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Recent advances in the asymptotic analysis of energy levels of potentials produce relative errors in
eigenvalue sums of order 10 **, but few non-trivial potentials have been solved numerically to such
accuracy. We solve the general quartic potential (arbitrary linear combination of x* and z* ) beyond
this level of accuracy using a basis of several hundred oscillator states. We list the lowest 20 eigenvalues
for 9 such potentials. We confirm the known asymptotic expansion for the levels of the pure quartic
oscillator, and extract the next 2 terms in the asymptotic expansion. We give analytic formulas for
expansion in up to 3 even basis states. We confirm the virial theorem for the various energy components
to similar accuracy. The sextic oscillator levels are also given. These benchmark results should be useful
for extreme tests of approximations in several areas of chemical physics and beyond.

1. INTRODUCTION

Since the early days of quantum mechanics, potentials
with analytic solutions have played a crucial role in providing
both insight into more complex problems, and benchmarks
for more general quantum solution methods [1, 2. The
quartic oscillator is iconic in being a simple potential without
a built-in length scale which does not have a simple analytic
solution [3-7]. The general quartic oscillator (adding both
quadratic and linear terms) is not scale-invariant, and has
been studied in many different contexts in physics [8-10].
In particular, the Mexican hat shape of symmetric double
wells is a paradigm of simple symmetry breaking [8, 11].

In chemical physics, the double well provides important
tests of theories of tunneling in quantum nuclear dynamics
of liquids [8, 11, 12]. In particle physics, it is a prototype of
symmetry breaking, such as occurs in simple field theories
[13, 14]. In mathematical physics, it is a simple case to test
and explore asymptotic approximations [15]. Asymptotic
analysis, especially hyperasymptotics, can yield exquisitely
accurate approximations [16-19]. In the past, many devel-
opments and tests of these methods have been applied to
scale invariant potentials [20-22], but the general quartic
oscillator provides opportunities to look at more complex
cases.

Recent work on one-dimensional potentials [20-22] has
established a deep explicit connection between the gradient
expansion of density functional theory and asymptotic ex-
pansions in powers of h [23]. In one case fractional errors
were below the picoyocto range, i.e., of order 10733 [22].
To further develop and test methods in this area, there is
a need for benchmark calculations of this level of accuracy
for non-trivial potentials. This exceeds even quadruple pre-
cision on standard computers, rendering standard numer-
ical algorithms, even pushed to their convergence limits,
difficult to apply. There is also a new area of application:
The breaking of symmetry is a simple prototype of a bond
breaking, in which electrons localize in two separate wells
[24]. Such bond breaking is very difficult to model with
standard semilocal density functionals, and their failure has
been traced back to the change in asymptotic expansions in
going from one well to two[21]. In some simple situations,

benchmark electronic structure calculations have been per-
formed to this level of accuracy (or higher) for systems with
a few electrons [25]. But the purpose of the present study
(and many previous ones) is to explore the underlying princi-
ples behind asymptotic (and other) approximation schemes,
so as to improve the accuracy of less expensive quantum
solvers, such as density functional theory, which can then
be applied to much larger systems. The benchmark data
here provides a quick reference for those exploring basic
questions with analytic one-dimensional models.
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FIG. 1. Ground state densities (solid) and potentials
(dashed). Legend: A = 0 (blue), A = A\, (magenta), A = 4
(orange).

In order to generate such benchmarks and as a simple
example, we consider the generalized quartic oscillator po-
tential:

.’I,'4 .’I,'2

va(z) = vy /\?, (1)
where A\ is a real number, either positive or negative. For
A = 0, this is a pure quartic oscillator, which has been
the subject of many investigations. In this paper we will
present the pure quartic oscillator energies for more states
and to more digits than previously computed in Refs. [3-
5]. We also numerically examine the WKB series for the
quartic oscillator closely following Bender & Orszag's book
[3]. Previous investigations of the WKB approximation of
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the quartic oscillator can be found in Refs. [9, 26-29]. We
examine the variation of the energy with A\ and the effect
of a linear term as in Ref. [9]. Our exact energies can be
used as inputs to test the semiclassical analysis of Ref. [30].
Other methods of estimating quartic oscillator energies are
described in Refs. [3, 4, 29, 31-33]. The exact solution
of the quartic oscillator was studied in Refs. [6, 7]. For
A < 0, the minimum is always at = = 0, with vibrational
frequency \/m For A > 0, the most interesting case, two

distinct wells appear, with minima at +v/\, and frequency
V2\. Fig. 1 illustrates some results, showing the density
of the ground state and the well for three values of A: 0,
A (the critical value of A at which the ground state energy
is zero), and 4. The first is similar in shape to a harmonic
oscillator, but with steeper walls, and the density decays
more rapidly. The second is particularly flat, as the energy
is exactly zero. The third is a typical double-well structure,
with two well-localized densities on each side, and a small
'overlap’ at z = (. Thus there is a transition from one
well to two, and simple symmetry breaking. Following the
behavior of asymptotic expansions with the variation of \ is
a toy problem relevant to many fields [15].

