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Extended nonergodic regime and spin subdiffusion in disordered SU(2)-symmetric Floquet systems
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We explore thermalization and quantum dynamics in a one-dimensional disordered SU(2)-symmetric Floquet
model, where a many-body localized phase is prohibited by the non-Abelian symmetry. Despite the absence
of localization, we find an extended nonergodic regime at strong disorder where the system exhibits nonthermal
behaviors. In the strong disorder regime, the level spacing statistics exhibit neither a Wigner-Dyson nor a Poisson
distribution, and the spectral form factor does not show a linear-in-time growth at early times characteristic of
random matrix theory. The average entanglement entropy of the Floquet eigenstates is subthermal, although
violating an area-law scaling with system sizes. We further compute the expectation value of local observables
and find strong deviations from the eigenstate thermalization hypothesis. The infinite-temperature spin autocor-
relation function decays at long times as t−β with β < 0.5, indicating subdiffusive transport at strong disorders.
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I. INTRODUCTION

The presence of strong quenched disorders in noninte-
grable quantum systems often impedes thermalization. A
prototypical example in one dimension is many-body local-
ization (MBL) [1–3], where highly excited eigenstates of the
Hamiltonian violate the eigenstate thermalization hypothesis
(ETH) [4,5] and the system fails to reach thermal equilibrium
starting from generic initial states having a finite energy den-
sity. However, disorders have a dramatic effect on the quantum
dynamics even in the ergodic phase of systems exhibiting a
MBL phase transition. It has been shown that thermalization
in this regime is anomalous, featuring subdiffusive transport
as well as slow relaxation of local observables to their thermal
expectation values [6–17].

On the other hand, a true MBL phase is incompatible with
non-Abelian global symmetries, such as an SU(2) spin rota-
tion symmetry [18–23]. The quasilocal integrals of motion, a
defining feature of MBL, form exactly degenerate multiplets
under a non-Abelian symmetry group, which are unstable
against any infinitesimal interactions between them and hence
must break down. One may thus naively expect that sys-
tems with non-Abelian symmetries are trivially thermal even
at strong disorders. However, Ref. [21] recently studied an
SU(2)-symmetric random Heisenberg chain using a real-space
renormalization group approach and identified a broad regime
in system sizes where the system appears nonergodic. Within
this regime, the eigenstates are well approximated by tree
tensor networks with faster than area law but strongly subther-
mal entanglement entropy scaling, and expectation values of
local observables exhibit deviations from generic thermalizing
systems. The extremely long length scale beyond which the
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eventual thermalization sets in makes this intermediate non-
ergodic regime directly relevant in typical experiments with
moderate system sizes.

While the approach taken in Ref. [21] depends crucially
on energetics in a Hamiltonian system, it is natural to ask
what will happen in a strongly disordered periodically driven
Floquet system with SU(2) symmetry, where energy conser-
vation is absent and a tree tensor network structure for the
eigenstates does not seem to hold. The lack of energy con-
servation tends to allow Floquet systems to thermalize faster
and more completely to infinite temperature than Hamiltonian
systems [24–29]. Previous studies suggest that thermalization
and transport in Floquet systems near a MBL transition are
anomalous [30–34]. However, it is unclear whether such an
extended nonergodic regime becomes more fragile once the
nearby MBL phase is absent. Moreover, the transport property
in disordered systems with SU(2) symmetry remains an open
question.

