance | --rate_iops, --offset, --bsrange, --thinktime, --thinktime_blocks
(RIDV)

Sequential Writes with Multiple Jobs of | —-rate_iops, --size, --numjobs, --offset, --blocksize_range,
Different Offset (SWMJDO) --offset_increment

Bars of R/W (BRW) --rate_iops, --numjobs, --offset, --runtime, --size

Bamboo Sticks Different Slopes (BSDS) --rate_iops, --offset, —--startdelay, --rw_sequencer

ance (BSHDV)

Fountain Scatter Horizontal (FSH) --rw_sequencer, --rate_iops, --numjobs, --offset_increment,
—--blocksize_range
Bamboo Sticks Horizontal Density Vari- | —-rate_iops, -—-bsrange, --startdelay, --rw_sequencer

Horizontal Overwrites (HO) --rw_sequencer,

—--startdelay,

—--rate_iops, —-random_distribution=zipf

Rahmhops —--thinktime, --thinktime_blocks, --rw_sequencer, --rate_iops,
—--numjobs, --offset, —--runtime, --size

Spﬁnkkr --rw_sequencer, --rate_iops, —--numjobs, --offset, --offset_increment,
—--blocksize_range

Bamboo Sticks Vertical Density Variance | --rate_iops, --offset,--bsrange, --startdelay, --rw_sequencer, --size

(BSVDV)

Backward Steps (BS) --rw_sequencer, --rate_iops, —--numjobs, --offset, --runtime,
--wait_for_previous, —--offset_increment, --blocksize_range

Angular Chopping (AC) --rw_sequencer, --rate_iops, —--numjobs, --offset, —--runtime, --size

Vertical Chopping (VC) -—thinktime, —--thinktime_blocks, —--rw_sequencer, —-rate_iops,
—-—-offset, —--runtime, --size

Bamboo Different Alignment (BDA) -—thinktime, —--thinktime_blocks, --rw_sequencer, --rate_iops,
—--numjobs, --runtime, --size

Horizontal Shower (HS)

-—-rw_sequencer,

--rate_iops,

—--numjobs, --offset

these I/0O jobs together can help to capture the diversity
of a real I/O workload pattern.

We construct 15 different I/O patterns as listed in Table 3.
For example, patterns RIDV and SWM]JDO are of horizontal
strip-wise fashion. BRW is a horizontal stripe wise with
alternative read and write intensive phases. BSDS, Sprinkler,
and FSH provide periodic I/O patterns. BSHDV is a phase-
wise 1/O pattern. HO and Raindrops both fall under the
abrupt category. Some real I/O workloads were observed
to have I/O patterns that are a combination of different
categories such as RocksDB 3 as discussed in Section 1.
In order to replicate such patterns, we further construct
five I/O patterns, namely BSVDV, BS, AC, VC and BRW,
that represent the combination of horizontal stripe wise and
periodic I/O fashion. The I/O pattern BDA is a combination
of periodic and phase-wise types, and HS is a combination
of horizontal stripe wise and phase-wise categories. Thus,
we ensure that pattern warehouse consists of all distinct
patterns that we majorly observe in real I/O workloads.
We can always add new patterns to our pattern warehouse
when required.

One of the challenging problems is identifying features
that could be used to construct a particular I/O pattern. We
solve this problem by studying and analyzing combinations
of different features and then setting appropriate values
of features for each I/O pattern. Table 3 lists the obtained
combinations of features we also use some other common

options, such as ——random_number_generator,
—-—initial_seed, —--iodepth, —--ioengine,
--rw, —--device, —--if-else, —--for_loops,
--while_loops, --kill_job to manage runtime

operations of 1/O jobs. We name I/O patterns according
to their visual appearance like sprinkler, raindrops, backward

steps.
Next, we explain some representative I/O characteristics

that we identify and use to emulate different I/O patterns.
I/0 Holes: We observe that many applications do not
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perform I/Os during some time intervals or within some
disk offset ranges. For example, Figure 3 (b), shows the
Cassandra workload that has a horizontal blank space band,
where no I/Os are performed to a particular disk offset
range. We call such a blank space as I/O hole. There could
be two types of I/O holes, temporal I/O holes and disk
offset I/O holes. A temporal I/O hole may be caused by
a system stall for waiting for other resources like CPU,
I/0O bus, or may happen when the upper layers in 1/O
stack such as cache or memory are sufficient to serve the
desired request. On the other side, a disk offset I/O hole
may be caused by wear leveling activities or disk space allo-
cation through application transactions. Modeling such I/O
holes is critical to performance because during these 1/O
holes, overall I/O throughput may fluctuate. Furthermore,
a benchmarking tool for flash-based SSDs, that can replicate
such I/O holes can better estimate endurance. Thus, we
capture I/0O holes of different shapes and sizes by setting
options like thinktime, thinkblocks, startdelay,

offset increment for each job.
Byte density: The measure of how many bytes are stored

within a particular range of storage addresses is called Byte
density. We observe that in many real applications, different
disk spaces are accessed with different byte density. For
example, when a MySQL database application stores its
metadata in some disk space, it might be accessed more
frequently than the other disk space. Moreover, we observe
that byte density may also vary across different workload
execution time. For example, in MongoDB, depending on
the keys affected by the “update” operation, it may result in
modifying a different number of indexes in the collection.
Thus, the number of I/O activities can be sparse or dense
depending upon the number of indexes modified during
the workload’s execution. It is vital to capture byte density
because the variation in byte density is the primary source
of I/O latency variations and latency tails. Thus, we use
various I/O distributions, such as zZipfian, pareto,

n. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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uniform to capture byte density in each I/0O job.

