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Modern density functional approximations achieve moderate accuracy at low computational cost for
many electronic structure calculations. Some background is given relating the gradient expansion of
density functional theory to the WKB expansion in one dimension, and modern approaches to asymptotic
expansions. A mathematical framework for analyzing asymptotic behavior for the sums of energies unites
both corrections to the gradient expansion of DFT and hyperasymptotics of sums. Simple examples are
given for the model problem of orbital-free DFT in one dimension. In some cases, errors can be made
as small as 10 *? Hartree suggesting that, if these new ingredients can be applied, they might produce
approximate functionals that are much more accurate than those in current use. A variation of the

Euler-Maclaurin formula generalizes previous results.
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1. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) is a very
popular electronic structure method, being used in tens of
thousands of papers each year[1]. However, all such calcu-
lations use some approximation to the unknown exchange-
correlation functional of the (spin) densities[2], and most
standard codes allow choices among hundreds (or more)
of different approximations[3], belying claims of a first-
principles theory. There is an exact theory of DFT exchange-
correlation[4], which is well-developed, but logically subtle.

This theory shows which properties the exact functional
must have, and which it does not. Exact conditions are then
often used to determine parameters in approximations[5].
This exact theory is crucially important in understanding
DFTI6], but is not the subject of this paper.

In elementary quantum mechanics[7], a standard set of
tools is particularly useful for approximations, such as the
variational principle, expansion in a basis, and perturbation
theory. These are used extensively in traditional ab initio
quantum chemistry[8]. In particular, the repulsion between
electrons is considered as weak, and Hartree-Fock is the
starting point of most methods[9, 10]. Most important, in
almost all treatments, a series of equations can be derived of
increasing computational cost to evaluate which (in the case
of convergence) will yield increasingly accurate results. Sim-
ilar approaches centering on the Green's function have been
highly successful for calculating responses of materials, but
much less so when used to find ground-state energies[11].

No such procedure currently exists for density functional
theory. We show here (and in earlier work) that in fact the
corresponding chapter in elementary quantum mechanics is
simply that dealing with semiclassical approximations. In
theoretical chemistry, such methods were tried long ago in
electronic stucture (e.g., Refs [12-14]), but are now more
commonly applied to treating nuclear motion in quantum
dynamics[15]. Their exploration for electronic structure
withered once modern self-consistent approximations|[16]
could be implemented numerically with reasonable accuracy.

That this is the unique perspective from which density
functional approximations can be understood begins with
the work of Lieb and Simon from 1973[17, 18]. Their
work ultimately shows that, for any atom, molecule, or
solid, the relative error in a total energy in a TF calcu-
lation must vanish under a very precise scaling to a high-
density, large particle number limit. In this limit, the system
is weakly correlated, semiclassical, and mean-field theory
dominates[19, 20]. This has been argued to be true also in
KS-DFT for the XC energy[21-23].

The gradient expansion is the starting place for most
modern approximations in DFT (generalized gradient
expansions[24-26], and is used in some form in most cal-
culations today. The first asymptotic correction to the
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local density approximation for densities that are slowly
varying[23, 27] is that of the gradient expansion. But a
recent paper (hereafter called A[28]) used an unusual con-
struction to find the leading correction to the local approx-
imation more generally, i.e., for finite systems with turning
points, for the kinetic energy in one dimension. It was found
that, for such finite systems, the gradient expansion misses
a vital contribution, without which it is much less accurate.

The work of A focuses on the leading corrections to the
local approximation. But these are just the first correc-
tions in an asymptotic series that, in principle, could be
usefully extended to much higher orders. Recently, asymp-
totic methods were developed for sums over eigenvalues for
bound potentials[29], hereafter called B. In a simple case,
v(z) = z in the half-space z > 0 in Hartree atomic units,
the sum over the first 10 eigenvalues was found to be about
81.5 Hartrees, with an error of about 10~32 Hartree. This
extreme accuracy is far beyond any current computational
methods for solving the Schrodinger equation. The way in
which this accuracy was achieved employed methods rarely
used in modern electronic structure calculations, involving
hyperasymptotics[30]. Such methods are difficult to gen-
eralize, and often are applied only to very simple, shape-
invariant potentials[31], where specific formulas for the M-
th order contribution to an asymptotic expansion can be
found explicitly. It would be wonderful if even a tiny frac-
tion of this powerful methodlogy could be applied to modern
electron structure calculations.

The present work is designed as a further step toward
this ultimate goal, as well as a summary of previous work in
this direction. Section 2 summarizes background material
from several different fields. Section 3 lays out a general ap-
proach to summations using the Euler-Maclaurin formula,
and shows how the summation techniques of A and B are
special cases of a this general summation formula. That
formula yields the key results in both A and B, and extends
each beyond its original domain of applicability. | also find
a variation that produces the results of A and B simulta-
neously and clearly identifies the role of the Maslov index.
| close with a discussion of the relevance of this work to
realistic electronic structure calculations in Section 4.

2. BACKGROUND
2.1. Asymptotics

We begin with some simple points about asymptotic ex-
pansions, which we illustrate using the Airy function[32-34].
Consider an infinite sequence of coefficients ¢,,, and the par-
tial sums

C
Su(z) =3 & (1)
n=>0 x

Consider then Ryr(z) = M (Sp(z) — f(z)). If

lim Ry (z) =0, lim Ry(z) = o0 (2)

00 M—oo

then Sys(z) is the asymptotic expansion of f(z)as z — oo,
and we write

f(z) = Seo () 3)

Some important well-known points are that the ¢;, if they
exist, are unique, but infinitely many different functions
have the same asymptotic expansion[35]. We shall say that
Sw(z) is the M-th order asymptotic expansion of f(z).

o
o
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FIG. 1. Ai(—z) (black) and its asymptotic expansion to zero
(blue), first (red), second (purple), and third (green) orders.