In this work, we address the above questions by studying a
one-dimensional disordered SU(2)-symmetric Floquet model.
The key properties of a time-periodic Hamiltonian H (t+T ) =
H (t ) are encoded in the eigenstates of the Floquet opera-
tor UF = T e−i

∫ T
0 dtH (t ), which generates time evolution over

integer multiples of periods. We first look at the level spac-
ing statistics of the eigenenergy spectrum of UF using exact
diagonalization and find no transition into a MBL phase,
which is consistent with the SU(2) symmetry. However, at
strong disorder, the level spacing statistics exhibit neither
a Wigner-Dyson nor a Poisson distribution, and the drift
towards a Wigner-Dyson distribution upon increasing the sys-
tem size is very slow. To further probe the long-range spectral
correlations beyond nearest-neighboring levels, we calculate
the disorder-averaged spectral form factor. We find that the
spectral form factor also deviates from random matrix behav-
iors. In particular, within system sizes accessible numerically,
the linear-in-time growth at early times is absent, and the
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curves coincide with random matrix theory predictions only
at timescales comparable to the inverse level spacings. The
average entanglement entropy of the Floquet eigenstates is
subthermal, although exhibiting a faster than area law scaling
with system sizes.

The spectral properties of the Floquet model suggest an
intermediate regime that is neither MBL nor quantum chaotic
in the usual sense. To directly test ETH in this regime, we
calculate the distribution of the expectation values of local
observables under Floquet eigenstates and find that it strongly
deviates from the Floquet version of ETH, which predicts a
Gaussian distribution centered around the infinite-temperature
average value. This suggests the existence of an extended de-
localized and yet nonergodic regime [35,36]. Finally, we study
transport properties in the strong disorder regime by com-
puting the infinite-temperature spin autocorrelation function,
which decays at long times as t−β with β < 0.5, indicating
that spin transport is subdiffusive at strong disorders.

II. THE MODEL

We consider a spin-1/2 system with Heisenberg interac-
tions that respect the global SU(2) spin rotation symmetry.
Time evolutions are generated by switching between two al-
ternating Hamiltonians:

H1 =
∑
i

√
1 − g2Ji Si · Si+1,

H2 =
∑
i

g J2 Si · Si+2, (1)

with the Floquet operator given by

UF = exp(−iH2T/2) exp(−iH1T/2), (2)

with period T . Ji’s are Gaussian distributed random nearest-
neighbor couplings with zero mean and variance unity, and
J2 is uniform across all next-nearest-neighbor spins. We in-
cluded the J2 term to make the model more generic while
respecting the symmetry. The parameter 0 < g < 1 controls
the relative strength between the disordered nearest-neighbor
couplings and the uniform next-nearest-neighbor coupling,
thereby effectively tuning the disorder strength. We choose
the above normalization such that the many-body bandwidth
remains fixed as g varies. The limit when g = 1 is integrable,
corresponding to two copies of the clean Heisenberg model
on odd and even sites. However, taking g to be strictly less
than 1 makes the model nonintegrable. A disorder-free Hamil-
tonian system corresponding to H1 + H2 has been shown to
thermalize, with the equilibrium distribution described by
a non-Abelian thermal ensemble [37]. We hereafter choose
J2 = 1 and T = 4 for numerical simulations. With this choice
of parameters, the principal quasienergy zone width 2π

T is
smaller than the bandwidth of the undriven Hamiltonians H1

and H2. Hence, we are exploring the low driving frequency
regime where the Floquet Hamiltonian behaves differently
from the undriven model [38].

As a result of the SU(2) symmetry, model (1) has two com-
muting conserved quantities: (S2

tot, S
z
tot ), with Stot = ∑

i Si
being the total spin and Sztot being its z projection. There-
fore, the Hilbert space of our model falls into distinct blocks
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FIG. 1. The average level spacing ratio as a function of the
disorder strength g for different system sizes. Each data point is
averaged over 500 disorder realizations for L = 12, 250 realizations
for L = 14, and 50 realizations for L = 16.

labeled by two quantum numbers, Sztot and S2
tot = S(S + 1).

For simplicity, we shall focus on the sector with Sztot = 0 and
total spin S = 0.

III. SPECTRAL STATISTICS

We shall now present our numerical results on the spectral
statistics of the quasienergy spectrum of the Floquet opera-
tor UF and demonstrate that the spectrum at strong disorder
shows deviations from random matrix theory predictions.

