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Abstract. As an important Markov chain Monte Carlo (MCMC) method, the stochastic
gradient Langevin dynamics (SGLD) algorithm has achieved great success in Bayesian learning
and posterior sampling. However, SGLD typically suffers from a slow convergence rate due to
its large variance caused by the stochastic gradient. In order to alleviate these drawbacks, we
leverage the recently developed Laplacian smoothing technique and propose a Laplacian smoothing
stochastic gradient Langevin dynamics (LS-SGLD) algorithm. We prove that for sampling from
both log-concave and non-log-concave densities, LS-SGLD achieves strictly smaller discretization
error in 2-Wasserstein distance, although its mixing rate can be slightly slower. Experiments on
both synthetic and real datasets verify our theoretical results and demonstrate the superior per-
formance of LS-SGLD on different machine learning tasks including posterior sampling, Bayesian
logistic regression, and training Bayesian convolutional neural networks. The code is available at
https://github.com/BaoWangMath/LS-MCMC.
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1. Introduction. Let \bfitx \in Rd be a machine learning model’s parameter with
prior distribution p(\bfitx ) and let p(\bfitd | \bfitx ) be the likelihood function of the observed data
\bfitd . Suppose the training data points are generated independently from some unknown
distribution; then the posterior distribution of the model parameter \bfitx given the entire
training dataset \scrD = \{ \bfitd i\} ni=1 is computed as p(\bfitx | \scrD ) \propto p(\bfitx )Πn

i=1p(\bfitd i| \bfitx ). While
optimization algorithms can be used to find the maximum a posterior point estimator,
i.e., \bfitx MAP = argmaxx log p(\bfitx | \scrD ), sampling algorithms such as Langevin dynamics
(LD) are used to sample the posterior or the log posterior. In this paper, we consider
applying LD-based Markov chain Monte Carlo (MCMC) algorithms to sample e - f(x),
where

f(\bfitx ) :=
1

n

n\sum 

i=1

fi(\bfitx ) =  - 1

n

n\sum 

i=1

log p(\bfitd i| \bfitx ).(1.1)

Here, we normalized the log-likelihood by a factor n for the ease of presentation in
the rest of this paper.
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LAPLACIAN SMOOTHING STOCHASTIC GRADIENT MCMC A27

The first-order LD reads

d\bfitX t =  - \nabla f(\bfitX t)dt+
\sqrt{} 

2\beta  - 1d\bfitB t,(1.2)

where \bfitX t \in Rd denotes the point at time t, \beta denotes the inverse temperature, and
\bfitB t \in Rd is the standard Brownian term. Under certain assumptions on the negative
log posterior (i.e., f(\bfitx )), the LD (1.2) converges to a unique invariant distribution
\pi \propto e - βf(x) [14]. Therefore, one can apply an numerical integrator to approximate
(1.2) in order to obtain samples that follow the posterior distribution. One simple
integrator is to apply the Euler–Maruyama discretization [23] to (1.2), which gives

\bfitx k+1 = \bfitx k  - \eta \nabla f(\bfitx k) +
\sqrt{} 

2\beta  - 1\eta \bfitepsilon k,(1.3)

and it is known as the Langevin Monte Carlo (LMC) (a.k.a., unadjusted Langevin
algorithm [34]). When the target density, i.e., posterior distribution, is strongly log-
concave and log-smooth, Dalalyan and others proved that LMC is able to converge
to the target density up to an arbitrarily small sampling error in both total variation
and 2-Wasserstein distances [15, 19]. In the same setting, [20] studied the Metropolis-
adjusted Langevin algorithm, realized by introducing a Metropolis–Hastings (MH)
correction step into LMC, and proved its linear convergence rate in total variation
distance. Furthermore, the convergence guarantee of LMC for sampling from non-
log-concave distributions has also been established in [35, 40].

Note that the posterior distribution is defined on the whole dataset \scrD , which
is typically extremely large in modern machine learning tasks. Therefore, computing
the full gradient \nabla f(\bfitx ) is inefficient and may dramatically slow down the convergence
of sampling algorithms. One solution is to replace the full gradient in (1.3) with a
subsampled one, which gives rise to stochastic gradient Langevin dynamics (SGLD)
[39]. From the theoretical perspective, the convergence guarantee of SGLD has been
proved for both strongly log-concave distributions [16] and non-log-concave distribu-
tions [35, 40] in 2-Wasserstein distance. The generalization performance of SGLD for
nonconvex optimization has been further investigated in [31]. Although SGLD can
drastically reduce the computational cost, it is also observed to have a slow conver-
gence rate due to the large variance caused by the stochastic gradient [36, 37]. In order
to reduce the variance of stochastic gradient as well as to improve the convergence
rate, Dubey et al. incorporated variance reduction techniques into SGLD [18], which
gives rise to a family of variance-reduced LD-based algorithms such as SVRG-LD and
SAGA-LD. Chatterji et al. further proved that SVRG-LD and SAGA-LD are able to
converge to the target density with fewer stochastic gradient evaluations than SGLD
and LMC in certain regimes [8, 43, 44]. However, both SVRG-LD and SAGA-LD re-
quire a large amount of extra computation and memory costs, and can only be shown
to achieve faster convergence on small to moderate datasets. Therefore, it is natural
to ask whether we can reduce the variance of stochastic gradients while maintaining

similar computation and memory costs of SGLD.

Recently, Osher et al. integrated Laplacian smoothing and related high-order
smoothing techniques into stochastic gradient descent (SGD) to reduce the variance
of stochastic gradient on-the-fly [33]. Laplacian smoothing SGD (LSSGD) allows us
to take a significantly larger step size than vanilla SGD and reduces the optimality
gap in convex optimization when constant step size is used. Empirically, LSSGD
preconditions the gradient when the objective function has a large condition number
and can avoid local minima. Because of this, LSSGD is applicable to training a large
number of deep learning models with good generalization ability. Laplacian smoothing
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also demonstrates some abilities to avoid saddle point in gradient descent [24]. Most
recently, Wang et al. leveraged Laplacian smoothing to improve the utility of machine
learning models trained with privacy guarantee [38].

In this paper, we integrate Laplacian smoothing with SGLD, and we call the
resulting algorithm Laplacian smoothing SGLD (LS-SGLD). The extra computation
of LS-SGLD compared with SGLD is that we need to compute the products of the
inverse of two circulant matrices with vectors. We leverage the fast Fourier transform
(FFT) to develop fast algorithms to compute these matrix-vector products efficiently,
and the resulting algorithms can compute the matrix-vector products with a negligible
overhead in both time and memory. Moreover, we prove the convergence rate of
LS-SGLD for sampling from both log-concave and non-log-concave densities in 2-
Wasserstein distance and show that there exists a trade-off between the discretization
error and ergodicity rate. Experimental results show that compared with SGLD, LS-
SGLD can achieve much smaller discretization error and similar ergodicity rate, and
demonstrate the superior performance of LS-SGLD for a variety of machine learning
applications.

1.1. Our contributions. We summarize our main contributions as follows:
\bullet We propose a simple modification on the SGLD, which applies the Laplacian
smoothing matrix and its squared root to the stochastic gradient and Gauss-
ian noise vectors, respectively. The continuous and full-gradient counterpart
of the modified LS-SGLD has the same stationary distribution as the LD.

\bullet We proposed FFT-based fast algorithms to compute the product of the inverse
of circulant matrices with any given vector. By leveraging the structure of
eigenvalues and eigenvectors of the circulant matrices, we can compute these
products very efficiently with negligible overhead in both time and memory.

\bullet We prove the convergence rate of LS-SGLD for sampling from both log-
concave and non-log-concave densities in 2-Wasserstein distance. Specifically,
we decompose the sampling error into the discretization error and the er-
godicity rate. Moreover, we show that there exists a trade-off between the
discretization error and the ergodicity rate of LS-SGLD, as adding Laplacian
smoothing can reduce the discretization error but slow down the mixing time.

\bullet We conduct extensive experiments to evaluate the performance of LS-SGLD.
First, we show that compared with SGLD, LS-SGLD can achieve a signifi-
cantly smaller discretization error but similar ergodicity rate, which implies
that the overall sampling error of LS-SGLD can be much smaller. Second,
we conduct experiments on both synthetic and real data for posterior sam-
pling, Bayesian logistic regression (BLR), and training Bayesian convolutional
networks, all of which demonstrate the superior performance of LS-SGLD.

1.2. Additional related work. In addition to the first-order Langevin based
algorithms we discussed in the introduction, there also emerges a vast body of work fo-
cusing on higher-order Langevin based algorithms. One of the well-known high-order
MCMC methods is Hamiltonian Monte Carlo (HMC) [32, 41], which incorporates
a Hamiltonian momentum term into the first-order MCMC method in order to im-
prove the mixing time. Other variants of HMC include the reduced-order HMC [1],
which has broad applications in scientific computing such as background flow field
estimation [6]. Similar to SGLD, a stochastic version of HMC (namely SGHMC) has
been further established in [10] and was shown to be able to achieve a faster con-
vergence rate than SGLD in experiments. Ma, Chen, and Fox investigated a family
of SGHMC methods and proposed a new state-adaptive sampler on the Riemannian
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manifold [28]. Chen, Ding, and Carin provided theoretical convergence guarantees of
SGHMC in terms of mean square error (MSE) and proposed a second-order symmetric
splitting integrator to further improve the discretization error [9]. When the target
density is strongly log-concave and log-smooth, Cheng et al. proposed underdamped
MCMC and stochastic gradient underdamped MCMC and obtained convergence rates
in 2-Wasserstein distance [13]. The convergence rates of these two algorithms have
been further established for sampling from non-log-concave densities [12]. Chen et al.
proposed the stochastic gradient HMC [11]. However, due to the large variance of sto-
chastic gradients and lack of the MH correction step, SGHMC has also been observed
to have a highly biased sampling trajectory [4, 17]. One way to address this issue is
to make use of a variance-reduction technique to alleviate the variance of stochastic
gradients in SGHMC, which gave rise to stochastic variance-reduced HMC methods
[42, 27, 45].

1.3. Organization. We organize this paper as follows. We present LS-SGLD
and derive FFT-based fast algorithms for LS-SGLD in section 2. In section 3, we
give theoretical guarantees for the performance of LS-SGLD in both log-concave and
non-log-concave settings. In section 4, we numerically verify the performance of LS-
SGLD on sampling different distributions, training BLR, and convolutional neural
nets (CNNs). We conclude this work in section 5.

