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Controllability for Simple Temporal Networks with Uncertainty (STNUs) has thus far been 
limited to three levels: strong, dynamic, and weak. Because of this, there is currently 
no systematic way for an agent to assess just how far from being controllable an 
uncontrollable STNU is. We provide new insights inspired by a geometric interpretation of 
STNUs to introduce the degrees of strong and dynamic controllability — continuous metrics 
that measure how far a network is from being controllable. We utilize these metrics to 
approximate the probabilities that an STNU can be dispatched successfully offline and 
online respectively. We introduce new methods for predicting the degrees of strong and 
dynamic controllability for uncontrollable networks. We further generalize these metrics by 
defining likelihood of controllability, a controllability measure that applies to Probabilistic 
Simple Temporal Networks (PSTNs). Finally, we empirically demonstrate that these metrics 
are good predictors of actual dispatch success rate for STNUs and PSTNs.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When tasked with making a schedule, a planner would ideally have the capability to pick exact times for every event that 
could occur. In practice however, autonomous agents rarely have control over all events affecting their plans. For example, 
imagine a chemist named Dr. V running a small experiment. She first combines 20 mL of chemical W and chemical X in a 
beaker. The exact amount of time it takes these chemicals to react is uncertain: all Dr. V knows is that it will take between 
twenty and thirty-one minutes for the reaction to finish (unfortunately, not much is known about the reaction rates of 
chemicals W and X). Within ten minutes of this reaction completing, she must add 20 mL of chemical Y to the mixture, 
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Fig. 1. An STNU representation of Dr. V’s experiment.

which catalyzes a new reaction taking thirty to thirty-five minutes. Finally, Dr. V must collect a product, precipitate Z, from 
the solution within ten minutes of the reaction completing.

To run the experiment successfully, Dr. V needs to schedule several different events. She is able to select times for some 
events, such as the addition of chemical Y, but other events, such as the completion times of the reactions, are not under 
her control. There are multiple different strategies Dr. V can use to deal with this uncertainty in timing and ensure the 
experiment’s success. The effectiveness of different types of scheduling strategies is related to the scheduling problem’s 
controllability — how easily the experiment can be successfully executed given its inherent uncertainty. Currently, all forms 
of controllability discussed in the literature are discrete — they tell Dr. V whether her experiment is controllable or not, but 
do not tell her “how” controllable or uncontrollable the experiment is.

In this paper, we extend the notion of controllability by introducing two new continuous metrics on temporal networks: 
the degrees of strong and dynamic controllability [1]. These metrics are motivated by a geometric interpretation of STNUs 
as pairs of polytopes and characterize how far a network is from being controllable given different types of execution 
strategies. These metrics naturally relate to the probability that a network can be successfully dispatched. In that context, 
we define optimization problems for determining the probability of successful dispatch given online/offline plans, and offer 
approximate solutions to these problems. Finally, we show that the degrees of both strong and dynamic controllability 
extend naturally and effectively to PSTNs [2].

2. Background

2.1. Simple Temporal Networks

A Simple Temporal Network (STN) is a tuple S = 〈T , C〉, where T is the set of temporal events ti , and C is the set of binary 
constraints on T [3]. Each element in C is of the form t j − ti ≤ ci j , for some ci j ∈ R. By convention, the event t0 ∈ T in 
an STN represents a fixed reference point assigned time zero. Because of this, when we say that an STN has n temporal 
events, we really mean that it has n time-points in addition to this reference event. A solution to an STN is an assignment 
of values to the timepoints ti that satisfies all constraints. A common approach to checking if an STN is consistent, that it has 
a solution, is to apply a shortest-path algorithm to a weighted, directed graph representation of the STN called a distance 
graph. If a negative cycle is discovered during the shortest-path process, it implies that the STN is inconsistent and thus no 
solutions exist; otherwise the resulting distance graph is a representation of the space of solutions.

2.2. Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) is an STN that explicitly models uncertainty [4]. In an STNU, the set 
of events T is partitioned into a set of controllable events T c and a set of uncontrollable events T u . An agent is allowed to 
schedule specific times for the events in T c , but the times for events in T u are determined by “Nature,” a force external to 
the agent. For every t j ∈ T u , there exists a unique ti ∈ T c forming a contingent constraint of the form t j − ti ∈ [

� j,u j
]
. We 

use Cc to denote the set of these contingent constraints, and Cr to denote the remaining requirement constraints between 
events in T . Then an STNU is defined as a quadruple 〈T c, T u, Cr, Cc〉 satisfying the aforementioned properties.

In an STNU, a decision is an assignment of time values to each of the controllable events. A realization is a selection of 
values for contingent edges (relative start times of the uncontrollable events) assigned by Nature. The set of all possible 
realizations forms the realization space � for the STNU. If a decision does not violate any of the constraints between pairs 
of controllable events, we say the decision is admissible. A decision together with a realization determines a schedule σ for 
the network. If σ satisfies all constraints in the STNU, we call σ a valid schedule.

For example, Dr. V’s experiment from the introduction can be modeled as an STNU. There are five events of interest: 
the beginning of the first reaction, the conclusion of this initial reaction, the addition of chemical Y, the completion of the 
subsequent reaction, and the extraction of the precipitate. If we measure time relative to the experiment’s start, we can 
refer to these events as ti , where i ranges from 0 to 4 respectively. Events t0, t2 and t4 are under Dr. V’s control, while 
events t1 and t3 are uncontrollable. This STNU representation of the experiment is depicted in Fig. 1. Events in the network 
are drawn as nodes. Requirement and contingent edges are drawn as straight and curvy arrows respectively. The edges are 
labeled by intervals indicating the lower and upper bounds of the STNU’s constraints.
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2.3. Controllability

An STNU is controllable when an agent has a reasonable way of working around the uncertainty in the network to 
schedule events. Prior research has focused primarily on detecting three types of controllability: strong, dynamic, and weak. 
We focus on strong and dynamic controllability, since they are important for dispatch. We omit weak controllability from 
our discussion because it is less relevant to STNU execution [4]. Henceforth in this paper, we use the term “uncontrollable 
STNU” to refer to both STNUs that are not strongly controllable and those that are not dynamically controllable.

An STNU is strongly controllable if there is a single fixed decision the agent can make that guarantees success regardless 
of how Nature behaves. More formally, a network is strongly controllable if there exists a decision δ such that for all ω ∈ �, 
the schedule determined by δ and ω is valid [4]. We call such a decision a strong decision. Using the example from the 
introduction, one can check that Dr. V’s experiment is not strongly controllable because there is no fixed decision she can 
make to guarantee the experiment’s success before it takes place.

An STNU is dynamically controllable if an agent can always make decisions in real-time to guarantee success. This means 
that there exists a strategy an agent can follow to find a valid schedule by picking times for controllable events during 
execution based on the values taken by all past events. For example, Dr. V’s experiment is dynamically controllable, because 
she could wait until each reaction finishes and then proceed to the next step immediately. This corresponds to scheduling 
t2 = t1 and t4 = t3, and involves “reacting” dynamically to previously observed timepoints. This strategy guarantees the 
experiment’s success.

We formally define dynamic controllability by following the treatment in [5]. The definition is somewhat technical, but 
is necessary to precisely capture the intuitions of the previous paragraph. The actions an agent makes during dispatch 
describes an execution strategy, a mapping � from realizations to decisions. We say a strategy is successful if for any ω ∈ �, 
the decision �(ω) together with the realization ω produces a valid schedule σ = σ(ω).

As defined so far, the strategy � is “omniscient,” in the sense that it can pick a schedule after having access to perfect 
information about the realizations which will occur. To model real-world applications, the decisions � makes should be 
limited to depend only on the time values of events which have already taken place. To that end, take an arbitrary time 
value τ . Let [σ ]<τ denote the set of realized values of all contingent edges whose uncontrollable event was assigned a value 
strictly less than τ . In other words, [σ ]<τ is the collection of realized values in ω that an agent is able to observe before 
time τ . We also let [σ ]τ denote the set of controllable events executed at time τ .

Then a strategy � is called dynamic if for any realizations ω1, ω2 and time value τ , whenever

[σ(ω1)]<τ = [σ(ω2)]<τ

we necessarily have

[σ(ω1)]τ = [σ(ω2)]τ .

This definition captures the principle that a dynamic strategy is not allowed to make decisions by looking into the future. 
Finally, we say a network is dynamically controllable if it admits a successful, dynamic execution strategy.