I/O Jumps: A pure sequential 1/O should span con-
tinuously over consecutive disk addresses. However, we
observe that real workloads sometimes leave empty disk
addresses between small sequential writes, e.g., skipping
16KB after writing every 128KB sequentially. We then say
that the I/O patterns of these applications exhibit periodic
I/O jumps (i.e., addresses left unwritten) while performing
sequential reads or writes. Such an I/O jump can allow
sequential I/Os to span over a wide range of disk offsets
in a short period. I/O jumps result in inclined vertical lines
across the disk, as observed in MongoDB, see Figure 3. We
use options like sequencer and its offset to generate a
sequential I/O sequence with I/O jumps.
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Figure 4: I/O pattern layout generated by Pat 10 for Bamboo Different
Allignment (BDA) pattern

Pattern Feature Setting: As mentioned above, Table 3
lists all 15 I/O patterns with corresponding list of features
for each. Due to the limited space, we cannot explain the
logical derivation for deciding the feature_set of all patterns
in Table 3. Here, we use the pattern, called Bamboo Different
Alignment (BDA), as a representative to explain our logical
process of feature_set derivation. This pattern is inspired by
dissecting the MongoDB application when running different
YCSB workloads. Figure 3 (c), shows the real I/O layout of
one of the workloads. We observe a repetitive pattern with
a stretch of partially sequential writes over the whole disk
space. We say these I/Os as “partially sequential” because
they show an I/O jump after every block of writes to range
over the whole disk space in a short period. Apart from
that, we consider to use the features -thinktime and
-thinktime_blocks to control periodicity and I/O activ-
ities happening in each period. By setting different values
for —-rwsequencer and -rate_iops, different slopes of
alignment can be achieved. We have preset default values
for each of these features within each I/O pattern in the
workloads that we design. These values are automatically
varied according to the necessary concatenation of multiple
I/0 patterns, length of the desired workload, and the SSD
size.

Figure 4 shows the resultant BDA pattern for 120 seconds
on 960GB SSD. As seen from the top plot of the figure, the
1/0 layout consists of periodic I/Os, where each period has
a dense region at the beginning followed by the sparser
region. Thus, this I/O pattern is constructed by using two
jobs. The corresponding features of each job allow it to gen-
erate periodic I/Os with different rates to generate denser
and sparser regions. Given these two jobs with different
I/O rates, we can observe that the throughput (see the
bottom plot in Figure 4) of this generated pattern exhibits

6

variance over time. Such throughput variations well match
the throughput variations in real applications.

3.4 Pattern Generator: Integrate

The pattern generator is the central module of PatIO,
which is responsible for communicating with the interactive
GUI input, pattern warehouse, and I/O execution modules.
This module integrate different combinations of synthetically
generated I/O patterns to reproduce the comprehensive
characteristics of various real workloads and system setup
for the database server applications. Specifically, the pattern
generator gets the user input from the interactive GUI
input module. It then fetches the corresponding I/O pattern
files from the pattern warehouse. These I/O jobs are then
adapted according to the user-specified storage disk size
and execution time. Among all the features of the jobs, we
first identify a subset of features that could be affected by
the change in disk size. Then, the features in this subset
are modified by a linear scaling, as shown in Equation 1.
For example, I/O range which is set to 400-500GB for 500GB
drive is changed to 800-1000GB for 1TB storage disk size.

New_Size
default_Size (1)
for ¥V Jobs i
Similarly, the execution time of each job for all the patterns
needs to be changed according to the desired execution time
given by the user. Finally, we execute jobs of all selected I/O

patterns in parallel.
Online Conflict Management: For parallel execution,

some jobs may have conflicts with others. As discussed
before, a pattern is executed as a multi-threaded system
process. When multiple patterns are required to execute
simultaneously, programming commands that are given to
the I/O generating engine by one process’s threads may
affect threads of other processes. Thus, before executing all
the jobs of selected patterns, the pattern generator performs
careful workload concatenation of all the job files. It is es-
sential to identify and handle these conflicts. Our exception
handling module identifies conflicts by maintaining a hash
table of features and I/O jobs. If there is a conflict, those
jobs are modified according to the type of conflict. The
modified I/0O jobs are then concatenated again until there
are no further conflicts. Here, we use two common types of
conflicts as examples to show corresponding modifications
performed to resolve them.