1.4. Notation. Throughout this paper we use bold uppercase letters A, B to
denote matrices, bold lowercase letters \bfitx , \bfity to denote vectors, and lowercase letters x,
y and \alpha , \beta to denote scalars. We use x\wedge y and x\vee y to denote min\{ x, y\} and max\{ x, y\} ,
respectively. For continuous-time random vectors, we denote them with italics bold
uppercase letters \bfitX , \bfitY with sub/superscripts. For vector \bfitx = (x1, . . . , xd)

\top , we use

\| \bfitx \| 2 =
\sqrt{} 

x2
1 + \cdot \cdot \cdot + x2

d to represent its \ell 2-norm and use \| \bfitx \| A =
\surd 
\bfitx \top A\bfitx to repre-

sent its A-norm, where A is a semipositive definite matrix. We use P(\bfitx ) to denote
the distribution of \bfitx , and \scrW 2(\cdot , \cdot ) and DKL(\cdot | | \cdot ) denote the 2-Wasserstein distance
and Kullback–Leibler (KL) divergence between two distributions, respectively. For a
function f : Rd \rightarrow R, we use \nabla f(\cdot ) and \nabla 2f(\cdot ) to denote its gradient and Hessian.

2. Algorithms.

2.1. Laplacian smoothing (stochastic) gradient descent. For \sigma \geq 0, let
Aσ := I  - \sigma L where I \in Rd\times d and L \in Rd\times d are the identity and the discrete
one-dimensional (1D) Laplacian matrix, respectively. Therefore,

Aσ :=

\left[ 

 
 
 
 
 

1 + 2\sigma  - \sigma 0 . . . 0  - \sigma 
 - \sigma 1 + 2\sigma  - \sigma . . . 0 0
0  - \sigma 1 + 2\sigma . . . 0 0
. . . . . . . . . . . . . . . . . .
 - \sigma 0 0 . . .  - \sigma 1 + 2\sigma 

\right] 

 
 
 
 
 

d\times d

.(2.1)

To optimize the loss function f(\bfitx ) = 1/n
\sum n

i=1 fi(\bfitx ), LSSGD [33] takes the following
iteration:

\bfitx k+1 = \bfitx k  - \eta kA
 - 1
σ \nabla fik(\bfitx 

k),(2.2)

where \eta k > 0 is the learning rate, and ik is a random sample from [n] := \{ 1, 2, . . . , n\} .
When \sigma = 0, LSSGD reduces to SGD. Since Aσ is a circulant matrix, for any vector
\bfitv , A - 1

σ \bfitv := \bfitu can be computed via the FFT in the following way:
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A - 1
σ \bfitv = \bfitu =\Rightarrow \bfitv = Aσ\bfitu = \bfitu  - \sigma \bfitd \ast \bfitu ,

where \ast is the convolution operator, and \bfitd = [ - 2, 1, 0, . . . , 0, 1]T . By the convolution
theorem, we have

fft(\bfitv ) = fft(\bfitu ) - \sigma fft(\bfitd )fft(\bfitu ).

Finally, we arrive at the following FFT-based algorithm for computing A - 1
σ \bfitv :

A - 1
σ \bfitv = ifft

\biggl( 
fft(\bfitv )

1 - \sigma \cdot fft(\bfitd )

\biggr) 

,

where 1 is an all-one vector with the same dimension as \bfitv , and the division of two
vectors is defined in the coordinatewise way. fft and ifft denote FFT and inverse FFT
operators, respectively.

The Laplacian matrix A - 1
σ can reduce the variance of stochastic gradient and

guarantee at least the same convergence rate as SGD. [33] showed that for an L-
gradient Lipschitz function f(\bfitx ), i.e., \| \nabla f(\bfitx )\| 2 \leq L, the largest step size for LSSGD
is (1 + 4\sigma )1/4/L (with high probability) which is larger than gradient descent’s by a
factor (1 + 4\sigma )1/4.

2.2. Laplacian smoothing Langevin dynamics. We integrate Laplacian
smoothing with LD and obtain the following Lapacian smoothing LD (LS-LD):

d\bfitX t =  - A - 1
σ \nabla f(\bfitX t) +

\sqrt{} 

2\beta  - 1A - 1/2
σ d\bfitB t.(2.3)

Note that we premultiply the Brownian motion term by A
 - 1/2
σ instead of A - 1

σ to
guarantee that the stationary distribution of the LS-LD remains to be exp ( - \beta f(\bfitx )).
We formally state this property in the following proposition.

Proposition 2.1. The stationary distribution, \pi , of the LS-LD, (2.3), satisfies
\pi \propto e - βf(x).

The proof of Proposition 2.1 can be found in Appendix A. If we apply the Euler–
Maruyama scheme to discretize (2.3), we end up with the following discrete algorithm,
namely Laplacian smoothing gradient Langevin dynamics (LS-GLD):

\bfitx k+1 = \bfitx k  - \eta A - 1
σ \nabla f(\bfitx k) +

\sqrt{} 

2\beta  - 1\eta A - 1/2
σ \bfitepsilon k,(2.4)

where \bfitepsilon k\sim N(0, Id\times d). In practice, we use the minibatch gradient gk=
\sum 

i\in \scrI k
\nabla fi(\bfitx k)/

| \scrI k| with \scrI k \subset [n] to replace the gradient in (2.4), and we arrive at the following
LS-SGLD:

\bfitx k+1 = \bfitx k  - \eta A - 1
σ gk +

\sqrt{} 

2\beta  - 1\eta A - 1/2
σ \bfitepsilon k.(2.5)

We summarize LS-SGLD in Algorithm 2.1. In the remaining part of this section,

we will present FFT-based fast algorithms for computing A - 1
σ gk and A

 - 1/2
σ \bfitepsilon k.

2.3. FFT-based implementation of LS-SGLD.

2.3.1. Circulant matrix and convolutional operation. In this subsection,
we list a few results on the circulant matrix which will be the basic recipes for designing
an FFT-based algorithm for solving (2.4).
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Algorithm 2.1. LS-SGLD.

Input: Training data, learning rate \eta , minibatch size B, inverse temperature \beta ,
Laplacian smoothing constant \sigma .
Initialization: Set \bfitx 0 = 0.
for k = 0, 1, . . . ,K  - 1 do

Uniformly sample \scrI k \subset [n] with | \scrI k| = B.
Compute the minibatch stochastic gradient

\sum 

i\in \scrI k
\nabla fi(\bfitx k)/B.

\bfitx k+1 = \bfitx k  - \eta A - 1
σ gk +

\sqrt{} 

2\beta  - 1\eta A
 - 1/2
σ \bfitepsilon k, where \bfitepsilon k \sim N(0, Id\times d).

Output: \bfitx 0, . . . ,\bfitx K .

Lemma 2.2 (see [21]). The normalized eigenvectors of the d\times d circulant matrix,

C =

\left[ 

 
 
 
 
 

c0 cd - 1 . . . c2 c1
c1 c0 cd - 1 . . . c2
. . . . . . . . . . . . . . .
cd - 2 . . . . . . . . . cd - 1

cd - 1 cd - 2 . . . c1 c0

\right] 

 
 
 
 
 

,(2.6)

are given by

\bfitv j =
1\surd 
d

\bigl( 
1, wj , w

2
j , . . . , w

n - 1
j

\bigr) 
, j = 0, 1, . . . , d - 1,

where wj = exp(i 2πjd ) are the jth roots of unity and i is the imaginary unit. The

corresponding eigenvalues are then given by

\lambda j = c0 + cd - 1wj + cd - 2w
2
j + \cdot \cdot \cdot + c1w

d - 1
j , j = 0, 1, . . . , d - 1.

Lemma 2.3 (see [21]). The inverse of a circulant matrix is circulant.

Lemma 2.4 (see [21]). The square root of a circulant matrix is circulant.

Lemma 2.5. For any circulant matrix C of the form in (2.6), and for any given

vector \bfitv , let \bfitu = C - 1\bfitv ; then \bfitu can be computed by the FFT with sublinear scaling in

the following way:

\bfitu = ifft

\biggl( 
fft(\bfitv )

fft(\bfitc )

\biggr) 

,(2.7)

where \bfitc is the first row of the matrix C, and the division in (2.7) is defined coordinate-

wise.

Proof. Since C is a circulant matrix we have \bfitv = C\bfitu = \bfitc \ast \bfitu ; therefore fft(\bfitv ) =
fft(\bfitc ) \cdot fft(\bfitu ).

2.3.2. Fast algorithm for computing the square root of Laplacian

smoothing. We will derive an FFT-based algorithm for computing A
 - 1/2
σ \bfitepsilon k in this

subsection. According to Lemmas 2.3 and 2.4, A
 - 1/2
σ is circulant. Note A - 1

σ is
positive definite; we denote its eigen-decomposition as

A - 1
σ = QΛQ - 1,

where Q = [\bfitv 1,\bfitv 2, . . . ,\bfitv d]
T with \bfitv i being the eigenvector associated with the eigen-

value \lambda i > 0, and Λ = diag(\lambda 1, \lambda 2, . . . , \lambda d). Therefore, we have
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A - 1/2
σ = Q

\surd 
ΛQ - 1,(2.8)

where
\surd 
Λ = diag(

\surd 
\lambda 1,

\surd 
\lambda 2, . . . ,

\surd 
\lambda d).

Furthermore, note that Aσ is symmetric, therefore Q - 1 = QT . It follows that

we can compute A
 - 1/2
σ without inverting the matrix Q. By the fact that A

 - 1/2
σ is

circulant, we have A
 - 1/2
σ \bfitepsilon k = ifft(fft(\bfitb ) \cdot fft(\bfitepsilon k)), where \bfitb is the first row of A

 - 1/2
σ .

Remark 2.6. In computing (2.8), there is no need to store the matrixQ; according
to Lemma 2.2, each row of Q and

\surd 
Λ can be written explicitly, which enables us to

compute A
 - 1/2
σ quickly with negligible memory overhead and scalable to very high

dimensional problems.

3. Main theoretical results. We first make the following three assumptions
regarding the function f(\bfitx ).

Assumption 1 (dissipativeness). For any \bfitx \in Rd, there exist constants m and b
such that

\langle \nabla f(\bfitx ),\bfitx \rangle \geq m\| \bfitx \| 22  - b.

This assumption has been widely made to study the convergence of Langevin-based
sampling algorithms [30, 35, 40, 44], which is essential to guarantee the convergence
of the continuous-time Langevin dynamics (1.2).

Assumption 2 (smoothness). For any \bfitx ,\bfity \in Rd, there exists a positive constant
M such that for all i = 1, . . . , n, it holds that

\| \nabla fi(\bfitx ) - \nabla fi(\bfity )\| 2 \leq M\| \bfitx  - \bfity \| 2.

Unlike Assumption 1, Assumption 2 is made for all component functions fi(\bfitx ).

Assumption 3 (bounded variance). For any \bfitx \in Rd, there exists a constant \omega 
such that the variance of the stochastic gradient is bounded as follows:

E[\| \nabla fi(\bfitx ) - \nabla f(\bfitx )\| 22] \leq d\omega 2.