A simple example is provided by the Airy function of neg-
ative argument. In Fig 1, we plot this exactly and using its
asymptotic expansion of ever increasing order:

: 1 i(z4m
Ai(—z) = mi‘s{(z G+m/4 4 (2)} (4)
where z = 22%/2/3 and
- 5i 385
w(z) = ij(z) =1- 722~ 1036822 +.,  (5)

=0

where wg = 1, and

e i NV
'll}]+1 = 2, ] 36(]+ 1) 'll}].

From Fig. 1 we see that, for = sufficiently large (here
about 1.5), the asymptotic expansion is extremely accurate.
On the other hand, for z sufficiently small, succesive or-
ders worsen the approximation, and zero-order is least bad.
Moreover, inbetween, such as at = = 1, addition of orders
at first improves the result and then worsens it. In Fig. 2,
we plot the errors of the successive asymptotic approxima-
tons. First note that the scale is 30 times smaller than Fig.
1, and we have begun at z = 1. We see that even at = = 2,
the asymptotic behavior has kicked in, and incredibly tiny
errors are made even for M = 2. To be certain that this is
truely an asymptotic expansion, even though the terms in
Eq. 5 appear to be getting smaller, Eq. 5 shows that as
j — 00, w;j & j!/27 which diverges for any value of z.



2. BACKGROUND

Deriving approximate functionals with asymptotics

0.03
0.02

001}/ \/ |

-0.02 /

Error in M-th order

D08 b
1 15 2 25 3 35 4 45 5
X

FIG. 2. Errors at each order, labelling same as Fig 1.

So, suppose we wish to approximate Ai(—z) for all z
starting at some finite value, such as =z = 1. We define
M,(z) as the value of M with the least error, which we re-
fer to as the optimal truncation. Then, if we want a ‘best’
approximation to our function by truncating our asymptotic
expansion, we truncate at M,(1). We know that as z in-
creases (at least in the asymptotic regime), the error of this
truncated expansion will reduce. Thus we expect our max-
imum error to be at our lowest z, and this truncation will
minimize our worst error. In the top half of Table |, we
illustrate this with several orders and several values of z.

Order 0 1 2 3 I M,
T Errors
0.5 | 0.0964 -0.0069 -0.3893 0.1192] 1
1.0 | 0.0247 0.0177 -0.0291 -0.0248| 1
1.5 |[-0.0029 0.0094 -0.0020 -0.0042| 2
2.0 [-0.0123 0.0033 0.0010 -0.0002| 3
T Additions
0.5 | 0.5721 -0.1033 -0.3824 0.5085| 1
1.0 | 0.5602 -0.0070 -0.0468 0.0043| 1
1.5 | 0.4614 0.0123 -0.0114 -0.0022| 2
2.0 | 0.2151 0.0156 -0.0022 -0.0012| 3

TABLE 1. Errors in asymptotic expansion of Ai(—z), and
contributions added at each order.

But hold on. We have surely cheated here, because we
used our knowledge of the error to choose where to trun-
cate, which required knowing the function in the first place!
However, a simple heuristic that usually works is to simply
look at the magnitude of the terms that are being added in
each increase in order. These will typically reduce at first,
and then eventually increase. The pragmatic optimal trun-
cation procedure is to simply stop when the next addition is
larger in magnitude than the previous one. We see in Table
| that this indeed corresponds to optimal truncation.

Of greater interest for our purposes will be the asymptotic
expansion for the zeroes of Ai(—z), defined by

j=1,2,3.. (7)

in order of increasing magnitude. Later, we will show that
these are the eigenvalues of a potential. Each order of trun-

Ai(—a;) =0,

cation of the expansion of Ai(—z) in Eq. 4 implies an
asymptotic expansion of a; to the same order, yielding

3T
Y — 2

TTL

2n?
Y=
n=0 JJ

2/3
aj = y;

(U —1/4) (8)

where the T, are found and listed in B (appendix B), the
first few being 1,5/48, —5/35, .... Because the lowest zero
is about 2.34, the asymptotic behavior already dominates
for every zero.

So far we have covered basics in most methods books,
such as Arfken[36]. But now we approach this from a more
modern viewpoint, which holds that often, with the right
procedure, much more useful information can be extracted
from such an expansion, especially in cases that occur in
physical problems, i.e., functions that are solutions to rel-
atively simple differential equations[30]. These methods
might generically be called hyperasymptotics[35, 37], and
often begin with the ‘asymptotics of the asymptotics’, i.e.,
asking what is the behavior of ¢,, for large nin Eq. 1. Know-
ing this, one can use a variety of techniques to approximate
the rest of the sum to infinity, and extract features that
are entirely missed in the definition given above. However,
to take advantage of such techniques, one must be able to
write the expansion to arbitrary order, and then deduce its
behavior.

Log,glerror]|

Order

FIG. 3. Expansion to many orders of a;, the lowest zero of
Ai(—=z): the additions (black) and errors (blue).

In Fig. 1, we see the first two zeroes, at about 2.34
and 4.09. In Fig. 3, we plot both the magnitude of the
correction and the magnitude of the error, on a log (base
10) scale, as a function of the order of the approximation,
M, in Eq. 8. We see the generic nature of the asymptotic
expansion. For small M, the additions are quite large. To
zero order, the error is of order 0.02. As more terms are
added, the magnitude of the additions becomes smaller,
as does the error. But at M = 4, the magnitude of the
correction is larger than that of M = 3, so 3 is the optimal
truncation point. We see that indeed the error also begins
to grow. For large M, the additions become so big that
they dominate the error, so the two curves merge. Thus,
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with simple optimal truncation, our best possible estimate
for the lowest zero is with M = 3.

Log,lerror|

Order

FIG. 4. Errors of Fig. 3, but now for first 6 zeroes, the first
being black, the 6th being brown.