Contradiction: Jobs of different patterns might set differ-
ent values of the same feature. We call this type of conflict as
contradiction. For example, one job might request I/O engine
to set I/O size feature to 4K for a particular disk offset.
However, at the same time, another job of a different pattern
might want to set I/O size of 64KB for the same disk offset.
For FIO, we notice that both of these I/O jobs may stall for
a long time or be dropped off when such a contradiction
occurs. We resolve this contradiction by introducing some
time delay between the operation of these two jobs. As
a result, in the above example, we allow the first job to
perform 4KB I/Os and later let the second job run its 64KB
I/0s on the same disk offset.

Interference: Some actions taken by a job of one pattern
might unintentionally influence jobs of the other patterns.
For example, a killall command in a job of pattern_x
might also kill jobs of all the other concatenated patterns.

New_Feature; = default_Feature;.
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Thus, we need to maintain a list of such features and identify
if any jobs are using these features. If yes, then we need to
modify these jobs to ensure such an interfering command
only affects the jobs of the desired pattern. That is, we would
identify the thread ID of the jobs of each pattern and kill
only the threads of the concerned pattern rather than using
the default kill all command. The types of conflicts and their
resolutions may vary with different I/O engine. However, it
is crucial to observe such behavior as it vastly impacts I/O

layout on disk.
Parallel Executor: After resolving all conflicts (i.e., no

more conflicts in the concatenated workload set), we execute
the generated synthetic I/O workload and measure the
performance of I/O activities over the storage space. All
the workloads generated by our framework are capable of
generating logs during the runtime and record the perfor-
mance in terms of I/O bandwidth, IOPS, throughput, and
latency.

3.5 GUI Interface and Process of Using

In order to provide an easy-to-use experience, we de-
velop a GUI interface for Pat I0. We mainly have two use
scenarios - 1) if the user wants to generate the I/O activities
for one of our pre-defined applications. As of now, we
provide a direct option to generate I/Os resembling the
five most popular database applications such as MySQL,
Cassandra, MongoDB, ForestDB, and RocksDB. The user
can use corresponding checkboxes to select one or multiple
of these real applications in our GUL 2) if the user wants
to generate the I/O activities for some other applications.
Then, we assume that the user should have some idea from
their experience or plots of previously collected traces that
what type of I/Os are they looking to generate. Depending
upon their requirements, they can select one or multiple I/O
layout patterns in our GUI, e.g., horizontal overwrites, bars
of read/write, and backward steps. We have 15 different
patterns with a visual snapshot of the disk layout for each to
choose from in our GUI Then the user defines the desired
runtime (i.e., execution time) of an I/O workload and the
size of the storage space exposed to I/Os. Additionally, the
GUI also allows selecting a different level of background
noise, which may be incurred by various background I/0O
activities of the SSDs such as garbage collection, wear-
leveling, etc. Finally, the user clicks run, and PatIO accord-
ingly generates 1/Os, instruments the performance, collects
traces, and plots various generally used graphs such as
average throughput over time, the cumulative distribution
of the tail latencies, and instantaneous write amplification
factor of SSD. Thus, besides taking the input options of the
desired workload, the GUI is also responsible for linking an
option in the widget with its corresponding PatternID and
send this option to the back-end pattern generator module.

4 EVALUATION

In this section, we evaluate PatIO by comparing 1/0O
characteristics and performance of generated workloads
with real-world workloads of different database applica-
tions such as MySQL, Cassandra, and ForestDB. Table 4
gives the detailed hardware configuration of our platform
on which we develop PatIO and run real application
workloads. PatIO is built using python. It uses inbuilt

e / Real Application \ v /[ Patio '\

| | DY ——————

fe Se o

| G Generate I/O [Virtual Machines ][ Containers } r | li/OPattern | g o ks

1= Requests 1 1 PatlO

© IR o 13 1O R

User Workloads i 1/OEngine Issuel/0s
H

b ) 1

[ D Database Server i

{ | Management Application !

| ] i

! | 7 1

‘! Data ‘ File System \ !

1@ structuring H

15 and Volume manager \ H

{9 Packaging -

P \ Block layer \ \ Block layer \

[ —— — Y —
Data Storage ——T <— <—

" <<p |l <esp |l ssp |

Figure 5: 1/0 stack of Pat I0 in comparison to that of real application
Table 4: Hardware configuration