Definition 3.1 (logarithmic Sobolev inequality). Let \mu be a probability measure;

then we say \mu satisfies the logarithmic Sobolev inequality with constant \lambda if for any

smooth function g, the following holds:

\int 

g2 log g2d\mu  - 
\int 

g2d\mu log

\int 

g2d\mu \leq \lambda 

\int 

\| \nabla g\| 22d\mu .

Then the following proposition states that if the function f(\cdot ) satisfies Assump-
tions 1 and 2, the target density \pi \propto e - f(x) satisfies the logarithmic Sobolev
inequality.

Proposition 3.2 (see [35]). Under Assumptions 1 and 2, the target density

\pi \propto e - f(x) satisfies the logarithmic Sobolev inequality with some constant \lambda > 0.

It has been shown in [19, 35] that if the function f(\bfitx ) is smooth and strongly
convex (which is stronger than Assumption 1), the logarithmic Sobolev constant \lambda 
is a universal constant. However, if the function f(\bfitx ) is nonconvex, in the worst
case the logarithmic Sobolev constant \lambda has exponential dependency on the problem
dimension d and inverse temperature \beta [7, 35].
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3.1. Convergence analysis of sampling from log-concave densities. In
this subsection, we assume that the target density is log-concave, which is equivalent
to the following assumption on the function f(\bfitx ).

Assumption 4 (convexity). For any \bfitx ,\bfity \in Rd, it holds that

f(\bfitx ) - f(\bfity ) \geq \langle \nabla f(\bfity ),\bfitx  - \bfity \rangle .
Then we are ready to establish the convergence rate of LS-SGLD for sampling

from log-concave densities, which is stated in the following theorem.

Theorem 3.3. Under Assumptions 1, 2, 3, and 4, if we set the step size \eta \leq 
Cm\beta  - 1/M2 for some sufficiently small constant C, there exist constants c0\in [\| Aσ\|  - 1

2 ,

1], \gamma 1 \in [\| Aσ\|  - 2
2 , 1], and \gamma 2 = d - 1

\sum d
i=1(1+2\sigma  - 2\sigma cos(2\pi i/d)) - 1 such that the output

of LS-SGLD satisfies

\scrW 2(P(\bfitx K), \pi ) \leq 
\biggl( 
2\gamma 1K\eta 2\beta d\omega 2

B

\biggr) 1/2

+
\bigl[ 
8\gamma 2K\eta 2(K + 1)\beta d\eta 

\bigr] 1/2

+
\bigl[ 
2\lambda 

\bigl( 
\beta f(0) + log(Λ)

\bigr) \bigr] 1/2
e - c0Kη/(2βλ),(3.1)

where Λ =
\int 

Rd e
 - βf(x)d\bfitx and \lambda denotes the logarithmic Sobolev constant of the target

distribution \pi \propto e - βf(x).

Remark 3.4. We emphasize that the three terms on the right-hand side (R.H.S.)
of (3.1) have their respective meanings. In particular, the first and second terms
represent the discretization errors introduced by the stochastic gradient estimator
and the numerical integrator of (2.3), respectively. The third term represents the
ergodicity of the continuous-time Markov process (2.3), which characterizes the mixing
time of LS-LD (2.3). Moreover, we remark here that the convergence rate of LS-GLD
(LS-SGLD with full gradient) can be directly implied from Theorem 3.3 by removing
the first term on the R.H.S. of (3.1).

Based on Theorem 3.3, we can also derive the convergence rate of SGLD in the
same setting by setting Aσ = I (i.e., \sigma = 0), which implies that the constants \gamma 1, \gamma 2,
and c0 in Theorem 3.3 are all 1’s. We formally state the convergence result of SGLD
in the following corollary.

Corollary 3.5. Under the same assumptions in Theorem 3.3, the output of

standard SGLD, denoted by \bfity K , satisfies

\scrW 2(P(\bfity K), \pi ) \leq 
\biggl( 
2K\eta 2d\omega 2

B

\biggr) 1/2

+
\bigl[ 
8K\eta 2(K + 1)\beta  - 1d\eta 

\bigr] 1/2

+
\bigl[ 
2\lambda 

\bigl( 
\beta f(0) + log(Λ)

\bigr) \bigr] 1/2
e - Kη/(2βλ).(3.2)

Remark 3.6. We can now compare the convergence rates of LS-SGLD and SGLD.
In terms of the discretization error, it is clear that LS-SGLD is strictly better since
the constants \gamma 1 and \gamma 2 are strictly less than 1 (some values of \gamma 2 corresponding to
different choices of \sigma and d can be found in Table 1). In terms of the ergodicity of
the continuous-time Markov process (the third terms in (3.1) and (3.2)), LS-SGLD
is worse than SGLD due to the fact that c0 \leq 1. Therefore, there exists a trade-off
between the discretization error and the ergodicity rate of LS-SGLD. In our exper-
iments we will conduct numerical evaluations of these error terms and demonstrate
that LS-LD and LD achieve similar ergodicity performance (i.e., mixing time), but
LS-SGLD can achieve a significantly smaller discretization error.
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Table 1

The values of γ2 corresponding to some σ and d.

σ 1 2 3 4 5

d = 1000 0.268 0.185 0.149 0.128 0.114
d = 10000 0.268 0.185 0.149 0.128 0.114
d = 100000 0.268 0.185 0.149 0.128 0.114

3.2. Convergence analysis of sampling from non-log-concave densities.
Here we consider the setting where the target density is no longer log-concave. The
following theorem states the convergence rate of LS-SGLD in 2-Wasserstein distance.

Theorem 3.7. Under Assumptions 1, 2, and 3, if set the step size \eta \leq Cm\beta  - 1/M2

for some sufficiently small constant C, there exist constants c0 \in [\| Aσ\|  - 1
2 , 1], \gamma 1 \in 

[\| Aσ\|  - 2
2 , 1], \gamma 2 = d - 1

\sum d
i=1(1+2\sigma  - 2\sigma cos(2\pi i/d)) - 1, and Γ̄ =

\bigl( 
3/2+2(b+\beta  - 1d)

\bigr) 1/2

such that the output of LS-SGLD satisfies

\scrW 2

\bigl( 
P(\bfitx K), \pi 

\bigr) 
\leq Γ̄(K\eta )1/2

\Biggl[ \biggl( 
\gamma 1\beta d\omega 

2

B
K\eta + 2\gamma 2M

2dK\eta 2
\biggr) 1/2

+

\biggl( 
\gamma 1\beta d\omega 

2

B
K\eta + 2\gamma 2M

2dK\eta 2
\biggr) 1/4

\Biggr] 

+
\bigl[ 
2\lambda 

\bigl( 
\beta f(0) + log(Λ)

\bigr) \bigr] 1/2
e - c0Kη/(2βλ),(3.3)

where Λ =
\int 

Rd e
 - βf(x)d\bfitx and \lambda denotes the logarithmic Sobolev constant of the target

distribution \pi \propto e - βf(x).

Remark 3.8. The convergence rate of SGLD in 2-Wasserstein distance can also
be obtained from Theorem 3.7 by setting Aσ = I, which implies that the constants
c0, \gamma 1, \gamma 2 become all 1’s. It can be verified that the resulting convergence rate matches
that proved in [35]. As a clear comparison, the discretization error induced by both
the stochastic gradient and the numerical integrator of LS-SGLD (the first bracket
term of (3.3)) is smaller than that of SGLD, while the ergodicity term of LS-SGLD
(the last term of (3.3)) is worse than that of SGLD. Again, we will experimentally
demonstrate that the mixing time of LS-LD is not much slower compared with LD,
but LS-SGLD can achieve significantly smaller discretization error than SGLD.

4. Numerical results. In this section, we will perform numerical experiments
on sampling 2D distributions, training BLR, and training CNNs. Throughout all the
experiments, we regard SGLD [39] and preconditioned SGLD (pSGLD) [26], which
considers local curvature of f(\bfitx ) with RMSProp type adaptive step size, as bench-
marks. In addition, we also incorporated the precondition technique, proposed in [26],
into LS-SGLD, which leads to a variant of LS-SGLD, namely Laplacian smoothing
preconditioned SGLD (LS-pSGLD).

4.1. Numerical simulations on synthetic datasets.

4.1.1. 2D Gaussian distribution. As a simple illustration, we apply the pro-
posed LS-SGLD and LS-pSGLD to sample a 2D Gaussian distribution, studied in
[10], with the probability density function ef(x) = exp( 12\bfitx 

TΣ - 1\bfitx ) with \bfitx \in R2 where
Σ = [ 1 0.9

0.9 1 ]. We let the prior be p(\bfitx ) = \scrN (0, \nu 2I) with \nu = 1. For both SGLD and
pSGLD, we let the step size be 0.19, which is obtained based on the grid search. For
LS-SGLD and LS-pSGLD, we let the Laplacian smoothing parameter \sigma be 0.1 with
step size either 0.19 or 0.19(1 + 4\sigma )1/4. It is worth noting that in 2D Aσ becomes
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Aσ =

\biggl[ 
1 + \sigma  - \sigma 
 - \sigma 1 + \sigma 

\biggr] 

.(4.1)

To measure the quality of samples, we consider the MSE between the true and
reconstructed covariance matrices, and we calculate the autocorrelation time of the
samples to verify the efficacy of different samplers in sampling the correlated distri-
bution above. The autocorrelation time is defined as

\tau =
1

2
+

\infty \sum 

t=1

A(t)

A(0)
,(4.2)

where A(t) = E[(\phi η  - \phi (\bfitx 0))(\phi η  - \phi (\bfitx t))] for any given bounded function \phi (\bfitx ),

\phi =
\int 

χ
\phi (\bfitx )p(\bfitx | \scrD )d\bfitx is the population mean of \phi , and the empirical mean \phi =

1
ST

\sum T
t=1 \eta t\phi (\bfitx t) with \eta t being the step size at the tth step and ST =

\sum T
t=1 \eta t.