In this paper, we show how to calculate extremely accu-
rate results for these potentials using a symbolic manipula-
tion code, such as Mathematica, where manipulations can
be performed with an arbitrary number of digits. We sum-
marize results in the main text, and provide some analysis
of various regimes. In the supplementary information, we
give many tables of results to many digits of accuracy.

2. MOTIVATION

How can energy calculations to 40 decimal places possibly
be of practical use? Modern density functional calculations
use approximations that have errors larger than 1 kcal/mol,
which is of order 10~° of the total energy of a Ne atom, say.
So even 1000 heavy atoms need only 9 digits of accuracy.
However, the fundamental approximation behind almost all
modern density functional approximations is the gradient
expansion. Recent work [20-22] has shown a direct, ex-
plicit connection between that expansion and summations
of the WKB expansion, order-by-order. The simplest iden-
tification of such asymptotic expansions is to find many
terms explicitly, including the asymptotic behavior of the
coefficients, and test their accuracy order-by-order with ex-
act results. Because of the extreme accuracy of modern
asymptotic methods, these comparisons have involved 33
decimal places in similar cases (linear half-well).

To date, only simple analytic forms have been studied:
the harmonic oscillator, particle in a box, the Poschl-Teller
well, and the linear half-well [20], all of which have special
properties due to their analytic forms. There are many spe-
cial cases where quasi-analytic solutions are known, such as
Ref. [34], but one needs to be able to smoothly approach
the semiclassical limit, in which the number of levels di-
verges. Moreover, we seek techniques that ultimately will
be applied to arbitrary (possibly numerically defined) po-

tentials, so those with analytic solutions might always be
special cases. The quartic oscillator model studied here con-
tains simple single- and double-well structures that provide
numerous examples of parabolic minima (the most generic
case) that have no analytic solutions, making them ideal
for application of these new methods, but only if extremely
accurate results are easily available.

While it may appear that the results in this paper could
be easily generated using Mathematica with a single desk-
top in a short time, the usefulness of this work is in the
careful benchmarking of the results, the combined analysis
of many different aspects, and the inclusion of asymptotic
results, which are unfamiliar to many computational scien-
tists. But the greatest value is likely to be the ability of the
many disparate theorists in many fields to extract highly
accurate results instantly, without having to reperform the
calculations [31].

3. METHOD

Our Schrodinger equation is (in units where i = m = 1)

1 d?v
— 5 v(@)(z) = (a), @)
so all energies are in Hartrees, all distances in Bohr radii. We
expand the eigenfunctions in a basis of harmonic oscillator
states, where w can be freely chosen. The Hamiltonian is
pentadiagonal, with only a few non-zero matrix elements
no more than 2 double-steps off the diagonal. The nonzero
matrix elements of the Hamiltonian in the harmonic basis
are Hy, yq ok = hiy/nak/16w? where hy =1 and

ho =4w(w? — A)(2n + 1) + 3(2n% +2n + 1),

2 (3)
h1 =2[2n + 3 — 2w(A\ + w?)],
and we use the shorthand
I)
oy = H (a +m), ap = 1. (4)

m=1

We closely follow Ref. 5 and use the Eigensystem func-
tion in Mathematica to diagonalize this matrix for various
values of A and choices of w [35]. We denote by Ny the
number of basis functions included in the calculation (both
odd and even, since we did not take advantage of parity).
Our default choice of [w/Np] is [2/200] but we use [2/400]
as a baseline for ‘exact’ energies, and report errors relative
to those values.

A special case is ¢ =0 for the ground state (ma-
genta in Fig. 1). This happens at A\ =)\,
which we found using a golden section search to
be 1.3982585455298955302585947187218312604396, at
which the ground state energy is —3.955 x 10~*!. For a
different way of finding energies of oscillators of order 2™
using exact quantization conditions see Refs. [32, 33]; for
an approach using lower bounds see Ref. [31].
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4. RESULTS

In this section, we report many different results that may
be of interest to different communities under different cir-
cumstances. In each case, we also provide a minimal anal-
ysis.

4.1. Energetics for different potentials

Here, we simply survey the behavior of the energies and
eigenfunctions for various values of A. Our focus is primarily
on positive values of A, which produce the Mexican hat
double-well potential.

n

A= 1

A=0

A=2

A=4

0

0.62092703
202596616
3.69845032
5.55757714
7.56842287
9.70914788
11.96454362

16.77645279

0.42080497
1.50790124
2.95879569
4.62122032
6.45350993
8.42845388
10.52783077
12.73833694
15.04975293

-0.29952137
0.04637108
1.22797281
2.45984143
3.93826197
5.58129195
7.36888889
9.28322263

11.31134968

-2.66144807
-2.65173172
-0.51029304
-0.18078943
1.16951434
2.36439189
3.83579483
5.44300452
7.18323497

6
7114.32326520
8
9

19.31695430(17.45393416 | 13.44312537| 9.03984811

TABLE I. The energies at various values of A\. See Table S1

for more values of A\, more states, and more digits.