CPU Type Intel(R) Xeon(R)
CPU E5-2640 v3
CPU Speed 2.60 GHz
CPU #Cores 32 hyper-threaded
CPU Cache Size 20480 KB
Main Memory 128 GB
oS Ubuntu 16.04 LTS
OS Kernel Version 4.4.0-13generic
File System ext4
Storage No-stream and Multi-stream
NVMe SSD 960GB and 480GB
Docker Version 1.11
VMware Workstation 12.5.0
FIO Version 2.2

advance libraries of python like matplotlib, NumPy, and
Tkinter. Each pattern in pattern warehouse contains a bash
program that can be used to construct I/O jobs. We use
the FIO engine to generate 1/0Os. Figure 5 shows the 1/0
stack of Pat I0 in comparison to that of real application. As
shown in Figure 5, Pat 10 generates an I/O pattern that can
capture real I/O activities (see the left part in the figure)
of different user workloads (e.g., YCSB) running in docker
containers on the client-side for various database server
applications (e.g., MongoDB) running in the datacenter on
the server-side that can use different file systems (e.g., ext4)
and volume managers (e.g., LVM). More importantly, the
operations of different database server applications using
various cloud setup of user workloads and system settings
at the file system and volume manager layers are abstracted
by PatI0. Thus, Pat IO requires less time and resources for

benchmarking.
We study the I/O activities of different user work-

loads and applications (e.g., YCSB, Cassandra-stress, and
DB_bench) running on parallel virtual machines and con-
tainerized infrastructures with different database servers
(e.g., MySQL, Cassandra, ForestDB, MongoDB, RocksDB)
operating in the data center. As shown in Table 2, each
application workload can have its configuration of the
number of transactions, compaction rate, and read-write
ratio. We also study different combinations of applications
operating directly on the local machine and in container-
ized docker environments, e.g.,, MySQL+Cassandra with a
different number of containers for each application.
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4.1 Characteristics Comparison

First, we compare the characteristics of a real workload
and a synthetic workload generated by Pat I0 by measuring
their statistical central-tendency like Mean, Median, and
Mode. We also compare the spread of data from the central
tendency, such as standard deviation and coefficient of
variance.

Workload Characteristics: Different characteristics are
observed from a workload such as I/O layout on a storage
disk, I/O size, and read-write ratio. We perform experi-
ments with 1000+ workloads of different applications. As
a representative, we here present results for some of them.
The configurations of real applications are given in Table 2.
Figure 6(a) compares I1/O arrivals on disk space over time
for real and PatI0 workloads. We see that the statistical
results of central tendency (like Mean and Median) for real
and PatI0 workloads are very similar. Here, we use unit
positive and negative standard deviation to measure the
spread of data from the central tendency and confidence
in statistical conclusions. We also observe that the real
and PatI0 workloads of all the applications show similar
standard deviations. Figure 7 compares the coefficient of
variance of I/O arrivals on disk space over time for real
and PatIO workloads. We see mostly error between real
and Pat I0 workloads remains small.

I/0 Size: 1/ O size is another important characteristic that
affects performance. Because the sizes of I/Os vary over
time for a real workload, just reproducing 1/Os with the
same size (e.g., average 1/O size) is not sufficient. Thus, we
argue that it is critically important to emulate the variance
of I/O size over execution time. Figure 6(b) shows the
comparison of the statistics of I/ O size over time for real and
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Figure 9: Throughput variation over time for, a) Real Cassandra work-
load, and b) Generated Cassandra workload

PatI0 workloads. Besides Mean and Median, we further
use Mode to represent the size of the majority of 1/Os.
We can see that the modes of real and Pat 10 workloads
also match well in Figure 6(b). We further observe that
PatIO can reconstruct the variance of a real workload as
seen from the standard deviation and coefficient of variance.
While comparing all different metrics of measurement, the
maximum error percentage is less than 25%, which indicates

a good resemblance between real workloads and Pat IO.
Read-Write Temperature: Besides the above statistics

comparisons, we also compare the characteristics over the
runtime of real and PatI0 workloads. Figure 8 shows the
read to write ratio over runtime as a representative by
plotting the moving averages taken over every 30 seconds
until 15 minutes. Here, we show the results of MySQL
and Cassandra. We see that the generated workload can
reproduce the actual read/write temperatures.

4.2 Performance Comparison

Throughput: We further compare the throughput (i.e.,
the number of 1/Os performed on disk per second) of the
aggregate generated workload using Pat I0 over variants of
1000 different workloads of Cassandra with the throughput
of a sample chosen randomly while running real application
with these 1000 different workloads. The goal of our PatI0
generated workload is to capture the high-level I/O feature
that persists among multiple workloads of an application.
The throughput results in Figure 9 shows that the real
workload does not have a constant throughput over the
execution. Our synthetic workload shows the same wavy
nature of the throughput (see Figure 9), as opposed to the
constant throughput that is resulted by Naive FIO. We notice
that the throughputs in the first few seconds are different be-
cause the real workload needs to spend some time to initial
cache construction while the generated workload assumes
that data required by the application is readily available.
Also, for a real application, there are more intermediate
layers in I/O stack when compared to Pat IO, as seen from
Figure 5, which increases the initial latency and decreases
the initial throughput. Once the cache is constructed, this
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Figure 10: Comparing the cross-correlation between real and synthetic
workloads using a lag of number of samples used for training for

traditional FIO that uses average statistics (Naive FIO), and Pat 10
Table 5: Comparing the operational storage space (MB) consumed and
execution time (minutes) for Replay [30], and Pat IO

Cassandra MySQL RocksDB
(MB) (min) | (MB) | (min) | (MB) | (min)
Replay 64512 | 420 | 48128 360 90112 600
PatIO 13.87 9.04 10.42 6.38 | 1811 | 13.51

latency due to intermediate layers is hidden in parallel tasks.
However, the initial performance during this short period
is often neglected because it is well known that all storage
disks require some initial time for ramp-up. We also observe
that the real Cassandra result has varied across time, and
Pat IO can exhibit similar performance variations.