A. Level spacing statistics

The analog of eigenenergies in a Floquet system is given by
the eigenvalues of the Floquet operator, which are unimodular
and can be denoted as {eiθn}. The quasienergies {θn} are 2π

periodic; hence, we take them to be within the principal zone
[−π, π ). Let {θn} be rank ordered descendingly, such that
θn > θn+1, and define the gap between adjacent quasienergy
levels as �θn = θn−1 − θn > 0. The level spacing distribution
can be captured by the ratio between adjacent gaps:

rn = min(�θn,�θn+1)

max(�θn,�θn+1)
. (3)

The average value of rn over different levels is able to cap-
ture the distributions of level spacings, and since Floquet
quasienergies have a uniform spectral density, we take the
average over the entire spectrum. This quantity serves as
the canonical diagnostic for the phase transition between a
thermalizing phase and the MBL phase [1,2]. In the localized
phase with a Poisson distributed spectrum, 〈r〉 ≈ 0.39; in the
thermalized phase, the quasienergy spectrum of our model fol-
lows a circular orthogonal ensemble (COE) with 〈r〉 ≈ 0.53
since both H1 and H2 are time reversal symmetric [24,39].

In Fig. 1, we show the average level spacing ratio 〈r〉 as a
function of the disorder strength g for different system sizes.
First of all, we find that there is no transition into a MBL
phase, as expected for SU(2)-symmetric systems in general.
Second, the flow of 〈r〉 upon increasing system sizes is always
monotonic, as opposed to the Hamiltonian system studied in
Ref. [21]. This is due to the removal of energy conservation as
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well as the uniform spectral density in Floquet systems, which
allows one to take all quasienergies into the average on equal
footing. At weak disorders, 〈r〉 approaches the COE value,
indicating that the system is nonintegrable and thermalizing.
On the other hand, at strong disorder, 〈r〉 approaches a value
that is intermediate between a Poisson and COE distribution,
with short-range level repulsion. While one expects that the
system will eventually thermalize in the thermodynamic limit,
for system sizes accessible in our numerics, the flow towards
COE with increasing system sizes is extremely slow. It is
therefore possible that there is an extended nonergodic regime
at strong disorders, similar to the strong disorder regime on
the ergodic side of a MBL transition [11–17].

B. Spectral form factor

While the level spacing statistics capture the repulsion be-
tween nearest-neighbor quasienergy levels, we now consider
a complementary spectral measure that is capable of describ-
ing correlations beyond nearest-neighbor levels. The spectral
form factor of the quasienergy spectrum is defined as

K (t ) =
〈∑

i, j

ei(θi−θ j )t

〉
, (4)

where the average is taken over different disorder realizations.
This quantity is intimately related to the temporal two-point
correlation functions of local observables and has been play-
ing a central role in characterizing quantum chaos [40–42].
Since the definition (4) involves all pairs of quasienergy lev-
els, it is able to capture spectral correlations beyond the scale
of level spacing. For orthogonal ensembles, K (t ) takes the
form [43]

K (t ) =
{
N [2τ − τ ln(1 + 2τ )] (τ � 1),

N
[
2 − τ ln

(
2τ+1
2τ−1

)]
(τ > 1),

(5)

where N is the Hilbert-space dimension and τ = t/N . Notice
that the behavior of K (t ) in Eq. (5) is different from that in
the unitary ensembles, where K (t ) is simply a linear ramp for
τ < 1 followed by a plateau for τ > 1 [40–43]. At short times,
expanding Eq. (5) at small τ yields K (t ) ≈ 2t . Thus, at early
times, K (t ) grows linearly in time with a slope different from
the unitary ensembles.