A common technique for testing an STN for dynamic controllability is to check for conflicts. The process largely parallels 
the consistency check for STNs, but operates on a labeled distance graph, which is a distance graph that is augmented with 
labels capturing the implications of uncontrollable events [6]. Additionally, a set of reductions compiles the implications 
of both required and contingent constraints throughout the labeled distance graph. A conflict arises when a semi-reducible 
negative cycle is discovered as part of this reduction process [6]. If no conflict arises, the network is dynamically controllable 
and the resulting labeled distance graph characterizes when the agent must wait for the result of an uncontrollable event 
before executing particular controllable events.

2.4. Probabilistic Simple Temporal Networks

A Probabilistic Simple Temporal Network (PSTN) augments the STNU framework by providing probability distributions over 
the uncertain duration of contingent constraints [7]. In a PSTN, for every t j ∈ T u , there exists a unique ti forming a contin-
gent constraint ci j ∈ Cu of the form t j − ti = Xij where Xij is a random variable with probability density function Pij .

For example, X01 ∼ N (μ1, σ 2
1 ) and X23 ∼ N (μ2, σ 2

2 ) could be normal random variables representing t1 and t3’s start 
times (relative to t0 and t2) in Dr. V’s experiment. Then, as either σ1 or σ2 increase, a given dispatch strategy becomes 
more risky and less robust.

The distributions of contingent constraints allow planners to evaluate PSTNs in terms of risk, the probability a dispatch 
strategy might fail [8–10], and robustness, the likelihood that a particular network can be executed successfully [11–13]. 
These approaches all work by first approximating the PSTN with an STNU. This is done by establishing a risk parameter α
that determines how much of the probability mass is acceptable to sacrifice when converting the PSTN. For each contingent 
edge of the PSTN, a new STNU edge is created with the bounds that result from sacrificing some proportion of α from 
the probability mass. The risk-based approaches [8–10] allow α to be a parameter that is set by the user to establish an 
acceptable level of risk, and proceed to optimize for various other objective functions. The Static Robust Execution Algorithm 
(SREA), on the other hand, attempts to find the least risky α that results in an STNU by conducting a binary search over 
3



S. Akmal, S. Ammons, H. Li et al. Artificial Intelligence 289 (2020) 103384
Fig. 2. The polytopes associated with network S .

α and uses an LP that attempts to recover as much of the lost probability mass per contingent edge as possible [12]. The 
Dynamic Robust Execution Algorithm (DREA) attempts to make SREA more responsive to dynamic updates by reapplying 
SREA every time new information about contingent events is received [12].

3. Visualizing controllability

An STN with n temporal events determines a region in Rn as follows. Each axis corresponds to the value of a particular 
event, and every constraint in the STN is a linear inequality, which consequently defines a half-space. The solution space of 
the STN is the intersection of these half-spaces, and therefore a convex polytope. If the STN has a finite makespan — time 
during which all its temporal events must occur — then this polytope is bounded. Points within the polytope correspond 
to valid schedules of the STN. Previous research has leveraged this geometric perspective to determine ways of assessing a 
network’s flexibility [14] and detect weak controllability [15]. Motivated by this, we characterize STNUs as geometric objects 
to inform our ideas on controllability.

3.1. Geometry of STNUs

An STNU with n controllable events and m uncontrollable events can be represented geometrically by a pair of regions 
P and P ′ in Rn+m , where P ′ ⊆ P . The larger region P is the set of all schedules (including those outside the solution 
space) that can arise from an admissible decision. These are the situations the agent could find itself in. The smaller region 
P ′ is the set of all valid schedules: the situations the agent desires to end up in.

Comparing the relative locations of P and P ′ (in particular, the amount of P that “sticks out” of P ′) gives a sense of 
how difficult it is to control for the uncertainty present in the STNU. This geometric perspective motivates our consideration 
of volume as a way to measure uncertainty in scheduling problems. Since P ′ is the shape we get if we treat the STNU as if 
it were just an STN, by viewing each contingent edge as if it were a requirement edge, P ′ is a convex polytope. Similarly, P
is the region formed by the inequalities if we ignore all requirement constraints involving an uncontrollable event, so it is 
also a convex polytope. As an example, consider a network S with one uncontrollable event t3 and two controllable events 
t1 and t2. This network has requirement constraints t1 − t0 ∈ [0, 8], t2 − t0 ∈ [0, 12], t3 − t0 ∈ [0, 16], and t1 − t2 ∈ (−∞, 8], as 
well as one contingent constraint t3 − t2 ∈ [0, 6]. Using the method we just described, S determines two polytopes, shown 
in Fig. 2. The entire polytope is P , while the sub-region in the lower left is P ′ .

3.2. Geometry of uncertainty & controllability

To supplement this geometric view, we associate polytopes independently to the set of uncontrollable and controllable 
events in the network. The regions for uncontrollables and controllables provide information on the uncertainty and control-
lability of the network respectively. Each uncontrollable timepoint depends on a unique contingent edge, and the possible 
values each contingent edge can take on form the realization space � defined earlier. If we define U to be the set of con-
tingent intervals in the STNU, it follows that � is just the Cartesian product of the intervals in U . Geometrically then, � is 
an m-dimensional hyperrectangle.

The set of all strong decisions in an STNU can be determined in polynomial time [4]. This region is determined by 
tightening each constraint in the STNU by considering the “worst-case” values for the contingent edges. For example, if 
T is a controllable event and t′ − t ∈ [lt ,ut] is a contingent edge, then the original constraint T − t′ ≤ c, involving the 
uncontrollable t′ , would be replaced with T − t ≤ c + lt , a constraint between two controllables. The area determined by 
these tightened inequalities is the strongly controllable region of the network. This region is the set of strong decisions, and is 
a polytope in Rn since it is described completely by inequalities on the controllable events. The original STNU is strongly 
controllable exactly when the strongly controllable region is nonempty.
4
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4. Beyond discrete categories of controllability

Currently, controllability is categorical — either a network is strongly or dynamically controllable or it is not. This limited 
categorization does not always yield sufficient information for applications. Ideally, we would like to know the likelihood 
of success using offline dispatch (in strong controllability) or online dispatch (in dynamic controllability) methods for a 
given temporal network. In practice, the problem of finding dispatch techniques that maximize controllability is infeasible, 
so we focus on finding good approximations. We first investigate this idea in the context of strong controllability. Our 
novel “degree of controllability” characterization provides a new way to understand and evaluate existing dispatch and 
approximate controllability approaches, particularly in the context of STNUs. Moreover, our geometric framing offers new 
insights that allow us to improve previous approaches for working with STNUs and provides a more rigorous definition of 
what it means to be “maximally strongly controllable.”

4.1. Degree of strong controllability

In a strongly controllable STNU, execution is simple. The agent can guarantee success simply by finding and committing 
to a single strong decision. This makes strong controllability a highly desirable property for STNUs. When a network is not 
strongly controllable, the traditional approach has been to check for dynamic controllability and, if this check is successful, 
seeks out a dynamic execution strategy for dispatch. Any such strategy necessarily keeps track of when uncontrollable 
events occur, and is thus more complicated than pre-committing to one particular decision. Applications that require offline 
planning or low-overhead are not amenable to these more involved strategies. In these cases, it is useful to understand how
controllable a network is, because it may be worthwhile to pre-commit to a single decision if the agent knows this will 
yield successful execution most, even if not all, of the time.

For instance, we observed earlier that Dr. V could ensure her experiment runs successfully by scheduling t2 and t4 as 
soon as the times for t1 and t3 are realized. This plan requires Dr. V to stay in the lab and monitor all reactions, so she can 
act as soon as they terminate. Suppose however, that Dr. V is busy the morning of the experiment. She would prefer to pick 
fixed times beforehand to schedule t2 and t4, so she could drop by the lab at only those specific times, and attend to other 
tasks during the rest of the experiment. As noted earlier, the experiment is not strongly controllable, so there is no such 
fixed strategy Dr. V could employ to guarantee success. However, if the possible execution times for t1 and t3 are all equally 
likely, then it turns out that by setting t2 = 30 and t4 = 65, Dr. V can guarantee that the experiment will succeed 90% of the 
time (i.e. we get an admissible decision if the first reaction does not take over thirty minutes). This level of controllability 
might be high enough that even though success is not guaranteed, Dr. V is willing to employ this simpler offline strategy.