4.3 Overall Validation

We consider the cross correlation® to compare the per-
formance of running workloads generated by PatI0 with
respect to that of running real workloads. We vary the
total number of operations (i.e., transactions) performed to
generate 50 different workloads of each application. Fig-
ure 10 shows the average of cross-correlations between dif-
ferent real and the corresponding generated 50 workloads
while running individual applications (e.g., Cassandra and
MySQL) and mixed applications (e.g., MySQL+MongoDB).
As a baseline, we also plot the cross-correlation of the
workloads generated using naive FIO generator. The naive

FIO uses the Mean of different workload characteristics.
Each plot in Figure 10 shows the correlation of the Disk

I/0 distribution, the endurance SSD measured using Write
Amplification Factor (WAF), and the performance measured
using throughput, average latency, and tail latency. To
measure WAF during runtime, periodically, we instrument
physical NAND writes of SSD by using the SM.AR.T
(Self-Monitoring, Analysis, and Reporting Technology) tool
commands such as “nvme smart-log” and “smartctl” [34],
and instrument the logical writes to each physical SSD from
block layer. We do not propose any SSD firmware amend-
ments in this work. All the other performance matrices
are measured at the application layer. We observe that the
synthetic workloads generated by our Pat I0 are highly cor-
related with real ones, with the cross-correlation large than
0.8 for all the workloads. The naive FIO has a comparatively
lower correlation than Pat I0 because workloads generated
by the naive FIO fail to capture the intrinsic diversities and
variations of real applications.

2. Cross correlation is a measure of similarity of two series as a
function of the displacement of one relative to the other.
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Figure 12: Comparing the application performance while using real and
generated workloads running Cassandra application

Table 5 shows that when compared to traditional 1/O
replay tools [30], PatIO consumes much smaller amount
of operational storage space and execution time. This is
because PatIO is designed to emulate and regenerate the
characteristics of different real workloads rather than stor-
ing time logs of I/O activities. Also, the architecture of
PatIO bypasses many intermediate I/O stack layers as
shown in Figure 5, which allows it to execute much faster.

4.4 Scalability of Pat10

One of our contributions is that PatIO is scalable to
generate 1/Os over different sizes of storage disks. Thus,
we use the Horizontal Shower (HS) I/O pattern (see
Table 3) as an example to investigate PatIO’s scalability.
Figure 11 shows I/O characteristics (e.g., I/O distribution
and I/O starting disk offset) and performance (e.g., through-
put) when running the generated HS workload in SSDs
with different capacities, i.e., (a) 480GB and (b) 960GB. First,
we observe that the I/O workloads generated by PatIO
scale with the SSD capacity in terms of I/O layout, see
the first two rows in Figure 11. We also observe that the
throughput remains the same under two different capacities
as expected, because the workload does not saturate the
I/0O bandwidth on both SSDs. Summarizing, workloads
generated by Pat I0 behave similarly as real ones in terms
of both I/O characteristics and performance for back-end
storage of different sizes.

5 PRACTICAL APPLICATIONS

Multi-stream SSD [2], [3] is the recent development of
the SSD industry, which allows us to have multiple append
points (erase blocks) at the same time while writing to an
SSD. This advancement assists in placing data on SSDs
in a smart way such that we have less garbage collec-
tion and hence less write amplification factor. Multi-stream
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Figure 14: Latency Cumulative Distribution Function (CDF) of different
workloads using a legacy SSD and multi-stream SSD with stream
assignment by using SFR and MQ algorithms

functionalities are added to Linux mainline kernel in 2017
with the corresponding NVMe drivers available online’.
To take advantage of the features offered by multi-stream
SSDs, it is challenging to identify the stream IDs. For each
write/update, a stream ID needs to be assigned such that
each stream consists of data with a similar lifetime of be-
ing valid. [6] proposed two automatic stream management
algorithms (auto-stream), named SFR and MQ, to assign
stream IDs. The SFR algorithm utilizes three attributes (i.e.,
sequentiality, frequency, and recency) for stream detection.
It maintains the rank of data blocks in a table and allocates
stream IDs according to the rank. The MQ (Multi-Queue)
algorithm utilizes access frequency and recency to maintain
multiple queues and uses each queue to represent the rank
of data. The calculated rank is used to assign stream-IDs to
data. In [6], it is observed that the benefit of these stream
management algorithms varies over different workloads.
However, it is difficult to study what type of applications
may be benefited by which stream assignment algorithm,
because there are many varieties of applications and differ-
ent possible combinations of the variable parameter within
each stream assignment algorithm. Moreover, quantifying
the aggregated performance benefit over the wide range of
the performance parameters, such as high throughput, low
latency, high SSD endurance *, and low write amplification
factor may consume a large amount of resources and require
a lot of time and efforts. As PatIO can mimic the I/O
behavior of the real application with negligible spatial and
temporal overhead (as discussed in Section 4). Thus, we next
discuss how Pat IO can be integrated with the multi-stream