In Fig. 2, we plot the spectral form factor of our model at
weak and strong disorders. One can see that at weak disorders,
the spectral form factor agrees very well with random matrix
theory predictions. On the other hand, at strong disorders,
K (t ) strongly deviates from Eq. (5). In particular, the linear-
in-t growth at early times is absent, and the curves agree
with the random matrix theory behavior only at late times
comparable to the Heisenberg timescale ∼N . This implies
that the long-range spectral correlations in the quasienergy
spectrum do not follow the random matrix theory behavior.
For the system sizes accessible in our numerics, level repul-
sion between quasienergy levels exists only within the order
of a few level spacings, as indicated by the non-Poissonian
level spacing ratio.
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FIG. 2. The spectral form factor K (t ) for (a) g = 0.9 (weak dis-
order) and (b) g = 0.1 (strong disorder). The green curves indicate
the random matrix theory prediction (5) for COE. The results are
averaged over 2000 realizations for L = 12, 14 and 500 realizations
for L = 16.

IV. ENTANGLEMENT ENTROPY
AND LOCAL OBSERVABLES

We next turn to the entanglement entropy scaling and local
observables of our model. In Fig. 3, we plot the entanglement
entropy averaged over all eigenstates as a function of system
sizes. We take an equibipartitioning of the system in the mid-
dle and compute the von Neumann entropy:

S = −Tr(ρAlnρA), (6)

where ρA = TrĀ|ψ〉〈ψ | is the reduced density matrix of sub-
system A. We find that the entanglement entropy at strong
disorders scales faster than the area law, which is a constant in
one dimension. This is again consistent with the general ex-
pectation that the system is not many body localized at strong
disorders. However, the values of the entanglement entropy
for small g are well below the (infinite-temperature) thermal
values for the given size of Hilbert space. This indicates that,
although the system does not localize at strong disorders, it
also does not heat up to infinite temperature, which would
be the case for generic thermalizing Floquet systems. This
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FIG. 3. Average entanglement entropy as a function of system
sizes for different disorder strengths. The disorder is strong for small
g and weak for large g. At strong disorders, the entanglement entropy
scales faster than the area law but has a subthermal value. The Page
values corresponding to random states within the Sztot = 0 and S = 0
sector are shown by the dashed line. The numbers of realizations in
obtaining each data point are the same as in Fig. 1.

implies that although the eigenstates are delocalized in this
regime, they are, nevertheless, nonergodic. On the other hand,
at weak disorders the entanglement entropy is close to the
Page value [44] corresponding to a random state within the
Sztot = 0 and S = 0 sector.

To further characterize the nonergodic regime at strong
disorders, we study expectation values of local observables as
a direct test for ETH. For Hamiltonian systems, ETH suggests
that the diagonal matrix element of local observables is a
continuous function of the energy and centered around its
microcanonical ensemble average value. The Floquet version
of ETH thus implies that the expectation value of local observ-
ables under Floquet eigenstates should be narrowly peaked
around their infinite-temperature average value, with fluctu-
ations decaying exponentially with increasing system sizes.
We choose the observable Si · Si+1 associated with a particular
bond between sites i and i + 1. The eigenvalue of Si · Si+1

equals − 3
4 for singlet bonds and 1

4 for triplet bonds.
In Figs. 4(a)–4(c), we plot the probability distributions of

〈Si · Si+1〉 at strong disorders across all eigenstates for differ-
ent choices of bonds. In Fig. 4(a), we choose the strongest
bonds with the largest |Ji| for each disorder realization. We
find that the distribution is nearly bimodal, with dominating
weights centered around 1

4 and a weaker peak around − 3
4 . This

clearly shows that the pair of spins coupled via the strongest
bond almost forms a triplet or singlet instead of thermalizing
with the rest of the system. One expects that the probability of
finding a triplet or a singlet bond is proportional to the number
of multiplets (2S + 1), which is apparently bigger for triplets
with S = 1. This explains the peak around 1

4 in Fig. 4(a),
which corresponds to triplet bonds. In contrast, for weak dis-
orders, the probability distribution for even the strongest bond
is a Gaussian centered around the infinite-temperature average
value with a narrow width, as shown in Fig. 4(d), in agreement
with ETH.