Our first results are the energetics of the first several
eigenstates of the generalized quartic oscillator. These val-
ues are given to 8 digits in Table | for four values of A. In
Table S1 in the supplementary information, we give 40 dig-
its for 9 values of A for the first 20 eigenvalues. Here A = 0
corresponds to the pure quartic oscillator. As A grows, the
eigenvalues inside the double well come in pairs, with ever
smaller splitting.

gy . : A=8 ’
,/ \ /"ﬂ"'-. /‘\

\
\.\\/ Il||\ \I\ I"u
-4 - )

A

FIG. 2. First three eigenfunctions (orange, red, magenta)
with potentials (blue) at various values of A.

We also show the first three stationary states and po-
tentials at various values of A in Fig. 2. As A grows, the

ground-state wavefunction develops a minumum at the ori-
gin, and the first excited state almost matches it in the bulk
of the minimum. By A\ = 8, the wavefunctions are almost
indistinguishable, except for their sign.
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FIG. 3. Behavior of the coefficients of the ground-state wave
function for the pure quartic oscillator (blue) and double-well
potential (red, A = 8) in the basis [2/200]. In the lower panel
stars and open circles denote ¢z, of opposite signs. See Table
S2 for more digits.

In Fig. 3 we show the overlap ¢,,, of the ground-state wave
function with even oscillator states in a basis of [2/200] for
two values of A\. The pure quartic oscillator is dominated
by the ground-state of the harmonic oscillator, with overlap
close to 1, but the magnitude of the double-well coefficients
grows before ultimately decaying. In the lower panel, we
show that the overlaps decay exponentially, but with vary-
ing signs. The broken symmetry well has overlaps that de-
cay significantly more slowly (about 5 orders of magnitude
larger).

Lastly, we plot the error in the ground-state density cal-
culated with the first 20 coefficients of [2/200] in Fig. 4
for the double well potential (A = 8). This is not the error
of the basis set, but simply the error caused by truncation
after 20 levels. The error is very small, oscillates in space,
and is localized in the two different wells.

4.2. Satisfaction of virial theorem

The virial theorem [36] is a useful check on the accuracy
of eigenstates in a basis. It is particularly simple here, as
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FIG. 4. The error in the ground state density for A = 8
calculated with the first 20 coefficients ¢z, in Table S2.

the potential is a sum of two powers of z. For v)(z), the
virial theorem requires, for any eigensolution

() +A(z”) = (z*),
with nonzero matrix elements

2‘(2, :pg =2n+1, a‘% = —pf = /noy,
Ty =3(2n% + 2n + 1), 2} = 2/n2(2n + 3), =5 = /na,
(6)

where Ik = I"’"+2k\/?b) and Pr — p,,,’"+2k\/ 2/0). In par-
ticular, at A, we find the simple formula:

¥ _ A
(x?) 3~

In Table Il we show how closely our solutions satisfy Eq.
5. This confirms that with [2/200] we have a very good
approximation to the exact ground states. Eq. 7 is satisfied
to 39 decimal places.

(5)

(7)

Y () ) G N (GO E DY R O
-110.70962262270.3548102512| 0.3547823715 —1.0x10™
0 10.5610732993(0.4561199557| 0.5610732993 —38 x 1098
% 0.4859528308 [0.5399767422| 0.7559112019 —32x 109
1 |0.4187530838 |0.6673186910| 1.0860717748 9.6 x 1097
A 0.3828873103(0.8211916618 | 1.53154921412 0.0 x 101
2 10.4053838252 | 1.2071184727| 2.8196207705 12 x 109
4 1.2230281089 | 3.5787191485 | 15.5379047030 9.7 x 10790
8 11.9338080508 | 7.7111002199 | 63.8650098103 —16x 10!

TABLE II. Expectation values and their virial sum for differ-
ent wells with [2/200]. See Table S3 for more digits.

4.3. Tunneling between wells

In this section, we examine both the zero point energy
and the tunneling between the symmetric wells that occur
for positive A\. As mentioned before, the vibrational fre-
quency is \/m for negative A, and v/2) for positive A. Fig.
5 shows the exact zero-point energy and it's harmonic ap-
proximation, which becomes accurate as || grows.

M Exact
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A

FIG. 5. Exact zero point energy and it’s harmonic approxi-
mation. See Table S4 for many digits.
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FIG. 6. The upper panel compares the exact Ae splitting with
its WKB approximation in Eq. 11. The lower panel shows
the error of the WKB approximation. See Table S4 for the
exact Ae values.