3. https:/ /elixirbootlin.com/linux/latest/source/drivers/nvme/
host/core.c

4. SSD endurance is the total amount of data that an SSD is guar-
anteed to be able to write under warranty, and high SSD endurance
indicates high device lifetime.
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Figure 15: Normalized throughput of multi-stream drive using SFR and
MQ stream assignment algorithms with respect to legacy

SSDs to help study the performance variation of each stream
identification algorithm with respect to various applications.

5.1 Integrating Pat 10 with Multi-stream SSDs

PatIO can be used to study the impact of any particular
software, firmware, or hardware improvements over multi-

. ple facets such as throughput, latency, and write amplifica-

tion factor. Particularly, first, we install the new firmware
and hardware of multi-stream SSDs in our server. Next,
we ensure that the block layer of the Linux OS is able
to read and write to the multi-stream SSDs through the
NVMe device driver. Finally, we run Pat IO on the client-
side to issue I/Os directly to the block layer of the server, as
shown in Figure 5. We use multi-stream NVMe SSD and no-
stream legacy NVMe SSD of the same capacity of 480 GB.
We measure application performance in terms of average
throughput, average latency, and different tail latencies. We
also measure SSD endurance in terms of the average of write
amplification factor (WAF) calculated using the ratio of the
total physical NAND writes to the logical application writes
within 5-minute intervals.

5.2 Performance of Auto-Stream

We first compare the performance of the workload gen-
erated by PatIO to the performance of the real workload.
Figure 12 plots the normalized performance results (ie.,
(multi-stream - legacy)/legacy) of a multi-stream SSD using
SFR and MQ under both real and PatIO generated work-
load of the Cassandra application. The results using legacy
SSD without streaming are considered as the baseline. We
use the workload configuration of Cassandra as mentioned
in Table 2 for the legacy NVMe SSD (no streaming) and
multi-stream NVMe SSD to obtain the “real” performance
results. The positive bars in Figure 12 reflect that using
a multi-stream SSD, the measured performance is higher
than that of a legacy SSD and vice-versa for negative bars.
Our analysis across different performance metrics helps us
examine if the generated workload by PatIO shows the
same traits as a real workload. We observe that PatIO
is able to capture the performance trend of either im-
provement or deterioration exactly. That is, while using
a real application, if using multi-stream SSD with SFR
or MQ algorithm resulted in performance improvement,
then similar performance improvement is also seen with
the workload generated by PatIO. Figure 12 shows that
our generated workload closely mimics all performance
metrics. For example, WAF decreases with both the auto-
stream algorithms of multi-stream SSDs compared to the
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no-streaming legacy SSDs for the real Casandra workload.
We can see the same impact from the PatIO generated
Casandra workload. Thus, PatIO is useful to analyze the
impacts of evolving storage technologies such as auto-stream.

We next use Pat I0, for running individual I/O patterns
listed in the Table 3 to study in-depth performance benefit of
multi-stream SSDs with SFR and MQ algorithms over legacy
SSDs (no streaming) for each I/O pattern. We also combine
different I/O patterns to emulate various real applications
and study the performance impact. Figure 13 shows write
amplification factor (WAF) for 5 different workloads, such
as MySQL, Cassandra, MongoDB, ForestDB and RocksDB,
and 13 other I/O patterns (in Table 3). We observe that
multi-stream SSD with both the SFR and MQ algorithms can
reduce WAF for most of the workloads compared to legacy.
Lower WAF means less internal writes during garbage col-
lection, which leads to better SSD endurance. Thus, we say
that multi-stream technology may improve SSDs’ lifetime.
There are two exceptional I/O patterns, such as BSVDV
and BSHDYV, under which using multi-stream SSD incurs
an increase in WAF. More importantly, our PatI0 helps to
identify such exceptions. This also shows that PatIO has
great potential to help the specialist in the design of multi-stream
SSDs and auto-stream algorithms to improve their algorithm,

firmware, or hardware in order to handle such exceptions.
Figure 14 further indicates that apart from increasing

the lifetime of SSD, multi-stream technology may also help
reduce the latency of workloads. We see that different I/O
patterns have different impacts of streaming on their latency.
Both SFR and MQ achieve lower latency for some patterns,
like HS and SWMJDO. While for some others like AC and
MySQL, SER does a better job than MQ. In addition, SFR
or MQ might be good for some individual workloads, but
not be that beneficial when we have multiple simultaneous
workloads, like MySQL+MongoDB.