In Fig. 4, we show what happens for higher zeroes. Now
the blue curve shows the magnitude of the error for the
second zero. Because it is at a higher value, the optimal
truncation occurs at larger M, here about 6. In fact, the
analysis of B shows M,(n) — |7 * n| for the n-th zero
as n — oo. The brown curve is for the sixth level, where
the lowest error is at M about 18, and is of order 1018,
This demonstrates the insane levels of accuracy that can
be achieved with very elementary means using asymptotic
expansions.

Even the lowest order asymptotic expansion is often
rather accurate, once the asymptotic parameter does not
come close to 0. To write an approximate formula and ap-
ply it to all zeroes, one should optimally truncate for the
lowest level: All higher levels will then have lower errors (no
lines cross in Fig. 4). For any level above the lowest, much
greater accuracy can be achieved by optimal truncation for
that level (at a much higher order), but including those
higher orders would be disastrous for the approximation of
the lower levels. For example, for the 6th level, truncation
at 18th order yields errors of order 10~'#, but errors of or-
der 10~ for the fifth level, 10~ for the 4th, and errors
greater than a Hartree for the lowest two levels. To get the
lowest error for every level with a given truncation, Fig. 4
requires truncation at 3rd order.

2.2. Notation and potentials

We choose units with m = h = 1, so the 1d Schrodinger
equation is

2
(12 )o@ =auw O

where j = 1,2,..M, if only M states are bound. We will
consider a variety of shapes of potential and boundary con-
ditions. A hard-wall boundary condition is one where the

wavefunction vanishes identically, and nothing exists beyond
the wall. An asymptotically bound potential is one where
the potential diverges as z — 00, so that the system has
only discrete states. Hard walls are a subset of these. Fi-
nally, there is the situation that is closer to realistic, where
the potential is asymptotically free, i.e., tends to a finite
constant. We assume v(z) has a minimum which we choose
to be at the origin, and set the constant to make v(0) = 0.
Thus such potentials tend to D as & — oo, where D is the
well-depth.

Specific examples in this paper include the particle in a
box, where v = 0 between hard walls at =z = +L/2, with
eigenvalues

7r2 j2

and the harmonic oscillator w?z?/2,

o1
G=wi-3) (HO). (11)
(The unfamiliar minus sign is because the index j begins at
1.) Another analytically solvable case is the Poschl-Teller
(PT) well of depth D

v(z) = D—D/ cosh®(z), € = ])—((1,,_+%—j)2/2 (PT),
(12)
where o, = /2D +1/4 and j < . + 1/2. Our last (and

most interesting) example is the linear well F'|z|, with F a
positive constant whose eigenvalues are

s = (%)/ 4 (W), (13

where dy;j 1 is the j-th zero of Ai'(—xz) and dy; is the j-th
zero of Ai(—zx).

For a symmetric potential v(z), one can always place a
hard wall at the origin. Then the states of odd parity (even
number with our indexing) become the only eigenstates.
We call these half wells. For example, for the linear half-
well with ¥ = /2, only the even levels survive, and are
given precisely by the zeroes of Ai(—xz) shown in Fig. 1,
i.e., de = aj of Eq. 8.

2.3. Non-interacting (Kohn-Sham) fermions

In text books, one usually solves these 1d problems for
individual eigenstates. But we consider these as KS poten-
tials of some many-body problem, presumably with some
approximate XC functional. As such, we occupy the lowest
N levels. If we keep all spins the same, the total energy is
then

N

Ex =) €. (14)

=1
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For our simple examples,

w2 3

: 1
_ 3 2 ar2 - >
Enx 6L2<N +2N +2N) (PIB)
N?

—w— (HO

w5 (HO)

_ Qe NN

2 6 12 (PT)

(15)

In the last case, there is no simple exact closed form.

The central problem of orbital-free density functional
theory[4, 38—44] is to find sufficiently accurate approxima-
tions for T[n|, the kinetic energy of non-interacting elec-
trons as a functional of their single particle density, n(r).
Functional differentiation and insertion into an Euler equa-
tion yields an equation to be solved directly for the density,
avoiding the need to solve the KS equations. Here, the re-
quired level of accuracy is substantially higher than for XC,
as the kinetic energy is comparable to the entire KS energy.
Moreover, since the density of a given problem will be found
by minimizing the energy with the approximate 7}[n|, the
functional derivative must also be sufficiently so that the
approximate density also does not produce an unacceptable
error[45].

In fact, the original Thomas-Fermi (TF) theory[38, 39|
has precisely this form for the kinetic energy, but it is not
very accurate, its underlying density has many peculiarities,
and it does not even bind atoms in molecules[41]. The form
of the TF kinetic energy for spin-unpolarized electrons in 3d
is simply:

3(37r2)2/3
10

We will call electrons in a KS potential NIFs, meaning
non-interacting fermions. The effect of the Pauli principle
is simply to make them occupy the lowest /N orbitals. More-
over, to avoid keeping track of endless factors of 2[46], we
simply choose them all to have the same spin. For such
spin-polarized NIFS in 1D, the analog of the above is

T [n] = /d3r n®/3(r). (3D, unpol.) (16)

TR T [ 3
T n| = 6/ dzn’(z). (1D, pol.) (17)

This is of course the local density approximation for the
kinetic energy, and is exact for a fully polarized uniform
electron gas. (As densities scale with inverse volume, and
the kinetic energy operator is a square gradient, in d dimen-
sions the local density approximation to 7 always has power
n(4+2)/d and its prefactor is determined by the uniform gas
or the large N limit of any system.)

Thus if one could achieve very high accuracy in an ap-
proximate 7y without incurring much computational cost
beyond TF, orbital-free DFT could make solving the KS
equations obsolete[44], and reduce the cost of DFT calcu-
lations to that of solving Poisson's equation. From a regular
quantum viewpoint, this is all a very elaborate approach to
approximating the sum in Eq. 14.