Less trivial is the tunneling between the broken-symmetry
wells. A simple WKB analysis[36] yields
“o L Yo.-¢
5 5,0 " (8)
for the lowest two levels, where wq is the vibrational fre-

quency, and ¢ is the decay rate for tunneling, evaluated on
the ground-state energy. The splitting is

€4 =

w
Ae = ?0(3_“’(’\),

(9)

and wy = V2 in the harmonic approximation. Here ¢ is
the integral of the absolute value of the momentum p(z) =
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n Energy

0 | 0.43493087870825459239874279292555363392774
1 1.64831106336517093605783724089979389227058
2 | 3.44702671416130810318518311192928729955987
3 | 5.67413742993262212079377794412021425830389
4 | 8.24959888596347452014123953299512400416730
5 | 11.13145828009733275940992958109248369395669
6 | 14.28988270823523783646886992792593890944806
7 | 17.70235221954562079900780369145795203975459
8 [21.35111714819949016424850927302262003053565
9 | 25.22171285703672981248414385975444098122878
29.30205319182515264341685743177538338413530
33.58184072441714447659452964789566 752711547
38.05216382472115780004920306874727674910548
42.70521061321923679887306117322169371214762
47.53405945114494426110319556943507798525146
52.53252145969695924991153932257382502470230
57.69501952928699913809886057200837269497456
63.01649360693670075261996021857703983520713
68.49232534279718129547616418400704809075654
T4.11827728288342368118468014333735452468298

13
14
15
16
17
18
19

TABLE III. First twenty energies of the sextic oscillator cal-
culated with [2/800]. The energies are accurate to all 41 digits
shown.

\/2|e — va(z)] over the classically forbidden region between
the two wells

= 2/011 dz\/2[vz(z) + N2/4 —wy /2],  (10)

where z; = VA — 23/4)1/4 s the inner turning point and
—A2/4+ w2 is the harmonic approximation to the ground
state energy. For the approximation to be meaningful, the
inner turning point must be positive, so that A > 2. The
appendix shows how to find the asymptotic behavior of the
splitting for large A:

11/4 3/2
Ae = M/\F)M cxp(—&).

- 3 (11)

Fig. 6 shows just how accurate this approximation is. We
have confirmed this expansion numerically.

4.4. Sextic oscillator

In this section, we apply exactly the same technology to
finding the energies of the sextic oscillator:

(12)

The quartic and sextic oscillators both belong to the class of
potentials whose exact solutions are given by Heun's special
function [37]. In our harmonic basis, the nonzero Hamilto-

. . (6) :
nian matrix elements are H,, ;4 or = /Tiah,,” /48w™ where

h_,(:;) =1 and
hY =(2n + 1)[10n(n + 1) + 3 (4 +5)],
K9 =3[5n(n + 3) — 4w +15),
h =3(2n + 5),

(13)

i.e., they go one more step away from the diagonal. The
energies of the first twenty sextic oscillator states are given
in Table IlI.

4.5. Analytic results for a few states

It can often be useful to find an approximate solution us-
ing just a few basis functions, instead of hundreds. Here
we give analytic formulas for the lowest lying even energies
as functions of w and A when only 1, 2, and 3 even oscil-
lator states are used. These expressions can be useful for
quick estimates of low-lying eigenvalues. The approximate
ground-state energy with one even basis function is

3 w A

Bzl e NBD

€y — (14)

The approximate ground- and second-excited states with
two even basis functions are:

3(w*—=A)  21+2VD

4w 16w? 7
D = 8w[3w (A* + w* + 2w) — 2X (w® + 6)] + 99.

(NB - 3)9

“ (15)

With three even basis functions the first three approximate
even state energies are (n = 0,2,4):

ﬁﬂ.

[15(11 — Dw + w?)

48w?
4+ 1
_ (—1)6"’28‘/61) cos (%5 + W) :|, (N =5),
D =15[w? (A% + ' + w) — TAw + 13] — 2Aw?,
in o 9B
SN QP = —————,
8V/6DD

B =20\w (Aw[51 — dw(A + w?)] +2[2w° + 7(w® — 15)])

+ 4w’ (20w® — 57) + 5575.
(16)

At ). (Fig. 7), the least error in the ground state energy
is 5.467 x 10~2 at w = 0.7595 with Eq. 14, 4.320 x 10—3
at w = 1.383 with Eq. 15, and 4.563 x 10~% at w = 1.854
with Eq. 16.

4.6. Error dependence on w

In this paper we have usually set the basis set angular
frequency w to 2. Now we analyze what happens to the
error of the ground and a highly excited state of the pure



4.6 Error dependence onUncommonly accurate energies for the general quartic oscillator

0.20

0.15
ur

0.10
<

0.05

0.00

FIG. 7. The errors of the analytic expressions for the approx-
imate ground state with 1, 2, and 3 even basis functions and
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FIG. 8. The errors of the ground state and 19th excited state
(i.e. 10th odd state) as a function of w. See Table S5 for more
digits.

quartic oscillator as w is varied. The error as a function of
w for a fixed number of basis states is complicated and has
several local minima, as we found in the previous section.
Nevertheless there is a clear trend for the pure quartic os-
cillator as seen in Fig. 8: the error tends to level off to a
very low value as w increases, though it must increase if w
becomes too large. The error for the 19th excited state is
orders of magnitude greater than that of the ground state

with e.g., Np = 40. For our purposes, the value of w = 2
yielded sufficient accuracy for the basis sets we could afford.