Definition. Let S be an STNU with realization space �. For a given subset �′ of �, we let S ′ denote the network with 
the same required constraints as S , but realization space �′ . Then the Degree of Strong Controllability (DSC) for S is a 
continuous, 0-dimensional metric (i.e., value in [0, 1]) defined as the maximum possible value of

Vol
(
�′)

Vol (�)

taken over all axis-parallel hyperrectangles �′ ⊆ � such that S ′ is strongly controllable. Here, Vol (·) measures the volume 
of a region.

STNUs and strong controllability are agnostic about how the underlying uncertainty is distributed. Similarly, the degree 
of strong controllability measures the maximum proportion of the realization space that an execution strategy could ac-
count for, while being completely agnostic to how that uncertainty is distributed. Networks with lower degrees are “less 
controllable,” while networks with degrees closer to 1 have a fixed decision that are “more controllable”. For example, a 
strongly controllable STNU has DSC equal to 1.

We demonstrate in our empirical evaluation that when uncertainty over contingent edges is uniformly distributed, DSC is 
a strong predictor for the likelihood of success of offline dispatch. Although in general the uncertainty encoded in an STNU 
does not imply any quantifiable risk, for many applications assuming a uniform prior is a common, reasonable, and sound 
choice in the absence of prior information [16]. Thus, in the remainder of this section, we will assume that all times within 
the bounds of a contingent edge of STNU are equally likely, so that capturing volume corresponds directly to probability 
of success. However, even if no assumptions about the distribution of uncertainty can be made, DSC remains an important 
measure of the controllability of a given STNU, albeit we would expect it to be a weaker predictor of the likelihood of 
success. In Section 6, we show how we can adapt this definition in the case where we have explicit information about the 
distribution of uncertain events.

In the definition of DSC, �′ is a hyperrectangle. This means it is the Cartesian product of m intervals, each of which 
is necessarily a subinterval of one of S ’s contingent intervals (otherwise �′ would not be a subset of �). We denote the 
collection of these intervals by U ′ , and observe that this collection uniquely determines �′ (and vice-versa).

The DSC of an STNU is a lower bound on the maximum probability of obtaining a valid schedule for the given network 
by committing to an admissible decision before any events have executed. This is because there always exists a decision 
5
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that can be paired with every realization in �′ (which is a subset of �) to create a valid schedule. So, by comparing �′ ’s 
volume to �’s volume, we are calculating the proportion of time that a random realization yields a valid schedule when 
paired with an admissible decision.

In the following subsection, we introduce an efficient method that both approximates the DSC (dealing with the opti-
mization problem) and finds a fixed schedule that is guaranteed to succeed with probability greater than or equal to the 
estimated DSC value (addressing the corresponding decision problem).

4.2. Estimating DSC

To compute the DSC, it suffices to find an �′ of maximum volume such that S ′ is strongly controllable. The strong 
controllability of S ′ can be verified by checking whether a set of linear constraints are satisfied [4]. However, solving this 
general problem is difficult, since maximizing a nonlinear polynomial over linear constraints is NP-hard [17]. Thus we 
propose our approximation method for finding the optimal �′ .

4.2.1. Degree of Strong Controllability Linear Program (DSC-LP):
Our DSC-LP is adapted from the maximum subinterval problem [18]. The goal of DSC-LP is to find a set of contingent 

subintervals U ′ that approximately maximize the volume of �′ and a fixed decision that ensures success in the associated 
STNU S ′ . Given an STNU, S = 〈T c, T u, Cr, Cc〉, a set of maximal subintervals for S can be obtained by solving the following 
LP:

minimize:
∑
t∈T u

ε−
t + ε+

t

ut − lt

subject to: t− ≤ t+ ∀t ∈ T u (1)

t− = t+ ∀t ∈ T c (2)

t+ − t′− ≤ c ∀(t − t′ ≤ c) ∈ Cr (3)

t− − t′− = lt + ε−
t ∀(t − t′ ≥ lt) ∈ Cc (4)

t+ − t′+ = ut − ε+
t ∀(t − t′ ≤ ut) ∈ Cc (5)

ε−
t , ε+

t ≥ 0 ∀t ∈ T u (6)

t−0 = t+0 = 0 (7)

Following convention [18], we introduce two variables t− and t+ for each event t , representing the lower bound and 
upper bound of the time interval in which event t occurs and constrain these variables so that they respect all requirement 
constraints (lines 1-3,7). Our LP differs from the previous maximum subinterval approach of [18] in three key ways. First, 
it allows us to modify the upper and lower bounds of contingent intervals by different amounts (lines 4-6). We do this by 
introducing two variables ε−

t and ε+
t for every contingent constraint t − t′ ∈ [lt, ut], which represent the amount the lower 

and upper bounds of the original contingent interval are tightened by to guarantee strong controllability. The resulting 
contingent subinterval becomes t − t′ ∈ [lt + ε−

t , ut − ε+
t ]. Second, our LP sets t− = t+ for all t ∈ T c . By doing this, we 

are guaranteed to have a specific schedule returned by the LP. The third and final way our LP differs from the original is 
that it uses a new objective function, which sums the amount each contingent interval is decreased by, normalized by its 
original length. Let �t = ut − lt denote the uncontrollable timepoint t ’s contingent interval length, and let εt = ε+

t + ε−
t be 

the amount that interval is shrunk by. Then, the objective function is equal to∑
t∈T u

εt

�t
.

This choice is motivated by considering the amount of volume lost

f (ε) =
∏
t∈T u

�t −
∏
t∈T u

(�t − εt)

in going from � to �′ as a function of the εt variables, and setting the objective function equal to a constant multiple 
of the gradient ∇ f evaluated at ε = �0. Thus, minimizing the objective function corresponds to minimizing the first order 
approximation of the amount of volume lost by shrinking the contingent intervals.

Since � and �′ are the Cartesian products of elements in U and U ′ in this case, the volumes of these regions are just 
the product of lengths of the intervals in U and U ′ respectively. Our LP yields a choice of U ′ , so the solution to our LP 
provides an approximate value for DSC. Moreover, the values taken on by t+ variables, for t ∈ T c , in the optimal solution of 
DSC-LP determine an admissible decision for the network that is a strong decision for the S ′ . We call a decision returned 
6
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by our LP in this way a strong-LP decision for the network. If a network has high DSC, the strong-LP decision is likely a 
good strategy for this network.

There are other natural choices of LPs one could use to approximate DSC. For example, we could maximize the sum of 
the size of subintervals captured by the strong decision [18], minimize the maximum amount of that a single contingent 
interval is squeezed, or maximize the minimum length over all contingent subintervals. An empirical comparison of these 
methods, included in Subsection 7.1.2, shows that the DSC-LP provides better approximations (i.e., higher success rates) than 
these other approaches. In particular, the use of volume as probability, motivated by the relationship between �, P , and P ′ , 
seems more effective than looser heuristics and metrics like flexibility for estimating likelihood of successful dispatch. In 
Section 6, we discuss how these ideas can be extended to PSTNs, which allows us to take advantage of probability density 
information to find strong decisions that can be dispatched with high likelihood of success.

5. Degree of Dynamic Controllability

Although strong controllability is valuable because it allows an agent to rely on a static schedule, dynamic controllability 
applies to a wider range of STNUs (since all strongly controllable networks are dynamically controllable, but not vice-versa). 
In cases where an STNU is not dynamically controllable, an agent may still wish to attempt to dispatch the schedule. For, 
even when success is not guaranteed, if the probability of successful execution is high enough, dispatching on an uncontrol-
lable network may be worthwhile. To assess how safe it is to attempt dispatch, the agent will need some measure of how
dynamically controllable the network is. This motivates a metric analogous to DSC in the context of dynamic controllability.

Definition. Let S be an STNU with realization space �. For a given subset �′ of �, we let S ′ denote the network with the 
same required constraints as S , but realization space �′ . Then the Degree of Dynamic Controllability (DDC) for S is defined 
to be the maximum possible value of

Vol
(
�′)

Vol (�)

taken over all �′ ⊆ � such that S ′ is dynamically controllable and where Vol (·) measures the volume of a region.