2.4. Semiclassical approximations

Semiclassical approximations are ubiquitous in physics
and chemistry, but are rarely used directly in electronic
structure calculations at present[47]. All such expansions
involve powers of h that become relatively accurate in
the small % limit. Our interest will be in finding eigen-
states of the Schrodinger equation, specifically in one di-
mension. In this case, the WKB approximation[48-51] is
well-known and appears in many introductory text on quan-
tum mechanics[7]. The WKB formula for eigenvalues is the
implicit formula

Afe) = 2(j — B/4),

where A is the classical action at energy ¢ over a complete
closed orbit and j3 is the Maslov index[52]. The Maslov
index distinguishes between hard wall reflections and true
turning points, i.e., those where the slope of the potential is
finite. There is no contribution for a hard wall, but for each
true turning point, /3 increases by 1. For our 1d examples,
each full orbit yields a contribution equal to double a transit
from left to right. Thus we write

i=12,.., (18)

IWKB(¢) = /_00 drp(z,e) =7 — v, (19)

where p = Ry/2(e —v(z)) is the classical momentum at

energy ¢ in the well, and v = 0 if there are only hard walls,
and increases by 1/4 for each true turning point.

We can apply the WKB approximation to each of our
wells. For the PIB, v =0, p = V2¢ and TWKB — Lp, yield-
ing the exact answer as v = (. Similarly, for the HO, and
IWKB — ¢/w, again yielding the exact answer, as p = 1/2.
The first can be attributed to the equivalence of semiclassi-
cal and exact quantum motion for a constant potential, the
second to the exactness of semiclassical results in harmonic
potentials. For the PT well,

IWKB(¢) = V2D — 2D — ¢

which recovers the dominant semiclassical approximation,
using v = 1/2:

VB (z) = V2D — 2%/2

Finally, for the linear half-well, with v = 1/4:

e

In fact, for F = /2, these are precisely the zeroes of the
leading order expansion of Ai(—z) of Sec. 2.1. For the
linear half-well, the exact expression for [ is

(PT), (20)

(PT). (21)

2 3
37r€ ’

€) = €

IWKB( ) WKB(.T) _

1) z + S(logw(z)) ,

™

2
_ 232

(LHW), (23)

where

w(z(z)) = Vrzt/te G/ (Bi(x) + iAi(—z)), (24)
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and Bi(z) is the other independent solution of the Airy
equation|[33, 53]. For every well in Sec. 2.2,

e > eV B —v), j— oo (25)

But the WKB approximation is just the first term in a del-

icate asymptotic expansion in h, as shown by Dunham[51].

We can define an expansion in powers of £, here represented

by a dimensionless parameter 7, via
L) =Y 1®M(e), (26)
k=0

where KB is just the leading term. Then

Iy(e) = n(j —v), (27)

determines the eigenvalues implicitly, which can be inverted
power by power to yield an expansion for the energy levels
which becomes more accurate as j increases. This expan-
sion is well-known[54], but is subtle for systems with turning
points. The naive corrections formally diverge at the turn-
ing points, but these divergences are exactly cancelled by
other terms in the wavefunction, yielding finite contribu-
tions in every order. This is the semiclassical expansion we
are interested in, but we wish to find sums over levels, not
individual eigenenergies.

Back in the 1950's and 1960's, there was considerable
activity attempting to use semiclassical approximations to
do electronic structure calculations, especially by the Miller
group[12, 13]. In fact, Kohn and Sham developed a remark-
ably insightful approach[55] just months before their most
popular paper|[2], whose ultimate success for numerical com-
putation overwhelmed interest in semiclassical approaches.
There was much interest in semiclassical methods for more
than one dimension in the area of quantum chaos[56].

One can also deduce, e.g., approximate wavefunctions
(see Sec. 2.8 below) in the WKB expansion[7]. Using WKB
wavefunctions to find approximate energies, e.g., by evalu-
ating the Hamiltonian on them, yields different results[57]
than those for the eigenvalues, Eq. 18. All semiclassical
methods[58] require extreme care in defining precisely the
nature of the expansion and which quantities should be held
fixed.

2.5. Semiclassical limit

We next consider specifically the semiclassical limit for the
sum of the energies. In this case, one simply integrates the
WKB energies over the required number of levels. For al-
most any potential, it can be shown numerous ways that[59]

N
En = / dr V() ~ ETF, h—0, (28)
0

and none of the details of the corrections matter. The TF
approximation can be treated as a functional of either the
density or the potential (see Sec 2.7 below) and the results

are the same. Alternatively, it is a straightforward matter
to extract the kinetic contribution alone[59] and find the
local density approximation to the kinetic energy. Thus,
the local approximation (here TF) becomes relatively exact
for all problems in this semiclassical limit. This is a simple
case of the much harder proof by Lieb and Simon of the
same statement for all Coulomb-interacting matter[18]. In
the language of Sec 2.1, the TF theory yields the dominant
contribution in an asymptotic series for all matter, which
implies that its relative error vanishes in the limit, Eq. 2.

2.6. Gradient expansion in DFT

We focus here on the non-interacting kinetic energy,
whose gradient expansion was performed by Kirzhnits[60],
for a slowly-varying gas, using the Wigner-Kirkwood
expansion[61, 62]. Ideas of gradient expansions permeate
the HK[63] and KS papers[2] that created modern DFT,
for both the full functional and its XC contribution. The
first generalized gradient expansion for correlation was from
Ma and Bruckner[64], from which many modern GGA's are
descended.