At each minimum as a function of w, the virial theorem is
exactly satisfied. We could have performed such a search for
any of our calculations. But as we could achieve sufficient
accuracy with fixed basis sets, we chose the simpler and
less computationally intensive route. This preserves any
cancellation of errors in energy differences, and retains the
virial as a test of accuracy, as in Sec. 4.2.
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FIG. 9. The error in the ground state energy from zeroth
(blue) and first order (red) perturbation theory. See Table S6
for accurate numbers.

4.7. Quartic potential as perturbation

Consider the case where \ is large and negative, and treat
the quartic potential as a perturbation. This problem and
it's analytic structure was studied in Refs. [27, 28, 38]. The
zeroth, first, and second order contributions to the energies
are

) = (n + %) VAL

" 16| ’
(@ _ (14 2n)[17n(n+1) +21]
128[A[5/2

(17)

Fig. 9 shows the resulting error in the ground state energy.

4.8. Asymmetric wells

We now examine the effect of breaking the symmetry of
vx(z) by adding a linear term

z? z?

Vaa(r) = — — /\/’? + ax. (18)

4
We only examine the case A = 4. In Table IV, we show
both the energies for the case & = (0.1 and their difference
from the unperturbed case o = (). As one side of the well is
depressed and the other elevated, for the low-lying states,
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n Energy difference n Asn Bs,,
0 [ —2.84178633947585032025083080644301 799927051 | —0. 1803382726 0 1 74803836052807087364 | 1.09253465015618881071
1 | —2.473154256318023327653808898492564428 11375 | 0.1785774606 1 —0.14976752934194902593 | 0.03864050890478489138
2 | —0.558731995370807765303822077557032457 16816 | —0.0484389572 2 0.03755551184532084104 | —0.00385400310372957406
3 | —0.138744055744191689183574042724 18272068978 | 0.0420453773 3 0.09159610485926231443 | —0.00192912270049430287
4| 1.16447030692387601517830930663899021569773 | —0.0050440297 4 —0.55736698690956972061 | 0.00455965708128336316
5| 2.36573532391604302707250344355822360758064 | 0.0013434316 5 —5.08024277232820207859 | 0.01110530044025802883
6| 3.83568104437914171468097998090919165511556 | —0.0001137882 6 72.53628245858812264379 | —0.05611473947869961072
7| 5.44302728549612071643675096706241920608503 | 0.0000227623 7 1591.77267377039864942443 | —0.34434940280222393316
8 | 7.18320046060050124539642226054074137331752 | —0.0000345135 8| —48231.49420089254973409982 |  3.51923362542214395736
9| 9.03979350957144560421088 106446755353 161811 | —0.0000546026 9 | —1899239.99920378994311897265 |  39.91240769625859000539
10| 11.00244857202039554353678211539683848606553 | —0.0000702608 10| 95166684.23238064054845710849 | —660.60215595012034723938
11| 13.06271608472508976557198671004627390279753 | —0.0000808253
12| 15.21369451941728871017509326075221513855338 | —0.0000881381 e cient« .
13| 17.44958477274837116578655941806092145442188 | —0.0000931621 TABLE VI. The known WKB coefficients for the pure quartic
14| 19.76542796609356112334994801927133021018867 | —0.0000965616 oscillator reported to twenty digits.
15| 22.15692272774436386892142052150687339550426 | —0.0000987886
16| 24.62029451810540168163027589352125330801 114 | —0.0001001588
17| 27.15219883683433104396784761809263032892086 | —0.0001008965 . . e
18| 29.74964765111306868111782309284631425560723 | —0.0001011638 4.9. Asymptotic analysis of pure quartic oscillator
19| 32.40995226660074725753866259978103913402690 | —0.0001010795

TABLE 1IV. The first twenty energies when A = 4 and o =
0.1 calculated with [3/200]. The difference from o = 0 is
reported. All energies are accurate to the 41 digits given.

-2 -1 0 1
X

FIG. 10. The ground state density with A = 4 and various
values of a: 0 (blue), 0.001 (magenta), 0.005 (orange), 0.01

(cyan).

the differences alternate in sign. As one goes further up the
well, eventually all states are lower than their symmetric
counterparts.