Figures 1(a) and (c) plot the first 600 samples from the target distribution by
different samplers. We use the same step size 0.19 for all four samplers in the ex-
periments shown in Figure 1(a) and use a larger step size 0.19(1 + 4\sigma )1/4 for LS-
SGLD and LS-pSGLD in experiments shown in Figure 1(c). Qualitatively, Lapla-
cian smoothing can enhance the quality of samples, and the improvement becomes
more remarkable when we use a larger step size. Next, we draw 2 \times 105 samples
from the target distribution by different samplers and we use these samples to re-
construct the covariance matrix. For SGLD and pSGLD, we use a set of step size

(a) Samples (b) Error v.s. ACT

(c) Samples (d) Error v.s. ACT

Fig. 1. Contrasting sampling of a 2D Gaussian distribution with covariance matrix Σ, with
Σ11 = Σ22 = 1 and Σ12 = Σ21 = 0.9, using different samplers. (a) and (c) The first 600 samples
draw by SGLD, pSGLD. (b) and (d) LS-SGLD, and LS-pSGLD. In (c) and (d), we multiply the
step size for LS-SGLD and LS-pSGLD by a factor (1 + 4σ)1/4.
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\{ 0.19, 0.19 \times 0.8, 0.19 \times 0.82, 0.19 \times 0.83, 0.19 \times 0.84\} . For LS-SGLD and LS-pSGLD
we test two sets of step sizes: (i) \{ 0.19, 0.19\times 0.8, 0.19\times 0.82, 0.19\times 0.83, 0.19\times 0.84\} ,
(ii) \{ 0.19, 0.19\times 0.8, 0.19\times 0.82, 0.19\times 0.83, 0.19\times 0.84\} \times (1 + 4\sigma )1/4. Figures 1(b)
and (d) plot the autocorrelation time versus reconstruction error of the covariance
matrix. In (b) we use the same set of step sizes for all four samplers, and in (d) we
use a larger step size for LS-SGLD and LS-pSGLD. We see that reconstruction errors
can be reduced significantly when Laplacian smoothing is used. Moreover, Laplacian
smoothing can also reduce the autocorrelation time in pSGLD.

4.1.2. 2D Gaussian mixture distribution. In this subsection, we compare
the performance of SGLD, pSGLD, LS-SGLD, and LS-pSGLD on a Gaussian mixture
distribution. In particular, we consider the target distribution

\pi \propto exp ( - f(\bfitx )) = exp

\Biggl( 

 - 1

n

n\sum 

i=1

fi(\bfitx )

\Biggr) 

, n = 500,

where each component exp ( - fi(\bfitx )) is defined as

exp ( - fi(\bfitx )) =
2

3
e - 

\| x - ai\| 
2
2

2 +
1

3
e - 

\| x+ai\| 
2
2

2 ,

where we sample \bfita i by the MCMC sampler with MH correction from the following
2D Gaussian distribution:

\scrN 
\biggl( \biggl[ 

2
2

\biggr] 

,

\biggl[ 
2 0
0 2

\biggr] \biggr) 

.

The function fi(\bfitx ) and its gradient can be simplified as

fi(\bfitx ) =
\| \bfitx  - \bfita i\| 22

2
 - log

\biggl( 
2

3
+

1

3
exp ( - 2\langle \bfita i,\bfitx \rangle )

\biggr) 

,

\nabla fi(\bfitx ) = \bfitx  - \bfita i +
2\bfita i

2 + exp (2\langle \bfitx ,\bfita i\rangle )
.

It can be easily verified that if \bfita i satisfies \| \bfita i\| 2 > 3/2, the function fi(\bfitx ) defined
above is nonconvex. Moreover, it can be seen that

\langle \nabla fi(\bfitx ),\bfitx \rangle = \| \bfitx \| 22  - 
exp (2\langle \bfitx ,\bfita i\rangle )

2 + exp (2\langle \bfitx ,\bfita i\rangle )
\langle \bfita i,\bfitx \rangle \geq 

1

2
\| \bfitx \| 22  - 

1

2
\| \bfita i\| 22,

which suggests that the function fi(\bfitx ) satisfies the dissipative Assumption 1 with

m = 1
2 and b =

\| ai\| 
2
2

2 , and it further implies that f(\bfitx ) is also dissipative.
Since it takes a large number of samples to characterize the distribution, which

makes repeated experiments computationally expensive, we instead follow [3, 44, 45]
to use iterates along one Markov chain to visualize the distribution of iterates ob-
tained by MCMC algorithms. We run the four samplers with different numbers of
iterations where we set the batch size to be 10. We plot the distributions generated
by different samplers with different numbers of iterations in Figure 2. As shown in
Figures 2(c), (f), and (i), when the number of iterations is large enough, e.g., 106, the
sample distributions of all three samplers matches well with the reference distribution
(sampled by ground-truth sampler, e.g., MCMC with MH step). However, when the
number of iterations is not enough, there is a large discrepancy between the sample
and target distributions, as shown in Figures 2(a), (d), and (g). With a moderate
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(a) SGLD (1E5) (b) SGLD (5E5) (c) SGLD (1E6)

(d) pSGLD (1E5) (e) pSGLD (5E5) (f) pSGLD (1E6)

(g) LS-SGLD (1E5) (h) LS-SGLD (5E5) (i) LS-SGLD (1E6)

Fig. 2. Kernel density plots of samples generated from Gaussian mixture distribution using
SGLD, LS-SGLD, pSGLD, and LS-pSGLD. We set σ = 1.0 for LS-SGLD and LS-pSGLD.

Table 2

2-Wasserstein distance between samples sampled by MCMC with MH correction and different
SGLD.

# of samples 1E5 5E5 9E5

SGLD 0.695 6.726 0.285
pSGLD 5.364 0.286 6.728

LS-SGLD 0.421 0.414 0.418

number of iterations, say, 5 \times 105, the sample distribution from LS-SGLD is better
than the other two (Figures 2(b), (e), and (h)).

Let us further evaluate the sample quality in a quantitative approach. We first
apply the MCMC with MH step to sample 10K samples from the above target distri-
bution. Then we apply SGLD, pSGLD, and LS-SGLD to sample different numbers
of samples, respectively, from the target distribution. We measure the 2-Wasserstein
distance between the last 10K samples of the different number of samples by the above
three stochastic gradient samplers with the MH samples. We list the Wasserstein dis-
tance between the last 10K samples of different numbers of samples from different sam-
plers with the MH samples in Table 2. These results show that the samples generated
by LS-SGLD are consistently closer to the samples from MCMC with MH correction.

4.1.3. Comparison of the mixing time between LD and LS-LD. To verify
that Laplacian smoothing in practice does not slow down the mixing rate of the
continuous-time Markov process, we conduct the following experiments. First, we
apply the MCMC with MH correction step to sample 10K points, respectively, from
the following two distributions:
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Fig. 3. MSE between the true and reconstructed means from different numbers of samples
generated by LD and LS-LD ( 10 independent runs).

\bullet Gaussian distribution with the probability density function

p(x, y) =
1

9\pi 
exp

\biggl( 

 - 
\biggl( 
(x - 1)2

32
+

(y  - 2)2

32

\biggr) \biggr) 

,(4.3)

\bullet the Gaussian mixture distribution described in subsection 4.1.2.
Second, we use either LD or LS-LD (which can be approximated by Euler–Maruyama
discretization with very small step size), to draw samples from the above two distri-
butions and use these samples to estimate the mean of the target densities. Figure 3
plots the MSE between the true and reconstructed (from a different number of sam-
ples) means, and they show that LD and LS-LD perform similarly in reconstructing
the mean of the target densities.

4.2. Bayesian logistic regression. Suppose we observe n independent and
identically distributed samples \{ \bfitd i, yi\} i=1,2,...,n where \bfitd i \in Rd and yi \in \{  - 1, 1\} denote
the feature and the corresponding label of the ith sample instance. The likelihood of
the BLR model is given by

p(yi| \bfitd i,\bfitx ) =
1

1 + exp ( - yi\langle \bfitd i,\bfitx \rangle )
,

where \bfitx is the parameter to be learned. We use a Gamma prior p(\bfitx ) \propto \| \bfitx \|  - λ
2

exp ( - \theta \| \bfitx \| 2) with \lambda = 1 and \theta = 10 - 2. Then we formulate the logarithmic posterior
distribution as follows:

log [p(\bfitx | \bfitd 1,\bfitd 2, . . . ,\bfitd n; y1, y2, . . . , yn)] \propto  - 1

n

n\sum 

i=1

fi(\bfitx ),

where fi(\bfitx ) = n log
\bigl( 
1 + e - yi\langle di,x\rangle 

\bigr) 
+ \lambda log (\| \bfitx \| 2) + \theta \| \bfitx \| 2.

We use SGLD, pSGLD, LS-SGLD, and LS-pSGLD with batch size 5 to train a
BLR model on the benchmark a3a dataset from the UCI machine learning repository.1

The a3a dataset contains 3185 training data and 29376 test instances; each data in-
stance is of dimension 122. We use the grid search to determine the optimal learning
rate for SGLD (0.001) and pSGLD (0.002), and then we multiply them by (1+4\sigma )1/4

to get the learning rate for LS-SGLD and LS-pSGLD. We set the burn-in to be 1000
for all four samplers. After burn-in, we compute the moving average of the sample
parameters to estimate the regression parameters \bfitx . We plot iteration versus negative

1https://archive.ics.uci.edu/ml/index.php.

D
o
w

n
lo

ad
ed

 0
4
/0

6
/2

1
 t

o
 1

5
5
.9

8
.1

9
.2

1
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LAPLACIAN SMOOTHING STOCHASTIC GRADIENT MCMC A39

(a) Log-likelihood (Training Set) (b) Training Accuracy

(c) Log-likelihood (Test Set) (d) Test Accuracy

Fig. 4. Convergence comparison for BLR, where the X-axis represents the number of iterations
and the Y-axis represents the negative log-likelihood/accuracy. (a) Negative log-likelihood on training
dataset; (b) accuracy on training dataset; (c) negative log-likelihood on test dataset; (d) accuracy
on test dataset.

log-likelihood and accuracy in Figure 4, and we see that Laplacian smoothing reduces
the negative log-likelihood and increases the accuracy. The preconditioning acceler-
ates mixing initially; however, the gap between sampling and target distribution is
remarkably larger than the case without preconditioning.

4.2.1. Variance reduction in stochastic gradient. We numerically verify the
efficiency of variance reduction on BLR for a3a dataset classification. We first compute
a path by full batch SGLD with the same learning rate as before, and meanwhile, we
record the Laplacian smoothing gradient on each point along the path. Then we
compute the Laplacian smoothing stochastic gradients on each point along the path
by using different batch size and \sigma . We run 100 independent experiments to acquire
the Laplacian smoothing stochastic gradients, and then we compute the variance of
these stochastic gradients by regarding the full batch Laplacian smoothing gradient
as the mean. In Table 3, we report the maximum variance, among all coordinates of
the gradient and all points on the descent path, for each pair of batch size and \sigma .

Table 3

The maximum variance of the stochastic gradients generated by LS-SGLD on training BLR on
the a3a data. σ = 0 reduces to SGLD.

