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ABSTRACT: Kohn—Sham (KS) inversion, that is, the finding of the exact KS
potential for a given density, is difficult in localized basis sets. We study the
precision and reliability of several inversion schemes, finding estimates of density-
driven errors at a useful level of accuracy. In typical cases of substantial density-

driven errors, Hartree—Fock density functional theory (HF-DFT) is almost as

accurate as DFT evaluated on CCSD(T) densities. A simple approximation in
practical HE-DFT also makes errors much smaller than the density-driven errors DFT
being calculated. Two paradigm examples, stretched NaCl and the HO-CI™ radical,

illustrate just how accurate HF-DFT is.

1. INTRODUCTION

Kohn—Sham (KS) density functional theory (DFT)' is an
extremely popular approach to electronic structure problems,
but the quality of the results depends on the quality of the
exchange—correlation (XC) approximation used. Because the
KS equations are solved self-consistently, there are errors in
both the self-consistent (SC) energy and the SC density.” In
most KS calculations, the density errors contribute little to the
overall energy error. However, in various generic situations,
semilocal approximations to XC make unusually large density
errors (called density-driven errors) and the density error
contributes  significantly to the resulting energy error. In
modern DFT parlance, these are attributed to delocalization
errors’ of the density."™®

The theory behind density-corrected (DC) DFT explains
the origin of such errors, when they are likely to be significant,
and how they can usually be reduced by using a more accurate
density.””” The exact density-driven error is defined as the
difference in energy when the approximate functional is
evaluated on its SC and exact densities. If the exact density was
needed to perform a DC-DFT calculation, the procedure
would be impractical as finding a highly accurate density is
more costly than the DFT calculation itself. However, in
practice, for many semilocal approximations applied to
molecular properties, it has been found that most density-
driven errors can be greatly reduced by use of the Hartree—
Fock (HF) density instead of the exact density. As the HF
density is of comparable cost to DFT, this leads to a very
practical approach (HF-DFT), which can be implemented very
rapidly and costs no more than a typical DFT calculation.” HE-
DFT has been used to reduce density-driven errors for electron
affinities,"’ potential energy curves,'”'” spin gaps for
coordination compounds,"* and noncovalent interactions."*

Given these successes of HF-DFT, we now ask: can its
underlying assumptions be tested? The most important
assumption is that, when density-driven errors are significant,
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in molecules, the HF density yields more accurate energies
than the SC density. A lesser assumption is that, in practical
HE-DFT calculations, the differences between HF and KS
kinetic energies are ignored. The answer is yes, by employing
the well-established technique of KS inversion to highly
accurate densities, in order to extract exact density-driven
errors and compare with the HF-DFT procedure. KS inversion
is the process of finding an accurate KS potential (and
associated objects, such as KS kinetic energy, HOMO, etc.)
from a given density. From very early on,"® method-developers
in DFT have sought such exact information.'*™' However,
most such inversions have been focused on specific quantities
such as eigenvalues, which can be very sensitive to the details
of the density.

Here, we apply standard KS inversion procedures with the
sole focus of testing the assumptions underlying HF-DFT. We
use inversions to calculate density-driven errors for typical
systems in which HE-DFT has proven successful. With two
standard methods, we explore both the dependence on the
basis set and the guiding density functional used (defined
later). However, there are well-documented difficulties™>*
when such inversions are performed in finite localized basis
sets. We find that methods to overcome such difficulties, while
imprecise, yield sufficient accuracy to answer the most basic
questions about the density-driven error. These methods,
applied to HF and high-level ab initio densities in standard
basis sets, produce sufficiently accurate density-driven error
estimates to usefully address such questions, that is, their
remaining errors are small relative to common density-driven
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errors. We also find that the approximation used in practical
HF-DFT calculations, namely, using the HF kinetic energy
instead of the KS kinetic energy, typically leads to changes of
1—2 kcal/mol, which is below a standard threshold for
declaring a density-driven error.”

The paper is organized as follows. In Section 2, we present
backgrounds about wavefunctions and KS-DFT, KS inversion,
and DC-DFT. Section 3 shows inversion results and gives
some discussions about the uncertainty of the inversion,
together with testing DC-DFT. Finally, we deduce our
conclusion from the discussions.

2. BACKGROUND

2.1. Wavefunctions and KS-DFT. Start from the
variational principle for the exact ground-state energy
E, = min(¥|H|¥
» = min(¥|H|¥) )
where H is the N-electron Hamiltonian with one-body
potential v(r), and the search is over all antisymmetric,
normalized many-body wavefunctions W. An HF calculation
uses only a single Slater determinant, denoted ® (assuming for
now no symmetry breaking)
EM* = min(®|H|®
where ®F denotes the minimizer. The traditional definition of
the correlation energy is then

trad

HF
EC,v = Ev - Ev

®)
and is nonpositive because of the variational principle.