Finally, we analyze application throughput while using
legacy (no-streaming) SSD and multi-stream SSD. Figure 15
shows the normalized throughput of SFR and MQ with the
throughput of legacy as a baseline. It depicts that among
different generated application workloads and I/O patterns,
most of them have better throughput while operating on
multi-stream SSD than legacy SSD. However, some par-
ticular I/O patterns (like BSVDV, BSHDV, and HO) need
special attention. The workloads with these patterns may
not show a good response to multi-stream technology. They
may need some modifications to improve their underlying
stream assignment. Note that for 1/O patterns BSDS, and
Sprinkler the throughput using multi-stream and legacy
SSDs is the same, thus the normalized throughput is shown
in Figure 15 is null.

5.3 Benefits of Performance Engineering with PatlO

To sum up, Pat IO can explore a wide range of different
workloads in a short time compared to the time required
in real application installation, configuration, and running.
PatIO can assist us in comparing different stream assign-
ment algorithms using I/O patterns to evaluate the impacts
of any algorithm, firmware, or hardware modifications on
various performance metrics. Additionally, Pat IO can iden-
tify intricate details, e.g., which I/O pattern in a workload
which is responsible for performance degradation.
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Figure 16: Auto-tuning the variables of stream assignment algorithm

6 AUTO-TUNING MODULE

Our evaluation found that the benefits of multi-stream
SSDs over legacy varied with the SSD version and
the capacity of multi-stream SSDs. Indeed, [6] presents
that both two-stream assignment algorithms (i.e., SFR
and MQ) have a set of tunable parameters, such as
chunk_size_sector, decay_sec and freq_aging_sec for SFR
and chunk_size_sector and adjust_ref_cnt for MQ. We
believe that to achieve optimal performance, these variable
parameters need to be properly tuned for a change in
the physical firmware like the size or the model of an
SSD drive. Furthermore, while identifying the best value
for these parameters, different I/O applications should be
considered to avoid over-fitting to any particular workload.
Additionally, different users may have requirements on
different performance parameters, e.g., latency, throughput,
or write amplification. Thus, it is also important to take
these user requirements into account when tuning variable
parameters. Let the parameters for any particular algorithm
(e.g., SFR) be ay, Bk, vk, etc. Examples of performance
parameters that we desire to measure and improve are 50th,
90th, 99th, and 99.99th percentile of latency (Al), WAF (AW)
and throughput (At). Weight factor w; is further used to
differentiate the importance of each performance parameter.
Eq. 2 represents the weighted sum of different performance
parameters.

—wlAl50 — nglgo — nglgg — W4Algg‘99 - W5AW + WGAt
w1 + w2 + w3 +wy + ws + we
where, Vi € [0,+00) and w; € [0,+00).
Thus, Eq. 3 shows that the resultant performance parame-

ters are the function of the internal algorithm parameters of
multi-stream SSDs.

f(almﬁka’yku

where V oy, € [0, Max,], Br € [0, Maxg], and v, € [0,
Maz.].

Finally, we want to maximize the weighted “Reward Func-
tion” for n workload as shown in Eq. 4.

1 .
Wavg = —> W )

j=1

Wj =

@

)=Wj ®)

Objective:
Find the best oy, Bk, Yk, etc. such that,
n

1
9= Max nZWj:f(ak,ﬁkv’Yka-")} ®)
j=1

6.1 Techniques for Solving Optimization Problem

The simplest approach towards solving this convex op-
timization problem is the brute force evaluation of the
objective function by generating all possible oy, Bk, Y&, etc.
This method gives us the best possible internal parameters,
which ensures the best performance and endurance of the
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storage device. However, due to the high complexity of the
problem, such a brute force approach is time-consuming.
Thus, we solve our optimization function by using the
multi-armed bandit model of reinforcement learning to
auto-tune parameter values that can result in a local max-
ima®. Our agent is an internal algorithm (e.g., SFR) of a
multi-stream SSD, which needs to take actions towards the
best performance by either increasing or decreasing the
value of each variable parameter. For example, SFR has
three-arms, as it contains three variables. The reward of each
action is calculated using the reward function g (see Eq. 5).
Our agent aims to maximize the reward until it encounters

the local maxima.

We build the required peripheral framework shown in
Figure 16 with PatIO to enable auto-tuning. This frame-
work is constructed to explore the best values of tunable
parameters for an auto-stream algorithm, such as SFR and
MQ. This framework particularly uses the same SSD in the
legacy mode (i.e., without stream) and then runs an auto-
stream algorithm in the multi-stream mode to measure the
performance changes between legacy and multi-stream. The
goal is to identify the values for variable parameters of that
auto-stream algorithm in order to obtain the best possible
performance using multi-stream SSDs. Our framework uses
PatIO to generate () + () + .. + (13) = 2!° different
workloads with 15 I/O patterns shown in Table 3 to ensure
that the parameter tuning is not biased or over-tunned
towards any particular workload. The initial value and the
minimum and maximum of each variable parameter are
defined in the “Initial Module Setup”. Then, as shown in
Figure 16, PatIO reads the constrains and initial values
from the initial setup file and generates a set of different
workloads. These workloads are run one by one to get
their own performance metrics that consist of various per-
formance parameters like throughput, average latency, tail
latency, WAF.