The key distinction between the DDC and the DSC is that �′ is allowed to be any measurable subset of �. In particular, 
�′ is not constrained to be an axis-parallel hyperrectangle. This means that the network S ′ is not necessarily an STNU 
(which always has a hyperrectangular realization space) in the traditional sense, but rather an STNU with Generalized Realiza-
tion Space (STNU-GR). We define this new type of network in Subsection 5.2, where we offer some intuition for why these 
objects are a natural framework for studying dynamic dispatch.

In the remainder of this section, we show how we can lower bound the DDC by solving a particular type of temporal 
relaxation problem. This is done using our Optimal DC Relax (ODC-Relax) strategy introduced in Subsection 5.1, which 
optimally relaxes a network’s constraints until it is dynamically controllable. From here, we compute the volume of �′
simply by multiplying the weights of the relaxed contingent intervals, as we did when computing the DSC. This is equivalent 
to approximating the volume of the optimal �′ using an inscribed hyperrectangle. In general this method underestimates 
the true maximum volume, since it ignores the possibilities captured by a more general view of an STNU’s realization space.

To get a better approximation, we formally define STNU-GRs in Subsection 5.2 and employ them in Subsection 5.3, where 
we demonstrate how removing the condition that �′ be a hyperrectangle yields significantly more accurate estimates of 
dispatch success. Here, we improve the predicted DDC probability via a normal approximation technique, and then conclude 
by discussing related approaches. The examples and approximation method introduced in Subsection 5.3 demonstrate why 
allowing for non-hyperrectangular DC realization space captured by the STNU-GR is actually more useful for dispatch.

5.1. Optimal dynamic controllability relaxations

Dynamic controllability of STNUs can be checked in polynomial time [19]. The fastest current algorithms for determining 
DC search for a conflict: a series of constraints that, when taken together, cannot simultaneously be satisfied by any dynamic 
execution strategy. As mentioned above, previous work characterized conflicts as a special type of negative cycle occurring 
in the labeled distance graph of an STNU [6].

Bhargava et al. [20] build off this work and introduce a cubic time algorithm to extract conflicts from networks. They 
identify conflicts with the aim of solving temporal relaxation problems. A relaxation problem involves taking an uncontrollable 
network and determining how to relax the network’s constraints in a minimal fashion to produce a new, controllable 
network.

In our context, where relaxing requirement constraints is not permitted, an STNU conflict consists of a set of contingent 
edges, together with a resolution constant κ that indicates the total amount the contingent edges must be shrunk by to 
resolve the conflict (the latter can be obtained from an identified conflict). We now present a solution (presented as Al-
gorithm 1) to our version of the relaxation problem, where only contingents can be relaxed (by shrinking their intervals). 
7
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If we have an STNU with only one conflict, our solution is optimal in the sense that it shrinks intervals to minimize the 
amount of volume of � lost while still resolving the conflict.

Suppose the conflict consists of intervals I1, I2, . . . , I p with respective lengths �1 ≤ �2 ≤ · · · ≤ �p . We want to shrink each 
interval I j to an interval of length �′

j such that the sum of the �′
js is less than or equal to the quantity

�′ =
⎛
⎝ p∑

j=1

� j

⎞
⎠ − κ

since this is exactly what it means for the conflict to be resolved. Thus, resolving the conflict while maximizing the volume 
of the reduced realization space is equivalent to finding values �′

j ∈ [0, � j] with 
∑p

j=1 �′
j = �′ that maximize the product ∏p

j=1 �′
j . This optimization problem has an analytic solution, which we now describe. Let q be the smallest index such that

�′ ≤ �1 + �2 + · · · + �q−1 + (p − q + 1)�q. (8)

Then taking �′
j = � j for j < q and

�′
j =

�′ − �′
1 − · · · − �′

q−1

p − q + 1

for j ≥ q solves the maximization problem. In this solution, the largest contingent intervals are all shrunk to the same size, 
while smaller intervals are left alone. Intuitively, the solution reduces the realization space to make it look more like a 
hypercube.

Algorithm 1: Optimal Relax (ODC-Relax) Strategy.
Input : conf licts, a sorted list of contingent intervals in the detected STNU conflict
Input : κ , resolution constant
Var : p, length of conf licts
Var : �, a list in which �[ j] is the length of the contingent interval, conf licts[ j]
Initialization :

1 relaxations ← {};
2 S ← sum(�[1...p]) − κ ;
3 q ← None;

OPTIMALRELAX

4 for j ← 1 to p do
5 s ← sum(�[1.. j]) + (p − j + 1) ∗ �[ j];
6 if s ≥ S then
7 q = j;
8 break;

9 A ← (S − sum(�[1..q]))/(p − q + 1);
10 for j ← 1 to p do
11 edge ← conf licts[ j];
12 relaxations[edge] ← j < q? �[ j] : A;
13 return relaxations;

We prove optimality by induction on q. When q = 1, all of the � j are less than or equal to �′/p by definition of q. Now, 
the Arithmetic Mean-Geometric Mean (AM-GM) inequality asserts that for a list of nonnegative reals with a fixed sum, the 
product is maximized when all the numbers are equal. So, setting �′

j = �′/p satisfies the constraints and maximizes the 
product in this scenario.

Now take some fixed q > 1, and suppose the result is correct for all integers less than q. We claim there exists an 
optimal choice of the �′

j with �′
1 = �1. Suppose to the contrary this were not true. Then, take an optimal selection of values 

�′
1, �

′
2, . . . , �

′
p (this exists because the domain of the � js is compact). If �′

1 < �1 in this assignment, then Equation (8) implies 
that there must exist an index k with �′

k ≥ �1. It follows that there exists a small positive ε for which replacing �′
1 with 

�′
1 + ε and �′

k with �′
k − ε preserves the sum of the �′

j while increasing their product. This contradicts the optimality of 
our initial choice, so �′

1 = �1 as claimed. Now the problem reduces to maximizing 
∏p

j=2 �′
j subject to the constraint that ∑p

j=2 �′
j = �′ − �1. Finally, using the inductive hypothesis proves that our claimed solution is optimal.

This algorithm yields an optimal relaxation for networks with a single conflict. In the case of multiple conflicts, our 
approach lends itself to a greedy algorithm, where we pick conflicts and relax them one at a time using the above procedure. 
The resulting algorithm might not be optimal, but functions as a simple yet useful heuristic for resolving conflicts while 
minimizing probability mass lost through relaxation.
8
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Fig. 3. The realization space for S ′ . The inner box, the realization space of the relaxed network, underestimates the volume of realizations that lead to valid 
schedules.

5.2. STNU with Generalized Realizations

A Simple Temporal Network with Uncertainty and Generalized Realization Space (STNU-GR) is an STNU that permits depen-
dence between contingent constraints. Just like in an ordinary STNU, an STNU-GR has a set of temporal events T partitioned 
into a set of controllables T c and a set of uncontrollables T u . As usual, we may have some set of binary requirement 
constraints Cr between events in T .

This generalized network differs in that times for uncontrollable events are determined in a more complicated fashion. 
Suppose T u consists of m uncontrollable events t1, t2, . . . , tm . Then each t j ∈ T u has a unique controllable t′j ∈ T c associated 
with it. We let δ j = t j − t′j denote the time elapsed between t j and t′j . The values of the δ j are determined not by contingent 
intervals, but instead by a realization space � that is part of the data of an STNU-GR. The space � is a measurable subset 
of Rm≥0 with finite volume, where R≥0 denotes the set of nonnegative reals. Nature samples a point uniformly at random 
from �, and then sets δ j equal to the jth coordinate of the point sampled, for j = 1, 2, . . . , m. This then determines when 
the uncontrollable t j occurs, according to the equation t j = t′j + δ j . Combining this information altogether, an STNU-GR is 
defined as the quadruple 〈T c, T u, Cr, �〉.

Although the details of this definition are more involved than the definition for a normal STNU, making � part of the 
explicit data for the network (rather than something that indirectly comes out of a product of contingent intervals) affords 
us more power in modeling dispatch situations. During dispatch, a scheduler is interested in the space of realizations that 
would lead to success, given the uncontrollable timepoints that have already been realized. As we will see in Subsection 
5.3, this space does not have to be a hyperrectangle, which makes it difficult to work with in the usual STNU framework. 
However, when viewed in the context of STNU-GRs, we can easily keep track of this information by viewing it as a realiza-
tion space corresponding to a subnetwork. Consequently, STNU-GRs are a useful extension of STNUs that helps schedulers 
identify which realizations lead to success during dispatch.