DET replaces the central role of the one-body potential with
the ground-state density n(r). From the Hohenberg—Kohn
theorem,”’ there is (at most) one v(r), which has a given
density as its ground state, and from the variational principle,
the ground state energy of system of N electrons and external
potential v(r) is

E, = min (F[n] + v(r)n(r)dr)

n—N (4)
where F[n] is the universal part of the Hohenberg—Kohn
functional, defined as***’

Flnl = min(¥|T + V) )

where T is the kinetic energy operator, V.. is the electron
repulsion operator, and the minimization is over all
antisymmetric wavefunctions that integrate to density n(r).
Denote the minimizer by W[n]. The further ansatz of the KS
scheme is that there exists a local multiplicative potential, vg(r),
whose ground-state density for noninteracting fermions
matches the interacting one. The total energy in terms of KS

quantities is then

E, = min(T;[n] + [v(r)n(r)dr + Eyln] + Exc[n])

(6)
where Ty is the kinetic energy of the KS electrons, Ey[n] is the
Hartree energy, and Exc[n] is the XC energy. The KS
wavefunction is ®g[n], which we take here to be a single Slater
determinant, as is typical.

We highlight some subtle points that will be important in
what follows. The quantum-mechanical operators are known,
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so each energy component has an obvious functional
dependence on the wavefunction, such as

N
1

T[] = —— ), (¥IV|¥)
235 (7)

in atomic units. For any Slater determinant ® = {y}y of N

orbitals y(x) of space-spin coordinate x = (r, 6) and [dx =

1y 2
T[®] = — V.
01= 2% [axvz ) o

Density functionals are then defined via the minimizing
wavefunctions. The KS kinetic energy is found by setting V,, =
Oineq$S

Tn] = gﬂn(‘l’lf‘l‘l’) = T[d)s[n]]

©)
where ®g[n] is the minimizer. The exact kinetic energy is
T[n] = T[¥[n]] (10)
These two differ by the correlation kinetic energy
Tn] = Tin] — Tfn] (11)

which must be nonnegative, as Tg is the minimizer of T for the
given density. Analogously, the exchange energy of N orbitals
is

N * *, ,
ij

llr ==l

(12)
which yields the exact exchange density functional in DFT
Ex[n] = Ex[®[n]] (13)

The DFT definition of the correlation energy is then a density
functional

Ecln] = (¥[n]|HI¥[n]) — (D[n]|H|D5[n])

= Tc["] + Uc["] (14)
where the potential contribution to correlation is
Uclnl = VelInl — Eyln] — Ex[n] (15)

For weakly correlated systems, such as atoms or most
molecules, T has been found to be only slightly less than
|[Ecl, so that E¢c + T which is nonpositive, is much smaller in
magnitude than either. For example, for the He atom, E is
—42 mH, T is 36 mH, and their sum is —6 mH,"” and for the
Li, molecule, E;. is —111 mH, T is 83 mH, and their sum is
—28 mH."

There are subtle differences between DFT and wavefunction
theory.*”> As the HF Slater determinant minimizes H over all
Slater determinants, whereas the KS Slater determinant is
restricted to orbitals coming from a single multiplicative
potential, the definition of correlation energy differs. For a
given external potential

AEc, = E&' — Ecln)) (16)
so that
AE, = (®g[n,]|H|®s[n,]) — (@,|H|D]T) (17)
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must be nonnegative (although only very slightly, 0.1 mH for
He).” A larger difference comes from the difference between
the KS and HF Slater determinants, even when they refer to
the same density. Define the density functional

ATH[n] = T[®YE

vin]

I — Tdnl >0 (18)

where @}, is the HF Slater determinant of v[n](r), the one-
body potential whose exact density is n(r). We call ATE[n]
the excess noninteracting HF kinetic energy. (In principle, this
is found by adjusting v(r) until an HF calculation yields n(r) as
its density.) This must be nonnegative, as the KS kinetic
energy is the minimizer and can be several mH for mid-sized
atoms.” Moreover, as E[®}};] < E[®g[n]], and both Hartree
and one-body terms cancel,

AE"[n] < —AT"[n] <0 (19)
where we define the density functional
AE{n] = Ex[®)] — Ex[n] (20)

We call AEXF the excess HF exchange energy.

In the special case of atoms, the virial theorem guarantees
that the total energy is exactly the negative of the kinetic
energy for any minimized calculation, either exact, HF, or DFT
with some XC functional. This implies that if n is an exact
atomic or atomic ion density

HF
AEy

—2AT:™ (atoms or atomic ions)

(21)

exactly. As the virial theorem only holds in the complete basis
set limit, we never use it to calculate any energies but only to
understand trends in the errors in the inversion process.