Batch size 10 15 50

σ = 0 7.69E-1 3.17E-1 5.69E-2
σ = 0.5 2.56E-1 1.06E-2 1.96E-2
σ = 1.0 1.54E-1 6.37E-2 1.21E-2
σ = 2.0 8.52E-2 3.54E-2 7.04E-3
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(a) Log-likelihood (Training Set) (b) Training Accuracy

(c) Log-likelihood (Test Set) (d) Test Accuracy

Fig. 5. Convergence comparison for Bayesian convolutional neural network, where the X-axis
represents the number of iterations and the Y-axis represents the negative log-likelihood/accuracy.
(a) Negative log-likelihood on training dataset; (b) accuracy on training dataset; (c) negative log-
likelihood on test dataset; (d) accuracy on test dataset.

4.3. Bayesian convolutional neural network. We consider training a CNN
by SGLD, pSGLD, LS-SGLD, and LS-pSGLD on the MNIST benchmark with batch
size 100; the architecture of the CNN is

CNN: input28\times 28 \rightarrow conv20,5,2 \rightarrow conv20,20,5 \rightarrow fc128 \rightarrow softmax.

The notation convc,k,m denotes a 2D convolutional layer with c output channels, each
of which is the sum of a channelwise convolution operation on the input using a
learnable kernel of size k \times k; it further adds ReLU nonlinearity and max-pooling
with stride size m. fc128 is an affine transformation that transforms the input to a
vector of dimension 128. Finally, the tensors are activated by a multiclass logistic
function.

Similar to BLR, we use a Gamma prior p(\bfitx ) \propto \| \bfitx \|  - λ
2 exp ( - \theta \| \bfitx \| 2) with \lambda = 1

and \theta = 5e - 4. Again, we use the grid search to find the optimal step size for SGLD
and pSGLD which is 0.02 and 2e - 4, respectively. We multiply the optimal step size
for SGLD and pSGLD by a factor (1 + 4\sigma )1/4 to get the step size for LS-SGLD and
LS-pSGLD, and we let \sigma = 0.5 for Laplacian smoothing. The comparisons between
different sampling algorithms are plotted in Figure 5, where we see that Laplacian
smoothing reduces the negative log-likelihood and increases the accuracy of both
training and test datasets. The preconditioning accelerates mixing and reduces the
gap between sampling and target distribution. Here, we applied early stopping in
training CNN by pSGLD and LS-pSGLD.

5. Conclusions. In this paper, we integrate Laplacian smoothing with SGLD to
reduce the gap between the sample and target distributions. The resulting algorithm
also allows us to take a larger step size. The proposed algorithm is simple to implement
and the extra computation and memory costs compared with the SGLD are negligible
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when the FFT-based algorithms are employed to resolve the dynamics of the resulting
LS-SGLD. We show, both theoretically and empirically, that LS-SGLD can improve
the sample quality. It is straightforward to extend Laplacian smoothing to the other
MCMC algorithms, e.g., the stochastic gradient HMC [10].

Appendix A. Missing proof in section 2. In this section, we provide the
proof of Proposition 2.1.

Proof of Proposition 2.1. Let p(\bfitx , t) be the distribution of \bfitX t. Then we know
that p(\bfitx , t) satisfies the following Fokker–Planck equation:

\partial p(\bfitx , t)

\partial t
=

1

\beta 
\langle A - 1

σ ,\nabla 2p(\bfitx , t)\rangle + \langle \nabla , p(\bfitx , t)A - 1
σ \nabla f(\bfitx )\rangle 

=
1

\beta 
\langle \nabla ,A - 1

σ \nabla p(\bfitx , t)\rangle + \langle \nabla , p(\bfitx , t)A - 1
σ \nabla f(\bfitx )\rangle ,(A.1)

where \langle \nabla ,h(\bfitx )\rangle denotes the divergence of the vector field h(\bfitx ). Since the stationary
distribution \pi satisfies \partial \pi /\partial t = 0, we have

1

\beta 
\langle \nabla ,A - 1

σ \nabla p(\bfitx , t)\rangle + \langle \nabla , p(\bfitx , t)A - 1
σ \nabla f(\bfitx )\rangle = 0,

which further implies that \beta  - 1\nabla \pi +\pi \nabla f(\bfitx ) = 0. Solving this equation directly gives
\pi \propto e - βf(x), which completes the proof.

Appendix B. Proof of main theory. In order to bound sampling error between
the distribution of the output of LS-SGLD and the target distribution \pi \propto e - βf(x), we
consider a reference sequence generated by LS-LD (2.3), denoted by \{ \bfitX t\} t\geq 0. Letting
\bfitX 0 = \bfitx 0, by the triangle inequality, we can decompose the 2-Wasserstein distance
\scrW 2(P(\bfitx K), \pi ) as follows:

\scrW 2(P(\bfitx K), \pi ) \leq \scrW 2(P(\bfitx K),P(\bfitX Kη)) +\scrW 2(P(\bfitX Kη), \pi ).

The first term on the R.H.S. stands for the discretization error of the numerical inte-
grator, and the second term denotes the ergodicity of LS-LD (2.3), which characterizes
the mixing time of LS-LD. In what follows, we first deliver the following lemma that
characterizes the error term \scrW 2(P(\bfitX Kη), \pi ).

Lemma B.1. Under Assumptions 1 and 2, there exists a constant c0 \in [\| Aσ\|  - 1
2 , 1]

\scrW 2

\bigl( 
P(\bfitX Kη), \pi 

\bigr) 
\leq 

\bigl[ 
2\lambda 

\bigl( 
\beta f(0) + log(Λ)

\bigr) \bigr] 1/2
e - c0Kη/(2βλ),

where Λ =
\int 

Rd e
 - βf(x)d\bfitx and \lambda denotes the logarithmic Sobolev constant of the target

distribution \pi \propto e - βf(x).

Note that Lemma B.1 does not require that the target density is log-concave,
which can be utilized to prove the convergence rate of LS-SGLD for sampling both
log-concave and non-log-concave densities. In the following, we are going to complete
the proofs of Theorems 3.3 and 3.7.

B.1. Proof of Theorem 3.3. We first provide the following lemma, which
proves an upper bound of the discretization error \scrW 2

\bigl( 
P(\bfitx K), P (\bfitX Kη)

\bigr) 
for sampling

log-concave densities.

Lemma B.2. Under Assumptions 1, 2, 3, and 4, if we set the step size

\eta \leq Cm\beta  - 1/M2 for some sufficiently small constant C, there exist constants \gamma 1 \in 

D
o
w

n
lo

ad
ed

 0
4
/0

6
/2

1
 t

o
 1

5
5
.9

8
.1

9
.2

1
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A42 B. WANG, D. ZOU, Q. GU, AND S. J. OSHER

[\| Aσ\|  - 2
2 , 1] and \gamma 2 = d - 1

\sum d
i=1(1 + 2\sigma  - 2\sigma cos(2\pi i/d)) - 1 such that the following

holds:

\scrW 2

\bigl( 
P(\bfitx K), P (\bfitX Kη)

\bigr) 
\leq 

\biggl( 
2\gamma 1d\omega 

2K\eta 2

B

\biggr) 1/2

+
\bigl[ 
8\gamma 2K(K + 1)\beta  - 1d\eta 3

\bigr] 1/2
.

Then we can complete the proof of Theorem 3.3 as follows.

Proof of Theorem 3.3. By the triangle inequality and Lemmas B.1 and B.2, it is
evident that

\scrW 2(P(\bfitx K), \pi ) \leq \scrW 2(P(\bfitx K),P(\bfitX Kη)) +\scrW 2(P(\bfitX Kη), \pi )

\leq 
\biggl( 
2\gamma 1d\omega 

2K\eta 2

B

\biggr) 1/2

+
\bigl[ 
8\gamma 2K(K + 1)\beta  - 1d\eta 3

\bigr] 1/2

+
\bigl[ 
2\lambda 

\bigl( 
\beta f(0) + log(Λ)

\bigr) \bigr] 1/2
e - c0Kη/(2βλ),

which completes the proof.

B.2. Proof of Theorem 3.7. Similar to the proof of Theorem 3.3, we provide
the following lemma that characterizes the discretization error \scrW 2

\bigl( 
P(\bfitx k),P(\bfitX kη)

\bigr) 

for sampling from non-log-concave densities.

Lemma B.3. Under Assumptions 1 and 2, if we set the step size \eta \leq Cm\beta  - 1/M2

for some sufficiently small constant C, there exist constants \gamma 1 \in [\| Aσ\|  - 2
2 , 1], \gamma 2 =

d - 1
\sum d

i=1(1 + 2\sigma  - 2\sigma cos(2\pi i/d)) - 1, and Γ̄ =
\bigl( 
3/2 + 2(b + \beta  - 1d)

\bigr) 1/2
such that the

following holds:

\scrW 2

\bigl( 
P(\bfitx K),P(\bfitX Kη)

\bigr) 
\leq Γ̄(K\eta )1/2

\Biggl[ \biggl( 
\gamma 1\beta d\omega 

2

2B
K\eta + 2\gamma 2\beta M

2dK\eta 2
\biggr) 1/2

+

\biggl( 
\gamma 1\beta d\omega 

2

2B
K\eta + 2\gamma 2\beta M

2dK\eta 2
\biggr) 1/4

\Biggr] 

.

Proof of Theorem 3.7. By the triangle inequality and Lemmas B.1 and B.3, it is
evident that

\scrW 2(P(\bfitx K), \pi ) \leq \scrW 2(P(\bfitx K),P(\bfitX Kη)) +\scrW 2(P(\bfitX Kη), \pi )

\leq Γ̄(K\eta )1/2

\Biggl[ \biggl( 
\gamma 1\beta d\omega 

2

2B
K\eta + 2\gamma 2M

2dK\eta 2
\biggr) 1/2

+

\biggl( 
\gamma 1\beta d\omega 

2

2B
K\eta + 2\gamma 2M

2dK\eta 2
\biggr) 1/4

\Biggr] 

+
\bigl[ 
2\lambda 

\bigl( 
\beta f(0) + log(Λ)

\bigr) \bigr] 1/2
e - c0Kη/(2βλ),

which completes the proof.

Appendix C. Proof of lemmas in Appendix B.

C.1. Proof of Lemma B.1. In order to prove Lemma B.1, we require the
following lemma.