5.3. Estimating DDC

Although solving relaxation problems is useful, we are also interested in accurately computing the probability of success-
ful dispatch with a dynamic execution strategy. Previous research has attempted to measure this likelihood by first relaxing 
to strongly/dynamically controllable networks. As noted in [21] however, the volume of the resulting hyperrectangular re-
alization space in a relaxed network does not accurately estimate the relevant probability; it merely bounds it from below. 
Indeed, this relaxation approach underestimates the probability too severely to estimate DDC.

For example, consider an STNU S ′ with two uncontrollables t1 and t3, and one controllable event t2. This network has 
requirement constraints t1 − t2 ≤ 0 and t3 − t0 ≤ 3, along with contingent constraints t1 − t0 ∈ [0, 2] and t3 − t2 ∈ [0, 2]. 
Network S ′ is not dynamically controllable, but by inspection we see that the optimal execution strategy schedules t2 = t1. 
In this case, if a1 = t1 − t0 and a2 = t3 − t0 denote the realized lengths of the contingent edges, then as depicted in Fig. 3
our schedule succeeds exactly when a1 + a2 ≤ 3, which happens 87.5% of the time. In contrast, if we wanted to relax S ′
to get a dynamically controllable network while maximizing volume, both intervals for the contingent edges would shrink 
from [0, 2] to [0, 3/2]. This shrunk realization space takes up 56.25% of the original volume, which is significantly smaller 
than the true probability of succeeding during dispatch.

Interestingly enough, this underestimate still holds in higher dimensions. We can generalize our construction of S ′
by considering the “contingent-chain” STNU S(k) which has k ≥ 2 uncontrollables t1, t3, . . . , t2k−1 along with (k − 1)
controllable events t2, t4, . . . , t2k−2. This network has (k − 1) requirement constraints t2 j−1 − t2 j ≤ 0 for j = 1, 2, . . . , k − 1
that order the events, k contingent constraints t2 j−1 − t2 j−2 ∈ [0, 2] for j = 1, 2, . . . , k, and one final requirement constraint 
t2k−1 − t0 ≤ 2k − 1 that sets a makespan of 2k − 1 for the network. Note that the network S(2) under this definition is 
precisely the previous example S ′ .

If we let a j = t2 j−1 − t2 j−2 for j = 1, 2, . . . , k denote realized lengths of contingent edges (all nonnegative reals less than 
or equal to 2), then the schedule succeeds precisely when
9
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a1 + a2 + · · · + ak ≤ 2k − 1.

It follows, using the formula for the volume of a simplex, that the maximum probability of successful dispatch is

1 − 1

2kk!
which tends to 1 rapidly as k gets large. On the other hand, relaxing S(k) and achieving dynamic controllability while 
minimizing volume lost corresponds to shrinking each contingent interval to have length 2 − (1/k). The resulting realization 
is a hypercube that takes up

(
2− 1

k

2

)k

=
(
1 − 1

2k

)k

of the original volume. This quantity monotonically increases as k gets larger and tends to e−1/2 ≈ 0.6. Again, the relaxation 
yields an estimate close to 60%, a dramatic underestimate of the true probability of success, which approaches 100% rapidly 
as k increases.

For this particular family of STNUs, we can explain this phenomenon by a simple geometric reason: inscribed hyperrect-
angles are bad at approximating volumes of simplices. This observation is in turn related to “concentration of measure” 
results in high dimensions, which suggests another avenue in which geometry could be helpful for proving results in 
scheduling.

Motivated by these examples, we leverage the notion of conflicts to directly approximate the probability of successful 
dispatch using the normal approximation to DDC. Suppose we have an STNU with a single conflict preventing it from being 
dynamically controllable. Carry over the notation from the previous section and additionally let a j denote the difference 
between the realized value during dispatch and the lower bound of the contingent interval I j for j = 1, 2, . . . , p. Then if the 
inequality

p∑
i=1

ai ≤ �′

holds, the conflict is “avoided” in the sense that the observed realization could have come from a controllable STNU.
This idea, that dynamic execution strategies succeed if conflicts are avoided during dispatch, is the crucial insight that 

allows us to estimate the DDC. We may view each a j as an independent random variable drawn from some distribution 
over [0, � j]. Then the Central Limit Theorem implies that the sum of the a j (the left hand side of the above inequality) can 
be approximated as coming from a normal distribution N (μ, σ 2). If we use our assumption from earlier that contingent 
edges have uniformly distributed uncertainty, then the a js are independent uniform random variables and the parameters 
for the approximating normal distribution are given by μ = (

�1 + · · · + �p
)
/2 and σ 2 = (

�21 + · · · + �2p
)
/12, the sums of the 

means and variances of the a js respectively. Thus the probability the above inequality holds can be computed using the 
standard normal CDF �. For uncontrollable STNUs with a single conflict, the normal approximation accurately estimates 
the probability of successful dispatch. In the case of multiple conflicts we use the normal approximation to estimate the 
probabilities of avoiding each conflict separately, and then multiply the obtained probabilities. Taking this product implicitly 
treats each conflict as if it were independent of the others (no sharing contingent edges among conflicts). Because conflicts 
are not generally independent, we expect this technique to behave worse in networks with many conflicts. However, as 
detailed in our empirical evaluation, the normal approximation is still useful in these cases.

5.4. Related approaches

The ODC-Relax algorithm builds on top of work that uses a mixed integer LP to solve a broad range of relaxation prob-
lems related to dynamic controllability [21]. Our approach tackles a specific variant of their general formulation, but in this 
specialized scenario obtains an analytic solution that is optimal in the case of a single conflict, and can be computed much 
more efficiently in O (p log p) time for an STNU with p conflicts. Moreover, ODC-Relax can naturally be used as a subroutine 
in the conflict-directed search methods in [8] and the RelaxSearch method of [20] to augment existing algorithms.

Although work done by [22] also evaluates the probability of successful dispatch in a dynamic controllability setting, to 
the best of our knowledge, our normal approximation for DDC is the first known approach for estimating the rate of online 
dispatch without appealing to relaxations and nonlinear solvers. Because our definition of DDC does not constrain the shape 
of �′ , it effectively captures the notion of robustness geometrically. Note that in our framework, we assume agents in 
networks are mandated to satisfy all requirement constraints, so that violating any one constraint is just as bad as violating 
all constraints simultaneously. This is consistent with the methodology of [22], but contrasts with previous work [21,8,20]
that allows both requirement and contingent constraints to be relaxed, and research [23] that maximizes the number of 
constraints satisfied under preference schemes.
10
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6. Generalizing degree of controllability to probabilistic simple temporal networks: the likelihood of controllability

In this section, we extend the concept of Degree of Controllability to PSTNs. This provides both opportunities and chal-
lenges. The main opportunity is that PSTN contingent edges have probability density functions (PDFs), which provide richer 
sources of information for understanding when events might happen. However, this also presents the first challenge, since 
we now have to worry about optimizing the total density captured along each contingent edge, rather than merely optimiz-
ing the volume. This makes the optimization problem much more complex, even in low-dimensional cases.

The second challenge that PSTNs introduce is that the PDFs governing contingent edges may be unbounded (e.g. if the 
realization of the edge is drawn from a normal distribution). For certain networks, this means it is inherently impossible 
to control for all uncertainty, regardless of how much slack is introduced into the network. As a simple example, consider 
a network with a single activity whose duration is dictated by a distribution with a long, unbounded tail. If this PSTN 
contains a makespan constraint imposing a deadline by which the activity must finish, there is no way to guarantee success, 
regardless of how generously the deadline is set—only removing the deadline altogether can guarantee success. This means 
that there are entire classes of PSTNs that are inherently uncontrollable in the traditional, discrete sense of controllability.

We now outline how we can extend the DSC and DDC definitions to PSTNs to create a more useful, fine-grained met-
ric. At a high-level, the definitions translate in a relatively straight-forward way: we exchange the n-dimensional volume
optimizations of STNUs (Sections 4 and 5) for n-dimensional mass optimizations in the case of PSTNs. Thus, a PSTN whose 
contingent edges only have bounded distributions would end up performing an equivalent optimization to an STNU that 
lacks information about the distribution of uncontrollable events.