6.2 Results

To evaluate the effectiveness of our parameter tuning
module, we first compare the time consumed in reach-
ing the convergence point and the maximum reward after
convergence while using the brute-force method and our
auto-tune module. We run the experiments five times and
take the average to present the results. Figure 17(a) shows
that the time for auto-tuning to reach local maxima is
much shorter than the time required by brute-force to reach

5. A real-valued function f defined on a domain X, is said to have
a local (or relative) maximum point at the point z* if there exists some
e > 0 such that f(z*) > f(z) for all z in X within distance € of z*.
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Figure 18: Average Rewards while auto-tuning variable parameters of
(a) SFR, and (b) MQ

global maxima. From Figure 17(b), we see that difference in
the achieved maximum reward with brute-force and auto-
tuning is not significant. Thus, using our auto-tune module
along with PatlO, we can quickly improve the performance

and endurance of multi-stream SSDs.
We further analyze the variations of the rewards over

runtime when using our auto-tune module. Figure 18 shows
the average reward value (W,4) of the initial point (I), two
intermediate points (II, III), and the final converged point
(IV), for SFR and MQ. The variable parameter values for
each of these points are further listed in Table 6. We notice
the overall performance reward (Wg,4) increases 60% for
SFR and 110% for MQ from the initial point (I) to the final

converged point (IV) in Figure 18.
We note that besides PatlO, our auto-tune module is also

complementary to other synthetic workload generators such
as FIO and trace-based 1/0 generators such as block trace
replay. However, we observe that the internal parameters
selected using simple synthetic workloads are not good
enough to obtain better performance when running a real
application on these multi-stream SSDs. On the other hand,
the storage space and time required to use trace-based I/O
generators to configure the internal parameters of multi-
stream SSDs are very high and not always feasible. Thus,
compared with those existing synthetic workload genera-
tors and trace-based 1/O generators, our Pat IO provides a
more realistic and highly usable solution. Using our auto-
tune module with PatIO, our performance engineering
team was able to significantly reduce the configuration
time of multi-stream SSDs from a couple of months to a
couple of hours. Our novel approaches of (a) benchmarking
with the combined activities of multiple workloads of any
application and (b) tuning the internal variables of the
modern SSDs to further improve the performance are very
important to the storage community with new emerging
storage devices.

Table 6: Intermediate points while auto-tuning

Label SFR MQ
I étg;—:éiiiggg@ chunk_size_sector=2048,

freq_aging sec=36000 | Adjustref_cnt=2

chunk_size=1024,

1I decay_sec=300,
freq_aging_sec=18000
chunk_size=2048,

1 decay_sec=100,
freq_aging_sec=10000
chunk_size=2048,

v decay_sec=2000,
freq_aging_sec=42000

chunk_size_sector=2048,
adjust_ref_cnt=4

chunk_size_sector=1024,
adjust_ref_cnt=8

chunk_size_sector=512,
adjust_ref_cnt=6
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7 CONCLUSIONS

To comfort benchmarking in a modern cloud storage
with flash-based SSDs, we develop PatIO, which can
generate 1/Os that closely resemble real data processing
workloads. PatIO captures the common characteristics of
a group of similar workloads rather than exactly resembling
one particular workload. Pat IO thus can resemble a wide
range of realistic I/O workloads. Pat I0 is also lightweight,
as it does not require to record, store, and retrieve logs w.r.t.
the timestamp of various I/O activities. We developed a
GUI interface for PatIO to make it easy to use. We eval-
uated PatIO by comparing workload characteristics and
performance of synthetic workloads with real workloads on
the same system platform. We currently have 15 different
I/0 patterns in our pattern warehouse that are capable of
reproducing 1000+ real workloads. We also deployed Pat I0
to two auto-stream algorithms and evaluated the current
advancement of multi-stream technology in terms of its ben-
efits to application performance and SSD endurance. Finally,
we proposed a practical technique to automatically tuning
variable parameters of the existing stream assignment algo-
rithms for any change in storage capacity or SSD models. In
the future, we plan to extend our PatlO warehouse to add
new patterns capturing I/O activities of the other compute
intensive workloads, changes in system parameters, such as
NVM write buffer size, queue depth, and garbage collection
algorithm. We plan to design a module that automatically
identify important common characteristics and accordingly
self-generates new I/O patterns from a set of given work-
loads using machine learning techniques in combination
with statistical computations. We also plan to explore other
global convergence techniques that may incur lower over-
head and guarantee better performance.
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