2.2. KS Inversion. The problem of finding accurate KS
potentials for given densities has been studied almost as long as
KS-DFT has been used.'® There are now many algorithms in
existence and use.'”'”**~* Some use just the density itself (a
pure KS inversion), whereas others are focused on the most
relevant case, that is, densities generated by a more accurate
and controllable wavefunction calculation, in which case more
information is available and can be used.**™" Here, we use
two pure KS inversion schemes, Zhao—Morrison—Parr
(zMP)*"*" and Wu—Yang (WY).*® These methods may not
be the best of all possible schemes but are suitable for our
specific purpose, extracting the KS energy using only density.
We always assume that the target density is pure-state
noninteracting v-representable.

The solvers typically work by iteration. A guess for the
desired KS potential is made, the KS orbitals are generated, the
density is calculated, and the guessed potential is updated
according to some algorithms. There are several relevant
convergence criteria. The first is the choice of basis set for the
inversion algorithm (note that this is independent of the basis
set used to generate the target density). Second, there are often
guiding functions for the guess. Because typical XC
approximations have incorrect behavior of vg(r) far from
nuclei, one often uses the Fermi—Amaldi (FA) potential,”'
which builds in the correct behavior. Third, in the case of the
ZMP procedure, there is a penalty function for errors in the
density, which is multiplied by a dimensionless parameter 4. As
A — o0, the procedure converges to the target density, but it
can become unstable for too large values of A.

Traditionally, such inversions are performed on accurate
densities in order to gain insights into the exact KS quantities.
The paradigmatic example is the extraordinary usefulness of
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the atomic KS potentials produced by Umrigar and co-
workers.'”” Knowledge of the positions of the exact KS
eigenvalues has been invaluable in tests of time-dependent
DET.5>53

However, the KS orbital energies are extremely sensitive to
details of the potential, but ground-state energy differences
(e.g, reaction energies) are not. Below, we introduce just those
quantities that are relevant to DC-DFT as criteria for sufficient
convergence of the KS inversion. For a given inversion recipe,
n™(r) is a functional of the input or target density, n(r), as are
all the KS inversion orbitals and eigenvalues. For any energy
functional of the density, we define the inversion error as

AA™[n] = A[n™[n]] — Aln] (22)

and we want this error to be sufficiently small so as not to
obscure the reaction energies we wish to calculate.

The inversion error in a finite basis comes from several
sources. First, a density from a multideterminantial wave-
function, that is, a correlated density, in a given finite atomic
basis set typically cannot be exactly expressed as a KS density
in that basis, and a more extensive basis set is required (see ref
54 for details). This problem only occurs when inverting a
correlated target density. Although the basis set of the target
density and inversion need not be the same in principle, we
usually use the same basis set because ZMP and WY typically
work with density matrices. Second, one cannot provide
infinite flexibility to the KS potential in practice. In the case of
ZMP, potential flexibility is limited to the size of the atomic
orbital basis set. On the other hand, WY introduces a potential
basis, which allows one to increase the flexibility of the
potential by increasing the size of that basis. However,
increased flexibility of the KS potential in WY may produce
orbitals that are very close to the HF orbitals of the same
density.”® This makes the actual computation of eq 22 for the
KS kinetic energy (ie, A = Tg) impossible because when
n"™[n] approaches n, then simultaneously T incorrectly
approaches T[®}f}]. Nevertheless, in a subsequent section,
we will show that this ambiguity is sufficiently small as to not
invalidate our results.

2.3. Density-Corrected DFT. DC-DFT claims that, under
well-understood conditions, the SC density in an approximate
DFT calculation can contribute significantly to the error and
that such error can usually be reduced by use of a more
accurate density. The conventional measure for DFT error in
energy is

AE = E[#i] — E[n] (23)

where E is the exact energy functional (of eq 6 in KS-DFT),
and tilde denotes an approximation. One can define a
functional error that comes from the approximate E only, by

AE, = E[n] — E[n] = Ey.[n] — Exc[n] (24)

where the last equality holds in a KS calculation. The rest of
the error comes from the 7i(r) in the given energy functional
AE, = AE — AE; = E[fi] — E[n] (25)

2,11

and is called the density-driven error.