Here we consider only the non-interating kinetic energy
in one dimension. In that case, Samaj and Percus did a
thorough job[65], showing how to generate the expansion
to arbitrary order. We focus on several key points. First,
they expand both the density and the kinetic energy den-
sity as functionals of the potential. (This is, after all, how
quantum mechanics normally works.) Given a potential, the
expansion for the density is

oy ke(2) > aj(z)
O e

=0

where 3; = 1-27, kp = \/2(p — v(z)) and p is determined
by normalization. The analogous formula for a kinetic en-
ergy density #(z) is found by multiplying by k%(z)/2 and
replacing f3; by 341, where t(z) is a function whose integral
yields T'. The coefficients in the expansion are[65]

ao=1, a1 =0, az= (ki +kpklt)/4,.. (30)

Inserting Eq. 29 into #(x), and expanding in small gradients,
yields:

TOEA ) — %Q/dr n3(z)—i/dz (Z—:)Q+ (31)

This is the exact analog of the usual expansion in 3D[4],
except this is the spin-polarized form, and the coefficient of
the von Weisacker contribution is 1/9 in 3D but —1/3 in
1D. The gradient expansion is known to 6-th order in 3D[66]
and has been numerically validated under conditions where
gradient expansions apply[67]. It has also been noticed that,
for non-analytic potentials, evaluation of the higher-order
terms depends sensitively on the boundary conditions[68].
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2.7. Potential functionals versus density functionals

The creation of modern DFT and the KS equations has
clearly been very successful. However, standard approaches
to quantum mechanics yield algorithms that predict, for ex-
ample, the energy as a functional of a given potential, v(z)
here. In the context of KS-DFT, Yang, Ayers, and Wu[69]
first clearly showed the relation between potential function-
als and density functionals. But semiclassical approxima-
tions yield results for a given potential, not density. Thus
Cangi et al[70-72] revisited the entire framework of density
functional theory, from the HK viewpoint, and showed that
a logical alternative was to create a potential functional that
also satisfied a minimum principle, namely

F, = Fln,), (32)

where F'[n] is the universal part of the energy functional and
n,(r) is the ground-state density of potential v(r). Then

Eo = min {F,,' + / v n,,,'} , (33)

yields the exact ground-state energy and v = v’ at the
minimum[71]. Given an expression for n,, various strate-
gies can be used to construct a corresponding F, and so
the entire energy can be found. In the specific case of TF
theory, Eq. 17 yields exactly the same results for any sys-
tem whether expressed as a density functional or a potential
functional. More sophistacted approximations for the den-
sity including higher-order expansions in h (see next section)
are typically not designed to be variational[73], and mini-
mization might worsen results. Such minimizations are not
needed if direct application to the external potenial already
yields highly accurate results[74].

2.8. Uniform approximations for the density

To find semiclassical expansions for the density as a func-
tional of the potential, one can start from WKB wavefunc-
tions. With hard walls, the wavefunctions are simple

@) sinf;(z), (34)

where p;(z) is the classical momentum in the j-th WKB
eigenstate, wj is the frequency of its orbit, and #,(z) is the
phase accumulated from the left wall[75]. Using a variation
on the standard Euler-Maclaurin formula (Eq. 43 below)
in asymptotic form, this yields a uniform approximation to
the density. For any value of =z, WKB provides the dom-
inant contribution as i — 0, and its leading corrections
provide the next order in the asymptotic series. Early on,
it was shown how to extract an accurate approximation to
both the density and the kinetic energy density with hard-
wall boundary conditions, by evaluating the next order in
the WKB expansion for the wavefunctions, and summing

the result[74, 75]. The leading corrections to the kinetic
energy density integrated to yield the leading correction to
the kinetic energy as an expansion in h.

However, the WKB wavefunctions are well-known to di-
verge at a true turning point. Langer[76] found a semiclas-
sical wavefunction that remains uniformly accurate through
the turning point, by replacing sinf; in Eq. 34 with

2/ (x) Ai[~z(=)], (35)
where z; = [30j(z)/2]2/3. Some years later[77], and with
considerable difficulty[78], it was deduced how to repeat the
same procedure for a well with real turning points, creat-
ing a uniform approximation for the density in a well with
turning points, i.e., one whose error, relative to the local
approximation, vanishes for all = as /i vanishes. Note that
the expansion in £ is in different orders depending on how
close z is to the turning point.

The resulting approximations are exceedingly accurate for
both the density and the kinetic energy density pointwise,
but surprisingly do not yield more accurate energies[79)].
When analyzed, it was found that the expansion in wave-
functions yields energetic corrections of order i'/%, but the
leading corrections are of order ﬁ[79}. This was explained
by showing that the coefficient of 4'/? vanishes identically!
Thus, this expansion would have to be continued to two
more orders to yield the leading correction to the energy,
which might take generations to derive. Instead, analysis of
the simple potentials[79] used to test the uniform appoxi-
mations showed that direct sums over eigenvalues can yield
the leading corrections to sums over N occupied orbitals,
bypassing (for now) the density and any other real-space
quantity entirely.

3. THEORY
3.1. Summation formulas

We begin our theoretical development with an unusual
form of the Euler-Maclarin formula from Hua[80]

b
Y 10) = [ de(f(a)+ P @) - (A,
a<j<b o

(36)
where a,b are real numbers, f'(z) = df/dr must be
continuous, and P;(z) is the first periodized Bernouilli
polynomial[33]. The periodized Bernouilli polynomials are

Py(z) = Bi(z — [z]), (37)

where By (z) is a Bernouilli polynomial, and where |z| is
the integer part of . The Bernouilli polynomials, of order
k, satisfy many simple conditions, with the lowest few being
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The famous Bernouilli numbers are then
By = By(1), (39)

which vanish for all odd k, except B; = 1/2. Eq. 36 is an
unusual form because a and b are continuous.

We next perform the standard trick of repeated integra-
tion by parts, leading to

Do fG) =D D+ Ry, (40)
k=0

a<j<b

where the end-point contributions are

—1)k b
=L [m@rev@] . @
and the remainder is
—1)pt+1 b
R, = % /u dz P,(z) f®)(z). (42)

Eq. 40 is true for any p > 1, so long as the p-th derivative
of f(z) is continuous. Here, the term f(~1)(z) is simply
the antiderivative, so the integral is Dy. The p =1 case is
Eq. 36. We call Eq. 40 the extended Euler-Maclaurin form,
and we use several variations in what follows.