We further show the probability distributions for the weak-
est bond with the smallest |Ji| [Fig. 4(c)] and a randomly

FIG. 4. Probability distributions of the local observable Si · Si+1

over all eigenstates for (a)–(c) strong disorders g = 0.1 and (d) weak
disorders g = 0.9. In (a) and (d), the strongest bonds with the largest
|Ji| are picked, and in (c), the weakest bonds with the smallest |Ji| are
picked; in (b) the bonds are picked randomly. The distributions are
obtained for system size L = 14 and over 250 disorder realizations.

chosen bond [Fig. 4(b)]. In Fig. 4(b), we find that for a ran-
domly chosen bond, the probability distribution also deviates
from ETH behavior, featuring a broad non-Gaussian distribu-
tion within its domain. To quantify the ultimate approach to
ETH in the thermodynamic limit, we compute the variance
of the local observable Si · Si+1 for a randomly chosen bond
as a function of system sizes, as shown in Fig. 5. For weak
disorders g = 0.9, the fluctuations decay exponentially with
increasing system sizes, consistent with ETH. On the other
hand, the fluctuations at strong disorders are significantly
larger than the weak disordered case. Our numerics indicate
that the fluctuations at strong disorders also decay as the sys-
tem size increases, although much more slowly than the weak
disordered case. Due to this extremely slow decay, we cannot
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FIG. 5. Variance of the expectation values of Si · Si+1 on ran-
domly chosen bonds for strong and weak disorders. The ensemble
includes both different Floquet eigenstates and disorder realizations.
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tell from numerics on small system sizes whether or not the
asymptotic decay is exponential in system size. Finally, for
the weakest bond for each disorder realization, the expectation
value is no longer peaked around that of a triplet. Instead, it
is now centered near zero, with only small weights around the
singlet and triplet values. This implies that pairs of spins that
are weakly coupled do not form singlets or triplets between
themselves and tend to thermalize with the rest of the system.
However, compared with Fig. 4(d), the distribution still shows
deviations from ETH predictions; namely, the distribution in
Fig. 4(c) has heavy tails away from its peak.

Therefore, we conclude that the diagonal matrix element
of Si · Si+1 exhibits deviations from ETH predictions. Its ex-
pectation value shows a broad non-Gaussian distribution, with
fluctuations decaying much more slowly than predicted by
ETH. Spins that are strongly coupled tend to form triplets,
and even in the presence of driving, such strongly coupled
pairs have a hard time absorbing energy from the drive and
hence are nearly decoupled from the rest of the system. Ex-
pectation values associated with a typical bond also show a
broad distribution within their domain.

V. SPIN AUTOCORRELATION FUNCTION

In this section, we study the transport property of our
model. Since the total z magnetization is conserved, one can
thus focus on the transport of local magnetizations. For disor-
dered nonintegrable systems that are thermalizing, one usually
expects that the transport of the conserved charge should
be diffusive. However, several studies have found anoma-
lous subdiffusion behavior in the ergodic regime of systems
exhibiting a MBL phase transition [6–17,30–32]. Here we
present numerical evidence of a similar subdiffusive regime
in our model, despite the absence of a true MBL phase.

We consider the infinite-temperature spin autocorrelation
function:

Czz(t ) = 1

N Tr
[
Szi (t )Szi (0)

]
, (7)

where the trace is taken within a fixed total magnetization
sector. Physically, this autocorrelation function probes the
probability of finding an initially localized charge at the same
position at time t . At late times, Czz(t ) decays as a power law:
Czz(t ) ∼ t−β , where β = 0.5 for diffusion and 0 < β < 0.5
for subdiffusion. We compute the above autocorrelation func-
tion using standard Krylov space time evolution methods [14],
and the results are shown in Fig. 6. We find that the spin
transport at strong disorder has β ≈ 0.4 and hence is sub-
diffusive. Notice that the fitting of the power β from Czz(t )
is typically not extremely accurate due to the oscillations on
top of the power-law decay as well as the arbitrariness in the
choice of time window. Nonetheless, different choices of time
windows in our fitting consistently yield a value for β that
is smaller than 0.5. We thus conclude that spin transport at
strong disorder is, indeed, subdiffusive.