6.1. Likelihood of strong controllability

PSTNs have richer realization spaces than STNUs. Recall that the realization space of an STNU can be viewed as the 
product of its contingent intervals. Consequently, this space is always a bounded, axis-parallel hyperrectangle. In contrast, 
each contingent constraint in a PSTN is determined by some PDF Pij . We can associate an interval to such a constraint by 
taking the minimal interval that contains the support of Pij . Then, as in the case of STNUs, we can define the realization 
space � for a PSTN S to be the product of these contingent intervals. However, now the set � comes with a density function 
μ, defined as the product measure of the Pijs on the contingent intervals.

Consequently, the realization space (�, μ) of a PSTN is a possibly unbounded space, �, together with a density function, 
μ. The total mass of � with respect to μ is exactly 1, because μ is a PDF.

Definition. Let S be a PSTN with realization space (�, μ). For a given subset �′ of �, we let S ′ denote the network with 
the same required constraints as S , but realization space �′ . Then the Likelihood of Strong Controllability (LSC) for S is 
defined as the maximum possible value of∫

�′
dμ

taken over all axis-parallel hyperrectangles �′ ⊆ � such that S ′ is strongly controllable.

Note that the integral in the above definition is precisely the probability mass of �′ , so that LSC really is the natural 
generalization of DSC for PSTNs. While the mass of the realization space is 1 by definition, finding the axis-parallel hy-
perrectangle that captures the greatest total probability mass is significantly more difficult. Calculating the mass of even 
a single hyperrectangle requires computing a definite integral for each component PDF, and then taking the product of 
the probabilities captured along each dimension. Solving the corresponding optimization problem is generally intractable in 
practice [11,12]. However, like DSC, LSC also provides a useful tool for predicting the likelihood of successful execution once 
a strongly controllable strategy has been identified.

6.1.1. Estimating LSC
Interestingly, although no formal, mathematically-precise definition of the Likelihood of Strong Controllability previously 

existed to our knowledge, all known prior approaches for finding robust execution strategy within a PSTN [8–10,12,13]
happen to offer approximate approaches for finding the LSC. This provides external validation that the LSC is a useful and 
natural metric for scheduling. It also points to the benefit of framing this problem in terms of controllability and points to 
future potential for providing a unifying theory and new insights that may help us better dispatch PSTNs.

As discussed in Section 2.4, these previous approaches work by finding a strong decision schedule using an STNU that 
approximates the input PSTN. In a similar spirit, we can use the DSC-LP to find strongly controllable schedules that ap-
proximate LSC. The approach is a simple, two step approach. First, approximate the input PSTN as an STNU using the same 
risk-based strategy as above using a pre-specified α. Second, if the STNU approximation of the PSTN is strongly controllable, 
we simply return it. If not, run DSC-LP on the resulting STNU to find the strongly controllably STNU that minimally squeezes 
the contingent edges if one exists (i.e., if the STNU is feasible). We call this the LSC-LP approach.
11
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Algorithm 2: Min-Loss DC.
Input : A PSTN S = 〈

V , E P
〉
and a risk tolerance α

Output : An approximately optimal DC STNU
1 EU ← Extract-STNU-Edges

(
E P ,α

)
;

2 if not DC-Check
(〈
V , EU

〉)
then

3 EU ← ODC-Relax

(〈
V , EU

〉)
;

4 return
〈
V , EU

〉
;

6.2. Likelihood of Dynamic Controllability

As we did for DSC, we extend DDC to PSTNs with the following definition.

Definition. Let S be an PSTN with realization space (�, μ). For a given subset �′ of �, we let S ′ denote the network with 
the same required constraints as S , but realization space �′ . Then the Likelihood of Dynamic Controllability (LDC) for S is 
defined to be the maximum possible value of∫

�′
dμ

taken over all �′ ⊆ � such that S ′ is dynamically controllable.

Unlike with LSC, we are unaware of any work that attempts to use dynamic controllability to estimate the maximum 
likelihood of successful online dispatch for PSTNs. This makes the LSC definition and the Min-Loss DC approach for approx-
imating LSC the first attempts to define and solve this problem. However, like LSC, we can borrow insights from our work 
on applying DDC to STNUs to inform our estimates of LDC.

6.2.1. Optimal DC relaxations for PSTNs: Min-Loss DC
We start by adapting our earlier ODC-Relax approach to PSTNs. The Min-Loss DC algorithm, summarized in Algorithm 2, 

works in a two-step process. First, it extracts a bounded contingent edge from each probabilistic contingent edge in the 
original PSTN using a procedure we call Extract-STNU-Edges(E P , α). Extract-STNU-Edges takes in a set of probabilistic 
edges and a risk budget α, and returns a set of STNU edges, where for each edge, the probability that the realized value 
will fall between the bounds is guaranteed to be at least (1 − α) by truncating α

2 of the probability density from each tail 
of the distribution. Note that because we truncate equal mass from each tail, this procedure naturally somewhat accounts 
for distributions with various skews, kurtoses, or modalities.

Second, if the resulting STNU is DC, we return it. If it is not DC, then we apply the ODC-Relax algorithm described in 
Section 5.1, which returns the STNU that corresponds to minimally “relaxing” the problem, in this case by squeezing the 
intervals associated with the contingent edges involved in the conflict. The terminology “relax” is used to reflect that we 
reduce the amount of uncertainty we need to control (by contracting, rather than expanding, contingent interval bounds), 
which makes the controllability problem easier to solve. Min-Loss resolves conflicts one at a time, so it only sacrifices 
probability mass on the side of the uncertain distribution that is needed. The ODC-Relax algorithm is optimal in the case 
of a single relaxation for uniform distributions, but optimality is no longer guaranteed when we have different probability 
distributions or when multiple relaxations must be performed.

6.2.2. Estimating LDC
Similarly to how we adapted our ODC-Relax approach to work for PSTNs, we can adapt the insights that we used 

to improve our DDC estimates using STNUs with Generalized Realizations to also improve our LDC estimates for PSTNs. 
Our approach for estimating DDC for STNUs involves extracting conflicts. Because the realization space for PSTNs can be 
unbounded, it is not as obvious what qualifies as a “conflict” in the PSTN setting. Therefore, we adopt the same risk-based 
approximation strategy as we have elsewhere. We first approximate the input PSTN as an STNU, denoted Sα , with a pre-
specified risk factor α. Then we extract all conflicts in Sα and estimate the maximum likelihood of successful execution (i.e. 
degree of controllability) pα by applying our normal approximation method. Note that our normal approximation method 
can naturally extend to PSTNs since the form of the Central Limit Theorem we apply works as long as the distributions of 
different contingent edges are independent. Then the approximate LDC becomes (1 − α)mpα , where m is the number of 
uncontrollable events in the network.

6.3. Risk and likelihood of controllability

As mentioned, all current methods for estimating LSC and LDC currently approximate the probabilistic contingent edges 
of a PSTN using interval-based STNU-style contingent edges that each sacrifice some probability density independently 
according to a risk tolerance, α. By doing so, the total risk accrued across the network, αS , is 1 − (1 − α)m , where m
12
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Fig. 4. Dispatch Success Rate vs. our DSC-LP Prediction.

is the number of contingent edges. Thus, an approach for deciding a risk budget that is independent of the number of 
uncontrollable events across an entire PSTN, αS , is to set α = 1 − m√

1− αS , which distributes that risk budget equitably 
across uncontrollable events.

Our PSTN to STNU α-based approximation affords a natural parameterization based on the risk level α. For instance, 
we hypothesize that setting α too high will result in riskier edges and unnecessarily sacrifices too much likelihood, hurting 
overall performance of an approach like MinLoss DC. However, setting α too low might also hurt performance, since it will 
require more relaxations of the STNU edges. While the LSC-LP and ODC-Relax approaches attempt to relax the network 
optimally, they do so on STNU edges that are agnostic to the underlying probability density functions. We explore how α
impacts the performance of a method like LSC-LP and Min-Loss DC in our empirical analysis.

Finally, both our LSC and LDC approaches rely on an α-based STNU approximation of a PSTN and then use DSC and 
DDC to yield an estimated degree of controllability, pα . This yields an overall estimated likelihood of success of (1 − α)mpα

in both cases. Thus, one could extend both our approaches so that they incorporate a search over α as an outer-loop 
that seeks to maximize the slightly more refined estimated likelihood of success (1 − α)mpα for each problem instance. 
However, doing so would introduce significant computational overhead, since it would require sweeping the discretized 
space of possible α values and solving the resulting degree of controllability problem for each α parameter setting. We 
show in our empirical evaluation that we are able to achieve state-of-the-art performance without requiring this additional 
computational overhead by empirically tuning α once for the entire benchmark of instances.