In DC-DFT, in principle, one should apply the approximate
functional to the exact density for DFT calculations whose
density-driven errors are significant (about 2 kcal/mol for
small molecules™). By eliminating the density-driven error, the
energy usually improves significantly.'’”"" In practice,

https://dx.doi.org/10.1021/acs.jctc.0c00391
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Table 1. Inversion Errors on a KS Density for Total Molecular Energy (AE), Reaction Energy [E,,, = E(mol) — E(atoms)], and
KS Kinetic Energy for Reactions, for PBE Calculations on NaCl, in aug-cc-pVTZ Basis”

functional AE™E AERRE AT,
geometry R, R R, R R, R
guide y) ZMP
FA 64 11.82 11.61 3.22 3.01 —534 —524
128 7.08 690 1.62 144 —309 —-300
256 4.08 3.98 0.83 0.72 —178 —171
512 206 0.37 —101
SVWN 64 0.40 0.39 0.01 0.00 —4.88 —3.96
128 027 026 0.01 0.00 —4.46 —-3.65
256 0.17 0.16 0.01 0.00 —3.68 —2.70
512 0.10 0.01 —2.67
BLYP 64 0.04 0.04 0.00 0.00 —095 -0.03
128 0.02 0.02 0.00 0.00 —-128 -0.22
256 0.01 0.01 0.00 0.00 —-115 -0.17
512 0.01 0.00 —0.83
guide PBS wY
FA D 1.81 1.82 —0.44 —043 3.08 10.12
T 053 034 0.06 -0.13 -3.01 0.40
Ccr 0.03 0.02 0.01 0.00 028 0.25
cQ 0.00 0.00 0.00 0.00 0.10 0.16
SVWN D 034 049 —0.03 0.11 —-3.60 —0.48
T 0.12 0.09 0.03 0.00 -3.18 —0.89
Ccr 0.01 0.00 0.00 0.00 0.09 0.25
cQ 0.00 0.00 0.00 0.00 —0.03 021
BLYP D 0.06 0.12 —0.02 0.04 —0.60 1.04
T 0.02 0.02 0.00 0.00 —-131 -0.25
cr 0.00 0.00 0.00 0.00 0.36 0.26
cQ 0.00 0.00 0.00 0.00 0.04 0.22

“Here, R, = 2.4 A, R, = 4.5 A, and blank cells denote that inversions are not converged. All energies are in miliHartree.

calculating highly accurate densities, such as from CCSD(T), is
similar to or more expensive than simply running CCSD(T) to
find energies. For molecular calculations, HF-DFT often
suffices to yield significantly improved energetics when
density-driven errors are large,'™'***™" with little or no
additional cost relative to the SC-DFT calculation. However,
HF-DFT uses the HF orbitals, simply swapping the HF
exchange for the approximate DFT XC, evaluated on the HF
orbitals. This procedure ignores ATg", the difference between
HF and KS kinetic energies.

3. RESULTS AND DISCUSSION

Our aim is to test the WY and ZMP KS inversion schemes for
use in validating the assumptions underlying HE-DFT. Thus,
inversion errors in energies must be smaller than the density-
driven errors that are (presumably) being eliminated by the
HE-DFT procedure. In this section, we perform inversions
targeting KS, HF, and correlated density and check the
accuracy and precision of the inversion. As our prototypical
choices, we consider the NaCl molecule, both at equilibrium
(R, = 2.4 A) and when stretched (R, = 4.5 A). At equilibrium,
most calculations with standard functionals are normal (DFT
error has a negligible density-driven contribution), while most
are abnormal when stretched.”'"'* Our default (standard)
functional is PBE, and our default (standard) basis set is aug-
cc-pVTZ. In addition to the commonly used FA guiding
potential, approximate XC guiding potentials were also tested
because our purpose is not to generate the shape of the exact
KS potential but only to calculate the KS energy. We used two
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guiding potentials, SVWN and BLYP, as representative of
semilocal functionals. Each guiding potential belongs to a
different level of Jacob’s ladder,”® but the inversion results
differ negligibly (discussed later). We introduce shorthand
notations for the potential basis sets (PBS) for WY; X, CX,
uCX, and ACX, stand for cc-pVXZ, cc-pCVXZ, unc-cc-
pCVXZ, and aug-cc-pCVXZ, respectively, where X(=D, T,
Q, 5) is the cardinal number of the PBS.