Lemma C.1 (Theorem 9.6.1 in [2]). Suppose the target density \pi satisfies loga-

rithmic Sobolev inequality with a positive constant \lambda ; for any density \mu it holds that

\scrW 2(\mu , \pi ) \leq 
\sqrt{} 

2\lambda DKL(\mu | | \pi ).
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Proof of Lemma B.1. Recall that for LS-LD (2.3), the distribution of\bfitX t, denoted
by p(\bfitx , t), can be described by the following Fokker–Planck equation:

\partial p(\bfitx , t)

\partial t
=

1

\beta 
\langle A - 1

σ ,\nabla 2p(\bfitx , t)\rangle + \langle \nabla , p(\bfitx , t)A - 1
σ \nabla f(\bfitx )\rangle 

=
1

\beta 
\langle \nabla ,A - 1

σ \nabla p(\bfitx , t)\rangle + \langle \nabla , p(\bfitx , t)A - 1
σ \nabla f(\bfitx )\rangle ,(C.1)

where \langle \nabla ,h(\bfitx )\rangle denotes the divergence of the vector field h(\bfitx ). Let Pt be the short-
hand notation of p(\bfitx , t), and denote by DKL(Pt| | \pi ) the KL-divergence between the
distribution Pt and the target distribution \pi . Then, we have

dDKL(Pt| | \pi )
dt

=

\int 

Rd

\partial 

\partial t

\biggl[ 

Pt log

\biggl( 
Pt

\pi 

\biggr) \biggr] 

d\bfitx 

=

\int 

Rd

\partial Pt

\partial t

\bigl[ 
log(Pt) + 1 - log(\pi )

\bigr] 
d\bfitx .

Similar to the proof of Proposition 2 in [31], by (C.1) we further have

dDKL(Pt| | \pi )
dt

=  - 
\int 

Rd

\biggl\langle 
1

\beta 
A - 1

σ \nabla Pt + PtA
 - 1
σ \nabla f(\bfitx ),\nabla log(Pt) - \nabla log(\pi )

\biggr\rangle 

d\bfitx 

=  - 
\int 

Rd

\biggl\langle 

A - 1
σ

\biggl( 
1

\beta 
Pt\nabla log(Pt) + Pt\nabla f(\bfitx )

\biggr) 

,\nabla log(Pt) - \nabla log(\pi )

\biggr\rangle 

d\bfitx ,

where the second equality holds due to \nabla Pt = Pt\nabla log(Pt). In addition, noting that
\pi \propto e - βf(x), we have \nabla log(\pi ) =  - \beta \nabla f(\bfitx ). Then we have

dDKL(Pt| | \pi )
dt

=  - 1

\beta 

\int 

Rd

\bigl\langle 
A - 1

σ

\bigl( 
\nabla log(Pt) - \nabla log(\pi )

\bigr) 
,\nabla log(Pt) - \nabla log(\pi )

\bigr\rangle 
Ptd\bfitx 

=  - 1

\beta 

\int 

Rd

\| \nabla log(Pt) - \nabla log(\pi )\| 2
A

 - 1
σ
Ptd\bfitx .

Since Aσ is a positive definite matrix, there exists a constant c0 \in [\| Aσ\|  - 1
2 , 1] such

that

dDKL(Pt| | \pi )
dt

\leq  - c0
\beta 

\int 

Rd

\| \nabla log(Pt) - \nabla log(\pi )\| 22Ptd\bfitx =  - c0
\beta 
I(Pt| | \pi ),(C.2)

where I(Pt| | \pi ) denotes the Fisher information between Pt and \pi . By Proposition 3.2,
we know that the target density \pi satisfies the logarithmic Sobolev inequality with
constant \lambda > 0. Then, from [29], we have

DKL(Pt| | \pi ) \leq 
1

\lambda 
I(Pt| | \pi ).

Plugging the above inequality into (C.2), we obtain

dDKL(Pt| | \pi )
dt

\leq  - c0
\lambda \beta 

DKL(Pt| | \pi ),

which implies that

DKL(Pt| | \pi ) \leq DKL(P0| | \pi )e - c0t/(βλ).
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Note that we have P0 = \delta (0), where \delta (\cdot ) is the Dirac delta function, thus,

DKL(P0| | \pi ) =
\int 

Rd

P0

\bigl[ 
log(P0) - log(\pi )

\bigr] 
d\bfitx =  - log(\pi )| x=0 = \beta f(0) + log(Λ),

where Λ =
\int 

Rd e
 - βf(x)d\bfitx . Then by Lemma C.1, we have the following regarding the

2-Wasserstein distance \scrW 2

\bigl( 
P(\bfitX kη), \pi 

\bigr) 
:

\scrW 2

\bigl( 
P(\bfitX kη), \pi 

\bigr) 
\leq 

\sqrt{} 

2\lambda DKL(P(\bfitX 0)| | \pi )e - c0t/(2βλ)

=
\bigl[ 
2\lambda 

\bigl( 
\beta f(0) + log(Λ)

\bigr) \bigr] 1/2
e - c0t/(2βλ),

which completes the proof.

C.2. Proof of Lemma B.2. We first deliver the following useful lemmas.

Lemma C.2. Consider any two LS-LD sequences \{ \bfitW t\} t\geq 0 and \{ \bfitV t\} t\geq 0, and as-

sume that \bfitW t and \bfitV t have shared Brownian motion terms. Under Assumption 4, for
any t > 0 it holds that

E[\| \bfitW t  - \bfitV t\| 2Aσ
] \leq E[\| \bfitW 0  - \bfitV 0\| 2Aσ

].

Lemma C.3. Under Assumptions 1 and 2, if we set the step size \eta \leq Cm\beta  - 1/M2

for some sufficiently small constant C, there exists a constant \gamma 2 = d - 1
\sum d

i=1(1+2\sigma  - 
2\sigma cos(2\pi i/d)) - 1 such that for any \bfitx k with k \geq 0,

E[\| \scrL η\bfitx k  - \scrG η\bfitx k\| 2Aσ
] \leq 4\gamma 2\beta 

 - 1d\eta 3.

Now we are ready to complete the proof of Lemma B.2.

Proof of Lemma B.2. For the sake of simplicity, we first define three operators \scrL t,
\scrG t, and \scrS t as follows: for any \bfitx \in Rd we denote by \scrL t\bfitx the random point generated
by LS-LD at time t starting from \bfitx , \scrG t\bfitx the point after performing one-step LS-SGLD
with full gradient at \bfitx with step size t, and \scrS t\bfitx the point after performing one-step
LS-SGLD at \bfitx with step size t. Then we have

E[\| \bfitx K  - \bfitX Kη\| 2Aσ
] = E[\| \bfitx K  - \scrG η\bfitx K - 1 + \scrG η\bfitx K - 1  - \bfitX Kη\| 2Aσ

]

= E[\| \bfitx K  - \scrG η\bfitx K - 1\| 2Aσ
] + E[\| \scrG η\bfitx K - 1  - \bfitX Kη\| 2Aσ

],(C.3)

where the second equality follows from the fact that E[\langle \bfitx K  - \scrG η\bfitx K - 1,Aσ(\scrG η\bfitx K - 1  - 
\bfitX Kη)\rangle ] = 0 since at any iteration the randomness of the stochastic gradient is inde-
pendent of the iterate. Regarding the first term on the R.H.S. of (C.3), we have

E[\| \bfitx K  - \scrG η\bfitx K - 1\| 2Aσ
] = \eta 2E[\| \scrS η\bfitx K - 1  - \scrG η\bfitx K - 1\| 2Aσ

]

\leq \eta 2E[\| A - 1
σ gK - 1  - A - 1

σ \nabla f(\bfitx K - 1)\| 2Aσ
]

\leq \eta 2

B
E[\| A - 1

σ \nabla fi(\bfitx K - 1) - A - 1
σ \nabla f(\bfitx K - 1)\| 2Aσ

]

\leq \gamma 1\eta 
2d\omega 2

B
,(C.4)

where \gamma 1 \in [\| Aσ\|  - 1
2 , 1) is a problem-dependent parameter, the first inequality follows

the definitions of operators \scrS η and \scrG η, the second inequality follows from Lemma A.1
in [25], and the last inequality is by Assumption 3. In terms of the second term on
the R.H.S. of (C.3), we have
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E[\| \scrG η\bfitx K - 1  - \bfitX Kη\| 2Aσ
] = E[\| \scrG η\bfitx K - 1  - \scrL η\bfitx K - 1 + \scrL η\bfitx K - 1  - \bfitX Kη\| 2Aσ

]

\leq (1 + \alpha )E[\| \scrG η\bfitx K - 1  - \scrL η\bfitx K - 1\| 2Aσ
]

+ (1 + 1/\alpha )E[\| \scrL η\bfitx K - 1  - \scrL η\bfitX (K - 1)η\| 2Aσ
]

\leq 4(1 + \alpha )\gamma 2\beta 
 - 1d\eta 3 + (1 + 1/\alpha )E[\| \bfitx K - 1  - \bfitX (K - 1)η\| 2Aσ

],(C.5)

where \alpha is a positive constant that will be specified later, the first inequality is by
Young’s inequality, and the second inequality follows from Lemmas C.2 and C.3.
Plugging (C.4) and (C.5) into (C.3) gives

E[\| \bfitx K  - \bfitX Kη\| 2Aσ
] \leq 4(1 + \alpha )\gamma 2\beta 

 - 1d\eta 3 +
\gamma 1\eta 

2d\omega 2

B

+ (1 + 1/\alpha )E[\| \bfitx K - 1  - \bfitX (K - 1)η\| 2Aσ
].

Then, by recursively applying the above inequality, we obtain

E[\| \bfitx K  - \bfitX Kη\| 2Aσ
] \leq (1 + 1/\alpha )KE[\| \bfitx 0  - \bfitX 0\| 2Aσ

]

+

K - 1\sum 

k=0

(1 + 1/\alpha )k
\biggl[ 

4(1 + \alpha )\gamma 2\beta 
 - 1d\eta 3 +

\gamma 1\eta 
2d\omega 2

B

\biggr] 

= \alpha 
\bigl[ 
(1 + 1/\alpha )K  - 1

\bigr] 
\cdot 
\biggl[ 

4(1 + \alpha )\gamma 2\beta 
 - 1d\eta 3 +

\gamma 1\eta 
2d\omega 2

B

\biggr] 

.

Letting \alpha = K and applying the inequality (1 + 1/K)K  - 1 \leq e  - 1 \leq 2, the above
inequality implies

E[\| \bfitx K  - \bfitX Kη\| 2Aσ
] \leq 2K\eta 2 \cdot 

\biggl[ 
\gamma 1d\omega 

2

B
+ 4(K + 1)\gamma 2\beta 

 - 1d\eta 

\biggr] 

.

Based on the definition of 2-Wasserstein distance, we have

\scrW 2
2

\bigl( 
P(\bfitx K),P(\bfitX Kη)

\bigr) 
\leq 

\sqrt{} 

E[\| \bfitx K  - \bfitX Kη\| 22] \leq 
\sqrt{} 

E[\| \bfitx K  - \bfitX Kη\| 2Aσ
]

\leq 
\biggl( 
2\gamma 1d\omega 

2K\eta 2

B

\biggr) 1/2

+
\bigl[ 
8\gamma 2K(K + 1)\beta  - 1d\eta 3

\bigr] 1/2
,

where the last inequality is by the fact that
\sqrt{} 

x2 + y2 \leq | x| + | y| . This completes the
proof.