7. Empirical evaluation

In this section, we evaluate both the accuracy and the optimality of our degree of controllability and likelihood of 
controllability. We start by empirically validating our definitions of Degrees of Controllability as applied to STNUs.

7.1. Degree of controllability of STNUs

To evaluate our approaches2 for assessing DSC and DDC, we ran experiments on STNUs derived from the PSTNs pro-
vided in the publicly available ROVERS and CAR-SHARING datasets [10]. STNU-style contingent edges (i.e. those with uniform 
distributions) were preserved. PSTN-style contingent edges in the ROVERS dataset were converted by replacing contingent 
probabilistic edges drawn from N (μ, σ 2) with intervals [μ − 2σ , μ + 2σ ]. STNUs derived from the ROVERS dataset were 
used to evaluate DSC. The PSTNs from CAR-SHARING were converted to STNUs by preserving the network structure, but 
varying the lengths of edges to keep the derived STNUs consistent yet not dynamically controllable.

7.1.1. Accuracy of the DSC-LP decision
We examine how well our DSC metric actually measures success rate for the strong-LP decision. For each STNU, we 

solved the DSC-LP for that network. We took the decision returned by the program and used it as a dispatch strategy. 
After sampling uniformly from the contingent edges, we picked random realizations 50, 000 times for each STNU. Then, we 
recorded the success rate as the proportion of the time the strong-LP decision, together with a random realization, led to a 
valid schedule. This will determine if the strong-LP decision produces better-than-average success rates (compared to other 
decisions) when used during execution. In Fig. 4 this success rate is plotted against the approximate DSC value returned 

2 All code and problem instances available for download from https://github .com /HEATlab /Prob -in -Ctrl.
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Fig. 5. True DSC vs. our DSC-LP Prediction.

by the DSC-LP. The graph displays a clear linear trend (r = 0.999), showing that the LP-predicted DSC of an STNU closely 
matches the rate of successfully executing the network using the strong-LP decision. This also validates the notion that the 
strong-decision produces better than average execution results when paired with a realization. Next, we discuss how our 
LP-predicted DSC compares with the true degree of strong controllability.

7.1.2. Optimality of DSC-LP
We now check how accurate our DSC-LP approximation is by comparing it to the true optimization problem of maxi-

mizing volume. Selecting subintervals to maximize volume is a nonlinear optimization problem. We solved these problems 
using Baron optimization software accessed through the NEOS server [24,25] to compute the true DSC for all problem in-
stances. We compared this value against the approximate degree found using the LP. Fig. 5 demonstrates the correlation 
between our LP-predicted DSC approximation and the solution to the optimization problem. It demonstrates that at low 
degrees of strong controllability our LP may underestimate the degree, but at values greater than 0.5 the LP approximation 
is extremely accurate (r = 0.996). This result is consistent with our expectation that the approximation method works best 
for STNUs with high DSC values. Although DSC-LP is slightly less accurate at lower DSC values, when our approximation 
method returns a low value for the DSC we expect the true DSC to be low as well. In these cases where the DSC is quite 
low, committing to a fixed decision is never a good strategy to employ, so the lack of precision in these cases is perhaps 
not so concerning. We note that DSC-LP performs better on networks that are dynamically controllable than those that 
are not. However, given that instances in ROVERS were predominantly dynamically controllable whereas instances in CAR-
SHARING were exclusively not dynamically controllable by design, we cannot rule out the possibility that this difference in 
performance might be due to structural differences between networks in ROVERS versus CAR-SHARING.

We also compared DSC-LP against other choices for objective functions that could be used in conjunction with our LP for 
approximating the DSC. Naturally, since DSC represents the optimal possible strongly controllable strategy, those methods 
that achieve higher empirical success rates are those that are doing a better job of approximating DSC. The formulations, 
which all enforce strong controllability, that we compared included:

• DSC-LP: our DSC-LP as defined in Section 4;
• Max subinterval: maximizes the sum of the length of each contingent subinterval [18];
• Minimax: minimize the maximum amount of that a single contingent interval is squeezed; and
• Maximin: maximize the minimum length over all contingent subintervals.

For each objective function, we generated simulated empirical success rate as we described in Section 7.1.1 for all problem 
instances we have (both from ROVERS and CAR-SHARING dataset) except 36 uncontrollable networks, for which the original 
LP from [18] failed to find a feasible solution. As discussed in Section 4 and shown in Table 1, our DSC-LP yields the highest 
success rate across all instances and thus offers the best approximation for DSC among the methods we tested.

7.1.3. Accuracy of approximate DDC
We now examine how well our estimate of DDC measures the actual success rate of STNU dispatch. For each STNU, we 

computed the estimate of DDC using the normal approximation method. To measure the dispatch rate empirically, we used 
the early-first dispatch strategy discussed in [26] on all uncontrollable STNUs derived from the datasets. This strategy is 
guaranteed to succeed on dynamically controllable networks, and thus was a natural choice for testing a network’s DDC. In 
each trial, we simulated online dispatch 50, 000 times (with realizations chosen randomly). Success rate was recorded as 
14
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Table 1
Comparison of our DSC-LP with other LP formulations for estab-
lishing Strong Controllability.
Approach Dispatch success rate

DSC-LP 69.13%
Max subinterval [18] 66.26%
Minimax 36.21%
Maximin 30.31%

Fig. 6. Dispatch Success Rate vs. Approximate DDC.

the proportion of the time we obtained a valid schedule. In Fig. 6, success rate is plotted against the approximate DDC. The 
graph displays a clear linear trend (r = 0.952), indicating that the normal approximation to DDC accurately tracks the actual 
success rate. The approach also worked well for STNUs that had multiple separate conflicts, marked as darker points in the 
graph.

For two outliers in the bottom right corner of the plot, the normal approximation seems to drastically overestimate the 
success rate. In those two instances, after we employed a different dispatch strategy that waited longer before scheduling 
certain events, the success rates for the two STNUs were within 2% of the normal approximation. So even in these cases, 
the predicted DDC matches the maximum success rate achievable with dynamic strategies. In the few other cases where 
the normal approximation method overestimated the empirical success rate, it is possible that the variant of the early first 
strategy we used was not the optimal choice.

7.2. Accuracy of Likelihood of Controllability of PSTNs

Next, we evaluate how well our definitions of Degree of Controllability for STNUs can be translated into Likelihoods 
of Controllability for PSTNs. We test on the same benchmarks as before, but this time using the PSTN versions of each 
network. In this case, we preserve the original PSTN-style edges, and instead convert STNU-style contingent edges to prob-
abilistic ones by essentially running our earlier conversion process (to get from probabilistic contingent edges to uniform 
contingent edges) in reverse. That is, we replace each contingent interval of the form [μ −2σ , μ +2σ ] in an STNU from the 
original benchmark with a contingent constraint with distribution N (μ, σ 2) that is normally distributed about the interval’s 
midpoint to obtain a PSTN. This reverse conversion process also allows us to maintain the aforementioned adjustments to 
the CAR-SHARING benchmarks so that they are likely to be consistent but not dynamically controllable.

7.2.1. Accuracy of the LSC-LP decision
LSC-LP begins by extracting an STNU that approximates the original PSTN. We do this by setting a risk α = 0.05, which 

means we extract an STNU whose contingent edges each capture exactly two standard deviations (i.e. 95%) of the original 
PSTN contingent edge. We then use DSC-LP to find the strong decision that approximates the Degree of Strong Controllabil-
ity. The DSC-LP will result in an output that approximately captures the largest volume of the hyperrectangular realization 
space. We can then use the original PSTN to calculate how much probability mass is captured along each dimension of this 
hyperrectangle. The product across all dimensions gives us the total probability mass captured by the strong decision, which 
we use as our approximate LSC.

As before, we took the decision returned by the program and used it as a dispatch strategy. We again select 50, 000
random realizations for each PSTN, but this time we use the sample from the Normal distribution associated with each 
contingent edge (rather than the uniform distribution of an STNU). Then, we recorded the success rate as the proportion 
15
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Fig. 7. Dispatch Success Rate vs. our LSC-LP Prediction.