In Fig. 10 we show how the ground state density varies
as « is increased. Even a very small value of o causes sub-
stantial asymmetry in the ground-state density, with almost
all the weight in the lower well when @ = 0.1.

n kn [

0 1 3

1 -1 4

2 11 3x2°
3 7 x 11 x 61 3x5x2"
4 —5 x 13 x 17 x 353 7x 2"
5 —11% x 19 x 23 x 1009 3 x 2%
6 5 x 17 x 29 x 49707277 3 x 11 x 2%
7 3" x 7 x 19 x 23 x 31% x 109 x 1429 13 x 2%
8 —7 x 11 x 29 x 37 x 41 x 4477909193 3 x 2%
9 |—5x11x19 x 23 x 31 x 43 x 47 x 1489 x 6397 x 8263| 17 x 2"
10| 7 %29 x 37 x 41 x 53 x 59 x 3618497 x 83558311 |3 x 19 x 2%

TABLE V. The knowg] A,,, are given by the k, and [, in
Azp = (kn/ln)y/mRC Y™ where R = T'(1/4)/T(3/4).

The asymptotic solution of the pure and generalized
quartic oscillator has been studied many times before
[3, 9, 10, 26]. We analyze only the pure quartic oscillator
and closely follow Bender & Orszag [3]. The WKB series for
a pure quartic oscillator with potential v(z) = z*/4 yields

the implicit formula
+ 1
n - | T
2 b

Z A2m(4€3/2)1/2_m _

m=0
with the known As,, reported in Table V and in Refs. [3, 39].
One can invert this implicit expression to an explicit formula

for each level:
. 1 4/3—2m
n - .
2

o0
€n — 2_1/3 Z BZm
We give the known A,,, and B,,, coefficients numerically in
Table VI to twenty decimal places. The analytic forms of
the Bs,, coefficients are given by

(19)

(20)

m=0

2 7r2_"ﬂn
By, = (1)1 me (21)
where the 3,, are polynomials of order |n/2] in +:
[n/2]
(22)

k
Bn. - Cn. § An k7Y
k=0

where v = T'(1/4)% /m*. This allows the 11 known [, to
be given by the constants in Table VII.

We can use our highly accurate energies to extract higher
order coefficients. We define the deviation from the 2m-th
order WKB approximation as

A™ = en — iy pm (23)
which, according to Eq. 20, has the asymptotic form
Ae®™) = By, X213 4 By o XM2/3+0 0 (24)
where
1\ 2
Xn = ('ll + 5) , (25)
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Cu

n 0 1 2 3 G4 [
0 0 1

1 1 1

2 1/72 5 1/192

3 11/972 1 93/640

1 17/550872 77 539/20 102829/86016

5 23 /5038848 19 3280 /48 28171999 /430080

6 20/1088301168 5083 661080/160 67014687 /716800 49829732967 /00832896

7 1/1224440064 43356 2031929/64 10264192781 /61440 A92349052126069 /1349617312

8| A1/176319369216 164749/4 806113/15 262775069173 /983040 TRTHTON22698313 /527155200 A5866361756066241/355140108288

0| 47/2115832430502 | 3230513/27 TAABA61 /40 | A26794400223/3686400 | —1335041940357676377 /120766464000 |  4907566420869344641093 /9810745914560

10 | 5:3/1371069415023616 | 5RIV77:35/8 | — 9015402055 /256 | BUS25797863511 /344064 UHEE650105TISGA03T /268369920 | 140756042 T69657:3497 146789 /2702484971520 | 56201923:390216:34510441141 /11875885221 15072

TABLE VII. The constants yielding the §,, via Eq. 22.

-1.202 1

-

E -1.203 -

.Bf

=N -1.204)

N

W

g -1.205

To -1.206

- W Data
-1.207F W Model

0.0 0.2 0.4 0.6 0.8 1.0 1.2
10* x,,
FIG. 11. The coefficients B, and Bas are obtained by a

linear fit to the above data. We plot Bz + B24X,, to show
how closely this model matches the data.

yielding
A€$?1,L)X12,,/3_1" - B21n +3211L+2X1L+3211L+4X12,,+ (26)

Thus by calculating accurate energies, multiplying them by
2/3=m  and fitting to a line, we confirm the WKB coef-
ficients up to twentieth order and find the next two coef-
ficients numerically, as shown in Fig. 11. Our most ac-
curate approximations to By, and By, were calculated us-
ing [3/3000] to be By = —1.2052792 x 10* and By =
2.98 x 10°, which are accurate to the number of digits
shown. To speed up the calculation we took advantage of
parity and calculated the odd and even energies separately
using the ParallelTable function in Mathematica [35].

5. CONCLUSIONS

We have used Blinder's method to extract many quan-
tities from the general quartic oscillator to many digits
[5]. We have considered many distinct limits and scenar-
ios where these benchmark results might be useful. We
have covered energetics of eigenstates, the virial theorem,
tunneling between wells, the sextic oscillator, analytic forms
in a few basis functions, error dependence on choice of w,
perturbation theory in the quadratic term, asymmetric wells,
and asymptotic analysis of WKB results for the pure quar-
tic case. In all cases, we have provided preliminary analysis
and compared with the exact results. Some of this work
should also prove useful for pedagogy. This would include
both the use of Mathematica to generate accurate results
and the derivations of various results in this context. Users
who wish to replicate our results can start with Ref. [5] and
modify the Hamiltonian with a quartic potential using the
matrix elements in Eq. 6. But the two examples of asymp-
totic techniques are beyond most standard curricula, and
unfamiliar to most theorists. Refs. [3, 20, 22, 40] provide a
pedagogical introduction to such methods.