We note some remarkable features of Eq. 40. First,
any sufficiently smooth function of z that matches f; at
the integers yields exactly the same sum, so that all differ-
ences in the integral on the right must be cancelled by the
other terms. Thus, there are many allowed choices for f(z)
that yield the exact sum. Adding any sufficiently smooth
g(z) sin(mz) to an acceptable f does not change the sum.
Next, we note that for any range of a and b between inte-
gers, the sum does not change but the integral does, so
again such changes must be absorbed by the remaining
terms. Lastly, we note that the formula is exact for ev-
ery p. Choosing a low p requires less derivatives, but often
the remainder term is more difficult to evaluate.

Of course, there are many different ways to write this
formula that are useful in different contexts. The special
case a = 1_ and b = N recovers the commonly given
form of Euler-Maclaurin,

N N
S ti= [ deso)+ RO gy

lfj Do ((fED () - fOD())  (43)
T2 n)! » (&

where the remainder term is the same as above. The plus
sign in the second term on the right occurs because of the
discontinuity in P (z) across an integer, and the vanishing
of even derivatives is because all odd Bernouilli numbers are
zero, except By. This form is perhaps most familar when
approximating an integral by a sum, but we never use it
here.

Next, consider the special case ) <a < 1and b = N +a.
Then the sum becomes specifically that of the first N terms:

N
Sy =Y f), (44)
j=1
while the end contributions simplify to
_1\k N+a
() = S B [140@)] " as)

We will have use for two special cases. The first isa = 1/2,
and since[33]

Br(1/2) = —(1 — 2" ) By, (46)

then only even terms contribute to the end-points. The
other case we will use is the limit as @ — 1, so that By (a) =
Bk, and

) = C g, [0 )™

i (47)

no longer vanishes for k = 1. Both these special cases will
be of value: The first yields some of the key the results of
A, the second of B.

3.2. Sums of eigenvalues

We first use Eq. 36 to derive a general exact formula for
the sum of N energy levels in terms of €(z). From Sec 2.4,
we know €; = €(j — v). Using this, we find for the sum of
the first N energies:

En = 21‘; Di(a) + Ry(a), (48)
where i
@) = L b [#0@)] ", @)
and
Ry(a) = (_1[)7)'1*1 / e dz Py(z +v)eP(z),  (50)

with @ = a — v. In the special case a = v, all integrals and
evaluations run from 0 to N. Finally, for the standard case
of two real turning points, insert ¥ = 1/2 in both Dy (v)
and R,(v) to yield

N - 1 1
En :/0 d:z:e(:z:)+§])k(§)+1£p(§). (51)

For the choice p = 1, because B;(1/2) = 0 the end-term
vanishes, yielding the elegant result

N
B~ [ ds () + @) (0= 50=1) (52
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where (z) = Py(z + 1/2), and 2T'P denotes two turning
points. This is recognizable as Eq. 14 of A, but was derived
here by more elementary means.

The analysis of A is confined tov =1/2 and p = 1. The
current formulas apply to all possible potentials, i.e., any
Maslov index, and allow higher choices of p. For example,
the p = 1 result for arbitrary v yields

By =BT (-0 l@ly, b=1)  (3)

i.e., there is a simple correction whenever v differs from
1/2. It is straightforward to check that Eq. 53 produces
the exact sum when used correctly. For example, for a half-
harmonic oscillator, v = 1/4 and ¢(z) = 2wz. In this case,
the 2TP contribution is easy to calculate as the second term
vanishes, due to the constancy of ¢ and the periodicity of
(z), yielding wN?. But there is also a finite addition of
€(N)/4 to produce the exact Eny = wN(N +1/2). Similar
corrections are also needed to recover the exact sum for the
particle in a box. This illustrates the significance of the
correct Maslov index in all such calculations.

3.3. Leading correction to local approximation

In this section, we use Eq. 40 to examine just the lead-
ing correction to the local approximation. Because classical
action is a monotonically increasing function of ¢ as one
climbs up a well, then ¢(z) also grows monotonically, so
its integral grows even more rapidly. On the other hand,
its derivative will be less rapidly growing, and the periodic
term (z) averages to zero with a constant function. Thus
this term is smaller than the dominant term.

Expanding I in even powers of 1 as in Eq. 27, we find
two leading corrections to the local approximation to second
order:

AE® — /0 i (€<2)(z)+<z)d£)). (54)

Thus there are two corrections: Those due to the next order
in the WKB expansion inside the dominant integral while
others are the error made in approximating the sum over
WKB eigenvalues by an integral. In the case of extended
systems where there are no turning points, i.e., slowlying
varying densities, the spacing between levels goes to zero in
the thermodynamic limit, and the latter correction vanishes.
Thus the gradient expansion of Sec. 2.6 misses such terms
completely.

In principle, Eq. 53 also applies to the linear well, but
its expansion is more difficult than the previous case. In
particular, the asymptotic expansion diverges at z = 0, the
start of our integral, making it impossible to work with. We
thus use a different version, as developed in B.

3.4. Hyperasymptotics

We now turn to the work of Ref B. We see immediately
that Eq. 52 is not useful for asymptotic expansions in pow-

ers of h, as it includes energies down to zero, where asymp-
totic expansions like that of Eq. 1 diverge. In fact, we
use Eq. 47, in which both a and b have been maximized,
for a given sum from 1 to N. This idea already appeared
in the contour chosen in Ref [55], which circles a pole in
the Green's function at €x1. Thus we choose our second
variation to explore asymptotic expansions:

e = CX B [cen@)] ™ o)
and
_1\pt+1 N+v
1?,,(1):% / dz Py(z +v)e®(z),  (56)

where v = 1 — v. The first three D's are:

% @I + = [ (@)

[E1(‘I‘)]£V+I7 - 7 12 7 ’

v (57)
where E(z) is the antiderivative of ¢(z). These forms apply
to all wells for any p > 0, but have the advantage of being
evaluated at the largest possible energies.