As the disorder strength is decreased, the power β increases
continuously. For example, β ≈ 0.47 for g = 0.2, as shown in
Fig. 6. Upon further decreasing the amount of disorder, β ap-
pears to exceed 0.5, which implies superdiffusion. However,
this conclusion is false. As the disorder strength decreases, the

100 101
10-2

10-1

FIG. 6. Spin autocorrelation functionCzz(t ) for different disorder
strengths with L = 20 and averaged over 500 disorder realizations.
For strong disorders (g = 0.1), spin transport is subdiffusive with
Czz(t ) ∼ t−0.4. For weak disorders (g = 0.4), one appears to find
β > 0.5, suggesting superdiffusion, but this is due to the finite-size
effect, as explained in the text.

mean free path of the system lmfp increases. At some point,
the mean free path at that disorder strength becomes the order
of the system size used in our simulation lmfp ∼ L = 20, and
thus, simulations on small system sizes yield superdiffusive
behaviors. Beyond that point, the system size accessible in
our numerics is insufficient to draw any conclusion on the
nature of transport in the thermodynamic limit and hence can
no longer be trusted. On the other hand, at strong disorders
lmfp is typically much smaller than the system size, and hence,
simulations on moderate system sizes are good enough for
inferring transport properties in the thermodynamics limit.

Although our numerics are inconclusive for weak disor-
ders, the g = 1 limit is well understood. At g = 1, the system
becomes two decoupled clean Heisenberg chains on the even
and odd sites, respectively. This limit is integrable, and spin
transport is superdiffusive, with an exponent β = 2

3 [45,46].
One may thus conjecture that upon adding disorder, transport
becomes diffusive, similar to the random field XXZ chain
with a MBL phase transition [13], although one needs a much
larger system size to see diffusion.

VI. SUMMARY AND OUTLOOK

In this work, we studied thermalization and spin transport
in a disordered Floquet model with SU(2) symmetry. This
model can be viewed as an extension of disordered Heisenberg
Hamiltonians when energy conservation is removed or an
extension of Floquet MBL models when an additional SU(2)
symmetry is imposed. We found that, despite the absence of a
true MBL phase, the model exhibits an extended nonergodic
regime, which is characterized by both the spectral statistics
and a direct comparison with ETH using expectation values of
local observables. Moreover, we provided numerical evidence
from the spin autocorrelation function indicating that spin
diffusion at strong disorders is also anomalous.

Our result raises several interesting questions for future
study. First, in Hamiltonian systems, a length scale beyond
which resonances proliferate and the system eventually ther-
malizes can be extracted using a real-space strong disorder
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renormalization group approach. While such a procedure is
not directly applicable to Floquet systems where energy can-
not be defined, is there a similar length scale controlling the
ultimate thermalization in the strong-disorder regime? Sec-
ond, the eigenstates in a strongly disordered Heisenberg chain
can be well approximated by tree tensor networks. What is the
structure of the eigenstates in a Floquet system? The extended
and yet nonergodic nature of the eigenstates also suggests
multifractality that appears quite generically in many-body
localized systems and Floquet systems with disorder [47,48].
Finally, the transport properties of the strongly disordered
Heisenberg chain have remained unexplored. It will be in-
teresting to see if there is a subdiffusive regime there as
well. We focused on Czz(t ) in this work, but one can also
look at other quantities such as the ac conductivity σ (ω),
whose scaling exponent at low frequencies is, in fact, related
to β. Furthermore, it is desirable to identify the crossover
from subdiffusion to diffusion by using different numerical
methods that are amenable for much bigger system sizes, e.g.,

probing the steady-state current by coupling the system to
leads [13].
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