6. FUNDING INFORMATION

This research was supported by NSF (CHE 1856165).

[1] E. Schrodinger, Phys. Rev. 28, 1049 (1926), URL https:
//link.aps.org/doi/10.1103/PhysRev.28.1049. 1

[2] N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932),
URL https://1link.aps.org/doi/10.1103/PhysRev.42.
210. 1

[3] C. M. Bender and S. A. Orszag, Advanced mathematical
methods for scientists and engineers (Springer, 1999). 1, 2,
7,8

[4] C. E. Reid, Journal of Molecular Spectroscopy
36, 183 (1970), ISSN 0022-2852, URL http:
//www.sciencedirect.com/science/article/pii/
0022285270901037. 2

[5] S. M. Blinder, Eigenvalues for a pure quartic oscillator
(2019), 1903.07471. 1, 2, 8

[6] W. Lay, Journal of Mathematical Physics 38, 639 (1997),
URL https://doi.org/10.1063/1.5631857. 2

[7] K. Bay and W. Lay, Journal of Mathematical Physics 38,

2127 (1997), URL https://doi.org/10.1063/1.531962.

1,2

J. Joger, A. Negretti, and R. Gerritsma, Physical Review

A 89 (2014), ISSN 1094-1622, URL http://dx.doi.org/

10.1103/PhysRevA.89.063621. 1

E. Delabaere and F. Pham, Annals of Physics

261, 180 (1997), ISSN 0003-4916, URL http:

//www.sciencedirect.com/science/article/pii/

50003491697957377. 2, 7

C. M. Bender and T. T. Wu, Phys. Rev. D 7, 1620 (1973),

URL https://1link.aps.org/doi/10.1103/PhysRevD.7.

1620. 1, 7

(8]

9]

[10]




Uncommonly accurate energies for the general quartic oscillator

[11] S. K. S. D. L. Meier, Thomas; Petitgirard, Nature Com-
munications 9 (2018), URL https://doi.org/10.1038/
s41467-018-05164-x. 1

[12] Y. Fujimura and H. Sakai, Electronic and Nuclear Dynam-
ics in Molecular Systems (WORLD SCIENTIFIC, 2011),
https: //www.worldscientific.com/doi /pdf/10.1142/7119,
URL https://wuw.worldscientific.com/doi/abs/10.
1142/7119. 1

[13] R. Dutt, A. Gangopadhyaya, A. Khare, A. Pagnamenta, and
U. Sukhatme, Phys. Rev. A 48, 1845 (1993), URL https:
//link.aps.org/doi/10.1103/PhysRevA.48.1845. 1

[14] F. Cooper, A. Khare, and U. Sukhatme, Physics
Reports 251, 267  (1995), ISSN 0370-1573, URL
http://www.sciencedirect.com/science/article/
pii/037015739400080M. 1

[15] I. Aniceto, G. Basar, and R. Schiappa, Physics Reports
809, 1 (2019), ISSN 0370-1573, a primer on resurgent
transseries and their asymptotics, URL https://doi.org/
10.1016/j.physrep.2019.02.003. 1, 2

[16] O. Costin, Asymptotics and borel summability (Chapman &
Hall/CRC Press, Boca Raton, 2009), ISBN 9781420070316.
1

[17] M. V. Berry and C. J. Howls, Physics World 6, 35 (1993).

[18] M. V. Berry and C. J. Howls, Proceedings of
the Royal Society of London. Series A: Mathe-
matical and Physical Sciences 430, 653 (1990),

125018. 2

[31] E.  Pollak and R.  Martinazzo, The  Jour-
nal of Chemical Physics 152, 244110 (2020),
https://doi.org/10.1063 /5.0009436, URL  https:

//doi.org/10.1063/5.0009436. 2

[32] A. Voros, Journal of Physics A: Mathematical and Gen-
eral 27, 4653 (1994), URL https://doi.org/10.1088Y
2F0305-4470%2F27%2F13%,2F038. 2

[33] A. Voros, Journal of Physics A: Mathematical and Gen-
eral 32, 5993 (1999), URL https://doi.org/10.1088Y
2F0305-4470%2F32%,2F32%,2F311. 2

[34] Q.-T. Xie, Journal of Physics A: Mathematical and Theoret-
ical 45, 175302 (2012), URL https://doi.org/10.1088Y
2F1751-81137,2F45%2F17%,2F175302. 2

[35] W. R. Inc., Mathematica, Version 11.3, URL https://www.
wolfram.com/mathematica. 2, 8

[36] D. J. Griffiths, Introduction to quantum mechanics (Pear-
son Prentice Hall, 2005). 3, 4

[37 G.  Lévai and A. M. Ishkhanyan, Mod-
em Physics Letters A 34, 1950134 (2019),
https://doi.org/10.1142/S0217732319501347, URL

https://doi.org/10.1142/50217732319501347. 5

[38] B. Simon and A. Dicke, Annals of Physics 58, 76 (1970),
ISSN 0003-4916, URL http://www.sciencedirect.com/
science/article/pii/000349167090240X. 6

[39] A. Voros, Nuclear Physics B 165, 209 (1980), ISSN 0550-

https: //royalsocietypublishing.org /doi/pdf/10.1098 /rspa.1990.0111,3213, URL http://www.sciencedirect.com/science/

URL https://royalsocietypublishing.org/doi/abs/
10.1098/rspa.1990.0111.