3.1. Approximate KS Target Density. A simple
consistency check is to take the density from a standard
DFT calculation and run inversions to see how accurately we
recover the KS energetic components, for which we have
“exact” answers from the original calculation. To avoid trivial
solutions, we used guiding potentials that are not used for the
SC calculation. In the case of a KS target density, one can
easily calculate eq 22 for the total energy because T is known
from the SC-KS calculation. Table 1 shows results for NaCl
with PBE and its inverted densities. Several important lessons
can be drawn from these results. First, errors in this inversion
can be driven down to the microhartree range. Second, errors
are typically reduced by tightening the convergence parame-
ters, such as larger PBS, larger values of 4, or using guiding
functionals that are close to the original functional that
generated the density. Third, when convergence is an issue,
total energy converges much faster than energy components,
and reaction energies converge much faster than individual
energies. Fourth, the FA guiding functional converges most
slowly here, presumably because the PBE target density was
generated from an XC functional yielding a different (and
incorrect) asymptotic behavior. Nevertheless, for ZMP/FA, 1

https://dx.doi.org/10.1021/acs.jctc.0c00391
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= 512 yields sufficiently accurate reaction energies, (subscript
rxn hereafter), so we chose to use A = 512 as our default. In the
case of WY, as the accuracy of ATs,,, is greatly improved when
we increase PBS from T to CT, we chose CT, that is, cc-
pCVTZ, as our default potential basis. In addition, for a given 4
and/or PBS condition, the difference between SVWN and
BLYP is much smaller than the difference between BLYP and
FA, so similar results are expected for any XC guiding potential
at the LDA or GGA levels.

3.2. HF Target Density. Our first nontrivial task is to find
AT", the contribution ignored in a typical HE-DFT
calculation. An HF-DFT calculation first runs an HF
calculation and then replaces the exchange term with the XC
of KS-DFT. For any approximate XC functional, define

\Z,P[n] = /drn(r)v(r) + Eylnl + Excln] (26)

the contributions to the energy that are known explicitly as
functionals of the density. Then,

E"PT = T[] + T n 27)
However, DFT energies on HF densities are defined as

E[n™] = Tn""] + V, [n""] (28)
Subtracting eq 28 from both sides of eq 27 when n"* = u}'"
yields

ESNPT — B[] = TI0M] - Tnl™) = AT

(29)
However, because of the uncertainty of the inversion, we
cannot calculate E[n"F] or Ts[n™] exactly. Instead, we
calculate E[n™[n"F]] or Ts[n™[n"F]] via approximate
inversion of the HF density. Because the total energy is
much less sensitive to small changes of the density (here,
inversion error) than individual energy components such as the
kinetic energy, for the estimation of ATEE we use

ZHE-DFT Eln™[nHF]]

v

ATS::: = (30)
where the subscript est represents the estimated value.

Table 2 reports ATg, values (eq 30) for Na and CI atoms
and reaction (atomization) energies of NaCl. Even with our
standard protocol, the ATE" of ZMP and WY in molecular
energy varies by up to 2 mH. However, reaction energies are
far less sensitive, and here variations are negligible. As the
reaction energies of HF-PBE are —148 and —62 mH for

Table 2. Estimated AT Values (Equation 30) for
Equilibrium (R, = 2.4 A) and Stretched (R, = 4.5 A)
Geometry of NaCl and for Corresponding Reaction
Energies”

functional AT AT en
geometry R, R, R, R,
guide A ZMP
FA 512 281 238 0.37 —0.05
BLYP S12 236 195 022 -0.18
guide PBS wYy
FA CT 0.74 046 —0.08 —-0.37
uCs 026 024 0.18 0.16
BLYP CT 0.77 048 —0.07 —-0.36

“All energies are in miliHartree.
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equilibrium and stretched geometry, respectively, these
variations are less than 1% of the reaction energy. Therefore,
although obtaining a precise ATE" is not possible with our
methodology, estimations can be made precisely enough
(within about +0.5 mH) for reaction energies to be useful in
testing HE-DFT.

In a WY inversion, AT_‘;’:S, becomes very small when PBS is
very large, for example, uCS. In the reaction energy calculation
of NaCl, this does not cause a severe problem because ATE®
itself is very small. However, when ATEF is large, then
increasing the size of PBS will eventually cause ATgf,, to
vanish incorrectly. We find that a PBS with the same level of
plus tight core functions is balanced (giving an accurate density
but not an unph!sically small A'Igf,) with an atomic orbital
basis. Also, AT, using different guiding potentials using CT
PBS varies by less than 0.03 mH, indicating that CT is flexible
enough to cover the differences in various guiding potentials.
We thus report values of ATE" for reaction energies only using
WY and assuming uncertainties of 0.5 mH.