C.3. Proof of Lemma B.3. In order to prove Lemma B.3, we require the
following lemmas.

Lemma C.4. Under Assumptions 1 and 2, for all k \geq 0, there exists a constant

c1 \in [\| Aσ\|  - 1
2 , 1) such that

E[\| \bfitx k\| 22] \leq E[\| \bfitx k\| 2Aσ
] \leq 2(2b+ \beta  - 1d)

c1m
.

Lemma C.5 (Theorem 2.3 in [5]). Letting \mu , \nu be two probability measures with

finite exponential second moments, it holds that

\scrW 2(\mu , \nu ) \leq Γ
\Bigl[ \sqrt{} 

DKL(\mu | | \nu ) + [DKL(\mu | | \nu )]1/4
\Bigr] 

,

where

Γ = inf
α>0

\biggl( 
1

\alpha 

\biggl( 
3

2
+ logEν [e

α\| x\| 2
2 ]

\biggr) \biggr) 1/2

.
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Lemma C.6 (Lemma 4 in [38]). Letting \bfitepsilon \sim \scrN (0, I) be the standard Gaussian

random vector with dimension d, it holds that

E
\bigl[ 
\| A - 1

σ \bfitepsilon \| 22
\bigr] 
=

d\sum 

i=1

1
\bigl( 
1 + 2\sigma  - 2\sigma cos(2\pi i/d)

\bigr) 2 .

Lemma C.7. Under Assumptions 1 and 2, let \bfitX t denote the solution of LS-LD

(2.3) at time t with initial point \bfitX 0 = 0. Then if the inverse temperature satisfies

\beta \geq 2\| Aσ\| 2/m, it holds that

E[e\| Xt\| 
2
2 ] \leq e2(b+β - 1d)t.

Based on the above lemmas, we are able to complete the proof of Lemma B.3.

Proof of Lemma B.3. By Lemma C.5, we know that the 2-Wasserstein distance
between any two probability measures can be bounded by their KL divergence. There-
fore, the remaining part will focus on deriving the upper bound of the KL divergence
DKL

\bigl( 
P(\bfitx k)| | P(\bfitX kη)

\bigr) 
. Similar to the proof technique used in [15, 35, 40], we leverage

the following continuous-time interpolation of LS-SGLD:

\̃bfitX t =

\int t

0

 - A - 1
σ Gsds+

\int t

0

\sqrt{} 

2\beta  - 1A - 1/2
σ d\bfitB s,(C.6)

where Gt =
\sum \infty 

k=0 gk1\{ t \in [k\eta , (k + 1)\eta )\} . It can be easily verified that \̃bfitX kη follows
the same distribution as \bfitx k. However, it is worth noting that (C.6) does not form a
Markov chain since it contains randomness of the stochastic gradient. To tackle this,
we leverage the results in [22] and construct the following Markov chain to mimic
(C.6):

\̂bfitX t =

\int t

0

 - A - 1
σ Ĝsds+

\int t

0

\sqrt{} 

2\beta  - 1A - 1/2
σ d\bfitB s,

where Ĝs = E[Gs| \̂bfitX s = \̃bfitX s]. It was shown that \̂bfitX t and \̃bfitX t has the same one-time
marginal distribution [22]. Then letting Pt and Qt denote the distribution of \bfitX t and

\̂bfitX t respectively, by the Girsanov formula, the Radon–Nikodym derivative of Pt with
respect to Qt can be derived as follows:

dPt

dQt
= exp

\biggl\{ 
\beta 

2

\int t

0

\langle \nabla f(\̂bfitX s) - Ĝs,A
 - 1/2
σ d\bfitB s\rangle  - 

\beta 

4

\int t

0

\| A - 1
σ \nabla f(\̂bfitX s) - A - 1

σ Ĝs\| 22ds
\biggr\} 

.

Therefore, letting T = K\eta , the KL divergence DKL(PT | | QT ) satisfies

DKL(QT | | PT ) =  - 
\int 

Rd

log

\biggl( 
dPT

dQT

\biggr) 

dQT

=
\beta 

4

\int T

0

E
\bigl[ 
\| A - 1

σ \nabla f(\̂bfitX s) - A - 1
σ Ĝs\| 22

\bigr] 
ds

=
\beta 

4

K - 1\sum 

k=0

\int (k+1)η

kη

E
\bigl[ 
\| A - 1

σ \nabla f(\̃bfitX s) - A - 1
σ gk\| 22

\bigr] 
ds,

where the second equality holds due to E[\langle \nabla f(\̂bfitX s)  - Ĝs,A
 - 1/2
σ d\bfitB s\rangle ] = 0 and the

second equality follows from the fact that \̂bfitX s and \̃bfitX s follow the same distribution.
Using Young’s inequality, we have
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E[\| A - 1
σ \nabla f(\̃bfitX s) - A - 1

σ gk\| 22] \leq 2E[\| A - 1
σ \nabla f(\̃bfitX s) - A - 1

σ \nabla f(\bfitx k)\| 22]
\underbrace{}  \underbrace{}  

I1

+ 2E[\| A - 1
σ \nabla f(\bfitx k) - A - 1

σ gk\| 22]
\underbrace{}  \underbrace{}  

I2

.

Then we are going to tackle I1 and I2 separately. Note that \| A - 1
σ \| 2 \leq 1; thus by

Assumption 2, we have the following for I1:

I1 \leq E[\| \nabla f(\̃bfitX s) - \nabla f(\bfitx k)\| 22] \leq M2E[\| \̃bfitX s  - \bfitx k\| 22].

Based on the definition of \̃bfitX s, we have \̃bfitX s - \bfitx k=(s - k\eta )A - 1
σ gk+

\sqrt{} 

2\beta  - 1(s - k\eta )A
 - 1/2
σ

\bfitepsilon k. Since s - k\eta \leq \eta , it follows that

I1 \leq M2E[\| \̃bfitX s  - \bfitx k\| 22] \leq \eta 2M2E[\| A - 1
σ gk\| 22] + 2\eta M2\beta  - 1E[\| A - 1/2

σ \bfitepsilon k\| 22].

Regarding I2, based on Lemma A.1 in [25] and Assumption 3, we have

I2 \leq 1

B
E[\| A - 1

σ \nabla f(\bfitx k) - A - 1
σ \nabla fi(\bfitx k)\| 22] \leq 

\gamma 1d\omega 
2

B
,

where \gamma 1 \in [\| Aσ\|  - 2
2 , 1) is a problem-dependent parameter. Putting everything to-

gether, we have

DKL(QT | | PT ) \leq 
K - 1\sum 

k=0

\eta 

\biggl\{ 
\beta 

2
\eta 2M2E

\bigl[ 
\| gk\| 2

A
 - 2
σ

\bigr] 
+ \eta M2E

\bigl[ 
\| \bfitepsilon k\| 2

A
 - 1
σ

\bigr] 
+

\gamma 1\beta d\omega 
2

2B

\biggr\} 

.

By Lemma D.1 and Young’s inequality, we know that

E
\bigl[ 
\| gk\| 2

A
 - 2
σ

\bigr] 
\leq E[\| gk\| 22] \leq 2M2E[\| \bfitx k\| 22] + 2G2 \leq 4M2(2b+ \beta  - 1d)

c1m
+ 2G2,

where G = maxi\in [n] \| \nabla fi(0)\| 2. Then by Lemma C.6, we have E[\| \bfitepsilon k\| 2
A

 - 1
σ
] \leq \gamma 2d with

\gamma 2 = d - 1
\sum d

i=1(1+2\sigma  - 2\sigma cos(2\pi i/d)) - 1, which is strictly smaller than 1. Therefore,

DKL(QT | | PT ) \leq 
2\beta M4(2b+ \beta  - 1d) + \beta c1mM2G2

c1m
K\eta 3 + \gamma 2M

2dK\eta 2 +
\gamma 1\beta d\omega 

2

2B
K\eta .

For sufficiently small step size such that

\eta \leq c1\beta 
 - 1\gamma 2md

2M2(2b+ \beta  - 1d) + c1mG2
,

we have

DKL(P(\bfitx K)| | P(\bfitX Kη)) \leq 
\gamma 1\beta d\omega 

2

2B
K\eta + 2\gamma 2M

2dK\eta 2.

Then, by Lemma C.5, we have

\scrW 2

\bigl( 
P(\bfitx K),P(\bfitX Kη)

\bigr) 
\leq Γ

\Bigl[ \sqrt{} 

DKL

\bigl( 
P(\bfitx K)| | P(\bfitX Kη)

\bigr) 
+

\bigl[ 
DKL

\bigl( 
P(\bfitx K)| | P(\bfitX Kη)

\bigr) \bigr] 1/4
\Bigr] 

,

where Γ can be further bounded as
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Γ \leq 
\biggl( 
3

2
+ logE[e\| XKη\| 

2
2 ]

\biggr) 1/2

\leq 
\bigl( 
3/2 + 2(b+ \beta d)K\eta 

\bigr) 1/2

\leq 
\bigl( 
3/2 + 2(b+ \beta d)

\bigr) 1/2 \cdot (K\eta )1/2,

where the first inequality is by the choice \alpha = 1, the second inequality is by Lemma
C.7, and the last inequality is by the assumption that K\eta > 1. Therefore, defining

Γ̄ =
\bigl( 
3/2 + 2(b+ \beta  - 1d)

\bigr) 1/2
, the 2-Wasserstein distance \scrW 2

\bigl( 
P(\bfitx K),P(\bfitX Kη)

\bigr) 
can be

bounded by

\scrW 2

\bigl( 
P(\bfitx K),P(\bfitX Kη)

\bigr) 
\leq Γ̄(K\eta )1/2

\biggl[ \biggl( 
\gamma 1\beta d\omega 

2

2B
K\eta + 2\gamma 2M

2dK\eta 2
\biggr) 1/2

+

\biggl( 
\gamma 1\beta d\omega 

2

2B
K\eta + 2\gamma 2M

2dK\eta 2
\biggr) 1/4\biggr] 

,

which completes the proof.

Appendix D. Proof of lemmas in Appendix C.

D.1. Proof of Lemma C.2.