[19] M. V. Berry and K. E. Mount, Reports on Progress in
Physics 35, 315 (1972), URL https://doi.org/10.1088%
2F0034-4885%2F35%2F1,2F306. 1

[20] K. Burke, Faraday Discuss. (2020), URL http://dx.doi.
org/10.1039/DOFD0O0057D. 1, 2, 8

[21] K. Burke, The Journal of Chemical Physics 152, 081102
(2020), URL https://doi.org/10.1063/5.0002287. 1

[22] M. V. Berry and K. Burke, Journal of Physics A: Mathe-
matical and Theoretical 53, 095203 (2020), URL https:
//doi.org/10.1088%2F1751-8121%2Fab69a6. 1, 2, 8

[23] A. Cangi, D. Lee, P. Elliott, and K. Burke, Phys. Rev. B
81, 235128 (2010), URL https://link.aps.org/doi/10.
1103/PhysRevB.81.235128. 1

[24] A. Cohen, P. Mori-Sanchez, and W. Yang, Phys. Rev. B
77, 115123 (2008), URL http://link.aps.org/doi/10.
1103/PhysRevB.77.115123. 1

[25] H.  Nakashima and H. Nakatsuji, The Jour-
nal of Chemical Physics 127, 224104 (2007),
https: //doi.org/10.1063/1.2801981, URL  https:

//doi.org/10.1063/1.2801981. 1

[26] A. Voros, Annales de I'lLH.P. Physique théorique 39,
211 (1983), URL http://www.numdam.org/item/ATHPA_
1983__39_3_211.0. 2,7

[27] C. M. Bender and T. T. Wu, Phys. Rev. 184,
1231 (1969), URL https://link.aps.org/doi/10.1103/
PhysRev.184.1231. 6

[28] C. M. Bender and T. T. Wu, Phys. Rev. Lett. 21,
406 (1968), URL https://link.aps.org/doi/10.1103/
PhysRevLett.21.406. 6

[29 F. T. Hice and E. W. Montroll, Journal
of  Mathematical  Physics 16, 1945  (1975),
https: //doi.org/10.1063/1.522747, URL  https:

//doi.org/10.1063/1.522747. 2
[30] D. Brizuela, Physical Review D 90 (2014), ISSN 1550-
2368, URL http://dx.doi.org/10.1103/PhysRevD.90.

article/pii/0550321380900851. 7

[40] M. V. Berry and K. Burke, European Journal of Physics
40, 065403 (2019), URL https://doi.org/10.1088Y
2F1361-64047,2Fab4026. 8

[41] DLMF, NIST Digital Library of Mathematical Functions,
http:/ /dImf.nist.gov/, Release 1.0.26 of 2020-03-15, 19.2,
URL https://dlmf.nist.gov/19.2. 10

[42] DLMF, NIST Digital Library of Mathematical Functions,
http:/ /dImf.nist.gov/, Release 1.0.26 of 2020-03-15, 19.12,
URL https://dlmf.nist.gov/19.12. 10



Uncommonly accurate energies for the general quartic oscillator

Appendix A: Derivation of asymptotic splitting
formula

We now explain how to derive Eq. 11, the asymptotic
approximation to Ae = ¢; — ¢y in the limit A — oo.

We introduce the shorthand 7 = (2/A)*4 so A —
oo => 1n — 04. In terms of n Eq. 10 of the main
text becomes

Vi=n
b == [ d/T=FF R (A

In the limit 7 — 0,

1 3/
¢ (n) = %/ dz(1 — z?) = (20)° 2. (A2)
m Jo 3
We evaluate Eq. Al:
8
d(n) = 32V 1+nF(n), (A3)

where F'(n) = E(y) — nK(y), y = (1 —n)/(1 +n) and
/2 /2
K(z) = /0 %, E(z) = /0 dof(z,0), (A4)

with f(z,0) = \/1 — zsin” @ [41]. The following expansion

will prove useful shortly:

3
F(n) =12+ o

=2 _ 3
5 T 16" (I —6In2+ 2Inn) + O(n”), (Ab)

as 7 — 04 [42]. Inserting Eq. A5 into Eq. A3 and expand-
ing around 7 = 0, yields

@y @V 3 1
PN = ZInA— 2(2492).  (A6)

.

The above equation combined with Eq. 9 leads to the final
result, Eq. 11 of the main text.
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