To take advantage of error cancellations for AEY, we define

— (Dg[n™ [, N H|D[n"™ [} ]1])
- ATST;

HF
Ev

AEST, =
(31)

which are shown in Table 3. For each inversion, AEys, < 0 for
total energies (eqs 18 and 19). Also, by comparing Tables 2

Table 3. Estimated AEY" Values for Equilibrium (R, = 2.4
A) and Stretched (R, = 4.5 A) Geometry of NaCl and for
Corresponding Reaction Energies”

functional AERE, AER T ent AES/ATEF

geometry R, R R, R, R, R,
guide A ZMP

FA 512 =760 —-6.69 —129 —-0.38 =3.5 6.9

BLYP 512 =370 -294 070 0.06 =3.1 —0.4
guide PBS wy

FA cr =170 -113 0.30 0.88 -3.6 -2.4

uCs -030 -029 -—021 -0.20 -1.2 -1.2

BLYP cr —-168 —1.04 0.14 0.78 —1.8 =22

“All energies are in miliHartree. The last two columns show the ratio
between AEYr, . and AT,

and 3, typically AE;&. ~ —2AT§E,,, both for total and reaction
energies, as expected from eq 21. Although eq 21 is satisfied
exactly only for a complete basis with an exact inversion in the
separated atom limit, we observed that the ratio AE;‘L,,,_,/
AT;'F,,,,,G, is not dramatically far from —2 (see last two columns
in Table 3) for WY. We expect this is because (1) neither
ATEF nor ATYF was calculated directly from the definition but
using eqs 30 and 31, which takes advantage of error
cancelation and (2) although eq 21 is satisfied only in the
separated atom limit, NaCl approximately satisfies it. In the
case of ZMP on a stretched molecule, the ratio becomes
meaningless, because the magnitudes of both AEYL, and
AT;TS, are too small to be accurate.

3.3. Correlated Target Density. Now, we consider the
inversion when targeting an electron density from a correlated
coupled cluster singles, doubles (CCSD) wavefunction (n“©).
To check the quality of such an inversion, we extract T, the
kinetic correlation energy, as accurately as practical. Just as for

https://dx.doi.org/10.1021/acs.jctc.0c00391
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HF, to take advantage of error cancellations, we define,
analogous to eq 27

~ TC-DFT
E, (32)

where T is the value from the CCSD calculation. We can then
estimate T, analogously to eq 30

= T[W;] + Vgln, ]

~ TC-DFT
=E

TC,esl " - E[n"“’[nvc(:]] (33)
Similar to Table 2, standard ZMP and WY give different
estimates of T (by approximately 1.2 mH), but this variation
is much smaller in reaction energies (approximately 0.1 mH).
(As CCSD is not variational, the virial relation cannot be
used.)

From Tables 2 and 4, it seems not possible to obtain exact

ATEF or T values because of the fundamental limitations of

Table 4. Estimated T Values for Equilibrium (R, = 2.4 A)
and Stretched (R, = 4.5 A) NaCl and for Corresponding
Reaction Energies”

functional Tcea o
geometry R, R, R, R,
guide ! ZMP
FA 512 193.10 189.01 21.77 17.68
BLYP 512 193.12 189.07 21.80 17.74
guide PBS wy
FA CTr 191.94 187.77 21.85 17.68
BLYP CTr 19197 187.78 21.87 17.68

“Estimations were made using eq 33. All energies are in miliHartree.

the inversion methods. However, the two different inversion
algorithms, ZMP and WY, yield consistent estimates for AT?&,,
and Tcq, Therefore, we expect that inversion can provide
E[n] with a minor uncertainty, allowing density-driven error
estimates with a useful level of accuracy. As the deviation of
Ach,"fm,,s. in Table 2 was up to 0.5 mH, we expect that the
exact inversion results to be within +0.5 kcal/mol when
calculated under standard inversion conditions. (Note that 1
mH < 1 kcal/mol) In the next subsection, as a practical
application of the inversion, we will present the entire
dissociation curves of NaCl and OH-CI".

3.4. Testing HF-DFT. Previously, it was argued that the
poor description of SC-DFT calculations for dissociation limits
of heterodiatomic molecules was due to density-driven error
and HF-DFT reduces that error.”'> Here, we test the
argument by quantitatively decomposing the DFT (here,
PBE) error using a highly accurate CCSD density as a
benchmark. (CCSD(T) density shows no meaningful differ-
ences, see Table S10 in the Supporting Information.) In these
calculations, all inversions were performed using the WY
algorithm, FA guiding potential, and CT potential basis (WY/
FA/CT). Figure 1 presents dissociation curves of the NaCl
molecule.