Proof of Lemma C.2. Assuming shared Brownian motions in \bfitW t and \bfitV t, we have

dE[\| \bfitW t  - \bfitV t\| 2Aσ
] =  - 2E

\bigl[ \bigl\langle 
A - 1

σ

\bigl( 
\nabla f(\bfitW t) - \nabla f(\bfitV t)

\bigr) 
,Aσ(\bfitW t  - \bfitV t)

\bigr\rangle \bigr] 
dt

=  - 2E
\bigl[ \bigl\langle 
\nabla f(\bfitW t) - \nabla f(\bfitV t),\bfitW t  - \bfitV t

\bigr\rangle \bigr] 
dt

\leq 0,

where the first equality follows from the fact that we assume shared Brownian mo-
tion terms on both dynamics \{ \bfitW t\} t\geq 0 and \{ \bfitV t\} t\geq 0 and the inequality is due to the
convexity of f(\bfitx ). Therefore, it can be evidently concluded that

E[\| \bfitW t  - \bfitV t\| 2Aσ
] \leq E[\| \bfitW 0  - \bfitV 0\| 2Aσ

],

which completes the proof.

D.2. Proof of Lemma C.3.

Proof of Lemma C.3. To simplify the analysis, let \bfitx be any iterate of LS-SGLD
and define \bfitx = \bfitX 0. Then the operators \scrG η and \scrL η satisfy

\scrG η\bfitx = \bfitX 0  - \eta A - 1
σ \nabla f(\bfitX 0) +

\sqrt{} 

2\beta  - 1\eta A - 1/2
σ \bfitepsilon 

= \bfitX 0  - 
\int η

0

A - 1
σ \nabla f(\bfitX 0)dt+

\int η

0

\sqrt{} 

2\beta  - 1A - 1/2
σ d\bfitB t;

\scrL η\bfitx = \bfitX 0  - 
\int η

0

A - 1
σ \nabla f(\bfitX t)dt+

\int η

0

\sqrt{} 

2\beta  - 1A - 1/2
σ d\bfitB t.

Considering synchronous Brownian terms in \scrG η and \scrL η, we have

E[\| \scrL η\bfitx  - \scrG η\bfitx \| 2Aσ
] = E

\Biggl[ \bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

\int η

0

\bigl[ 
A - 1

σ \nabla f(\bfitX 0) - A - 1
σ \nabla f(\bfitX t)

\bigr] 
dt

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

2

Aσ

\Biggr] 

\leq E

\biggl[ 

\eta 

\int η

0

\bigm\| 
\bigm\| A - 1

σ

\bigl[ 
\nabla f(\bfitX 0) - \nabla f(\bfitX t)

\bigr] \bigm\| 
\bigm\| 
2

Aσ
dt

\biggr] 

\leq M2

\biggl[ 

\eta 

\int η

0

E[\| \bfitX t  - \bfitX 0\| 22]dt
\biggr] 

,(D.1)
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where the second inequality follows from Jensen’s inequality and the last inequality
follows from Assumption 2 and the fact that \| Aσ\| 2 \geq 1. We further have

E[\| \bfitX t  - \bfitX 0\| 22] = E

\biggl[ \bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

\int t

0

A - 1
σ \nabla f(\bfitX τ )d\tau 

\bigm\| 
\bigm\| 
\bigm\| 
\bigm\| 

2

2

\biggr] 

+ 2t\beta  - 1E[\| A - 1/2
σ \bfitepsilon \| 22]

\leq E

\biggl[ 

t

\int t

0

\| \nabla f(\bfitX τ )\| 22d\tau 
\biggr] 

+ 2\gamma 2t\beta 
 - 1d,

where the inequality is by Jensen’s inequality and Lemma C.6 and \gamma 2 = d - 1
\sum d

i=1(1+
2\sigma  - 2\sigma cos(2\pi i/d)) - 1 is strictly smaller than 1. By Lemma D.1, we have

E[\| \nabla f(\bfitX τ )\| 22] \leq 2M2E[\| \bfitX τ\| 22] + 2G2.

Note that by Ito’s lemma we have for any 0 \leq s \leq \tau ,

dE[\| Xs\| 
2
Aσ

]

ds
=  - 2E[\langle Xs,\nabla f(Xs)\rangle ] + β

 - 1
d \leq  - 2mE[\| Xs\| 

2
2] + 2b+ β

 - 1
d \leq 2b+ β

 - 1
d,

where the second inequality follows from Assumption 1. Therefore,

E[\| Xτ\| 
2
2] \leq E[\| Xτ\| 

2
Aσ

] = E[\| X0\| 
2
Aσ

] +

\int τ

0

dE[\| Xs\| 
2
Aσ

]

ds
ds \leq E[\| X0\| 

2
Aσ

] + τ(2b+ β
 - 1

d).

Note that \bfitX 0 = \bfitx is an iterate of LS-SGLD; by Lemma C.4 we have E[\| \bfitX 0\| 2Aσ
] \leq 

(2b+ \beta  - 1d)/(c1m) for some constant c1 \in [\| Aσ\|  - 1
2 , 1]. Therefore,

E[\| \nabla f(\bfitX τ )\| 22] \leq 2M2E[\| \bfitX τ\| 22] + 2G2 \leq 4M2(2b+ \beta  - 1d)

c1m
+2G2 + 2M2\tau (2b+ \beta  - 1d).

Thus, it follows that

E[\| \bfitX t  - \bfitX 0\| 22] \leq 
\biggl( 
4M2(2b+ \beta  - 1d)

c1m
+ 2G2 + 2M2\tau (2b+ \beta  - 1d)

\biggr) 

t2 + 2\gamma 2t\beta 
 - 1d.

Noting that \tau , t \leq \eta , plugging the above inequality into (D.1), we have

E[\| \scrL ηx - \scrG ηx\| 
2
2] \leq M

2

\biggl[ \biggl( 

4M2(2b+ β - 1d)

c1m
+ 2G2 + 2M2(2b+ β

 - 1
d)η

\biggr) 

η
4 + 2γ2β

 - 1
dη

3

\biggr] 

.

For sufficiently small step size satisfying

\eta \leq c1\beta 
 - 1\gamma 2md

4M2(2b+ \beta  - 1d) + 2c1mG2
\wedge 
\sqrt{} 

\gamma 2\beta  - 1d

M2(2b+ \beta  - 1d)
,

where \wedge stands for maximum of two numbers,
we have

E[\| \scrL η\bfitx  - \scrG η\bfitx \| 22] \leq 4\gamma 2\beta 
 - 1d\eta 3.

This completes the proof.
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D.3. Proof of Lemma C.4. In order to prove Lemma C.4, we need the follow-
ing lemma.

Lemma D.1 (Lemma 3.1 in [35]). For any \bfitx \in Rd and i \in [n], it holds that

\| \nabla fi(\bfitx )\| 2 \leq M\| \bfitx \| 2 +G,

where G = maxi\in [n] \| \nabla fi(0)\| 2.
Proof of Lemma C.4. Recall the update formula of \bfitx k,

\bfitx k+1 = \bfitx k  - \eta A - 1
σ gk +

\sqrt{} 

2\beta  - 1\eta A - 1/2
σ \bfitepsilon k.

Therefore, it holds that

E[\| \bfitx k+1\| 2Aσ
] = E[\| \bfitx k  - \eta A - 1

σ gk\| 2Aσ
] + 2\eta \beta  - 1E[\| A - 1/2

σ \bfitepsilon k\| 2Aσ
]

= E[\| \bfitx k\| 2Aσ
] - 2\eta E[\langle \bfitx k,gk\rangle ] + \eta 2E

\bigl[ 
\| gk\| 2

A
 - 1
σ

\bigr] 
+ 2\eta \beta  - 1d,

where the second equality follows from the fact that E[\| \bfitepsilon k\| 22] = d. Noting that all
eigenvalues of Aσ are greater than 1, it follows that

E[\| \bfitx k+1\| 2Aσ
] = E[\| \bfitx k\| 2Aσ

] - 2\eta E[\langle \bfitx k,\nabla f(\bfitx )\rangle ] + \eta 2E[\| gk\| 22] + 2\eta \beta  - 1d

\leq E[\| \bfitx k\| 2Aσ
] - 2\eta mE[\| \bfitx k\| 22] + 2\eta b+ 2\eta 2(M2E[\| \bfitx k\| 22] +G2) + 2\eta \beta  - 1d,

where the inequality follows from Assumption 1, Lemma D.1, and Young’s inequality.
Since the step size \eta satisfies \eta \leq m/(2M2), we further have

E[\| \bfitx k+1\| 2Aσ
] \leq E[\| \bfitx k\| 2Aσ

] - \eta mE[\| \bfitx k\| 22] + 2\eta (b+ \beta  - 1d+ \eta G2).

Recall that all eigenvalues of Aσ are greater than 1; there exists a constant \| Aσ\|  - 1
2 \leq 

c1 \leq 1 such that

E[\| \bfitx k+1\| 2Aσ
] \leq (1 - c1\eta m)E[\| \bfitx k\| 2Aσ

] + 2\eta (b+ \beta  - 1d+ \eta G2).(D.2)

Since \eta \leq 1/(c1m) \wedge b/G, (D.2) implies that the following holds for all k \geq 0:

E[\| \bfitx k\| 2Aσ
] \leq (1 - c1\eta m)k\| \bfitx 0\| 2Aσ

+
2(2b+ \beta  - 1d)

c1m
.

Since at the initialization \bfitx 0 = 0, we have

E[\| \bfitx k\| 22] \leq E[\| \bfitx k\| 2Aσ
] \leq 2(2b+ \beta  - 1d)

c1m
.

This completes the proof.

D.4. Proof of Lemma C.7.

Proof of Lemma C.7. We first define the function L(t) = e\| Xt\| 
2
Aσ ; then by Ito’s

formula, we have

dE[L(t)] =  - 2E[\langle AσXt,A
 - 1
σ \nabla f(Xt)\rangle L(t)]dt+ E[\langle 4AσXtX

\top 
t Aσ + 2Aσ, β

 - 1
A

 - 1
σ I\rangle L(t)]dt

=  - 2E
\bigl[ \bigl( 

\langle Xt,\nabla f(Xt)\rangle  - β
 - 1

d - 2β - 1\| Xt\| 
2
Aσ

\bigr) 

L(t)
\bigr] 

dt.
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By Assumption 1, we further have

dE[L(t)] \leq 2E
\bigl[ \bigl( 
( - m\| \bfitX t\| 22 + 2\beta  - 1\| \bfitX t\| 2Aσ

) + b+ \beta  - 1d
\bigr) 
L(t)

\bigr] 
dt.

Therefore, assuming \beta \geq 2\| Aσ\| 2/m, we have

dE[L(t)] \leq 2(b+ \beta  - 1d)E[L(t)]dt.

Since L(t) is always positive, it holds that

E[L(t)] \leq L(0)e2(b+β - 1d)t.

Noting that \| \bfitX t\| 2Aσ
\geq \| \bfitX t\| 22, we immediately have

E[e\| Xt\| 
2
2 ] \leq E[e\| Xt\| 

2
Aσ ] \leq L(0)e2(b+β - 1d)t,

which completes the proof.
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