Fig. 8. Dispatch Success Rate vs. Approximate LDC.

of the time the strong-LP decision, together with a random realization, led to a valid schedule. In Fig. 7 this success rate is 
plotted against the approximate LSC value returned by the LSC-LP. Consistent with the earlier DSC results, the graph exhibits 
a clear linear trend (r = 0.999). Note that unlike the analogous evaluation for DSC depicted in Fig. 5, we do not distinguish 
between DC and non-DC networks, since all the PSTNs being tested are inherently not DC.

7.2.2. Accuracy of approximate LDC
We also evaluated the performance of our LDC approximation method. We again used the PSTN edge’s distribution 

information to assist in calculating approximate LDC, this time using it in the Central Limit Theorem’s normal approximation 
step. In order to identify potential conflicts, we extract an STNU that approximates the original PSTN with risk α = 0.05, 
which results in an interval that captures two standard deviations per contingent edge. The edge distributions also were 
used to sample contingent edges when generating random realizations. The results of this evaluation are shown in Fig. 8. 
As with DDC, our LDC results exhibit a strong linear relationship, with r = 0.949.

7.3. Optimality of likelihood of controllability of PSTNs

Since no tractable approaches for optimally solving likelihood of controllability problems currently exist, we compare 
both LSC-LP and Min-Loss DC to the current state-of-the-art approximate approaches. We focus our comparison on the 
Static Robust Execution Algorithm (SREA) [12] since it is the previous approach that most directly optimizes for LSC. We 
also compare against an online approach, the Dynamic Robust Execution Algorithm (DREA) [12] that reruns SREA every time 
new information is received and is thus the closest known approach to approximating LDC.

Throughout, we use the dynamic controllability dispatch algorithm taken from [26] to dispatch on the output of the 
methods described above. Since strong controllability is a special case of dynamic controllability, this algorithm can dispatch 
strongly controllable networks without requiring any adjustments. Across all approaches, we adopt the convention of [12,
13]. That is, rather than giving up if a realization falls outside of the STNU approximation, we attempt to dispatch the 
16
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Fig. 9. LSC-LP and Min-Loss DC Dispatch Success Rates Across Risk Levels on CAR-SHARING.

Table 2
Performance of dispatch strategies for CAR-SHARING benchmark.

Approach Dispatch 
success rate

Runtime 
(milliseconds)

Min-Loss DC 57.05% 161.2
DREA 54.85% 10911.4
LSC-LP 52.70% 256.7
SREA 51.92% 7430.1
DC-Dispatch 49.55% 41.5

network without controllability guidance, and execute the controllable timepoints as soon as all constraints corresponding to 
preceding events are satisfied. Finally, we also compare against DC-Dispatch, the dynamic controllability dispatch algorithm 
taken from [26], with STNU-controllability guidance incorporated.

We simulated real-time dispatch 200 times per problem instance, sampling randomly according to the probability dis-
tribution of each contingent edge. We focus these comparisons on the CAR-SHARING problem instances, because dispatch 
simulations coupled with the computationally intensive SREA and DREA methods struggled with the significantly larger 
ROVERS problem instances.

7.3.1. Finding optimal risk levels
In order to maximize the performance of LSC-LP and Min-Loss DC, we first need to determine what risk level (setting of 

α across all edges) would predict the best performance on the CAR-SHARING data set. The results are summarized in Fig. 9.
Interestingly, we found that Min-Loss performed best when set to the lowest risk level we tested, α = 0.001, which 

corresponded to extracting an STNU where the bounds over uncertain edges each capture 99.9% of the likelihood. This 
demonstrates the ODC-Relax algorithm’s ability to minimally relax uncertain intervals only when conflicts necessitate, and 
that it does so only for the interval involved in the conflict. This suggests that setting α to very small values allows ODC-

Relax the flexibility in sacrificing likelihood only where it is needed.
LSC-LP, on the other hand, showed quite different trends that largely mirrored the Min-Loss DC results. Here, setting α

too low hurt overall performance. We suspect that this was because the DSC-LP, unlike ODC-Relax, is not driven by conflicts 
and is agnostic of the underlying distribution. Thus, setting α too small provides the LP more opportunity to miss the 
densest portion of the probability mass in an attempt to generically optimize for volume. LSC-LP’s dispatch success rate 
peaks at α = 0.2 and drops slowly after that. Note that the results shown in Fig. 9 assume that the LSC-LP is used to guide 
the Dispatch-DC algorithm. The fact that Dispatch-DC attempts to guide execution even if the realizations fall outside the 
original STNU bounds mitigate how much performance drops off as α increases.

7.3.2. Optimality of LSC-LP and Min-Loss DC
The results of our empirical comparison across the five algorithms are shown in Table 2. Min-Loss DC demonstrates 

the highest overall success rate, a result that we confirmed across a wide diversity of problem instances. Min-Loss DC
had statistically significant (p < 0.05) higher dispatch success rates than LSC-LP, SREA, and DC-Dispatch. The only other 
statistically significant difference was that DREA achieved higher dispatch rates than both SREA and DC-Dispatch, but not
LSC-LP.

The most competitive approach with Min-Loss DC is DREA, which is an online algorithm that reruns SREA every time 
new information about the schedule is received. The fact that Min-Loss DC achieves a higher average success rate than DREA
17
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is surprising and notable, because Min-Loss DC computes a dispatchable network offline, prior to execution and so incurs no 
additional computational overhead during execution compared to other dynamic dispatch methods. This is in stark contrast 
to DREA, whose advantage is that it gets to recompute a completely new, strongly controllable schedule that re-optimizes for 
new information every time new information arrives. As noted in Table 2, this leads to immense computational overhead, 
with DREA expending two orders of magnitude more computation than Min-Loss DC.

We now turn to comparing the two methods for approximately computing the LSC: LSC-LP and SREA. As shown in 
Table 2, both approaches end up having fairly comparable dispatch success rates, with LSC-LP slightly edging out SREA, but 
not by a significant margin. LSC-LP’s main advantage over the SREA is that it is a single-shot LP rather than an LP that 
gets run many times as part of the binary search inner-loop. This results in an order-of-magnitude reduction in computation 
time. We note though, that most of this speedup can be attributed to the fact that SREA auto-tunes its α value for each 
particular problem instance, whereas LSC-LP does this only once across the entire benchmark offline and a priori.

DC-Dispatch had the least computational overhead, which is to be expected given that it does not attempt to optimize 
controllability of PSTNs. Note however that, except for DREA, the extra computational overhead associated with computing 
controllable network occurs offline before execution begins and, therefore, is unlikely to preclude its use in any situation 
where DC-Dispatch can be deployed.

8. Conclusion

In this paper, we applied a geometric view of STNUs and expanded the notion of controllability to a continuous measure. 
These new degrees of strong and dynamic controllability assess how far an STNU is from being controllable. We used this 
definition in the cases of strong and dynamic controllability to produce the Degree of Strong Controllability (DSC) and 
the Degree of Dynamic Controllability (DDC) metrics, which provide information on the maximum probability of success 
using certain types of offline and online strategies respectively. In doing so, we found an efficient LP for approximating 
DSC, presented a solution to a variant of the relaxation problem discussed by Bhargava et al. [20], and provided a normal 
approximation method for estimating DDC. We showed that DSC and DDC could be extended respectively to the new metrics 
Likelihood of Strong Controllability (LSC) and Likelihood of Dynamic Controllability) for PSTNs. Our empirical comparison 
demonstrated the usefulness of our metrics in capturing the likelihood of successful dispatch for both the strong and 
dynamic controllability cases and also for both STNUs and PSTNs. These contributions present a unified, geometric way of 
tracking the controllability of temporal networks.

In the future, it would be interesting to define a continuous metric that interpolates between strong, dynamic, and weak 
controllability. Although these metrics extend the definition of controllability in useful ways, they currently draw no direct 
connection between strong and dynamic controllability. That is, even though strong controllability implies dynamic control-
lability, the DSC value does not provide any information about whether a network is dynamically controllable. This could 
yield an explicit way of classifying states intermediate between dynamic and strong controllability and offer a more refined 
way of comparing different networks. Lastly, our relaxation algorithm and normal approximation for the DDC currently do 
not handle STNUs with multiple conflicts well, as they overlook the possibility of conflicts sharing contingent edges. Further 
work could attempt to figure out how to contend with these dependencies between conflicts in a way that more accurately 
assesses the probability of successful dispatch.
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