Whereas SC-PBE does not account for the correct
dissociation behavior, making a huge well-known error in the
dissociation limit,>” DC-PBE with the inversion of the HF or
CCSD densities (DC-PBE[HF] and DC-PBE[CC], respec-
tively) correctly captures the dissociation limit, although they
are slightly above CCSD(T). Note that the HE-PBE curve is
obtained from eq 27, while the DC-PBE[HF] curve is obtained
from eq 28 with inverted HF density. Most importantly, HF-
DFT and either of these curves are indistinguishable, showing

5019

=0

Na cl

Exn (kcal/mol)

-60 — ccsD(T)
—— SC-PBE
—s0] —— HF-PBE
DC-PBE[HF]
DC-PBE[CC]
-100
2 3 4 5 6 7 8

Na-Cl distance (4)

Figure 1. Dissociation curve of the NaCl molecule using CCSD(T),
SC-PBE, HF-PBE, and DC-PBE using HF or CCSD density, using
WY/FA/CT inversion. HF-PBE is calculated by eq 27, whereas DC-
PBE[HF] is calculated by eq 28. HE-PBE and DC-PBE[HF and CC]
are indistinguishable on this scale. The criterion for the inversion
imprecision, +0.5 kcal/mol, is similar to the scale of the thickness of
the lines.

that HE-DFT differs negligibly from PBE energies evaluated on
(essentially) exact densities. This validates the use of HF-DFT
as a practical approximation to DC-DFT. Although we have
defined density-driven error only for SC-DFT calculations, the
density-driven error can be defined for any approximate XC
energy for non-SC-DFT by replacing 7 in eq 25 by any non-SC
densi}y." By doing so, we can calculate the density-driven error
of n*¥.

-4
AEF

AE,, (kcal/mol)

—— DEp[n™E]
B At 4 6 8
—— AT
-12 v
3 4 5 6 7 8

Na-Cl distance (4)

Figure 2. Functional error AE; and density-driven error AEy, of n**"

and n' and ATEF of NaCl dissociation curve. Curves are drawn with
+0.5 kcal/mol bands to represent the uncertainty of the inversion.
ATS® is almost indistinguishable from zero. The gray dashed
horizontal line (4.6 kcal/mol) represents AEg of the reaction Na +
Cl = Na' + CI". The inset shows the intrinsic atomic orbitals (IAO)
population of the Na atom.

To further study the differences between these curves,
Figure 2 shows the small differences between the curves in
Figure 1. We write

AE,, = AE;"""" — AE [n}'"] — AT{"[n™"] (34)

by combining eqs 24, 25, and 29, where AEp[n™] = E[n"F] —
E[n] is the PBE density-driven error of the HF density. Curves
are drawn with +0.5 kcal/mol bands to represent the
uncertainty of the inversion. AEp in Figure 2 is almost
constant regardless of the geometry. Thus, on the scale of the
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PBE density-driven errors, our imperfect inversions definitely
show that the functional error estimated by HF-DFT barely
differs from the true value.

On the other hand, AE;[n"*®] grows strongly with Na—Cl
distance, directly showing the density delocalization error of
PBE. We observed almost zero AEp[n"F] for any geometry in
Figure 2. The behavior of AE}, can also be understood from
population analysis. Here, we used Mulliken population
analysis using TAO® constructed from KS orbitals of either
PBE or an inversion (HF or CCSD). Note that IAO cannot be
constructed directly from a correlated wavefunction, which
requires KS inversion. The results are shown in the inset of
Figure 2. At an Na—Cl distance of 2 A, the population
difference between CCSD and PBE is 0.03, which has almost
no effect on AEp[n"®F]. The population difference between
HF and CCSD is maximum when the Na—Cl distance is near 4
A. This difference is reflected in the error curve, where
AEp[n™] becomes slightly positive at that geometry. ATE™ is
negligibly small everywhere (—0.08 and —0.37 mH for Na—Cl
distance 2.4 and 4.5 A, respectively, see Table 2). The
population of the Na atom drops to zero after 8 A, where the
triplet state becomes the ground state (not shown)."”

Finally, we point out that the functional error in the reaction
Na + Cl = Na* + CI” (marked by the dashed horizontal line in
Figure 2) dominates the AEg in Figure 2. Thus, when
measured relative to this limit, the error in a PBE curve
evaluated on CC densities is < 2 kcal/mol everywhere!

As another example from a previous successful application of
HE-DFT,'” we also analyzed the potential energy curve of the
linear HO-CI™ complex (O—H distance fixed to 1 A) in Figure
3. Here, we used augmented PBS (ACT) for WY because of

0

-5

CCsD(T)

-15

’_0‘ —

E 10 —— SC-PBE

] —— HF-PBE

-

E DC-PBE[HF)
w

DC-PBE[CC)

H-Cl distance (4)

Figure 3. Dissociation curve of OH-Cl~ complex using CCSD(T),
SC-PBE, HF-PBE, and DC-PBE with HF and CCSD density, using
inversion. HE-PBE is calculated by eq 27, while DC-PBE[HF] is
calculated by eq 28. DC-PBE curves are drawn with +0.5 kcal /mol
bands to represent the uncertainty of the inversion. All inversions
were performed with WY/FA/ACT.

the WY convergence issue for H—Cl beyond 4 A. SC-PBE
shows a significant deviation from CCSD(T), not only in the
stretched geometry but even in the equilibrium geometry. The
DC-PBE[CC] curve almost coincides with the reference
CCSD(T), showing that AE; of the PBE functional is almost
zero. On the other hand, DC-PBE[HF] and HF-PBE lie
slightly higher than CCSD(T) and differ from each other. HF-
PBE, DC-PBE[HF], and DC-PBE[CC] become closer to
CCSD(T) as the H—CI distance increases. Therefore, once
again, HF-PBE greatly improves over SC-PBE, but more
accurate densities with inversions yield slightly better results.