It is trivial to check that these forms yield both the exact
results for all the simple potentials we have encountered
so far, for any choice of p. They also recover the leading
correction to the semiclassical expansion for the PT well,
producing two corrections, one from the 2nd-order WKB,
and the other either from D, or R, just as in Eq. 54.

But the real use is in hyperasymptotics, i.e., performing
asymptotic expansions to high orders. We apply our formu-
las to the half linear well, so that v = 1/4 and v = 3/4. We
perform the WKB expansion to find an asymptotic series in
even powers of 7) for the energies:

m

em(z) = *)(z). (58)

p=0

Inserting this in the summation formula, we chose p = m,
which guarantees the remainder term is of order m + 1 or
greater. The k-th end-point term contains orders k — 1 to
m + k — 1 due to the derivatives, but the terms beyond
m can be discarded to find the asymptotic approximant of
order m.. We can write the result very simply as:

M
EN ~ Z (Sm(N + V) - Sm(’/)) ’ (59)

m=0

where

m

B2k m— — 1 m
Sp(z) = Z (2_k))!€(2( k).2k=1) () 55(2 )(z), (60)
k=0

where the first superscript indicates the power of expansion
in 77 and the second denotes the number of derivatives taken.
This recovers exactly the expansion in Eq. (6.4) of Ref B.
The asymptotic expansion is evaluated at N + 1 rather than
at N in the regular EM formula. This confers two distinct
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advantages: For a given order, our errors are typically much
smaller when the index is increased by 1, and secondly, since
the order of optimal truncation is |7 N |, by evaluating at
N + 1, three additional orders are added to the optimally
truncated series, with their concommitant improvement in
accuracy.

We note that one need only evaluate each contribution
in Eq. 59 at the upper end. Taking N = 0 and subtracting
then yields Sy, guaranteeing correctly its vanishing for N =
0. Thus we have recovered the main one-dimensional result
of Ref B without need for (but also missing the elegance
of) regularizing sums as N — oo. Eq. 59 can be applied
directly to finite wells, such as PT or the truncated linear
half-well of Ref. [81].

Loglerror|

4 5 6 7 8

Order

2 3

FIG. 5. Errors of Fig. 3 (black) and from summation formula,
Eq. 66 (blue).

We show some results from the summation formula for
the linear half well in Fig. 5 for N = 1, where E; = €.
The summation formula is less accurate than the original
formula for M = 0, but is much more accurate even for
M = 3 (by two orders of magnitude). More importantly,
its optimal truncation is at 6, producing almost 3 orders of
magnitude in improvement, i.e., going from milliHartrees to
microHartrees errors!

Log,glerror]|

Order

FIG. 6. Same as Fig. 5, but adding curves for first excited
state (red) and the sum of lowest two energies (purple).

10

To see that this is due to our evaluation at N + 1, in
Fig. 6 we add in the second eigenvalue and the second
sum, Fy = €1 + e3. lts error curve is almost identical to
that of the summation formula for the first level. Of course,
the summation formula for the 2nd level has leaped ahead
again, with errors of nanoHartrees at the optimal truncation
of M = 9!

Loglerror|
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Order
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FIG. 7. Same as Fig. 5, but for the 6th level and its sum.

Finally, we attempt to show the error in the 6th level in
Fig. 7. The black line here is for the error in individual level,
and so matches the purple line of Fig. 5. But the blue line
is the error in the summation formula, which appears to be
least at optimal truncation of about M = 21, where the
error is about 10 zeptoHartrees. (The noise in the curve is
caused by numerical imprecision.)

3.5. Alternative summation formula

So far, our analysis has shown that the key formulas of
A and B are special cases of the extended Euler-Maclaurin
formula, Eq. 40. The formulas of A apply only to two
turning points, and cannot be used as a basis for asymptotic
expansion, because the energy function must be evaluated
at 0. The formulas of B require an infinite set of eigenvalues,
but our Eq. 60 allows them to be applied to a finite number.
Eq. 60 contains the Maslov index explicitly and has no
difficulties at the lower-end, which does not vanish, even in
the two turning point case.

But can we find a single formula that covers all cases?
The primary aim is to generate an expansion for large N,
in which one can write exact expressions for the error. For
any monontonically increasing function of z, as our eigen-
values are defined to be, the large-N limit of the sum is
dominated by the integral. The leading correction is always
given by the end-point contribution near z = N. Thus,
choosing our upper end-point as N + 1/2 always eliminates
that contribution, simplifying the result. Equally, we choose
a = 1 always, so that the lower energy, even in the pres-
ence of two turning points, does not vanish. This yields the
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ungainly but practical
lp/2]

D
k=1
(61)

where b = N +1/2 —v, a=1—v, and A, is of order
¢®P)(N) and is given exactly by

2 _
D)D)+ A,

Boy,
k)

Ey = / ' dze(z) —

a

(1-

P
B
— Zk (k-1)

P k!
k=1

A (a) + R,. (62)

Since the integration interval is no longer an integer, 2,
does not vanish beyond a maximum p for simple powers.
We emphasize that this is an exact formula for all potentials
that are sufficiently smooth (the p-th derivative must be
continuous), and can be applied with any p > 1, and to any
boundary conditions. Curiously, almost the same form (but
with a = 1/2) was used in Eq. 22 of Ref. [74] to perform
the summation correctly, but without explanation for why
it had this form, or the role of the Maslov index.

For the linear half well, Eq. 61 yields the simple closed-
form asymptotic expansion

= 5/3—2j 3r -
En =~ Zdﬂm/ Lo =N, (63)
=0
where N = N + 1/4, and
2 T; m .
’ Ty (8/3-2).  (64)

17 3r5/3-2j 16

This generates exactly the same asymptotic expansion in NV
as Eq. 6.4 of B, but in a simpler form and with terms that
differ only by even powers of z,,. The first two terms are:

2/3 ;o
ENz<327r) (21\,5/3 +) (65)

This is identical to, but simpler than, Eq. (6.4) of B. The
GEA of Sec. 2.6 includes only contributions from the in-
tegral in Eq. 61. In the 2nd term, GEA does not include
the 72 contribution in the numerator, reducing the overall
coefficient by a factor of about 3, and so misses the correct
asymptotic expansion.