It is noticeable that the partial charges of the Cl fragment for
any geometries are similar to the charge at the dissociation
limit, as in the inset of Figure 4. (Note that this reflects charge

— b ATH
2 P— AED[nPBE] —— \EMF-PBE
— BEp[n*F]

AE,,, (kcal/mol)

2 3 4 5
H-Cl distance (A)

Figure 4. Error components of PBE and AT{" of the OH-CI”
dissociation curve. To represent the uncertainty of the inversion,
curves are drawn as +0.5 kcal/mol bands. AEp[n'™] and ATET are
almost overlapped with each other. The inset shows the IAO
population of the Cl atom. The error of HF-PBE is shown in a black
solid line with no band because there is no inaccuracy because of
inversion.

transfer from CI” to OH. See Figure S1 in the Supporting
Information for the partial charges of other atoms). The
behaviors of AEp[n™F] and AEp[n'™] are similar to that of
NaCl. However, AT§" is not negligibly small for short H—Cl
distances; it almost overlaps with AE;[n™] in Figure 4. AT¢"
need not be zero for any reaction. The success of HF-PBE
requires only that it be much smaller than |AE| whenever
|AEL(PBE)| > 2 kcal/mol.

Of course, in most DFT calculations, the error of SC-DFT
does not originate from large AE,,. For some systems (such as
spin-contaminated or strongly correlated®"), the HF density is
not a good approximation to the accurate density. The
examples shown here have small AEg, small AE,[n™F], and
large AEp[n"8] and so are greatly improved by the use of HF-
DFT.

4. CONCLUSIONS

We have shown here the reliability of the present KS inversion
methods for the calculation of the density-driven and
functional errors of common KS-DFT. Some known issues
prohibit exact KS inversions in localized basis sets. From KS
inversion methods, ZMP and WY, we show that these issues
have a minor effect on reaction energies (sub-kcal/mol), when
the inversion is performed with proper conditions; such as an
approximate guiding potential, 4 in ZMP, or potential basis set
in WY. Our recommendations are as follows:

(1) In the case of ZMP, a KS-DFT guiding potential works
better than FA, even for the inversion of a non-KS
density. On the other hand, results are not sensitive to
the guiding potential in WY.

(2) Large A for ZMP: practically 512 suffices; a larger 4 may
lead to convergence issues.

(3) For the potential basis set in WY, using a basis with the
same level of { as the atomic orbital basis in addition to
tight-core functions.

Under these conditions, one can accurately estimate the
density-driven and functional error of common KS-DFT

https://dx.doi.org/10.1021/acs.jctc.0c00391
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calculations and also estimate the small errors introduced by
the HF-DFT procedure. We expect that calculation of these
errors will help the development of new XC functionals that
reduce both AE, and AE,.

5. COMPUTATIONAL DETAILS

CCSD is used as a reference density, while perturbative triples
(CCSD(T)) is used as a reference of energy. All HF, DFT, and
CC calculations were performed using a PySCF program
package.®’ As we used PBE® as the default energy functional,
FA, SVWN,**** and BLYP**® are tested as guiding potentials
for inversions. The unrestricted scheme is used for open-shell
systems. No frozen-core approximations were made for CC
calculations. The aug-cc-pVTZ atomic orbital basis set is used
for both the NaCl molecule and the HO-CI~ complex.”’ ~*" We
set the gradient converge threshold (conv_tol grad attribute
in the SCF base class in PySCF) for HF to 1 X 1077 to
generate accurate reference HF determinant for CC calcu-
lations. For the convergence of PBE on the stretched
molecules, we set level shift = 0.2 and conv_check = False.
All ZMP and WY calculations were conducted with our codes.
For ZMP, we used direct inversion of iterative subspace
algorithm”’ to accelerate convergence. We solved ZMP
equations self-consistently for a A and used the output density
matrix as an initial guess of the next ZMP equation with a
larger A. We say ZMP fails to converge at A" when it fails to
converge when the initial guess density matrix is from A" — 1.
For WY, we used the Broyden—Fletcher—Goldfarb—Shanno
algorithm”" implemented in SciPy’” for the optimization of the
KS potential.
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