5+ w2
36m2N1/3

4. RELATION TO DFT

4.1. Error in gradient expansion

While these are impressive ways to sum N eigenvalues,
what do they mean for DFT calculations? We focus on the
relation to orbital-free DFT in one dimension (not a very
practical application, admittedly).

We first consider the direct potential functional form of
the gradient expansion, given in Eq 29 of Sec 2.6. All terms
can be combined to yield the gradient expansion for the to-
tal energy. This yields formulas identical to those we find

11

from the WKB expansion inserted into the integral term,
Dy, and totally misses the corrections from the rest of the
expansion for any system with discrete levels, as are atoms
and molecules. If this term is included, the results are much
more accurate (see Table | of A), because the correct asymp-
totic expansion has been included to the given order. As
shown throughout these works, the sums are much more
accurate than the original expansion for the individual lev-
els. Without this term, one has only part of the correction,
and can make at best crude guesses (possibly using exact
conditions) that yield moderate improvements at best over
the excellent zero-th order contribution.

In Ref A, the correction was first isolated, but only for
v = 1/2. We can now give the corrections in all cases to
every order. In Eq. 59, the gradient expansion accounts
only for those terms of order m in the WKB expansion that
occur with the same order in the summation, i.e., only the
D contribution to the sum. Thus

SGEA @) = BC™ (@) — P (@) (66)
for m > 0, and the missing terms are
ASCEA(g) = Z Bo e @m0 (67)
— (2k)!
For example, the leading-order missing correction is
ASCEA(z) = 1—12’1;(:) : (68)

This is the term that was identified in A. Without it, the
2nd-order gradient expansion approximation was, at best,
an erratic correction to the local approximation. Including
it gave accuracies about 30 times better than the domi-
nant term. Again, adding the next order led to errors of
microHartree order. Our formulae allow one to extract this
missing term to any Maslov index, and so allow it to be
computed, e.g., for the linear half-well. More importantly,
they can be (in principle) applied to all orders (once the
WKB expansion has been performed to a similar order).

4.2. Understanding aspects of practical KS-DFT

This 1D world may seem very far from the real world
of realistic, practical electronic structure with Coulomb-
repelling electrons being Coulomb-attracted to nuclei, but
many of the difficulties and problems with practical approx-
imate functionals show up in simpler forms here.

For example, many semilocal functionals perform worst
for one particle. We see here that all our results are worst
for the lowest level, because the expansion is asymptotic in
the particle number, N. Hence self-interaction error[82] is
a chief source of error in semilocal XC calculations.

Semilocal approximations to XC fail when a bond is
stretched, often breaking symmetry at a Coulson-Fischer
point[83]. We see here that, as a bond is stretched, there is
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a critical distance in which the well goes from a single well
to two. Beyond that point, one can perform the expansion
in the separate wells, but it is a different expansion from the
one that applies to a single well. Thus the asymptotic ex-
pansion relevant at equilibrium becomes irrelevant (and so
highly inaccurate) as the well splits in two. For interacting
electrons, this effect is accompanied by a multi-reference
character to the interacting wavefunction.

A third insight, not explored here, is the derivative discon-
tinuities in the energies as a function of continuous particle
number N[84, 85]. The methodology of A demonstrates
this explicitly, and the present techniques will be expanded
to include this in the future.

4.3. Importance for practical calculations

Insights from studying these one-dimensional situations
have already contributed to understanding and creating
modern functional approximations. For example, the pa-
rameter in B88 exchange GGA[24] was derived in Ref. [22],
a mere 21 years after it was first proposed. The derivation
yields a value within 10% of the fitted value of B88 (and
is less accurate for real systems). One of two crucial con-
ditions in constructing PBEsol[86], namely the restoration
of the second-order gradient expansion for exchange, came
from these insights. In fact, the current work may lead to
insight into the second condition, which is the restoration
of the LDA surface energy for jellium. Eq. 65 contains a
correction missed by the GEA due to the surface of a lin-
ear potential, just the kind of correction being extracted
from the edge electron gas[87-89]. Moreover, Ref. [23]
showed that even the correlation energy of finite systems
finally tends to its LDA value (at least for atoms, but loga-
rithmically slowly). Several of these asymptotic conditions
for atoms as N — oo were built into SCAN[90] and other

approximate functionals[91]. Finally, we mention that all
chemical and materials properties depend on energy differ-
ences, not total energies. Ref. [92] showed that, for atoms
with certain plausible assumptions, the ionization potential
is given exactly by KS-LDA calculations in the asymptotic
limit.

It is tantalizing to note that Ref. [22] found that the
asymptotic correction to the local density approximation for
exchange was almost exactly double that of the gradient ex-
pansion. This could only be done by numerical extraction of
the coefficient from a sequence of large atom Hartree-Fock
calculations. Eq. 65 finds analytically that the correction to
the local density approximation for the total energy of the
linear half-well is almost exactly triple that of the gradient
expansion.

5. CONCLUSIONS

| have presented an appropriate mathematical tool for
understanding the successes of modern density functional
theory and the centrality of the local density approxima-
tion. In this framework, the continuum limit achieved as
h — 0 in a certain, very well-defined sense is the reason be-
hind the success of semilocal density approximations. This
framework unites two (apparently) distinct approaches in
previous papers, and generalizes key results from both those
works. More importantly, it shows that, at least in principle,
DFT approximations need not be of low accuracy. In the
simple case studied here, a well-defined correction has been
identified that is missing from the starting point of most
modern approximate schemes, i.e., the gradient expansion,
and its recovery has greatly improved accuracy in model
cases. Further work will follow.
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